Loading [MathJax]/extensions/tex2jax.js
Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
LinearTet.cpp
Go to the documentation of this file.
1 #include "moab/LocalDiscretization/LinearTet.hpp" 2 #include "moab/Forward.hpp" 3 #include <algorithm> 4 #include <cmath> 5 #include <limits> 6  7 namespace moab 8 { 9  10 const double LinearTet::corner[4][3] = { { 0, 0, 0 }, { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; 11  12 ErrorCode LinearTet::initFcn( const double* verts, const int nverts, double*& work ) 13 { 14  // allocate work array as: 15  // work[0..8] = T 16  // work[9..17] = Tinv 17  // work[18] = detT 18  // work[19] = detTinv 19  if( nverts != 4 ) 20  { 21  std::cout << "Invalid Tetrahedron. Expected 4 vertices.\n"; 22  return MB_FAILURE; 23  } 24  25  assert( verts ); 26  27  Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 28  verts[3 * 3 + 0] - verts[0 * 3 + 0], verts[1 * 3 + 1] - verts[0 * 3 + 1], 29  verts[2 * 3 + 1] - verts[0 * 3 + 1], verts[3 * 3 + 1] - verts[0 * 3 + 1], 30  verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 31  verts[3 * 3 + 2] - verts[0 * 3 + 2] ); 32  33  // Update the work array 34  if( !work ) work = new double[20]; 35  36  J.copyto( work ); 37  J.inverse().copyto( work + Matrix3::size ); 38  work[18] = J.determinant(); 39  work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] ); 40  41  return MB_SUCCESS; 42 } 43  44 ErrorCode LinearTet::evalFcn( const double* params, 45  const double* field, 46  const int /*ndim*/, 47  const int num_tuples, 48  double* /*work*/, 49  double* result ) 50 { 51  assert( params && field && num_tuples > 0 ); 52  std::vector< double > f0( num_tuples ); 53  std::copy( field, field + num_tuples, f0.begin() ); 54  std::copy( field, field + num_tuples, result ); 55  56  for( unsigned i = 1; i < 4; ++i ) 57  { 58  double p = 0.5 * ( params[i - 1] + 1 ); // transform from -1 <= p <= 1 to 0 <= p <= 1 59  for( int j = 0; j < num_tuples; j++ ) 60  result[j] += ( field[i * num_tuples + j] - f0[j] ) * p; 61  } 62  63  return MB_SUCCESS; 64 } 65  66 ErrorCode LinearTet::integrateFcn( const double* field, 67  const double* /*verts*/, 68  const int nverts, 69  const int /*ndim*/, 70  const int num_tuples, 71  double* work, 72  double* result ) 73 { 74  assert( field && num_tuples > 0 ); 75  std::fill( result, result + num_tuples, 0.0 ); 76  for( int i = 0; i < nverts; ++i ) 77  { 78  for( int j = 0; j < num_tuples; j++ ) 79  result[j] += field[i * num_tuples + j]; 80  } 81  double tmp = work[18] / 24.0; 82  for( int i = 0; i < num_tuples; i++ ) 83  result[i] *= tmp; 84  85  return MB_SUCCESS; 86 } 87  88 ErrorCode LinearTet::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result ) 89 { 90  // jacobian is cached in work array 91  assert( work ); 92  std::copy( work, work + 9, result ); 93  return MB_SUCCESS; 94 } 95  96 ErrorCode LinearTet::reverseEvalFcn( EvalFcn eval, 97  JacobianFcn jacob, 98  InsideFcn ins, 99  const double* posn, 100  const double* verts, 101  const int nverts, 102  const int ndim, 103  const double iter_tol, 104  const double inside_tol, 105  double* work, 106  double* params, 107  int* is_inside ) 108 { 109  assert( posn && verts ); 110  return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, 111  is_inside ); 112 } 113  114 int LinearTet::insideFcn( const double* params, const int, const double tol ) 115 { 116  return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[2] >= -1.0 - tol && 117  params[0] + params[1] + params[2] <= 1.0 + tol ); 118 } 119  120 ErrorCode LinearTet::evaluate_reverse( EvalFcn eval, 121  JacobianFcn jacob, 122  InsideFcn inside_f, 123  const double* posn, 124  const double* verts, 125  const int nverts, 126  const int ndim, 127  const double iter_tol, 128  const double inside_tol, 129  double* work, 130  double* params, 131  int* inside ) 132 { 133  // TODO: should differentiate between epsilons used for 134  // Newton Raphson iteration, and epsilons used for curved boundary geometry errors 135  // right now, fix the tolerance used for NR 136  const double error_tol_sqr = iter_tol * iter_tol; 137  CartVect* cvparams = reinterpret_cast< CartVect* >( params ); 138  const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn ); 139  140  // find best initial guess to improve convergence 141  CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ), 142  CartVect( -1, -1, 1 ) }; 143  double resl = std::numeric_limits< double >::max(); 144  CartVect new_pos, tmp_pos; 145  ErrorCode rval; 146  for( unsigned int i = 0; i < 4; i++ ) 147  { 148  rval = ( *eval )( tmp_params[i].array(), verts, ndim, ndim, work, tmp_pos.array() ); 149  if( MB_SUCCESS != rval ) return rval; 150  double tmp_resl = ( tmp_pos - *cvposn ).length_squared(); 151  if( tmp_resl < resl ) 152  { 153  *cvparams = tmp_params[i]; 154  new_pos = tmp_pos; 155  resl = tmp_resl; 156  } 157  } 158  159  // residual is diff between old and new pos; need to minimize that 160  CartVect res = new_pos - *cvposn; 161  Matrix3 J; 162  rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J.array() ); 163 #ifndef NDEBUG 164  double det = J.determinant(); 165  assert( det > std::numeric_limits< double >::epsilon() ); 166 #endif 167  Matrix3 Ji = J.inverse(); 168  169  int iters = 0; 170  // while |res| larger than tol 171  int dum, *tmp_inside = ( inside ? inside : &dum ); 172  while( res % res > error_tol_sqr ) 173  { 174  if( ++iters > 25 ) 175  { 176  // if we haven't converged but we're outside, that's defined as success 177  *tmp_inside = ( *inside_f )( params, ndim, inside_tol ); 178  if( !( *tmp_inside ) ) 179  return MB_SUCCESS; 180  else 181  return MB_INDEX_OUT_OF_RANGE; 182  } 183  184  // new params tries to eliminate residual 185  *cvparams -= Ji * res; 186  187  // get the new forward-evaluated position, and its difference from the target pt 188  rval = ( *eval )( params, verts, ndim, ndim, work, new_pos.array() ); 189  if( MB_SUCCESS != rval ) return rval; 190  res = new_pos - *cvposn; 191  } 192  193  if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol ); 194  195  return MB_SUCCESS; 196 } // Map::evaluate_reverse() 197  198 ErrorCode LinearTet::normalFcn( const int ientDim, 199  const int facet, 200  const int nverts, 201  const double* verts, 202  double normal[3] ) 203 { 204  // assert(facet < 4 && ientDim == 2 && nverts == 4); 205  if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed tet :: expected value = 4 " ); 206  if( ientDim != 2 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 2 " ); 207  if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local face id :: expected value = one of 0-3" ); 208  209  int id0 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][0]; 210  int id1 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][1]; 211  int id2 = CN::mConnectivityMap[MBTET][ientDim - 1].conn[facet][2]; 212  213  double x0[3], x1[3]; 214  215  for( int i = 0; i < 3; i++ ) 216  { 217  x0[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; 218  x1[i] = verts[3 * id2 + i] - verts[3 * id0 + i]; 219  } 220  221  double a = x0[1] * x1[2] - x1[1] * x0[2]; 222  double b = x1[0] * x0[2] - x0[0] * x1[2]; 223  double c = x0[0] * x1[1] - x1[0] * x0[1]; 224  double nrm = sqrt( a * a + b * b + c * c ); 225  226  if( nrm > std::numeric_limits< double >::epsilon() ) 227  { 228  normal[0] = a / nrm; 229  normal[1] = b / nrm; 230  normal[2] = c / nrm; 231  } 232  return MB_SUCCESS; 233 } 234  235 } // namespace moab