Go to the source code of this file.
Macros | |
#define | VERDICT_MIN(a, b) ( ( a ) < ( b ) ? ( a ) : ( b ) ) |
#define | VERDICT_MAX(a, b) ( ( a ) > ( b ) ? ( a ) : ( b ) ) |
#define | jacobian_matrix(a, b, c, d, e, f, g) |
#define | form_t(m11, m21, m12, m22, mw11, mw21, mw12, mw22, detmw, xm11, xm21, xm12, xm22) |
#define | metric_matrix(m11, m21, m12, m22, gm11, gm12, gm22) |
Enumerations | |
enum | VerdictBoolean { VERDICT_FALSE = 0 , VERDICT_TRUE = 1 } |
Functions | |
double | determinant (double a, double b, double c, double d) |
double | determinant (const VerdictVector &v1, const VerdictVector &v2, const VerdictVector &v3) |
double | normalize_jacobian (double jacobi, VerdictVector &v1, VerdictVector &v2, VerdictVector &v3, int tet_flag=0) |
double | norm_squared (double m11, double m21, double m12, double m22) |
int | skew_matrix (double gm11, double gm12, double gm22, double det, double &qm11, double &qm21, double &qm12, double &qm22) |
void | inverse (const VerdictVector &x1, const VerdictVector &x2, const VerdictVector &x3, VerdictVector &u1, VerdictVector &u2, VerdictVector &u3) |
void | form_Q (const VerdictVector &v1, const VerdictVector &v2, const VerdictVector &v3, VerdictVector &q1, VerdictVector &q2, VerdictVector &q3) |
void | product (VerdictVector &a1, VerdictVector &a2, VerdictVector &a3, VerdictVector &b1, VerdictVector &b2, VerdictVector &b3, VerdictVector &c1, VerdictVector &c2, VerdictVector &c3) |
double | norm_squared (VerdictVector &x1, VerdictVector &x2, VerdictVector &x3) |
double | skew_x (VerdictVector &q1, VerdictVector &q2, VerdictVector &q3, VerdictVector &qw1, VerdictVector &qw2, VerdictVector &qw3) |
Variables | |
double | verdictSqrt2 |
#define form_t | ( | m11, | |
m21, | |||
m12, | |||
m22, | |||
mw11, | |||
mw21, | |||
mw12, | |||
mw22, | |||
detmw, | |||
xm11, | |||
xm21, | |||
xm12, | |||
xm22 | |||
) |
xm11 = ( ( m11 ) * ( mw22 ) - ( m12 ) * ( mw21 ) ) / ( detmw ); \ ( xm21 ) = ( ( m21 ) * ( mw22 ) - ( m22 ) * ( mw21 ) ) / ( detmw ); \ ( xm12 ) = ( ( m12 ) * ( mw11 ) - ( m11 ) * ( mw12 ) ) / ( detmw ); \ ( xm22 ) = ( ( m22 ) * ( mw11 ) - ( m21 ) * ( mw12 ) ) / ( detmw );
Definition at line 67 of file verdict_defines.hpp.
#define jacobian_matrix | ( | a, | |
b, | |||
c, | |||
d, | |||
e, | |||
f, | |||
g | |||
) |
double jac_mat_tmp; \
jac_mat_tmp = sqrt( a ); \
if( jac_mat_tmp == 0 ) \
{ \
( d ) = 0; \
( e ) = 0; \
( f ) = 0; \
( g ) = 0; \
} \
else \
{ \
( d ) = jac_mat_tmp; \
( e ) = 0; \
( f ) = ( b ) / jac_mat_tmp; \
( g ) = ( c ) / jac_mat_tmp; \
}
Definition at line 48 of file verdict_defines.hpp.
#define metric_matrix | ( | m11, | |
m21, | |||
m12, | |||
m22, | |||
gm11, | |||
gm12, | |||
gm22 | |||
) |
gm11 = ( m11 ) * ( m11 ) + ( m21 ) * ( m21 ); \ ( gm12 ) = ( m11 ) * ( m12 ) + ( m21 ) * ( m22 ); \ ( gm22 ) = ( m12 ) * ( m12 ) + ( m22 ) * ( m22 );
Definition at line 116 of file verdict_defines.hpp.
#define VERDICT_MAX | ( | a, | |
b | |||
) | ( ( a ) > ( b ) ? ( a ) : ( b ) ) |
Definition at line 36 of file verdict_defines.hpp.
#define VERDICT_MIN | ( | a, | |
b | |||
) | ( ( a ) < ( b ) ? ( a ) : ( b ) ) |
Definition at line 35 of file verdict_defines.hpp.
enum VerdictBoolean |
Enumerator | |
---|---|
VERDICT_FALSE | |
VERDICT_TRUE |
Definition at line 29 of file verdict_defines.hpp.
30 { 31 VERDICT_FALSE = 0, 32 VERDICT_TRUE = 1 33 };
|
inline |
Definition at line 43 of file verdict_defines.hpp.
44 {
45 return v1 % ( v2 * v3 );
46 }
|
inline |
Definition at line 38 of file verdict_defines.hpp.
39 {
40 return ( ( a ) * ( d ) - ( b ) * ( c ) );
41 }
Referenced by get_weight(), inverse(), v_quad_quality(), v_quad_relative_size_squared(), v_tri_quality(), and v_tri_relative_size_squared().
|
inline |
Definition at line 210 of file verdict_defines.hpp.
216 {
217
218 double g11, g12, g13, g22, g23, g33;
219
220 g11 = v1 % v1;
221 g12 = v1 % v2;
222 g13 = v1 % v3;
223 g22 = v2 % v2;
224 g23 = v2 % v3;
225 g33 = v3 % v3;
226
227 double rtg11 = sqrt( g11 );
228 double rtg22 = sqrt( g22 );
229 double rtg33 = sqrt( g33 );
230 VerdictVector temp1;
231
232 temp1 = v1 * v2;
233
234 double cross = sqrt( temp1 % temp1 );
235
236 double q11, q21, q31;
237 double q12, q22, q32;
238 double q13, q23, q33;
239
240 q11 = 1;
241 q21 = 0;
242 q31 = 0;
243
244 q12 = g12 / rtg11 / rtg22;
245 q22 = cross / rtg11 / rtg22;
246 q32 = 0;
247
248 q13 = g13 / rtg11 / rtg33;
249 q23 = ( g11 * g23 - g12 * g13 ) / rtg11 / rtg33 / cross;
250 temp1 = v2 * v3;
251 q33 = ( v1 % temp1 ) / rtg33 / cross;
252
253 q1.set( q11, q21, q31 );
254 q2.set( q12, q22, q32 );
255 q3.set( q13, q23, q33 );
256 }
References moab::cross(), and VerdictVector::set().
|
inline |
Definition at line 143 of file verdict_defines.hpp.
149 {
150 double detx = determinant( x1, x2, x3 );
151 VerdictVector rx1, rx2, rx3;
152
153 rx1.set( x1.x(), x2.x(), x3.x() );
154 rx2.set( x1.y(), x2.y(), x3.y() );
155 rx3.set( x1.z(), x2.z(), x3.z() );
156
157 u1 = rx2 * rx3;
158 u2 = rx3 * rx1;
159 u3 = rx1 * rx2;
160
161 u1 /= detx;
162 u2 /= detx;
163 u3 /= detx;
164 }
References determinant(), VerdictVector::set(), VerdictVector::x(), VerdictVector::y(), and VerdictVector::z().
Referenced by skew_x(), and test_spectral_hex().
|
inline |
Definition at line 111 of file verdict_defines.hpp.
112 {
113 return m11 * m11 + m21 * m21 + m12 * m12 + m22 * m22;
114 }
Referenced by skew_x().
|
inline |
Definition at line 280 of file verdict_defines.hpp.
282 {
283 return ( x1 % x1 ) + ( x2 % x2 ) + ( x3 % x3 );
284 }
|
inline |
Definition at line 75 of file verdict_defines.hpp.
80 {
81 double return_value = 0.0;
82
83 if( jacobi != 0.0 )
84 {
85
86 double l1, l2, l3, length_product;
87 // Note: there may be numerical problems if one is a lot shorter
88 // than the others this way. But scaling each vector before the
89 // triple product would involve 3 square roots instead of just
90 // one.
91 l1 = v1.length_squared();
92 l2 = v2.length_squared();
93 l3 = v3.length_squared();
94 length_product = sqrt( l1 * l2 * l3 );
95
96 // if some numerical scaling problem, or just plain roundoff,
97 // then push back into range [-1,1].
98 if( length_product < fabs( jacobi ) )
99 {
100 length_product = fabs( jacobi );
101 }
102
103 if( tet_flag == 1 )
104 return_value = verdictSqrt2 * jacobi / length_product;
105 else
106 return_value = jacobi / length_product;
107 }
108 return return_value;
109 }
References VerdictVector::length_squared(), and verdictSqrt2.
|
inline |
Definition at line 258 of file verdict_defines.hpp.
267 {
268
269 VerdictVector x1, x2, x3;
270
271 x1.set( a1.x(), a2.x(), a3.x() );
272 x2.set( a1.y(), a2.y(), a3.y() );
273 x3.set( a1.z(), a2.z(), a3.z() );
274
275 c1.set( x1 % b1, x2 % b1, x3 % b1 );
276 c2.set( x1 % b2, x2 % b2, x3 % b2 );
277 c3.set( x1 % b3, x2 % b3, x3 % b3 );
278 }
References VerdictVector::set(), VerdictVector::x(), VerdictVector::y(), and VerdictVector::z().
Referenced by skew_x().
|
inline |
Definition at line 121 of file verdict_defines.hpp.
129 {
130 double tmp = sqrt( gm11 * gm22 );
131 if( tmp == 0 )
132 {
133 return false;
134 }
135
136 qm11 = 1;
137 qm21 = 0;
138 qm12 = gm12 / tmp;
139 qm22 = det / tmp;
140 return true;
141 }
|
inline |
Definition at line 286 of file verdict_defines.hpp.
292 {
293 double normsq1, normsq2, kappa;
294 VerdictVector u1, u2, u3;
295 VerdictVector x1, x2, x3;
296
297 inverse( qw1, qw2, qw3, u1, u2, u3 );
298 product( q1, q2, q3, u1, u2, u3, x1, x2, x3 );
299 inverse( x1, x2, x3, u1, u2, u3 );
300 normsq1 = norm_squared( x1, x2, x3 );
301 normsq2 = norm_squared( u1, u2, u3 );
302 kappa = sqrt( normsq1 * normsq2 );
303
304 double skew = 0;
305 if( kappa > VERDICT_DBL_MIN ) skew = 3 / kappa;
306
307 return skew;
308 }
References inverse(), norm_squared(), product(), and VERDICT_DBL_MIN.
|
extern |
Definition at line 30 of file V_GaussIntegration.cpp.
Referenced by normalize_jacobian().