Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
moab::LinearTet Class Reference

#include <LinearTet.hpp>

Static Public Member Functions

static ErrorCode evalFcn (const double *params, const double *field, const int ndim, const int num_tuples, double *work, double *result)
 Forward-evaluation of field at parametric coordinates. More...
 
static ErrorCode reverseEvalFcn (EvalFcn eval, JacobianFcn jacob, InsideFcn ins, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *is_inside)
 Reverse-evaluation of parametric coordinates at physical space position. More...
 
static ErrorCode normalFcn (const int ientDim, const int facet, const int nverts, const double *verts, double normal[3])
 Evaluate the normal at a specified facet. More...
 
static ErrorCode jacobianFcn (const double *params, const double *verts, const int nverts, const int ndim, double *work, double *result)
 Evaluate the jacobian at a specified parametric position. More...
 
static ErrorCode integrateFcn (const double *field, const double *verts, const int nverts, const int ndim, const int num_tuples, double *work, double *result)
 Forward-evaluation of field at parametric coordinates. More...
 
static ErrorCode initFcn (const double *verts, const int nverts, double *&work)
 Initialize this EvalSet. More...
 
static int insideFcn (const double *params, const int ndim, const double tol)
 Function that returns whether or not the parameters are inside the natural space of the element. More...
 
static ErrorCode evaluate_reverse (EvalFcn eval, JacobianFcn jacob, InsideFcn inside_f, const double *posn, const double *verts, const int nverts, const int ndim, const double iter_tol, const double inside_tol, double *work, double *params, int *inside)
 
static EvalSet eval_set ()
 
static bool compatible (EntityType tp, int numv, EvalSet &eset)
 

Static Protected Attributes

static const double corner [4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }
 

Detailed Description

Definition at line 12 of file LinearTet.hpp.

Member Function Documentation

◆ compatible()

static bool moab::LinearTet::compatible ( EntityType  tp,
int  numv,
EvalSet eset 
)
inlinestatic

Definition at line 86 of file LinearTet.hpp.

87  {
88  if( tp == MBTET && numv >= 4 )
89  {
90  eset = eval_set();
91  return true;
92  }
93  else
94  return false;
95  }

References eval_set(), and MBTET.

Referenced by moab::EvalSet::get_eval_set().

◆ eval_set()

static EvalSet moab::LinearTet::eval_set ( )
inlinestatic

Definition at line 81 of file LinearTet.hpp.

82  {
84  }

References evalFcn(), initFcn(), insideFcn(), integrateFcn(), jacobianFcn(), normalFcn(), and reverseEvalFcn().

Referenced by compatible().

◆ evalFcn()

ErrorCode moab::LinearTet::evalFcn ( const double *  params,
const double *  field,
const int  ndim,
const int  num_tuples,
double *  work,
double *  result 
)
static

Forward-evaluation of field at parametric coordinates.

Definition at line 44 of file LinearTet.cpp.

50 {
51  assert( params && field && num_tuples > 0 );
52  std::vector< double > f0( num_tuples );
53  std::copy( field, field + num_tuples, f0.begin() );
54  std::copy( field, field + num_tuples, result );
55 
56  for( unsigned i = 1; i < 4; ++i )
57  {
58  double p = 0.5 * ( params[i - 1] + 1 ); // transform from -1 <= p <= 1 to 0 <= p <= 1
59  for( int j = 0; j < num_tuples; j++ )
60  result[j] += ( field[i * num_tuples + j] - f0[j] ) * p;
61  }
62 
63  return MB_SUCCESS;
64 }

References MB_SUCCESS.

Referenced by eval_set().

◆ evaluate_reverse()

ErrorCode moab::LinearTet::evaluate_reverse ( EvalFcn  eval,
JacobianFcn  jacob,
InsideFcn  inside_f,
const double *  posn,
const double *  verts,
const int  nverts,
const int  ndim,
const double  iter_tol,
const double  inside_tol,
double *  work,
double *  params,
int *  inside 
)
static

Definition at line 120 of file LinearTet.cpp.

132 {
133  // TODO: should differentiate between epsilons used for
134  // Newton Raphson iteration, and epsilons used for curved boundary geometry errors
135  // right now, fix the tolerance used for NR
136  const double error_tol_sqr = iter_tol * iter_tol;
137  CartVect* cvparams = reinterpret_cast< CartVect* >( params );
138  const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn );
139 
140  // find best initial guess to improve convergence
141  CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ),
142  CartVect( -1, -1, 1 ) };
143  double resl = std::numeric_limits< double >::max();
144  CartVect new_pos, tmp_pos;
145  ErrorCode rval;
146  for( unsigned int i = 0; i < 4; i++ )
147  {
148  rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() );
149  if( MB_SUCCESS != rval ) return rval;
150  double tmp_resl = ( tmp_pos - *cvposn ).length_squared();
151  if( tmp_resl < resl )
152  {
153  *cvparams = tmp_params[i];
154  new_pos = tmp_pos;
155  resl = tmp_resl;
156  }
157  }
158 
159  // residual is diff between old and new pos; need to minimize that
160  CartVect res = new_pos - *cvposn;
161  Matrix3 J;
162  rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() );
163 #ifndef NDEBUG
164  double det = J.determinant();
165  assert( det > std::numeric_limits< double >::epsilon() );
166 #endif
167  Matrix3 Ji = J.inverse();
168 
169  int iters = 0;
170  // while |res| larger than tol
171  int dum, *tmp_inside = ( inside ? inside : &dum );
172  while( res % res > error_tol_sqr )
173  {
174  if( ++iters > 25 )
175  {
176  // if we haven't converged but we're outside, that's defined as success
177  *tmp_inside = ( *inside_f )( params, ndim, inside_tol );
178  if( !( *tmp_inside ) )
179  return MB_SUCCESS;
180  else
181  return MB_INDEX_OUT_OF_RANGE;
182  }
183 
184  // new params tries to eliminate residual
185  *cvparams -= Ji * res;
186 
187  // get the new forward-evaluated position, and its difference from the target pt
188  rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() );
189  if( MB_SUCCESS != rval ) return rval;
190  res = new_pos - *cvposn;
191  }
192 
193  if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol );
194 
195  return MB_SUCCESS;
196 } // Map::evaluate_reverse()

References moab::CartVect::array(), moab::Matrix3::array(), moab::Matrix3::determinant(), moab::dum, ErrorCode, moab::Matrix3::inverse(), length_squared(), MB_INDEX_OUT_OF_RANGE, and MB_SUCCESS.

Referenced by reverseEvalFcn().

◆ initFcn()

ErrorCode moab::LinearTet::initFcn ( const double *  verts,
const int  nverts,
double *&  work 
)
static

Initialize this EvalSet.

Definition at line 12 of file LinearTet.cpp.

13 {
14  // allocate work array as:
15  // work[0..8] = T
16  // work[9..17] = Tinv
17  // work[18] = detT
18  // work[19] = detTinv
19  if( nverts != 4 )
20  {
21  std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n";
22  return MB_FAILURE;
23  }
24 
25  assert( verts );
26 
27  Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0],
28  verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1],
29  verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1],
30  verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2],
31  verts[3 * 3 + 2] - verts[0 * 3 + 2] );
32 
33  // Update the work array
34  if( !work ) work = new double[20];
35 
36  J.copyto( work );
37  J.inverse().copyto( work + Matrix3::size );
38  work[18] = J.determinant();
39  work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] );
40 
41  return MB_SUCCESS;
42 }

References moab::Matrix3::copyto(), moab::Matrix3::determinant(), moab::Matrix3::inverse(), MB_SUCCESS, and moab::Matrix3::size.

Referenced by eval_set().

◆ insideFcn()

int moab::LinearTet::insideFcn ( const double *  params,
const int  ndim,
const double  tol 
)
static

Function that returns whether or not the parameters are inside the natural space of the element.

Definition at line 114 of file LinearTet.cpp.

115 {
116  return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol &&
117  params[0] + params[1] + params[2] <= 1.0 + tol );
118 }

Referenced by eval_set().

◆ integrateFcn()

ErrorCode moab::LinearTet::integrateFcn ( const double *  field,
const double *  verts,
const int  nverts,
const int  ndim,
const int  num_tuples,
double *  work,
double *  result 
)
static

Forward-evaluation of field at parametric coordinates.

Definition at line 66 of file LinearTet.cpp.

73 {
74  assert( field && num_tuples > 0 );
75  std::fill( result, result + num_tuples, 0.0 );
76  for( int i = 0; i < nverts; ++i )
77  {
78  for( int j = 0; j < num_tuples; j++ )
79  result[j] += field[i * num_tuples + j];
80  }
81  double tmp = work[18] / 24.0;
82  for( int i = 0; i < num_tuples; i++ )
83  result[i] *= tmp;
84 
85  return MB_SUCCESS;
86 }

References MB_SUCCESS.

Referenced by eval_set().

◆ jacobianFcn()

ErrorCode moab::LinearTet::jacobianFcn ( const double *  params,
const double *  verts,
const int  nverts,
const int  ndim,
double *  work,
double *  result 
)
static

Evaluate the jacobian at a specified parametric position.

Definition at line 88 of file LinearTet.cpp.

89 {
90  // jacobian is cached in work array
91  assert( work );
92  std::copy( work, work + 9, result );
93  return MB_SUCCESS;
94 }

References MB_SUCCESS.

Referenced by eval_set().

◆ normalFcn()

ErrorCode moab::LinearTet::normalFcn ( const int  ientDim,
const int  facet,
const int  nverts,
const double *  verts,
double  normal[3] 
)
static

Evaluate the normal at a specified facet.

Definition at line 198 of file LinearTet.cpp.

203 {
204  // assert(facet < 4 && ientDim == 2 && nverts == 4);
205  if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " );
206  if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " );
207  if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" );
208 
209  int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0];
210  int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1];
211  int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2];
212 
213  double x0[3], x1[3];
214 
215  for( int i = 0; i < 3; i++ )
216  {
217  x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i];
218  x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i];
219  }
220 
221  double a = x0[1] * x1[2] - x1[1] * x0[2];
222  double b = x1[0] * x0[2] - x0[0] * x1[2];
223  double c = x0[0] * x1[1] - x1[0] * x0[1];
224  double nrm = sqrt( a * a + b * b + c * c );
225 
226  if( nrm > std::numeric_limits< double >::epsilon() )
227  {
228  normal[0] = a / nrm;
229  normal[1] = b / nrm;
230  normal[2] = c / nrm;
231  }
232  return MB_SUCCESS;
233 }

References moab::CN::ConnMap::conn, MB_SET_ERR, MB_SUCCESS, MBTET, and moab::CN::mConnectivityMap.

Referenced by eval_set().

◆ reverseEvalFcn()

ErrorCode moab::LinearTet::reverseEvalFcn ( EvalFcn  eval,
JacobianFcn  jacob,
InsideFcn  ins,
const double *  posn,
const double *  verts,
const int  nverts,
const int  ndim,
const double  iter_tol,
const double  inside_tol,
double *  work,
double *  params,
int *  is_inside 
)
static

Reverse-evaluation of parametric coordinates at physical space position.

Definition at line 96 of file LinearTet.cpp.

108 {
109  assert( posn && verts );
110  return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params,
111  is_inside );
112 }

References evaluate_reverse().

Referenced by eval_set().

Member Data Documentation

◆ corner

const double moab::LinearTet::corner = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }
staticprotected

Definition at line 98 of file LinearTet.hpp.


The documentation for this class was generated from the following files: