Mesh Oriented datABase
(version 5.5.1)
An array-based unstructured mesh library
VerdictVector.hpp
Go to the documentation of this file.
1
/*=========================================================================
2
3
Module: $RCSfile: VerdictVector.hpp,v $
4
5
Copyright (c) 2006 Sandia Corporation.
6
All rights reserved.
7
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
8
9
This software is distributed WITHOUT ANY WARRANTY; without even
10
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
11
PURPOSE. See the above copyright notice for more information.
12
13
=========================================================================*/
14
15
/*
16
*
17
* VerdictVector.hpp contains declarations of vector operations
18
*
19
* This file is part of VERDICT
20
*
21
*/
22
23
#ifndef VERDICTVECTOR_HPP
24
#define VERDICTVECTOR_HPP
25
26
#include "
moab/verdict.h
"
27
#include <cassert>
28
#include <cmath>
29
30
class
VerdictVector
;
31
typedef
void (
VerdictVector
::*
transform_function
)(
double
gamma,
double
gamma2 );
32
// a pointer to some function that transforms the point,
33
// taking a double parameter. e.g. blow_out, rotate, and scale_angle
34
35
class
VerdictVector
36
{
37
public
:
38
//- Heading: Constructors and Destructor
39
VerdictVector
();
//- Default constructor.
40
41
VerdictVector
(
const
double
x
,
const
double
y
,
const
double
z
);
42
//- Constructor: create vector from three components
43
44
VerdictVector
(
const
double
xyz[3] );
45
//- Constructor: create vector from tuple
46
47
VerdictVector
(
const
VerdictVector
& tail,
const
VerdictVector
& head );
48
//- Constructor for a VerdictVector starting at tail and pointing
49
//- to head.
50
51
VerdictVector
(
const
VerdictVector
& copy_from );
//- Copy Constructor
52
53
//- Heading: Set and Inquire Functions
54
void
set
(
const
double
xv,
const
double
yv,
const
double
zv );
55
//- Change vector components to {x}, {y}, and {z}
56
57
void
set
(
const
double
xyz[3] );
58
//- Change vector components to xyz[0], xyz[1], xyz[2]
59
60
void
set
(
const
VerdictVector
& tail,
const
VerdictVector
& head );
61
//- Change vector to go from tail to head.
62
63
void
set
(
const
VerdictVector
& to_copy );
64
//- Same as operator=(const VerdictVector&)
65
66
double
x
()
const
;
//- Return x component of vector
67
68
double
y
()
const
;
//- Return y component of vector
69
70
double
z
()
const
;
//- Return z component of vector
71
72
void
get_xyz
(
double
&
x
,
double
&
y
,
double
&
z
);
//- Get x, y, z components
73
void
get_xyz
(
double
xyz[3] );
//- Get xyz tuple
74
75
double
&
r
();
//- Return r component of vector, if (r,theta) format
76
77
double
&
theta
();
//- Return theta component of vector, if (r,theta) format
78
79
void
x
(
const
double
xv );
//- Set x component of vector
80
81
void
y
(
const
double
yv );
//- Set y component of vector
82
83
void
z
(
const
double
zv );
//- Set z component of vector
84
85
void
r
(
const
double
xv );
//- Set r component of vector, if (r,theta) format
86
87
void
theta
(
const
double
yv );
//- Set theta component of vector, if (r,theta) format
88
89
void
xy_to_rtheta
();
90
//- convert from cartesian to polar coordinates, just 2d for now
91
//- theta is in [0,2 PI)
92
93
void
rtheta_to_xy
();
94
//- convert from polar to cartesian coordinates, just 2d for now
95
96
void
scale_angle
(
double
gamma,
double
);
97
//- tranform_function.
98
//- transform (x,y) to (r,theta) to (r,gamma*theta) to (x',y')
99
//- plus some additional scaling so long chords won't cross short ones
100
101
void
blow_out
(
double
gamma,
double
gamma2 = 0.0 );
102
//- transform_function
103
//- blow points radially away from the origin,
104
105
void
rotate
(
double
angle
,
double
);
106
//- transform function.
107
//- transform (x,y) to (r,theta) to (r,theta+angle) to (x',y')
108
109
void
reflect_about_xaxis
(
double
dummy,
double
);
110
//- dummy argument to make it a transform function
111
112
double
normalize
();
113
//- Normalize (set magnitude equal to 1) vector - return the magnitude
114
115
VerdictVector
&
length
(
const
double
new_length );
116
//- Change length of vector to {new_length}. Can be used to move a
117
//- location a specified distance from the origin in the current
118
//- orientation.
119
120
double
length
()
const
;
121
//- Calculate the length of the vector.
122
//- Use {length_squared()} if only comparing lengths, not adding.
123
124
double
distance_between
(
const
VerdictVector
& test_vector );
125
//- Calculate the distance from the head of one vector
126
// to the head of the test_vector.
127
128
double
length_squared
()
const
;
129
//- Calculate the squared length of the vector.
130
//- Faster than {length()} since it eliminates the square root if
131
//- only comparing other lengths.
132
133
double
interior_angle
(
const
VerdictVector
& otherVector );
134
//- Calculate the interior angle: acos((a%b)/(|a||b|))
135
//- Returns angle in degrees.
136
137
double
vector_angle_quick
(
const
VerdictVector
& vec1,
const
VerdictVector
& vec2 );
138
//- Calculate the interior angle between the projections of
139
//- {vec1} and {vec2} onto the plane defined by the {this} vector.
140
//- The angle returned is the right-handed angle around the {this}
141
//- vector from {vec1} to {vec2}. Angle is in radians.
142
143
double
vector_angle
(
const
VerdictVector
& vector1,
const
VerdictVector
& vector2 )
const
;
144
//- Compute the angle between the projections of {vector1} and {vector2}
145
//- onto the plane defined by *this. The angle is the
146
//- right-hand angle, in radians, about *this from {vector1} to {vector2}.
147
148
void
perpendicular_z
();
149
//- Transform this vector to a perpendicular one, leaving
150
//- z-component alone. Rotates clockwise about the z-axis by pi/2.
151
152
void
print_me
();
153
//- Prints out the coordinates of this vector.
154
155
void
orthogonal_vectors
(
VerdictVector
& vector2,
VerdictVector
& vector3 );
156
//- Finds 2 (arbitrary) vectors that are orthogonal to this one
157
158
void
next_point
(
const
VerdictVector
& direction,
double
distance,
VerdictVector
& out_point );
159
//- Finds the next point in space based on *this* point (starting point),
160
//- a direction and the distance to extend in the direction. The
161
//- direction vector need not be a unit vector. The out_point can be
162
//- "*this" (i.e., modify point in place).
163
164
bool
within_tolerance
(
const
VerdictVector
& vectorPtr2,
double
tolerance
)
const
;
165
//- Compare two vectors to see if they are spatially equal. They
166
//- compare if x, y, and z are all within tolerance.
167
168
//- Heading: Operator Overloads *****************************
169
VerdictVector
&
operator+=
(
const
VerdictVector
& vec );
170
//- Compound Assignment: addition: {this = this + vec}
171
172
VerdictVector
&
operator-=
(
const
VerdictVector
& vec );
173
//- Compound Assignment: subtraction: {this = this - vec}
174
175
VerdictVector
&
operator*=
(
const
VerdictVector
& vec );
176
//- Compound Assignment: cross product: {this = this * vec},
177
//- non-commutative
178
179
VerdictVector
&
operator*=
(
const
double
scalar );
180
//- Compound Assignment: multiplication: {this = this * scalar}
181
182
VerdictVector
&
operator/=
(
const
double
scalar );
183
//- Compound Assignment: division: {this = this / scalar}
184
185
VerdictVector
operator-
()
const
;
186
//- unary negation.
187
188
friend
VerdictVector
operator~
(
const
VerdictVector
& vec );
189
//- normalize. Returns a new vector which is a copy of {vec},
190
//- scaled such that {|vec|=1}. Uses overloaded bitwise NOT operator.
191
192
friend
VerdictVector
operator+
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
193
//- vector addition
194
195
friend
VerdictVector
operator-
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
196
//- vector subtraction
197
198
friend
VerdictVector
operator*
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
199
//- vector cross product, non-commutative
200
201
friend
VerdictVector
operator*
(
const
VerdictVector
& v1,
const
double
sclr );
202
//- vector * scalar
203
204
friend
VerdictVector
operator*
(
const
double
sclr,
const
VerdictVector
& v1 );
205
//- scalar * vector
206
207
friend
double
operator%
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
208
//- dot product
209
210
friend
VerdictVector
operator/
(
const
VerdictVector
& v1,
const
double
sclr );
211
//- vector / scalar
212
213
friend
int
operator==
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
214
//- Equality operator
215
216
friend
int
operator!=
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
217
//- Inequality operator
218
219
friend
VerdictVector
interpolate
(
const
double
param,
const
VerdictVector
& v1,
const
VerdictVector
& v2 );
220
//- Interpolate between two vectors. Returns (1-param)*v1 + param*v2
221
222
VerdictVector
&
operator=
(
const
VerdictVector
& from );
223
224
private
:
225
double
xVal
;
//- x component of vector.
226
double
yVal
;
//- y component of vector.
227
double
zVal
;
//- z component of vector.
228
};
229
230
VerdictVector
vectorRotate
(
const
double
angle
,
const
VerdictVector
& normalAxis,
const
VerdictVector
& referenceAxis );
231
//- A new coordinate system is created with the xy plane corresponding
232
//- to the plane normal to {normalAxis}, and the x axis corresponding to
233
//- the projection of {referenceAxis} onto the normal plane. The normal
234
//- plane is the tangent plane at the root point. A unit vector is
235
//- constructed along the local x axis and then rotated by the given
236
//- ccw angle to form the new point. The new point, then is a unit
237
//- distance from the global origin in the tangent plane.
238
//- {angle} is in radians.
239
240
inline
double
VerdictVector::x
()
const
241
{
242
return
xVal
;
243
}
244
inline
double
VerdictVector::y
()
const
245
{
246
return
yVal
;
247
}
248
inline
double
VerdictVector::z
()
const
249
{
250
return
zVal
;
251
}
252
inline
void
VerdictVector::get_xyz
(
double
xyz[3] )
253
{
254
xyz[0] =
xVal
;
255
xyz[1] =
yVal
;
256
xyz[2] =
zVal
;
257
}
258
inline
void
VerdictVector::get_xyz
(
double
& xv,
double
& yv,
double
& zv )
259
{
260
xv =
xVal
;
261
yv =
yVal
;
262
zv =
zVal
;
263
}
264
inline
double
&
VerdictVector::r
()
265
{
266
return
xVal
;
267
}
268
inline
double
&
VerdictVector::theta
()
269
{
270
return
yVal
;
271
}
272
inline
void
VerdictVector::x
(
const
double
xv )
273
{
274
xVal
= xv;
275
}
276
inline
void
VerdictVector::y
(
const
double
yv )
277
{
278
yVal
= yv;
279
}
280
inline
void
VerdictVector::z
(
const
double
zv )
281
{
282
zVal
= zv;
283
}
284
inline
void
VerdictVector::r
(
const
double
xv )
285
{
286
xVal
= xv;
287
}
288
inline
void
VerdictVector::theta
(
const
double
yv )
289
{
290
yVal
= yv;
291
}
292
inline
VerdictVector
&
VerdictVector::operator+=
(
const
VerdictVector
& vector )
293
{
294
xVal
+= vector.
x
();
295
yVal
+= vector.
y
();
296
zVal
+= vector.
z
();
297
return
*
this
;
298
}
299
300
inline
VerdictVector
&
VerdictVector::operator-=
(
const
VerdictVector
& vector )
301
{
302
xVal
-= vector.
x
();
303
yVal
-= vector.
y
();
304
zVal
-= vector.
z
();
305
return
*
this
;
306
}
307
308
inline
VerdictVector
&
VerdictVector::operator*=
(
const
VerdictVector
& vector )
309
{
310
double
xcross, ycross, zcross;
311
xcross =
yVal
* vector.
z
() -
zVal
* vector.
y
();
312
ycross =
zVal
* vector.
x
() -
xVal
* vector.
z
();
313
zcross =
xVal
* vector.
y
() -
yVal
* vector.
x
();
314
xVal
= xcross;
315
yVal
= ycross;
316
zVal
= zcross;
317
return
*
this
;
318
}
319
320
inline
VerdictVector::VerdictVector
(
const
VerdictVector
& copy_from )
321
: xVal( copy_from.xVal ), yVal( copy_from.yVal ), zVal( copy_from.zVal )
322
{
323
}
324
325
inline
VerdictVector::VerdictVector
() : xVal( 0 ), yVal( 0 ), zVal( 0 ) {}
326
327
inline
VerdictVector::VerdictVector
(
const
VerdictVector
& tail,
const
VerdictVector
& head )
328
: xVal( head.xVal - tail.xVal ), yVal( head.yVal - tail.yVal ), zVal( head.zVal - tail.zVal )
329
{
330
}
331
332
inline
VerdictVector::VerdictVector
(
const
double
xIn,
const
double
yIn,
const
double
zIn )
333
: xVal( xIn ), yVal( yIn ), zVal( zIn )
334
{
335
}
336
337
// This sets the vector to be perpendicular to it's current direction.
338
// NOTE:
339
// This is a 2D function. It only works in the XY Plane.
340
inline
void
VerdictVector::perpendicular_z
()
341
{
342
double
temp =
x
();
343
x
(
y
() );
344
y
( -temp );
345
}
346
347
inline
void
VerdictVector::set
(
const
double
xv,
const
double
yv,
const
double
zv )
348
{
349
xVal
= xv;
350
yVal
= yv;
351
zVal
= zv;
352
}
353
354
inline
void
VerdictVector::set
(
const
double
xyz[3] )
355
{
356
xVal
= xyz[0];
357
yVal
= xyz[1];
358
zVal
= xyz[2];
359
}
360
361
inline
void
VerdictVector::set
(
const
VerdictVector
& tail,
const
VerdictVector
& head )
362
{
363
xVal
= head.
xVal
- tail.
xVal
;
364
yVal
= head.
yVal
- tail.
yVal
;
365
zVal
= head.
zVal
- tail.
zVal
;
366
}
367
368
inline
VerdictVector
&
VerdictVector::operator=
(
const
VerdictVector
& from )
369
{
370
xVal
= from.
xVal
;
371
yVal
= from.
yVal
;
372
zVal
= from.
zVal
;
373
return
*
this
;
374
}
375
376
inline
void
VerdictVector::set
(
const
VerdictVector
& to_copy )
377
{
378
*
this
= to_copy;
379
}
380
381
// Scale all values by scalar.
382
inline
VerdictVector
&
VerdictVector::operator*=
(
const
double
scalar )
383
{
384
xVal
*= scalar;
385
yVal
*= scalar;
386
zVal
*= scalar;
387
return
*
this
;
388
}
389
390
// Scales all values by 1/scalar
391
inline
VerdictVector
&
VerdictVector::operator/=
(
const
double
scalar )
392
{
393
assert( scalar != 0 );
394
xVal
/= scalar;
395
yVal
/= scalar;
396
zVal
/= scalar;
397
return
*
this
;
398
}
399
400
// Returns the normalized 'this'.
401
inline
VerdictVector
operator~
(
const
VerdictVector
& vec )
402
{
403
double
mag = sqrt( vec.
xVal
* vec.
xVal
+ vec.
yVal
* vec.
yVal
+ vec.
zVal
* vec.
zVal
);
404
405
VerdictVector
temp = vec;
406
if
( mag != 0.0 )
407
{
408
temp /= mag;
409
}
410
return
temp;
411
}
412
413
// Unary minus. Negates all values in vector.
414
inline
VerdictVector
VerdictVector::operator-
()
const
415
{
416
return
VerdictVector
( -
xVal
, -
yVal
, -
zVal
);
417
}
418
419
inline
VerdictVector
operator+
(
const
VerdictVector
& vector1,
const
VerdictVector
& vector2 )
420
{
421
double
xv = vector1.
x
() + vector2.
x
();
422
double
yv = vector1.
y
() + vector2.
y
();
423
double
zv = vector1.
z
() + vector2.
z
();
424
return
VerdictVector
( xv, yv, zv );
425
// return VerdictVector(vector1) += vector2;
426
}
427
428
inline
VerdictVector
operator-
(
const
VerdictVector
& vector1,
const
VerdictVector
& vector2 )
429
{
430
double
xv = vector1.
x
() - vector2.
x
();
431
double
yv = vector1.
y
() - vector2.
y
();
432
double
zv = vector1.
z
() - vector2.
z
();
433
return
VerdictVector
( xv, yv, zv );
434
// return VerdictVector(vector1) -= vector2;
435
}
436
437
// Cross products.
438
// vector1 cross vector2
439
inline
VerdictVector
operator*
(
const
VerdictVector
& vector1,
const
VerdictVector
& vector2 )
440
{
441
return
VerdictVector
( vector1 ) *= vector2;
442
}
443
444
// Returns a scaled vector.
445
inline
VerdictVector
operator*
(
const
VerdictVector
& vector1,
const
double
scalar )
446
{
447
return
VerdictVector
( vector1 ) *= scalar;
448
}
449
450
// Returns a scaled vector
451
inline
VerdictVector
operator*
(
const
double
scalar,
const
VerdictVector
& vector1 )
452
{
453
return
VerdictVector
( vector1 ) *= scalar;
454
}
455
456
// Returns a vector scaled by 1/scalar
457
inline
VerdictVector
operator/
(
const
VerdictVector
& vector1,
const
double
scalar )
458
{
459
return
VerdictVector
( vector1 ) /= scalar;
460
}
461
462
inline
int
operator==
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 )
463
{
464
return
( v1.
xVal
== v2.
xVal
&& v1.
yVal
== v2.
yVal
&& v1.
zVal
== v2.
zVal
);
465
}
466
467
inline
int
operator!=
(
const
VerdictVector
& v1,
const
VerdictVector
& v2 )
468
{
469
return
( v1.
xVal
!= v2.
xVal
|| v1.
yVal
!= v2.
yVal
|| v1.
zVal
!= v2.
zVal
);
470
}
471
472
inline
double
VerdictVector::length_squared
()
const
473
{
474
return
(
xVal
*
xVal
+
yVal
*
yVal
+
zVal
*
zVal
);
475
}
476
477
inline
double
VerdictVector::length
()
const
478
{
479
return
( sqrt(
xVal
*
xVal
+
yVal
*
yVal
+
zVal
*
zVal
) );
480
}
481
482
inline
double
VerdictVector::normalize
()
483
{
484
double
mag =
length
();
485
if
( mag != 0 )
486
{
487
xVal
=
xVal
/ mag;
488
yVal
=
yVal
/ mag;
489
zVal
=
zVal
/ mag;
490
}
491
return
mag;
492
}
493
494
// Dot Product.
495
inline
double
operator%
(
const
VerdictVector
& vector1,
const
VerdictVector
& vector2 )
496
{
497
return
( vector1.
x
() * vector2.
x
() + vector1.
y
() * vector2.
y
() + vector1.
z
() * vector2.
z
() );
498
}
499
500
#endif
src
verdict
VerdictVector.hpp
Generated on Sun Dec 22 2024 02:06:36 for Mesh Oriented datABase by
1.9.1.