Statistics#
Set of elementary examples showing how the pyoed.stats
subpackage can be employed.
Distributions#
Sampling#
Driver script to test Sampling various algorithms with simple PDFs.
Functions
|
Main driver. |
|
Potential energy of the posterir. |
|
Gradient of the Potential energy of the posterir. |
|
The logarithm of the banana distribution PDF |
|
The gradient of the logarithm of the banana distribution PDF |
- get_base_output_dir()[source]#
Base output dir that enables modifying base output dir by changing pyoed settings class This is very helpful to globally steer output e.g., when running unittests.
- banana_potential_energy_value(state, a=2.15, b=0.75, rho=0.9)[source]#
Potential energy of the posterir. This is dependent on the target state, not the momentum. It is the negative the posterior-log, and MUST be implemented for each distribution
- banana_potential_energy_gradient(state, a=2.15, b=0.75, rho=0.9)[source]#
Gradient of the Potential energy of the posterir.
- banana_log_density(state, a=2.15, b=0.75, rho=0.9)[source]#
The logarithm of the banana distribution PDF
- banana_log_density_gradient(state, a=2.15, b=0.75, rho=0.9)[source]#
The gradient of the logarithm of the banana distribution PDF
- rejection_sample_banana_distribution(sample_size=1000, proposal_mean=[0, 3], proposal_variance=2)[source]#
- main(run_mcmc=True, run_hmc=True, run_rejection=True)[source]#
Main driver. Run all the sampler examples implemented in this module based on the passed flags
- Parameters:
run_mcmc (bool) – if True, call/run the function mcmc_sample_banana_distribution
run_hmc (bool) – if True, call/run the function hmc_sample_banana_distribution
run_rejection (bool) – if True, call/run the function rejection_sample_banana_distribution