Loading [MathJax]/extensions/tex2jax.js
Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
VerdictVector.cpp
Go to the documentation of this file.
1 /*========================================================================= 2  3  Module: $RCSfile: VerdictVector.cpp,v $ 4  5  Copyright (c) 2006 Sandia Corporation. 6  All rights reserved. 7  See Copyright.txt or http://www.kitware.com/Copyright.htm for details. 8  9  This software is distributed WITHOUT ANY WARRANTY; without even 10  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 11  PURPOSE. See the above copyright notice for more information. 12  13 =========================================================================*/ 14  15 /* 16  * 17  * VerdictVector.cpp contains implementation of Vector operations 18  * 19  * This file is part of VERDICT 20  * 21  */ 22  23 #define VERDICT_EXPORTS 24  25 #include "moab/verdict.h" 26 #include <cmath> 27 #include "VerdictVector.hpp" 28 #include <cfloat> 29  30 #if defined( __BORLANDC__ ) 31 #pragma warn - 8004 /* "assigned a value that is never used" */ 32 #endif 33  34 const double TWO_VERDICT_PI = 2.0 * VERDICT_PI; 35  36 VerdictVector& VerdictVector::length( const double new_length ) 37 { 38  double len = this->length(); 39  xVal *= new_length / len; 40  yVal *= new_length / len; 41  zVal *= new_length / len; 42  return *this; 43 } 44  45 double VerdictVector::distance_between( const VerdictVector& test_vector ) 46 { 47  double xv = xVal - test_vector.x(); 48  double yv = yVal - test_vector.y(); 49  double zv = zVal - test_vector.z(); 50  51  return ( sqrt( xv * xv + yv * yv + zv * zv ) ); 52 } 53  54 /* 55 void VerdictVector::print_me() 56 { 57  PRINT_INFO("X: %f\n",xVal); 58  PRINT_INFO("Y: %f\n",yVal); 59  PRINT_INFO("Z: %f\n",zVal); 60  61 } 62 */ 63  64 double VerdictVector::interior_angle( const VerdictVector& otherVector ) 65 { 66  double cosAngle = 0., angleRad = 0., len1, len2 = 0.; 67  68  if( ( ( len1 = this->length() ) > 0 ) && ( ( len2 = otherVector.length() ) > 0 ) ) 69  cosAngle = ( *this % otherVector ) / ( len1 * len2 ); 70  else 71  { 72  assert( len1 > 0 ); 73  assert( len2 > 0 ); 74  } 75  76  if( ( cosAngle > 1.0 ) && ( cosAngle < 1.0001 ) ) 77  { 78  cosAngle = 1.0; 79  angleRad = acos( cosAngle ); 80  } 81  else if( cosAngle < -1.0 && cosAngle > -1.0001 ) 82  { 83  cosAngle = -1.0; 84  angleRad = acos( cosAngle ); 85  } 86  else if( cosAngle >= -1.0 && cosAngle <= 1.0 ) 87  angleRad = acos( cosAngle ); 88  else 89  { 90  assert( cosAngle < 1.0001 && cosAngle > -1.0001 ); 91  } 92  93  return ( ( angleRad * 180. ) / VERDICT_PI ); 94 } 95  96 // Interpolate between two vectors. 97 // Returns (1-param)*v1 + param*v2 98 VerdictVector interpolate( const double param, const VerdictVector& v1, const VerdictVector& v2 ) 99 { 100  VerdictVector temp = ( 1.0 - param ) * v1; 101  temp += param * v2; 102  return temp; 103 } 104  105 void VerdictVector::xy_to_rtheta() 106 { 107  // careful about overwriting 108  double r_ = length(); 109  double theta_ = atan2( y(), x() ); 110  if( theta_ < 0.0 ) theta_ += TWO_VERDICT_PI; 111  112  r( r_ ); 113  theta( theta_ ); 114 } 115  116 void VerdictVector::rtheta_to_xy() 117 { 118  // careful about overwriting 119  double x_ = r() * cos( theta() ); 120  double y_ = r() * sin( theta() ); 121  122  x( x_ ); 123  y( y_ ); 124 } 125  126 void VerdictVector::rotate( double angle, double ) 127 { 128  xy_to_rtheta(); 129  theta() += angle; 130  rtheta_to_xy(); 131 } 132  133 void VerdictVector::blow_out( double gamma, double rmin ) 134 { 135  // if gamma == 1, then 136  // map on a circle : r'^2 = sqrt( 1 - (1-r)^2 ) 137  // if gamma ==0, then map back to itself 138  // in between, linearly interpolate 139  xy_to_rtheta(); 140  // r() = sqrt( (2. - r()) * r() ) * gamma + r() * (1-gamma); 141  assert( gamma > 0.0 ); 142  // the following limits should really be roundoff-based 143  if( r() > rmin * 1.001 && r() < 1.001 ) 144  { 145  r() = rmin + pow( r(), gamma ) * ( 1.0 - rmin ); 146  } 147  rtheta_to_xy(); 148 } 149  150 void VerdictVector::reflect_about_xaxis( double, double ) 151 { 152  yVal = -yVal; 153 } 154  155 void VerdictVector::scale_angle( double gamma, double ) 156 { 157  const double r_factor = 0.3; 158  const double theta_factor = 0.6; 159  160  xy_to_rtheta(); 161  162  // if neary 2pi, treat as zero 163  // some near zero stuff strays due to roundoff 164  if( theta() > TWO_VERDICT_PI - 0.02 ) theta() = 0; 165  // the above screws up on big sheets - need to overhaul at the sheet level 166  167  if( gamma < 1 ) 168  { 169  // squeeze together points of short radius so that 170  // long chords won't cross them 171  theta() += ( VERDICT_PI - theta() ) * ( 1 - gamma ) * theta_factor * ( 1 - r() ); 172  173  // push away from center of circle, again so long chords won't cross 174  r( ( r_factor + r() ) / ( 1 + r_factor ) ); 175  176  // scale angle by gamma 177  theta() *= gamma; 178  } 179  else 180  { 181  // scale angle by gamma, making sure points nearly 2pi are treated as zero 182  double new_theta = theta() * gamma; 183  if( new_theta < 2.5 * VERDICT_PI || r() < 0.2 ) theta( new_theta ); 184  } 185  rtheta_to_xy(); 186 } 187  188 double VerdictVector::vector_angle_quick( const VerdictVector& vec1, const VerdictVector& vec2 ) 189 { 190  //- compute the angle between two vectors in the plane defined by this vector 191  // build yAxis and xAxis such that xAxis is the projection of 192  // vec1 onto the normal plane of this vector 193  194  // NOTE: vec1 and vec2 are Vectors from the vertex of the angle along 195  // the two sides of the angle. 196  // The angle returned is the right-handed angle around this vector 197  // from vec1 to vec2. 198  199  // NOTE: vector_angle_quick gives exactly the same answer as vector_angle below 200  // providing this vector is normalized. It does so with two fewer 201  // cross-product evaluations and two fewer vector normalizations. 202  // This can be a substantial time savings if the function is called 203  // a significant number of times (e.g Hexer) ... (jrh 11/28/94) 204  // NOTE: vector_angle() is much more robust. Do not use vector_angle_quick() 205  // unless you are very sure of the safety of your input vectors. 206  207  VerdictVector ry = ( *this ) * vec1; 208  VerdictVector rx = ry * ( *this ); 209  210  double xv = vec2 % rx; 211  double yv = vec2 % ry; 212  213  double angle; 214  assert( xv != 0.0 || yv != 0.0 ); 215  216  angle = atan2( yv, xv ); 217  218  if( angle < 0.0 ) 219  { 220  angle += TWO_VERDICT_PI; 221  } 222  return angle; 223 } 224  225 VerdictVector vectorRotate( const double angle, const VerdictVector& normalAxis, const VerdictVector& referenceAxis ) 226 { 227  // A new coordinate system is created with the xy plane corresponding 228  // to the plane normal to the normal axis, and the x axis corresponding to 229  // the projection of the reference axis onto the normal plane. The normal 230  // plane is the tangent plane at the root point. A unit vector is 231  // constructed along the local x axis and then rotated by the given 232  // ccw angle to form the new point. The new point, then is a unit 233  // distance from the global origin in the tangent plane. 234  235  double x, y; 236  237  // project a unit distance from root along reference axis 238  239  VerdictVector yAxis = normalAxis * referenceAxis; 240  VerdictVector xAxis = yAxis * normalAxis; 241  yAxis.normalize(); 242  xAxis.normalize(); 243  244  x = cos( angle ); 245  y = sin( angle ); 246  247  xAxis *= x; 248  yAxis *= y; 249  return VerdictVector( xAxis + yAxis ); 250 } 251  252 double VerdictVector::vector_angle( const VerdictVector& vector1, const VerdictVector& vector2 ) const 253 { 254  // This routine does not assume that any of the input vectors are of unit 255  // length. This routine does not normalize the input vectors. 256  // Special cases: 257  // If the normal vector is zero length: 258  // If a new one can be computed from vectors 1 & 2: 259  // the normal is replaced with the vector cross product 260  // else the two vectors are colinear and zero or 2PI is returned. 261  // If the normal is colinear with either (or both) vectors 262  // a new one is computed with the cross products 263  // (and checked again). 264  265  // Check for zero length normal vector 266  VerdictVector normal = *this; 267  double normal_lensq = normal.length_squared(); 268  double len_tol = 0.0000001; 269  if( normal_lensq <= len_tol ) 270  { 271  // null normal - make it the normal to the plane defined by vector1 272  // and vector2. If still null, the vectors are colinear so check 273  // for zero or 180 angle. 274  normal = vector1 * vector2; 275  normal_lensq = normal.length_squared(); 276  if( normal_lensq <= len_tol ) 277  { 278  double cosine = vector1 % vector2; 279  if( cosine > 0.0 ) 280  return 0.0; 281  else 282  return VERDICT_PI; 283  } 284  } 285  286  // Trap for normal vector colinear to one of the other vectors. If so, 287  // use a normal defined by the two vectors. 288  double dot_tol = 0.985; 289  double dot = vector1 % normal; 290  if( dot * dot >= vector1.length_squared() * normal_lensq * dot_tol ) 291  { 292  normal = vector1 * vector2; 293  normal_lensq = normal.length_squared(); 294  295  // Still problems if all three vectors were colinear 296  if( normal_lensq <= len_tol ) 297  { 298  double cosine = vector1 % vector2; 299  if( cosine >= 0.0 ) 300  return 0.0; 301  else 302  return VERDICT_PI; 303  } 304  } 305  else 306  { 307  // The normal and vector1 are not colinear, now check for vector2 308  dot = vector2 % normal; 309  if( dot * dot >= vector2.length_squared() * normal_lensq * dot_tol ) 310  { 311  normal = vector1 * vector2; 312  } 313  } 314  315  // Assume a plane such that the normal vector is the plane's normal. 316  // Create yAxis perpendicular to both the normal and vector1. yAxis is 317  // now in the plane. Create xAxis as the perpendicular to both yAxis and 318  // the normal. xAxis is in the plane and is the projection of vector1 319  // into the plane. 320  321  normal.normalize(); 322  VerdictVector yAxis = normal; 323  yAxis *= vector1; 324  double yv = vector2 % yAxis; 325  // yAxis memory slot will now be used for xAxis 326  yAxis *= normal; 327  double xv = vector2 % yAxis; 328  329  // assert(x != 0.0 || y != 0.0); 330  if( xv == 0.0 && yv == 0.0 ) 331  { 332  return 0.0; 333  } 334  double angle = atan2( yv, xv ); 335  336  if( angle < 0.0 ) 337  { 338  angle += TWO_VERDICT_PI; 339  } 340  return angle; 341 } 342  343 bool VerdictVector::within_tolerance( const VerdictVector& vectorPtr2, double tolerance ) const 344 { 345  if( ( fabs( this->x() - vectorPtr2.x() ) < tolerance ) && ( fabs( this->y() - vectorPtr2.y() ) < tolerance ) && 346  ( fabs( this->z() - vectorPtr2.z() ) < tolerance ) ) 347  { 348  return true; 349  } 350  351  return false; 352 } 353  354 void VerdictVector::orthogonal_vectors( VerdictVector& vector2, VerdictVector& vector3 ) 355 { 356  double xv[3]; 357  unsigned short i = 0; 358  unsigned short imin = 0; 359  double rmin = 1.0E20; 360  unsigned short iperm1[3]; 361  unsigned short iperm2[3]; 362  unsigned short cont_flag = 1; 363  double vec1[3], vec2[3]; 364  double rmag; 365  366  // Copy the input vector and normalize it 367  VerdictVector vector1 = *this; 368  vector1.normalize(); 369  370  // Initialize perm flags 371  iperm1[0] = 1; 372  iperm1[1] = 2; 373  iperm1[2] = 0; 374  iperm2[0] = 2; 375  iperm2[1] = 0; 376  iperm2[2] = 1; 377  378  // Get into the array format we can work with 379  vector1.get_xyz( vec1 ); 380  381  while( i < 3 && cont_flag ) 382  { 383  if( fabs( vec1[i] ) < 1e-6 ) 384  { 385  vec2[i] = 1.0; 386  vec2[iperm1[i]] = 0.0; 387  vec2[iperm2[i]] = 0.0; 388  cont_flag = 0; 389  } 390  391  if( fabs( vec1[i] ) < rmin ) 392  { 393  imin = i; 394  rmin = fabs( vec1[i] ); 395  } 396  ++i; 397  } 398  399  if( cont_flag ) 400  { 401  xv[imin] = 1.0; 402  xv[iperm1[imin]] = 0.0; 403  xv[iperm2[imin]] = 0.0; 404  405  // Determine cross product 406  vec2[0] = vec1[1] * xv[2] - vec1[2] * xv[1]; 407  vec2[1] = vec1[2] * xv[0] - vec1[0] * xv[2]; 408  vec2[2] = vec1[0] * xv[1] - vec1[1] * xv[0]; 409  410  // Unitize 411  rmag = sqrt( vec2[0] * vec2[0] + vec2[1] * vec2[1] + vec2[2] * vec2[2] ); 412  vec2[0] /= rmag; 413  vec2[1] /= rmag; 414  vec2[2] /= rmag; 415  } 416  417  // Copy 1st orthogonal vector into VerdictVector vector2 418  vector2.set( vec2 ); 419  420  // Cross vectors to determine last orthogonal vector 421  vector3 = vector1 * vector2; 422 } 423  424 //- Find next point from this point using a direction and distance 425 void VerdictVector::next_point( const VerdictVector& direction, double distance, VerdictVector& out_point ) 426 { 427  VerdictVector my_direction = direction; 428  my_direction.normalize(); 429  430  // Determine next point in space 431  out_point.x( xVal + ( distance * my_direction.x() ) ); 432  out_point.y( yVal + ( distance * my_direction.y() ) ); 433  out_point.z( zVal + ( distance * my_direction.z() ) ); 434  435  return; 436 } 437  438 VerdictVector::VerdictVector( const double xyz[3] ) : xVal( xyz[0] ), yVal( xyz[1] ), zVal( xyz[2] ) {}