Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
LloydRelaxation.cpp

Perform Lloyd relaxation on a mesh and its dual
To run: mpiexec -np <np> LloydRelaxation [filename]

Briefly, Lloyd relaxation is a technique to smooth out a mesh. The centroid of each cell is computed from its vertex positions, then vertices are placed at the average of their connected cells' centroids.

In the parallel algorithm, an extra ghost layer of cells is exchanged. This allows us to compute the centroids for boundary cells on each processor where they appear; this eliminates the need for one round of data exchange (for those centroids) between processors. New vertex positions must be sent from owning processors to processors sharing those vertices. Convergence is measured as the maximum distance moved by any vertex.

In this implementation, a fixed number of iterations is performed. The final mesh is output to 'lloydfinal.h5m' in the current directory (H5M format must be used since the file is written in parallel).

/** @example LloydRelaxation.cpp \n
* \brief Perform Lloyd relaxation on a mesh and its dual \n
* <b>To run</b>: mpiexec -np <np> LloydRelaxation [filename]\n
*
* Briefly, Lloyd relaxation is a technique to smooth out a mesh. The centroid of each cell is
* computed from its vertex positions, then vertices are placed at the average of their connected
* cells' centroids.
*
* In the parallel algorithm, an extra ghost layer of cells is exchanged. This allows us to compute
* the centroids for boundary cells on each processor where they appear; this eliminates the need
* for one round of data exchange (for those centroids) between processors. New vertex positions
* must be sent from owning processors to processors sharing those vertices. Convergence is
* measured as the maximum distance moved by any vertex.
*
* In this implementation, a fixed number of iterations is performed. The final mesh is output to
* 'lloydfinal.h5m' in the current directory (H5M format must be used since the file is written in
* parallel).
*/
#include "moab/Core.hpp"
#ifdef MOAB_HAVE_MPI
#endif
#include "moab/Skinner.hpp"
#include "moab/CN.hpp"
#include <iostream>
#include <sstream>
using namespace moab;
using namespace std;
string test_file_name = string( MESH_DIR ) + string( "/surfrandomtris-4part.h5m" );
ErrorCode perform_lloyd_relaxation( Interface* mb, Range& verts, Range& cells, Tag fixed, int num_its, int report_its );
int main( int argc, char** argv )
{
int num_its = 10;
int report_its = 1;
#ifdef MOAB_HAVE_MPI
MPI_Init( &argc, &argv );
#endif
// Need option handling here for input filename
if( argc > 1 )
{
// User has input a mesh file
test_file_name = argv[1];
}
// Get MOAB instance
Interface* mb = new( std::nothrow ) Core;
if( NULL == mb ) return 1;
#ifdef MOAB_HAVE_MPI
// Get the ParallelComm instance
ParallelComm* pcomm = new ParallelComm( mb, MPI_COMM_WORLD );
int nprocs = pcomm->size();
#else
int nprocs = 1;
#endif
string options;
if( nprocs > 1 ) // If reading in parallel, need to tell it how
options = "PARALLEL=READ_PART;PARTITION=PARALLEL_PARTITION;PARALLEL_RESOLVE_SHARED_ENTS;"
"PARALLEL_GHOSTS=2.0.1;DEBUG_IO=0;DEBUG_PIO=0";
// Load the test file with specified options
ErrorCode rval = mb->load_file( test_file_name.c_str(), 0, options.c_str() );MB_CHK_ERR( rval );
// Make tag to specify fixed vertices, since it's input to the algorithm; use a default value of
// non-fixed so we only need to set the fixed tag for skin vertices
Tag fixed;
int def_val = 0;
rval = mb->tag_get_handle( "fixed", 1, MB_TYPE_INTEGER, fixed, MB_TAG_CREAT | MB_TAG_DENSE, &def_val );MB_CHK_ERR( rval );
// Get all vertices and faces
Range verts, faces, skin_verts;
rval = mb->get_entities_by_type( 0, MBVERTEX, verts );MB_CHK_ERR( rval );
rval = mb->get_entities_by_dimension( 0, 2, faces );MB_CHK_ERR( rval );
// Get the skin vertices of those faces and mark them as fixed; we don't want to fix the
// vertices on a part boundary, but since we exchanged a layer of ghost faces, those vertices
// aren't on the skin locally ok to mark non-owned skin vertices too, I won't move those anyway
// use MOAB's skinner class to find the skin
Skinner skinner( mb );
rval = skinner.find_skin( 0, faces, true, skin_verts );MB_CHK_ERR( rval ); // 'true' param indicates we want vertices back, not faces
vector< int > fix_tag( skin_verts.size(), 1 ); // Initialized to 1 to indicate fixed
rval = mb->tag_set_data( fixed, skin_verts, &fix_tag[0] );MB_CHK_ERR( rval );
// Now perform the Lloyd relaxation
rval = perform_lloyd_relaxation( mb, verts, faces, fixed, num_its, report_its );MB_CHK_ERR( rval );
// Delete fixed tag, since we created it here
rval = mb->tag_delete( fixed );MB_CHK_ERR( rval );
// Output file, using parallel write
#ifdef MOAB_HAVE_MPI
options = "PARALLEL=WRITE_PART";
#endif
rval = mb->write_file( "lloydfinal.h5m", NULL, options.c_str() );MB_CHK_ERR( rval );
// Delete MOAB instance
delete mb;
#ifdef MOAB_HAVE_MPI
MPI_Finalize();
#endif
return 0;
}
ErrorCode perform_lloyd_relaxation( Interface* mb, Range& verts, Range& faces, Tag fixed, int num_its, int report_its )
{
ErrorCode rval;
#ifdef MOAB_HAVE_MPI
ParallelComm* pcomm = ParallelComm::get_pcomm( mb, 0 );
int nprocs = pcomm->size();
#else
int nprocs = 1;
#endif
// Perform Lloyd relaxation:
// 1. Setup: set vertex centroids from vertex coords; filter to owned verts; get fixed tags
// Get all verts coords into tag; don't need to worry about filtering out fixed verts,
// we'll just be setting to their fixed coords
vector< double > vcentroids( 3 * verts.size() );
rval = mb->get_coords( verts, &vcentroids[0] );MB_CHK_ERR( rval );
Tag centroid;
rval = mb->tag_get_handle( "centroid", 3, MB_TYPE_DOUBLE, centroid, MB_TAG_CREAT | MB_TAG_DENSE );MB_CHK_ERR( rval );
rval = mb->tag_set_data( centroid, verts, &vcentroids[0] );MB_CHK_ERR( rval );
// Filter verts down to owned ones and get fixed tag for them
Range owned_verts, shared_owned_verts;
if( nprocs > 1 )
{
#ifdef MOAB_HAVE_MPI
rval = pcomm->filter_pstatus( verts, PSTATUS_NOT_OWNED, PSTATUS_NOT, -1, &owned_verts );MB_CHK_ERR( rval );
#endif
}
else
owned_verts = verts;
vector< int > fix_tag( owned_verts.size() );
rval = mb->tag_get_data( fixed, owned_verts, &fix_tag[0] );MB_CHK_ERR( rval );
// Now fill vcentroids array with positions of just owned vertices, since those are the ones
// we're actually computing
vcentroids.resize( 3 * owned_verts.size() );
rval = mb->tag_get_data( centroid, owned_verts, &vcentroids[0] );MB_CHK_ERR( rval );
#ifdef MOAB_HAVE_MPI
// Get shared owned verts, for exchanging tags
rval = pcomm->get_shared_entities( -1, shared_owned_verts, 0, false, true );MB_CHK_ERR( rval );
// Workaround: if no shared owned verts, put a non-shared one in the list, to prevent exchanging
// tags for all shared entities
if( shared_owned_verts.empty() ) shared_owned_verts.insert( *verts.begin() );
#endif
// Some declarations for later iterations
vector< double > fcentroids( 3 * faces.size() ); // fcentroids for face centroids
vector< double > ctag( 3 * CN::MAX_NODES_PER_ELEMENT ); // Temporary coordinate storage for verts bounding a face
const EntityHandle* conn; // const ptr & size to face connectivity
int nconn;
Range::iterator fit, vit; // For iterating over faces, verts
int f, v; // For indexing into centroid vectors
vector< EntityHandle > adj_faces; // Used in vertex iteration
// 2. For num_its iterations:
for( int nit = 0; nit < num_its; nit++ )
{
double mxdelta = 0.0;
// 2a. For each face: centroid = sum(vertex centroids)/num_verts_in_cell
for( fit = faces.begin(), f = 0; fit != faces.end(); ++fit, f++ )
{
// Get verts for this face
rval = mb->get_connectivity( *fit, conn, nconn );MB_CHK_ERR( rval );
// Get centroid tags for those verts
rval = mb->tag_get_data( centroid, conn, nconn, &ctag[0] );MB_CHK_ERR( rval );
fcentroids[3 * f + 0] = fcentroids[3 * f + 1] = fcentroids[3 * f + 2] = 0.0;
for( v = 0; v < nconn; v++ )
{
fcentroids[3 * f + 0] += ctag[3 * v + 0];
fcentroids[3 * f + 1] += ctag[3 * v + 1];
fcentroids[3 * f + 2] += ctag[3 * v + 2];
}
for( v = 0; v < 3; v++ )
fcentroids[3 * f + v] /= nconn;
}
rval = mb->tag_set_data( centroid, faces, &fcentroids[0] );MB_CHK_ERR( rval );
// 2b. For each owned vertex:
for( vit = owned_verts.begin(), v = 0; vit != owned_verts.end(); ++vit, v++ )
{
// if !fixed
if( fix_tag[v] ) continue;
// vertex centroid = sum(cell centroids)/ncells
adj_faces.clear();
rval = mb->get_adjacencies( &( *vit ), 1, 2, false, adj_faces );MB_CHK_ERR( rval );
rval = mb->tag_get_data( centroid, &adj_faces[0], adj_faces.size(), &fcentroids[0] );MB_CHK_ERR( rval );
double vnew[] = { 0.0, 0.0, 0.0 };
for( f = 0; f < (int)adj_faces.size(); f++ )
{
vnew[0] += fcentroids[3 * f + 0];
vnew[1] += fcentroids[3 * f + 1];
vnew[2] += fcentroids[3 * f + 2];
}
for( f = 0; f < 3; f++ )
vnew[f] /= adj_faces.size();
double delta = ( CartVect( vnew ) - CartVect( &vcentroids[3 * v] ) ).length();
mxdelta = std::max( delta, mxdelta );
for( f = 0; f < 3; f++ )
vcentroids[3 * v + f] = vnew[f];
}
// Set the centroid tag; having them only in vcentroids array isn't enough, as vertex
// centroids are accessed randomly in loop over faces
rval = mb->tag_set_data( centroid, owned_verts, &vcentroids[0] );MB_CHK_ERR( rval );
// 2c. Exchange tags on owned verts
if( nprocs > 1 )
{
#ifdef MOAB_HAVE_MPI
rval = pcomm->exchange_tags( centroid, shared_owned_verts );MB_CHK_ERR( rval );
#endif
}
if( !( nit % report_its ) )
{
// Global reduce for maximum delta, then report it
double global_max = mxdelta;
int myrank = 0;
#ifdef MOAB_HAVE_MPI
if( nprocs > 1 ) MPI_Reduce( &mxdelta, &global_max, 1, MPI_DOUBLE, MPI_MAX, 0, pcomm->comm() );
myrank = pcomm->rank();
#endif
if( 1 == nprocs || 0 == myrank ) cout << "Max delta = " << global_max << endl;
}
}
// Write the tag back onto vertex coordinates
rval = mb->set_coords( owned_verts, &vcentroids[0] );MB_CHK_ERR( rval );
// Delete the centroid tag, since we don't need it anymore
rval = mb->tag_delete( centroid );MB_CHK_ERR( rval );
return MB_SUCCESS;
}