Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
VerdictVector Class Reference

#include <VerdictVector.hpp>

Public Member Functions

 VerdictVector ()
 
 VerdictVector (const double x, const double y, const double z)
 
 VerdictVector (const double xyz[3])
 
 VerdictVector (const VerdictVector &tail, const VerdictVector &head)
 
 VerdictVector (const VerdictVector &copy_from)
 
void set (const double xv, const double yv, const double zv)
 
void set (const double xyz[3])
 
void set (const VerdictVector &tail, const VerdictVector &head)
 
void set (const VerdictVector &to_copy)
 
double x () const
 
double y () const
 
double z () const
 
void get_xyz (double &x, double &y, double &z)
 
void get_xyz (double xyz[3])
 
double & r ()
 
double & theta ()
 
void x (const double xv)
 
void y (const double yv)
 
void z (const double zv)
 
void r (const double xv)
 
void theta (const double yv)
 
void xy_to_rtheta ()
 
void rtheta_to_xy ()
 
void scale_angle (double gamma, double)
 
void blow_out (double gamma, double gamma2=0.0)
 
void rotate (double angle, double)
 
void reflect_about_xaxis (double dummy, double)
 
double normalize ()
 
VerdictVectorlength (const double new_length)
 
double length () const
 
double distance_between (const VerdictVector &test_vector)
 
double length_squared () const
 
double interior_angle (const VerdictVector &otherVector)
 
double vector_angle_quick (const VerdictVector &vec1, const VerdictVector &vec2)
 
double vector_angle (const VerdictVector &vector1, const VerdictVector &vector2) const
 
void perpendicular_z ()
 
void print_me ()
 
void orthogonal_vectors (VerdictVector &vector2, VerdictVector &vector3)
 
void next_point (const VerdictVector &direction, double distance, VerdictVector &out_point)
 
bool within_tolerance (const VerdictVector &vectorPtr2, double tolerance) const
 
VerdictVectoroperator+= (const VerdictVector &vec)
 
VerdictVectoroperator-= (const VerdictVector &vec)
 
VerdictVectoroperator*= (const VerdictVector &vec)
 
VerdictVectoroperator*= (const double scalar)
 
VerdictVectoroperator/= (const double scalar)
 
VerdictVector operator- () const
 
VerdictVectoroperator= (const VerdictVector &from)
 

Private Attributes

double xVal
 
double yVal
 
double zVal
 

Friends

VerdictVector operator~ (const VerdictVector &vec)
 
VerdictVector operator+ (const VerdictVector &v1, const VerdictVector &v2)
 
VerdictVector operator- (const VerdictVector &v1, const VerdictVector &v2)
 
VerdictVector operator* (const VerdictVector &v1, const VerdictVector &v2)
 
VerdictVector operator* (const VerdictVector &v1, const double sclr)
 
VerdictVector operator* (const double sclr, const VerdictVector &v1)
 
double operator% (const VerdictVector &v1, const VerdictVector &v2)
 
VerdictVector operator/ (const VerdictVector &v1, const double sclr)
 
int operator== (const VerdictVector &v1, const VerdictVector &v2)
 
int operator!= (const VerdictVector &v1, const VerdictVector &v2)
 
VerdictVector interpolate (const double param, const VerdictVector &v1, const VerdictVector &v2)
 

Detailed Description

Definition at line 35 of file VerdictVector.hpp.

Constructor & Destructor Documentation

◆ VerdictVector() [1/5]

VerdictVector::VerdictVector ( )
inline

Definition at line 325 of file VerdictVector.hpp.

325 : xVal( 0 ), yVal( 0 ), zVal( 0 ) {}

Referenced by operator-().

◆ VerdictVector() [2/5]

VerdictVector::VerdictVector ( const double  x,
const double  y,
const double  z 
)
inline

Definition at line 332 of file VerdictVector.hpp.

333  : xVal( xIn ), yVal( yIn ), zVal( zIn )
334 {
335 }

◆ VerdictVector() [3/5]

VerdictVector::VerdictVector ( const double  xyz[3])

Definition at line 438 of file VerdictVector.cpp.

438 : xVal( xyz[0] ), yVal( xyz[1] ), zVal( xyz[2] ) {}

◆ VerdictVector() [4/5]

VerdictVector::VerdictVector ( const VerdictVector tail,
const VerdictVector head 
)
inline

Definition at line 327 of file VerdictVector.hpp.

328  : xVal( head.xVal - tail.xVal ), yVal( head.yVal - tail.yVal ), zVal( head.zVal - tail.zVal )
329 {
330 }

◆ VerdictVector() [5/5]

VerdictVector::VerdictVector ( const VerdictVector copy_from)
inline

Definition at line 320 of file VerdictVector.hpp.

321  : xVal( copy_from.xVal ), yVal( copy_from.yVal ), zVal( copy_from.zVal )
322 {
323 }

Member Function Documentation

◆ blow_out()

void VerdictVector::blow_out ( double  gamma,
double  gamma2 = 0.0 
)

Definition at line 133 of file VerdictVector.cpp.

134 {
135  // if gamma == 1, then
136  // map on a circle : r'^2 = sqrt( 1 - (1-r)^2 )
137  // if gamma ==0, then map back to itself
138  // in between, linearly interpolate
139  xy_to_rtheta();
140  // r() = sqrt( (2. - r()) * r() ) * gamma + r() * (1-gamma);
141  assert( gamma > 0.0 );
142  // the following limits should really be roundoff-based
143  if( r() > rmin * 1.001 && r() < 1.001 )
144  {
145  r() = rmin + pow( r(), gamma ) * ( 1.0 - rmin );
146  }
147  rtheta_to_xy();
148 }

References r(), rtheta_to_xy(), and xy_to_rtheta().

◆ distance_between()

double VerdictVector::distance_between ( const VerdictVector test_vector)

Definition at line 45 of file VerdictVector.cpp.

46 {
47  double xv = xVal - test_vector.x();
48  double yv = yVal - test_vector.y();
49  double zv = zVal - test_vector.z();
50 
51  return ( sqrt( xv * xv + yv * yv + zv * zv ) );
52 }

References x(), xVal, y(), yVal, z(), and zVal.

◆ get_xyz() [1/2]

void VerdictVector::get_xyz ( double &  x,
double &  y,
double &  z 
)
inline

Definition at line 258 of file VerdictVector.hpp.

259 {
260  xv = xVal;
261  yv = yVal;
262  zv = zVal;
263 }

References xVal, yVal, and zVal.

Referenced by orthogonal_vectors(), and v_tet_aspect_frobenius().

◆ get_xyz() [2/2]

void VerdictVector::get_xyz ( double  xyz[3])
inline

Definition at line 252 of file VerdictVector.hpp.

253 {
254  xyz[0] = xVal;
255  xyz[1] = yVal;
256  xyz[2] = zVal;
257 }

References xVal, yVal, and zVal.

◆ interior_angle()

double VerdictVector::interior_angle ( const VerdictVector otherVector)

Definition at line 64 of file VerdictVector.cpp.

65 {
66  double cosAngle = 0., angleRad = 0., len1, len2 = 0.;
67 
68  if( ( ( len1 = this->length() ) > 0 ) && ( ( len2 = otherVector.length() ) > 0 ) )
69  cosAngle = ( *this % otherVector ) / ( len1 * len2 );
70  else
71  {
72  assert( len1 > 0 );
73  assert( len2 > 0 );
74  }
75 
76  if( ( cosAngle > 1.0 ) && ( cosAngle < 1.0001 ) )
77  {
78  cosAngle = 1.0;
79  angleRad = acos( cosAngle );
80  }
81  else if( cosAngle < -1.0 && cosAngle > -1.0001 )
82  {
83  cosAngle = -1.0;
84  angleRad = acos( cosAngle );
85  }
86  else if( cosAngle >= -1.0 && cosAngle <= 1.0 )
87  angleRad = acos( cosAngle );
88  else
89  {
90  assert( cosAngle < 1.0001 && cosAngle > -1.0001 );
91  }
92 
93  return ( ( angleRad * 180. ) / VERDICT_PI );
94 }

References length(), and VERDICT_PI.

Referenced by v_tri_maximum_angle(), and v_tri_minimum_angle().

◆ length() [1/2]

double VerdictVector::length ( ) const
inline

Definition at line 477 of file VerdictVector.hpp.

478 {
479  return ( sqrt( xVal * xVal + yVal * yVal + zVal * zVal ) );
480 }

References xVal, yVal, and zVal.

Referenced by interior_angle(), length(), normalize(), and xy_to_rtheta().

◆ length() [2/2]

◆ length_squared()

◆ next_point()

void VerdictVector::next_point ( const VerdictVector direction,
double  distance,
VerdictVector out_point 
)

Definition at line 425 of file VerdictVector.cpp.

426 {
427  VerdictVector my_direction = direction;
428  my_direction.normalize();
429 
430  // Determine next point in space
431  out_point.x( xVal + ( distance * my_direction.x() ) );
432  out_point.y( yVal + ( distance * my_direction.y() ) );
433  out_point.z( zVal + ( distance * my_direction.z() ) );
434 
435  return;
436 }

References normalize(), x(), xVal, y(), yVal, z(), and zVal.

◆ normalize()

double VerdictVector::normalize ( )
inline

Definition at line 482 of file VerdictVector.hpp.

483 {
484  double mag = length();
485  if( mag != 0 )
486  {
487  xVal = xVal / mag;
488  yVal = yVal / mag;
489  zVal = zVal / mag;
490  }
491  return mag;
492 }

References length(), xVal, yVal, and zVal.

Referenced by localize_quad_coordinates(), localize_quad_for_ef(), next_point(), orthogonal_vectors(), quad_normal(), signed_corner_areas(), v_hex_quality(), v_hex_skew(), v_quad_distortion(), v_tri_distortion(), vector_angle(), and vectorRotate().

◆ operator*=() [1/2]

VerdictVector & VerdictVector::operator*= ( const double  scalar)
inline

Definition at line 382 of file VerdictVector.hpp.

383 {
384  xVal *= scalar;
385  yVal *= scalar;
386  zVal *= scalar;
387  return *this;
388 }

References xVal, yVal, and zVal.

◆ operator*=() [2/2]

VerdictVector & VerdictVector::operator*= ( const VerdictVector vec)
inline

Definition at line 308 of file VerdictVector.hpp.

309 {
310  double xcross, ycross, zcross;
311  xcross = yVal * vector.z() - zVal * vector.y();
312  ycross = zVal * vector.x() - xVal * vector.z();
313  zcross = xVal * vector.y() - yVal * vector.x();
314  xVal = xcross;
315  yVal = ycross;
316  zVal = zcross;
317  return *this;
318 }

References x(), xVal, y(), yVal, z(), and zVal.

◆ operator+=()

VerdictVector & VerdictVector::operator+= ( const VerdictVector vec)
inline

Definition at line 292 of file VerdictVector.hpp.

293 {
294  xVal += vector.x();
295  yVal += vector.y();
296  zVal += vector.z();
297  return *this;
298 }

References x(), xVal, y(), yVal, z(), and zVal.

◆ operator-()

VerdictVector VerdictVector::operator- ( ) const
inline

Definition at line 414 of file VerdictVector.hpp.

415 {
416  return VerdictVector( -xVal, -yVal, -zVal );
417 }

References VerdictVector(), xVal, yVal, and zVal.

◆ operator-=()

VerdictVector & VerdictVector::operator-= ( const VerdictVector vec)
inline

Definition at line 300 of file VerdictVector.hpp.

301 {
302  xVal -= vector.x();
303  yVal -= vector.y();
304  zVal -= vector.z();
305  return *this;
306 }

References x(), xVal, y(), yVal, z(), and zVal.

◆ operator/=()

VerdictVector & VerdictVector::operator/= ( const double  scalar)
inline

Definition at line 391 of file VerdictVector.hpp.

392 {
393  assert( scalar != 0 );
394  xVal /= scalar;
395  yVal /= scalar;
396  zVal /= scalar;
397  return *this;
398 }

References xVal, yVal, and zVal.

◆ operator=()

VerdictVector & VerdictVector::operator= ( const VerdictVector from)
inline

Definition at line 368 of file VerdictVector.hpp.

369 {
370  xVal = from.xVal;
371  yVal = from.yVal;
372  zVal = from.zVal;
373  return *this;
374 }

References xVal, yVal, and zVal.

◆ orthogonal_vectors()

void VerdictVector::orthogonal_vectors ( VerdictVector vector2,
VerdictVector vector3 
)

Definition at line 354 of file VerdictVector.cpp.

355 {
356  double xv[3];
357  unsigned short i = 0;
358  unsigned short imin = 0;
359  double rmin = 1.0E20;
360  unsigned short iperm1[3];
361  unsigned short iperm2[3];
362  unsigned short cont_flag = 1;
363  double vec1[3], vec2[3];
364  double rmag;
365 
366  // Copy the input vector and normalize it
367  VerdictVector vector1 = *this;
368  vector1.normalize();
369 
370  // Initialize perm flags
371  iperm1[0] = 1;
372  iperm1[1] = 2;
373  iperm1[2] = 0;
374  iperm2[0] = 2;
375  iperm2[1] = 0;
376  iperm2[2] = 1;
377 
378  // Get into the array format we can work with
379  vector1.get_xyz( vec1 );
380 
381  while( i < 3 && cont_flag )
382  {
383  if( fabs( vec1[i] ) < 1e-6 )
384  {
385  vec2[i] = 1.0;
386  vec2[iperm1[i]] = 0.0;
387  vec2[iperm2[i]] = 0.0;
388  cont_flag = 0;
389  }
390 
391  if( fabs( vec1[i] ) < rmin )
392  {
393  imin = i;
394  rmin = fabs( vec1[i] );
395  }
396  ++i;
397  }
398 
399  if( cont_flag )
400  {
401  xv[imin] = 1.0;
402  xv[iperm1[imin]] = 0.0;
403  xv[iperm2[imin]] = 0.0;
404 
405  // Determine cross product
406  vec2[0] = vec1[1] * xv[2] - vec1[2] * xv[1];
407  vec2[1] = vec1[2] * xv[0] - vec1[0] * xv[2];
408  vec2[2] = vec1[0] * xv[1] - vec1[1] * xv[0];
409 
410  // Unitize
411  rmag = sqrt( vec2[0] * vec2[0] + vec2[1] * vec2[1] + vec2[2] * vec2[2] );
412  vec2[0] /= rmag;
413  vec2[1] /= rmag;
414  vec2[2] /= rmag;
415  }
416 
417  // Copy 1st orthogonal vector into VerdictVector vector2
418  vector2.set( vec2 );
419 
420  // Cross vectors to determine last orthogonal vector
421  vector3 = vector1 * vector2;
422 }

References get_xyz(), normalize(), and set().

◆ perpendicular_z()

void VerdictVector::perpendicular_z ( )
inline

Definition at line 340 of file VerdictVector.hpp.

341 {
342  double temp = x();
343  x( y() );
344  y( -temp );
345 }

References x(), and y().

◆ print_me()

void VerdictVector::print_me ( )

◆ r() [1/2]

double & VerdictVector::r ( )
inline

Definition at line 264 of file VerdictVector.hpp.

265 {
266  return xVal;
267 }

References xVal.

Referenced by blow_out(), rtheta_to_xy(), scale_angle(), and xy_to_rtheta().

◆ r() [2/2]

void VerdictVector::r ( const double  xv)
inline

Definition at line 284 of file VerdictVector.hpp.

285 {
286  xVal = xv;
287 }

References xVal.

◆ reflect_about_xaxis()

void VerdictVector::reflect_about_xaxis ( double  dummy,
double   
)

Definition at line 150 of file VerdictVector.cpp.

151 {
152  yVal = -yVal;
153 }

References yVal.

◆ rotate()

void VerdictVector::rotate ( double  angle,
double   
)

Definition at line 126 of file VerdictVector.cpp.

127 {
128  xy_to_rtheta();
129  theta() += angle;
130  rtheta_to_xy();
131 }

References moab::angle(), rtheta_to_xy(), theta(), and xy_to_rtheta().

◆ rtheta_to_xy()

void VerdictVector::rtheta_to_xy ( )

Definition at line 116 of file VerdictVector.cpp.

117 {
118  // careful about overwriting
119  double x_ = r() * cos( theta() );
120  double y_ = r() * sin( theta() );
121 
122  x( x_ );
123  y( y_ );
124 }

References r(), theta(), x(), and y().

Referenced by blow_out(), rotate(), and scale_angle().

◆ scale_angle()

void VerdictVector::scale_angle ( double  gamma,
double   
)

Definition at line 155 of file VerdictVector.cpp.

156 {
157  const double r_factor = 0.3;
158  const double theta_factor = 0.6;
159 
160  xy_to_rtheta();
161 
162  // if neary 2pi, treat as zero
163  // some near zero stuff strays due to roundoff
164  if( theta() > TWO_VERDICT_PI - 0.02 ) theta() = 0;
165  // the above screws up on big sheets - need to overhaul at the sheet level
166 
167  if( gamma < 1 )
168  {
169  // squeeze together points of short radius so that
170  // long chords won't cross them
171  theta() += ( VERDICT_PI - theta() ) * ( 1 - gamma ) * theta_factor * ( 1 - r() );
172 
173  // push away from center of circle, again so long chords won't cross
174  r( ( r_factor + r() ) / ( 1 + r_factor ) );
175 
176  // scale angle by gamma
177  theta() *= gamma;
178  }
179  else
180  {
181  // scale angle by gamma, making sure points nearly 2pi are treated as zero
182  double new_theta = theta() * gamma;
183  if( new_theta < 2.5 * VERDICT_PI || r() < 0.2 ) theta( new_theta );
184  }
185  rtheta_to_xy();
186 }

References r(), rtheta_to_xy(), theta(), TWO_VERDICT_PI, VERDICT_PI, and xy_to_rtheta().

◆ set() [1/4]

◆ set() [2/4]

void VerdictVector::set ( const double  xyz[3])
inline

Definition at line 354 of file VerdictVector.hpp.

355 {
356  xVal = xyz[0];
357  yVal = xyz[1];
358  zVal = xyz[2];
359 }

References xVal, yVal, and zVal.

◆ set() [3/4]

void VerdictVector::set ( const VerdictVector tail,
const VerdictVector head 
)
inline

Definition at line 361 of file VerdictVector.hpp.

362 {
363  xVal = head.xVal - tail.xVal;
364  yVal = head.yVal - tail.yVal;
365  zVal = head.zVal - tail.zVal;
366 }

References xVal, yVal, and zVal.

◆ set() [4/4]

void VerdictVector::set ( const VerdictVector to_copy)
inline

Definition at line 376 of file VerdictVector.hpp.

377 {
378  *this = to_copy;
379 }

◆ theta() [1/2]

double & VerdictVector::theta ( )
inline

Definition at line 268 of file VerdictVector.hpp.

269 {
270  return yVal;
271 }

References yVal.

Referenced by rotate(), rtheta_to_xy(), scale_angle(), and xy_to_rtheta().

◆ theta() [2/2]

void VerdictVector::theta ( const double  yv)
inline

Definition at line 288 of file VerdictVector.hpp.

289 {
290  yVal = yv;
291 }

References yVal.

◆ vector_angle()

double VerdictVector::vector_angle ( const VerdictVector vector1,
const VerdictVector vector2 
) const

Definition at line 252 of file VerdictVector.cpp.

253 {
254  // This routine does not assume that any of the input vectors are of unit
255  // length. This routine does not normalize the input vectors.
256  // Special cases:
257  // If the normal vector is zero length:
258  // If a new one can be computed from vectors 1 & 2:
259  // the normal is replaced with the vector cross product
260  // else the two vectors are colinear and zero or 2PI is returned.
261  // If the normal is colinear with either (or both) vectors
262  // a new one is computed with the cross products
263  // (and checked again).
264 
265  // Check for zero length normal vector
266  VerdictVector normal = *this;
267  double normal_lensq = normal.length_squared();
268  double len_tol = 0.0000001;
269  if( normal_lensq <= len_tol )
270  {
271  // null normal - make it the normal to the plane defined by vector1
272  // and vector2. If still null, the vectors are colinear so check
273  // for zero or 180 angle.
274  normal = vector1 * vector2;
275  normal_lensq = normal.length_squared();
276  if( normal_lensq <= len_tol )
277  {
278  double cosine = vector1 % vector2;
279  if( cosine > 0.0 )
280  return 0.0;
281  else
282  return VERDICT_PI;
283  }
284  }
285 
286  // Trap for normal vector colinear to one of the other vectors. If so,
287  // use a normal defined by the two vectors.
288  double dot_tol = 0.985;
289  double dot = vector1 % normal;
290  if( dot * dot >= vector1.length_squared() * normal_lensq * dot_tol )
291  {
292  normal = vector1 * vector2;
293  normal_lensq = normal.length_squared();
294 
295  // Still problems if all three vectors were colinear
296  if( normal_lensq <= len_tol )
297  {
298  double cosine = vector1 % vector2;
299  if( cosine >= 0.0 )
300  return 0.0;
301  else
302  return VERDICT_PI;
303  }
304  }
305  else
306  {
307  // The normal and vector1 are not colinear, now check for vector2
308  dot = vector2 % normal;
309  if( dot * dot >= vector2.length_squared() * normal_lensq * dot_tol )
310  {
311  normal = vector1 * vector2;
312  }
313  }
314 
315  // Assume a plane such that the normal vector is the plane's normal.
316  // Create yAxis perpendicular to both the normal and vector1. yAxis is
317  // now in the plane. Create xAxis as the perpendicular to both yAxis and
318  // the normal. xAxis is in the plane and is the projection of vector1
319  // into the plane.
320 
321  normal.normalize();
322  VerdictVector yAxis = normal;
323  yAxis *= vector1;
324  double yv = vector2 % yAxis;
325  // yAxis memory slot will now be used for xAxis
326  yAxis *= normal;
327  double xv = vector2 % yAxis;
328 
329  // assert(x != 0.0 || y != 0.0);
330  if( xv == 0.0 && yv == 0.0 )
331  {
332  return 0.0;
333  }
334  double angle = atan2( yv, xv );
335 
336  if( angle < 0.0 )
337  {
339  }
340  return angle;
341 }

References moab::angle(), moab::dot(), length_squared(), normalize(), TWO_VERDICT_PI, and VERDICT_PI.

◆ vector_angle_quick()

double VerdictVector::vector_angle_quick ( const VerdictVector vec1,
const VerdictVector vec2 
)

Definition at line 188 of file VerdictVector.cpp.

189 {
190  //- compute the angle between two vectors in the plane defined by this vector
191  // build yAxis and xAxis such that xAxis is the projection of
192  // vec1 onto the normal plane of this vector
193 
194  // NOTE: vec1 and vec2 are Vectors from the vertex of the angle along
195  // the two sides of the angle.
196  // The angle returned is the right-handed angle around this vector
197  // from vec1 to vec2.
198 
199  // NOTE: vector_angle_quick gives exactly the same answer as vector_angle below
200  // providing this vector is normalized. It does so with two fewer
201  // cross-product evaluations and two fewer vector normalizations.
202  // This can be a substantial time savings if the function is called
203  // a significant number of times (e.g Hexer) ... (jrh 11/28/94)
204  // NOTE: vector_angle() is much more robust. Do not use vector_angle_quick()
205  // unless you are very sure of the safety of your input vectors.
206 
207  VerdictVector ry = ( *this ) * vec1;
208  VerdictVector rx = ry * ( *this );
209 
210  double xv = vec2 % rx;
211  double yv = vec2 % ry;
212 
213  double angle;
214  assert( xv != 0.0 || yv != 0.0 );
215 
216  angle = atan2( yv, xv );
217 
218  if( angle < 0.0 )
219  {
221  }
222  return angle;
223 }

References moab::angle(), and TWO_VERDICT_PI.

◆ within_tolerance()

bool VerdictVector::within_tolerance ( const VerdictVector vectorPtr2,
double  tolerance 
) const

Definition at line 343 of file VerdictVector.cpp.

344 {
345  if( ( fabs( this->x() - vectorPtr2.x() ) < tolerance ) && ( fabs( this->y() - vectorPtr2.y() ) < tolerance ) &&
346  ( fabs( this->z() - vectorPtr2.z() ) < tolerance ) )
347  {
348  return true;
349  }
350 
351  return false;
352 }

References moab::tolerance, x(), y(), and z().

◆ x() [1/2]

◆ x() [2/2]

void VerdictVector::x ( const double  xv)
inline

Definition at line 272 of file VerdictVector.hpp.

273 {
274  xVal = xv;
275 }

References xVal.

◆ xy_to_rtheta()

void VerdictVector::xy_to_rtheta ( )

Definition at line 105 of file VerdictVector.cpp.

106 {
107  // careful about overwriting
108  double r_ = length();
109  double theta_ = atan2( y(), x() );
110  if( theta_ < 0.0 ) theta_ += TWO_VERDICT_PI;
111 
112  r( r_ );
113  theta( theta_ );
114 }

References length(), r(), theta(), TWO_VERDICT_PI, x(), and y().

Referenced by blow_out(), rotate(), and scale_angle().

◆ y() [1/2]

◆ y() [2/2]

void VerdictVector::y ( const double  yv)
inline

Definition at line 276 of file VerdictVector.hpp.

277 {
278  yVal = yv;
279 }

References yVal.

◆ z() [1/2]

double VerdictVector::z ( ) const
inline

◆ z() [2/2]

void VerdictVector::z ( const double  zv)
inline

Definition at line 280 of file VerdictVector.hpp.

281 {
282  zVal = zv;
283 }

References zVal.

Friends And Related Function Documentation

◆ interpolate

VerdictVector interpolate ( const double  param,
const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 98 of file VerdictVector.cpp.

99 {
100  VerdictVector temp = ( 1.0 - param ) * v1;
101  temp += param * v2;
102  return temp;
103 }

◆ operator!=

int operator!= ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 467 of file VerdictVector.hpp.

468 {
469  return ( v1.xVal != v2.xVal || v1.yVal != v2.yVal || v1.zVal != v2.zVal );
470 }

◆ operator%

double operator% ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 495 of file VerdictVector.hpp.

496 {
497  return ( vector1.x() * vector2.x() + vector1.y() * vector2.y() + vector1.z() * vector2.z() );
498 }

◆ operator* [1/3]

VerdictVector operator* ( const double  sclr,
const VerdictVector v1 
)
friend

Definition at line 451 of file VerdictVector.hpp.

452 {
453  return VerdictVector( vector1 ) *= scalar;
454 }

◆ operator* [2/3]

VerdictVector operator* ( const VerdictVector v1,
const double  sclr 
)
friend

Definition at line 445 of file VerdictVector.hpp.

446 {
447  return VerdictVector( vector1 ) *= scalar;
448 }

◆ operator* [3/3]

VerdictVector operator* ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 439 of file VerdictVector.hpp.

440 {
441  return VerdictVector( vector1 ) *= vector2;
442 }

◆ operator+

VerdictVector operator+ ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 419 of file VerdictVector.hpp.

420 {
421  double xv = vector1.x() + vector2.x();
422  double yv = vector1.y() + vector2.y();
423  double zv = vector1.z() + vector2.z();
424  return VerdictVector( xv, yv, zv );
425  // return VerdictVector(vector1) += vector2;
426 }

◆ operator-

VerdictVector operator- ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 428 of file VerdictVector.hpp.

429 {
430  double xv = vector1.x() - vector2.x();
431  double yv = vector1.y() - vector2.y();
432  double zv = vector1.z() - vector2.z();
433  return VerdictVector( xv, yv, zv );
434  // return VerdictVector(vector1) -= vector2;
435 }

◆ operator/

VerdictVector operator/ ( const VerdictVector v1,
const double  sclr 
)
friend

Definition at line 457 of file VerdictVector.hpp.

458 {
459  return VerdictVector( vector1 ) /= scalar;
460 }

◆ operator==

int operator== ( const VerdictVector v1,
const VerdictVector v2 
)
friend

Definition at line 462 of file VerdictVector.hpp.

463 {
464  return ( v1.xVal == v2.xVal && v1.yVal == v2.yVal && v1.zVal == v2.zVal );
465 }

◆ operator~

VerdictVector operator~ ( const VerdictVector vec)
friend

Definition at line 401 of file VerdictVector.hpp.

402 {
403  double mag = sqrt( vec.xVal * vec.xVal + vec.yVal * vec.yVal + vec.zVal * vec.zVal );
404 
405  VerdictVector temp = vec;
406  if( mag != 0.0 )
407  {
408  temp /= mag;
409  }
410  return temp;
411 }

Member Data Documentation

◆ xVal

◆ yVal

◆ zVal


The documentation for this class was generated from the following files: