Actual source code: ts.c

petsc-3.8.4 2018-03-24
Report Typos and Errors
  1:  #include <petsc/private/tsimpl.h>
  2:  #include <petscdmshell.h>
  3:  #include <petscdmda.h>
  4:  #include <petscviewer.h>
  5:  #include <petscdraw.h>

  7: /* Logging support */
  8: PetscClassId  TS_CLASSID, DMTS_CLASSID;
  9: PetscLogEvent TS_AdjointStep, TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 11: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};

 13: struct _n_TSMonitorDrawCtx {
 14:   PetscViewer   viewer;
 15:   Vec           initialsolution;
 16:   PetscBool     showinitial;
 17:   PetscInt      howoften;  /* when > 0 uses step % howoften, when negative only final solution plotted */
 18:   PetscBool     showtimestepandtime;
 19: };

 21: /*@C
 22:    TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 24:    Collective on TS

 26:    Input Parameters:
 27: +  ts - TS object you wish to monitor
 28: .  name - the monitor type one is seeking
 29: .  help - message indicating what monitoring is done
 30: .  manual - manual page for the monitor
 31: .  monitor - the monitor function
 32: -  monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects

 34:    Level: developer

 36: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
 37:           PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
 38:           PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
 39:           PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
 40:           PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
 41:           PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
 42:           PetscOptionsFList(), PetscOptionsEList()
 43: @*/
 44: PetscErrorCode  TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
 45: {
 46:   PetscErrorCode    ierr;
 47:   PetscViewer       viewer;
 48:   PetscViewerFormat format;
 49:   PetscBool         flg;

 52:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
 53:   if (flg) {
 54:     PetscViewerAndFormat *vf;
 55:     PetscViewerAndFormatCreate(viewer,format,&vf);
 56:     PetscObjectDereference((PetscObject)viewer);
 57:     if (monitorsetup) {
 58:       (*monitorsetup)(ts,vf);
 59:     }
 60:     TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
 61:   }
 62:   return(0);
 63: }

 65: /*@C
 66:    TSAdjointMonitorSensi - monitors the first lambda sensitivity

 68:    Level: intermediate

 70: .keywords: TS, set, monitor

 72: .seealso: TSAdjointMonitorSet()
 73: @*/
 74: PetscErrorCode TSAdjointMonitorSensi(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscInt numcost,Vec *lambda,Vec *mu,PetscViewerAndFormat *vf)
 75: {
 77:   PetscViewer    viewer = vf->viewer;

 81:   PetscViewerPushFormat(viewer,vf->format);
 82:   VecView(lambda[0],viewer);
 83:   PetscViewerPopFormat(viewer);
 84:   return(0);
 85: }

 87: /*@C
 88:    TSAdjointMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 90:    Collective on TS

 92:    Input Parameters:
 93: +  ts - TS object you wish to monitor
 94: .  name - the monitor type one is seeking
 95: .  help - message indicating what monitoring is done
 96: .  manual - manual page for the monitor
 97: .  monitor - the monitor function
 98: -  monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects

100:    Level: developer

102: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
103:           PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
104:           PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
105:           PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
106:           PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
107:           PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
108:           PetscOptionsFList(), PetscOptionsEList()
109: @*/
110: PetscErrorCode  TSAdjointMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
111: {
112:   PetscErrorCode    ierr;
113:   PetscViewer       viewer;
114:   PetscViewerFormat format;
115:   PetscBool         flg;

118:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
119:   if (flg) {
120:     PetscViewerAndFormat *vf;
121:     PetscViewerAndFormatCreate(viewer,format,&vf);
122:     PetscObjectDereference((PetscObject)viewer);
123:     if (monitorsetup) {
124:       (*monitorsetup)(ts,vf);
125:     }
126:     TSAdjointMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
127:   }
128:   return(0);
129: }

131: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
132: {

138:   if (!((PetscObject)adapt)->type_name) {
139:     TSAdaptSetType(adapt,default_type);
140:   }
141:   return(0);
142: }

144: /*@
145:    TSSetFromOptions - Sets various TS parameters from user options.

147:    Collective on TS

149:    Input Parameter:
150: .  ts - the TS context obtained from TSCreate()

152:    Options Database Keys:
153: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE
154: .  -ts_save_trajectory - checkpoint the solution at each time-step
155: .  -ts_max_time <time> - maximum time to compute to
156: .  -ts_max_steps <steps> - maximum number of time-steps to take
157: .  -ts_init_time <time> - initial time to start computation
158: .  -ts_final_time <time> - final time to compute to
159: .  -ts_dt <dt> - initial time step
160: .  -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
161: .  -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
162: .  -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
163: .  -ts_error_if_step_fails <true,false> - Error if no step succeeds
164: .  -ts_rtol <rtol> - relative tolerance for local truncation error
165: .  -ts_atol <atol> Absolute tolerance for local truncation error
166: .  -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
167: .  -ts_fd_color - Use finite differences with coloring to compute IJacobian
168: .  -ts_monitor - print information at each timestep
169: .  -ts_monitor_lg_solution - Monitor solution graphically
170: .  -ts_monitor_lg_error - Monitor error graphically
171: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
172: .  -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
173: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
174: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
175: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
176: .  -ts_monitor_draw_solution - Monitor solution graphically
177: .  -ts_monitor_draw_solution_phase  <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
178: .  -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
179: .  -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
180: .  -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
181: .  -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
182: .  -ts_adjoint_monitor - print information at each adjoint time step
183: -  -ts_adjoint_monitor_draw_sensi - monitor the sensitivity of the first cost function wrt initial conditions (lambda[0]) graphically

185:    Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified

187:    Level: beginner

189: .keywords: TS, timestep, set, options, database

191: .seealso: TSGetType()
192: @*/
193: PetscErrorCode  TSSetFromOptions(TS ts)
194: {
195:   PetscBool              opt,flg,tflg;
196:   PetscErrorCode         ierr;
197:   char                   monfilename[PETSC_MAX_PATH_LEN];
198:   PetscReal              time_step;
199:   TSExactFinalTimeOption eftopt;
200:   char                   dir[16];
201:   TSIFunction            ifun;
202:   const char             *defaultType;
203:   char                   typeName[256];


208:   TSRegisterAll();
209:   TSGetIFunction(ts,NULL,&ifun,NULL);

211:   PetscObjectOptionsBegin((PetscObject)ts);
212:   if (((PetscObject)ts)->type_name)
213:     defaultType = ((PetscObject)ts)->type_name;
214:   else
215:     defaultType = ifun ? TSBEULER : TSEULER;
216:   PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
217:   if (opt) {
218:     TSSetType(ts,typeName);
219:   } else {
220:     TSSetType(ts,defaultType);
221:   }

223:   /* Handle generic TS options */
224:   PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
225:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
226:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
227:   PetscOptionsReal("-ts_final_time","Final time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
228:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
229:   if (flg) {TSSetTimeStep(ts,time_step);}
230:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
231:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
232:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
233:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
234:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
235:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
236:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

238: #if defined(PETSC_HAVE_SAWS)
239:   {
240:   PetscBool set;
241:   flg  = PETSC_FALSE;
242:   PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
243:   if (set) {
244:     PetscObjectSAWsSetBlock((PetscObject)ts,flg);
245:   }
246:   }
247: #endif

249:   /* Monitor options */
250:   TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
251:   TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
252:   TSAdjointMonitorSetFromOptions(ts,"-ts_adjoint_monitor","Monitor adjoint timestep size","TSAdjointMonitorDefault",TSAdjointMonitorDefault,NULL);
253:   TSAdjointMonitorSetFromOptions(ts,"-ts_adjoint_monitor_sensi","Monitor sensitivity in the adjoint computation","TSAdjointMonitorSensi",TSAdjointMonitorSensi,NULL);

255:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
256:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

258:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
259:   if (opt) {
260:     TSMonitorLGCtx ctx;
261:     PetscInt       howoften = 1;

263:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
264:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
265:     TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
266:   }

268:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
269:   if (opt) {
270:     TSMonitorLGCtx ctx;
271:     PetscInt       howoften = 1;

273:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
274:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
275:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
276:   }

278:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
279:   if (opt) {
280:     TSMonitorLGCtx ctx;
281:     PetscInt       howoften = 1;

283:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
284:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
285:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
286:   }
287:   PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
288:   if (opt) {
289:     TSMonitorLGCtx ctx;
290:     PetscInt       howoften = 1;

292:     PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
293:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
294:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
295:     ctx->semilogy = PETSC_TRUE;
296:   }

298:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
299:   if (opt) {
300:     TSMonitorLGCtx ctx;
301:     PetscInt       howoften = 1;

303:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
304:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
305:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
306:   }
307:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
308:   if (opt) {
309:     TSMonitorLGCtx ctx;
310:     PetscInt       howoften = 1;

312:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
313:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
314:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
315:   }
316:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
317:   if (opt) {
318:     TSMonitorSPEigCtx ctx;
319:     PetscInt          howoften = 1;

321:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
322:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
323:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
324:   }
325:   opt  = PETSC_FALSE;
326:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
327:   if (opt) {
328:     TSMonitorDrawCtx ctx;
329:     PetscInt         howoften = 1;

331:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
332:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
333:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
334:   }
335:   opt  = PETSC_FALSE;
336:   PetscOptionsName("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",&opt);
337:   if (opt) {
338:     TSMonitorDrawCtx ctx;
339:     PetscInt         howoften = 1;

341:     PetscOptionsInt("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",howoften,&howoften,NULL);
342:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
343:     TSAdjointMonitorSet(ts,TSAdjointMonitorDrawSensi,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
344:   }
345:   opt  = PETSC_FALSE;
346:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
347:   if (opt) {
348:     TSMonitorDrawCtx ctx;
349:     PetscReal        bounds[4];
350:     PetscInt         n = 4;
351:     PetscDraw        draw;
352:     PetscDrawAxis    axis;

354:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
355:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
356:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
357:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
358:     PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
359:     PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
360:     PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
361:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
362:   }
363:   opt  = PETSC_FALSE;
364:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
365:   if (opt) {
366:     TSMonitorDrawCtx ctx;
367:     PetscInt         howoften = 1;

369:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
370:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
371:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
372:   }

374:   opt  = PETSC_FALSE;
375:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
376:   if (flg) {
377:     const char *ptr,*ptr2;
378:     char       *filetemplate;
379:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
380:     /* Do some cursory validation of the input. */
381:     PetscStrstr(monfilename,"%",(char**)&ptr);
382:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
383:     for (ptr++; ptr && *ptr; ptr++) {
384:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
385:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
386:       if (ptr2) break;
387:     }
388:     PetscStrallocpy(monfilename,&filetemplate);
389:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
390:   }

392:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
393:   if (flg) {
394:     TSMonitorDMDARayCtx *rayctx;
395:     int                  ray = 0;
396:     DMDADirection        ddir;
397:     DM                   da;
398:     PetscMPIInt          rank;

400:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
401:     if (dir[0] == 'x') ddir = DMDA_X;
402:     else if (dir[0] == 'y') ddir = DMDA_Y;
403:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
404:     sscanf(dir+2,"%d",&ray);

406:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
407:     PetscNew(&rayctx);
408:     TSGetDM(ts,&da);
409:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
410:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
411:     if (!rank) {
412:       PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
413:     }
414:     rayctx->lgctx = NULL;
415:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
416:   }
417:   PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
418:   if (flg) {
419:     TSMonitorDMDARayCtx *rayctx;
420:     int                 ray = 0;
421:     DMDADirection       ddir;
422:     DM                  da;
423:     PetscInt            howoften = 1;

425:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
426:     if      (dir[0] == 'x') ddir = DMDA_X;
427:     else if (dir[0] == 'y') ddir = DMDA_Y;
428:     else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
429:     sscanf(dir+2, "%d", &ray);

431:     PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
432:     PetscNew(&rayctx);
433:     TSGetDM(ts, &da);
434:     DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
435:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
436:     TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
437:   }

439:   PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
440:   if (opt) {
441:     TSMonitorEnvelopeCtx ctx;

443:     TSMonitorEnvelopeCtxCreate(ts,&ctx);
444:     TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
445:   }

447:   flg  = PETSC_FALSE;
448:   PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
449:   if (flg) {
450:     DM   dm;
451:     DMTS tdm;

453:     TSGetDM(ts, &dm);
454:     DMGetDMTS(dm, &tdm);
455:     tdm->ijacobianctx = NULL;
456:     TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
457:     PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
458:   }

460:   /* Handle specific TS options */
461:   if (ts->ops->setfromoptions) {
462:     (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
463:   }

465:   /* Handle TSAdapt options */
466:   TSGetAdapt(ts,&ts->adapt);
467:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
468:   TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);

470:   /* TS trajectory must be set after TS, since it may use some TS options above */
471:   tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
472:   PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
473:   if (tflg) {
474:     TSSetSaveTrajectory(ts);
475:   }
476:   tflg = ts->adjoint_solve ? PETSC_TRUE : PETSC_FALSE;
477:   PetscOptionsBool("-ts_adjoint_solve","Solve the adjoint problem immediately after solving the forward problem","",tflg,&tflg,&flg);
478:   if (flg) {
479:     TSSetSaveTrajectory(ts);
480:     ts->adjoint_solve = tflg;
481:   }

483:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
484:   PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
485:   PetscOptionsEnd();

487:   if (ts->trajectory) {
488:     TSTrajectorySetFromOptions(ts->trajectory,ts);
489:   }

491:   TSGetSNES(ts,&ts->snes);
492:   if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
493:   SNESSetFromOptions(ts->snes);
494:   return(0);
495: }

497: /*@
498:    TSGetTrajectory - Gets the trajectory from a TS if it exists

500:    Collective on TS

502:    Input Parameters:
503: .  ts - the TS context obtained from TSCreate()

505:    Output Parameters;
506: .  tr - the TSTrajectory object, if it exists

508:    Note: This routine should be called after all TS options have been set

510:    Level: advanced

512: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()

514: .keywords: TS, set, checkpoint,
515: @*/
516: PetscErrorCode  TSGetTrajectory(TS ts,TSTrajectory *tr)
517: {
520:   *tr = ts->trajectory;
521:   return(0);
522: }

524: /*@
525:    TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object

527:    Collective on TS

529:    Input Parameters:
530: .  ts - the TS context obtained from TSCreate()

532:    Options Database:
533: +  -ts_save_trajectory - saves the trajectory to a file
534: -  -ts_trajectory_type type

536: Note: This routine should be called after all TS options have been set

538:     The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/bin/PetscBinaryIOTrajectory.py and
539:    MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m

541:    Level: intermediate

543: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectoryType, TSSetTrajectoryType()

545: .keywords: TS, set, checkpoint,
546: @*/
547: PetscErrorCode  TSSetSaveTrajectory(TS ts)
548: {

553:   if (!ts->trajectory) {
554:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
555:     TSTrajectorySetFromOptions(ts->trajectory,ts);
556:   }
557:   return(0);
558: }

560: /*@
561:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
562:       set with TSSetRHSJacobian().

564:    Collective on TS and Vec

566:    Input Parameters:
567: +  ts - the TS context
568: .  t - current timestep
569: -  U - input vector

571:    Output Parameters:
572: +  A - Jacobian matrix
573: .  B - optional preconditioning matrix
574: -  flag - flag indicating matrix structure

576:    Notes:
577:    Most users should not need to explicitly call this routine, as it
578:    is used internally within the nonlinear solvers.

580:    See KSPSetOperators() for important information about setting the
581:    flag parameter.

583:    Level: developer

585: .keywords: SNES, compute, Jacobian, matrix

587: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
588: @*/
589: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
590: {
591:   PetscErrorCode   ierr;
592:   PetscObjectState Ustate;
593:   PetscObjectId    Uid;
594:   DM               dm;
595:   DMTS             tsdm;
596:   TSRHSJacobian    rhsjacobianfunc;
597:   void             *ctx;
598:   TSIJacobian      ijacobianfunc;
599:   TSRHSFunction    rhsfunction;

605:   TSGetDM(ts,&dm);
606:   DMGetDMTS(dm,&tsdm);
607:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
608:   DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
609:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
610:   PetscObjectStateGet((PetscObject)U,&Ustate);
611:   PetscObjectGetId((PetscObject)U,&Uid);
612:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
613:     return(0);
614:   }

616:   if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

618:   if (ts->rhsjacobian.reuse) {
619:     MatShift(A,-ts->rhsjacobian.shift);
620:     MatScale(A,1./ts->rhsjacobian.scale);
621:     if (B && A != B) {
622:       MatShift(B,-ts->rhsjacobian.shift);
623:       MatScale(B,1./ts->rhsjacobian.scale);
624:     }
625:     ts->rhsjacobian.shift = 0;
626:     ts->rhsjacobian.scale = 1.;
627:   }

629:   if (rhsjacobianfunc) {
630:     PetscBool missing;
631:     PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
632:     PetscStackPush("TS user Jacobian function");
633:     (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
634:     PetscStackPop;
635:     PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
636:     if (A) {
637:       MatMissingDiagonal(A,&missing,NULL);
638:       if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
639:     }
640:     if (B && B != A) {
641:       MatMissingDiagonal(B,&missing,NULL);
642:       if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
643:     }
644:   } else {
645:     MatZeroEntries(A);
646:     if (A != B) {MatZeroEntries(B);}
647:   }
648:   ts->rhsjacobian.time       = t;
649:   PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
650:   PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
651:   return(0);
652: }

654: /*@
655:    TSComputeRHSFunction - Evaluates the right-hand-side function.

657:    Collective on TS and Vec

659:    Input Parameters:
660: +  ts - the TS context
661: .  t - current time
662: -  U - state vector

664:    Output Parameter:
665: .  y - right hand side

667:    Note:
668:    Most users should not need to explicitly call this routine, as it
669:    is used internally within the nonlinear solvers.

671:    Level: developer

673: .keywords: TS, compute

675: .seealso: TSSetRHSFunction(), TSComputeIFunction()
676: @*/
677: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
678: {
680:   TSRHSFunction  rhsfunction;
681:   TSIFunction    ifunction;
682:   void           *ctx;
683:   DM             dm;

689:   TSGetDM(ts,&dm);
690:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
691:   DMTSGetIFunction(dm,&ifunction,NULL);

693:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

695:   PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
696:   if (rhsfunction) {
697:     PetscStackPush("TS user right-hand-side function");
698:     (*rhsfunction)(ts,t,U,y,ctx);
699:     PetscStackPop;
700:   } else {
701:     VecZeroEntries(y);
702:   }

704:   PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
705:   return(0);
706: }

708: /*@
709:    TSComputeSolutionFunction - Evaluates the solution function.

711:    Collective on TS and Vec

713:    Input Parameters:
714: +  ts - the TS context
715: -  t - current time

717:    Output Parameter:
718: .  U - the solution

720:    Note:
721:    Most users should not need to explicitly call this routine, as it
722:    is used internally within the nonlinear solvers.

724:    Level: developer

726: .keywords: TS, compute

728: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
729: @*/
730: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
731: {
732:   PetscErrorCode     ierr;
733:   TSSolutionFunction solutionfunction;
734:   void               *ctx;
735:   DM                 dm;

740:   TSGetDM(ts,&dm);
741:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

743:   if (solutionfunction) {
744:     PetscStackPush("TS user solution function");
745:     (*solutionfunction)(ts,t,U,ctx);
746:     PetscStackPop;
747:   }
748:   return(0);
749: }
750: /*@
751:    TSComputeForcingFunction - Evaluates the forcing function.

753:    Collective on TS and Vec

755:    Input Parameters:
756: +  ts - the TS context
757: -  t - current time

759:    Output Parameter:
760: .  U - the function value

762:    Note:
763:    Most users should not need to explicitly call this routine, as it
764:    is used internally within the nonlinear solvers.

766:    Level: developer

768: .keywords: TS, compute

770: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
771: @*/
772: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
773: {
774:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
775:   void               *ctx;
776:   DM                 dm;

781:   TSGetDM(ts,&dm);
782:   DMTSGetForcingFunction(dm,&forcing,&ctx);

784:   if (forcing) {
785:     PetscStackPush("TS user forcing function");
786:     (*forcing)(ts,t,U,ctx);
787:     PetscStackPop;
788:   }
789:   return(0);
790: }

792: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
793: {
794:   Vec            F;

798:   *Frhs = NULL;
799:   TSGetIFunction(ts,&F,NULL,NULL);
800:   if (!ts->Frhs) {
801:     VecDuplicate(F,&ts->Frhs);
802:   }
803:   *Frhs = ts->Frhs;
804:   return(0);
805: }

807: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
808: {
809:   Mat            A,B;
811:   TSIJacobian    ijacobian;

814:   if (Arhs) *Arhs = NULL;
815:   if (Brhs) *Brhs = NULL;
816:   TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
817:   if (Arhs) {
818:     if (!ts->Arhs) {
819:       if (ijacobian) {
820:         MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
821:       } else {
822:         ts->Arhs = A;
823:         PetscObjectReference((PetscObject)A);
824:       }
825:     } else {
826:       PetscBool flg;
827:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
828:       /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
829:       if (flg && !ijacobian && ts->Arhs == ts->Brhs){
830:         PetscObjectDereference((PetscObject)ts->Arhs);
831:         ts->Arhs = A;
832:         PetscObjectReference((PetscObject)A);
833:       }
834:     }
835:     *Arhs = ts->Arhs;
836:   }
837:   if (Brhs) {
838:     if (!ts->Brhs) {
839:       if (A != B) {
840:         if (ijacobian) {
841:           MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
842:         } else {
843:           ts->Brhs = B;
844:           PetscObjectReference((PetscObject)B);
845:         }
846:       } else {
847:         PetscObjectReference((PetscObject)ts->Arhs);
848:         ts->Brhs = ts->Arhs;
849:       }
850:     }
851:     *Brhs = ts->Brhs;
852:   }
853:   return(0);
854: }

856: /*@
857:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

859:    Collective on TS and Vec

861:    Input Parameters:
862: +  ts - the TS context
863: .  t - current time
864: .  U - state vector
865: .  Udot - time derivative of state vector
866: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

868:    Output Parameter:
869: .  Y - right hand side

871:    Note:
872:    Most users should not need to explicitly call this routine, as it
873:    is used internally within the nonlinear solvers.

875:    If the user did did not write their equations in implicit form, this
876:    function recasts them in implicit form.

878:    Level: developer

880: .keywords: TS, compute

882: .seealso: TSSetIFunction(), TSComputeRHSFunction()
883: @*/
884: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
885: {
887:   TSIFunction    ifunction;
888:   TSRHSFunction  rhsfunction;
889:   void           *ctx;
890:   DM             dm;


898:   TSGetDM(ts,&dm);
899:   DMTSGetIFunction(dm,&ifunction,&ctx);
900:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

902:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

904:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
905:   if (ifunction) {
906:     PetscStackPush("TS user implicit function");
907:     (*ifunction)(ts,t,U,Udot,Y,ctx);
908:     PetscStackPop;
909:   }
910:   if (imex) {
911:     if (!ifunction) {
912:       VecCopy(Udot,Y);
913:     }
914:   } else if (rhsfunction) {
915:     if (ifunction) {
916:       Vec Frhs;
917:       TSGetRHSVec_Private(ts,&Frhs);
918:       TSComputeRHSFunction(ts,t,U,Frhs);
919:       VecAXPY(Y,-1,Frhs);
920:     } else {
921:       TSComputeRHSFunction(ts,t,U,Y);
922:       VecAYPX(Y,-1,Udot);
923:     }
924:   }
925:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
926:   return(0);
927: }

929: /*@
930:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

932:    Collective on TS and Vec

934:    Input
935:       Input Parameters:
936: +  ts - the TS context
937: .  t - current timestep
938: .  U - state vector
939: .  Udot - time derivative of state vector
940: .  shift - shift to apply, see note below
941: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

943:    Output Parameters:
944: +  A - Jacobian matrix
945: -  B - matrix from which the preconditioner is constructed; often the same as A

947:    Notes:
948:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

950:    dF/dU + shift*dF/dUdot

952:    Most users should not need to explicitly call this routine, as it
953:    is used internally within the nonlinear solvers.

955:    Level: developer

957: .keywords: TS, compute, Jacobian, matrix

959: .seealso:  TSSetIJacobian()
960: @*/
961: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
962: {
964:   TSIJacobian    ijacobian;
965:   TSRHSJacobian  rhsjacobian;
966:   DM             dm;
967:   void           *ctx;


978:   TSGetDM(ts,&dm);
979:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
980:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

982:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

984:   PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
985:   if (ijacobian) {
986:     PetscBool missing;
987:     PetscStackPush("TS user implicit Jacobian");
988:     (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
989:     PetscStackPop;
990:     MatMissingDiagonal(A,&missing,NULL);
991:     if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
992:     if (B != A) {
993:       MatMissingDiagonal(B,&missing,NULL);
994:       if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
995:     }
996:   }
997:   if (imex) {
998:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
999:       PetscBool assembled;
1000:       MatZeroEntries(A);
1001:       MatAssembled(A,&assembled);
1002:       if (!assembled) {
1003:         MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
1004:         MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
1005:       }
1006:       MatShift(A,shift);
1007:       if (A != B) {
1008:         MatZeroEntries(B);
1009:         MatAssembled(B,&assembled);
1010:         if (!assembled) {
1011:           MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1012:           MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1013:         }
1014:         MatShift(B,shift);
1015:       }
1016:     }
1017:   } else {
1018:     Mat Arhs = NULL,Brhs = NULL;
1019:     if (rhsjacobian) {
1020:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1021:       TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1022:     }
1023:     if (Arhs == A) {           /* No IJacobian, so we only have the RHS matrix */
1024:       PetscBool flg;
1025:       ts->rhsjacobian.scale = -1;
1026:       ts->rhsjacobian.shift = shift;
1027:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1028:       /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1029:       if (!flg) {
1030:         MatScale(A,-1);
1031:         MatShift(A,shift);
1032:       }
1033:       if (A != B) {
1034:         MatScale(B,-1);
1035:         MatShift(B,shift);
1036:       }
1037:     } else if (Arhs) {          /* Both IJacobian and RHSJacobian */
1038:       MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1039:       if (!ijacobian) {         /* No IJacobian provided, but we have a separate RHS matrix */
1040:         MatZeroEntries(A);
1041:         MatShift(A,shift);
1042:         if (A != B) {
1043:           MatZeroEntries(B);
1044:           MatShift(B,shift);
1045:         }
1046:       }
1047:       MatAXPY(A,-1,Arhs,axpy);
1048:       if (A != B) {
1049:         MatAXPY(B,-1,Brhs,axpy);
1050:       }
1051:     }
1052:   }
1053:   PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1054:   return(0);
1055: }

1057: /*@C
1058:     TSSetRHSFunction - Sets the routine for evaluating the function,
1059:     where U_t = G(t,u).

1061:     Logically Collective on TS

1063:     Input Parameters:
1064: +   ts - the TS context obtained from TSCreate()
1065: .   r - vector to put the computed right hand side (or NULL to have it created)
1066: .   f - routine for evaluating the right-hand-side function
1067: -   ctx - [optional] user-defined context for private data for the
1068:           function evaluation routine (may be NULL)

1070:     Calling sequence of func:
1071: $     func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);

1073: +   t - current timestep
1074: .   u - input vector
1075: .   F - function vector
1076: -   ctx - [optional] user-defined function context

1078:     Level: beginner

1080:     Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.

1082: .keywords: TS, timestep, set, right-hand-side, function

1084: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1085: @*/
1086: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1087: {
1089:   SNES           snes;
1090:   Vec            ralloc = NULL;
1091:   DM             dm;


1097:   TSGetDM(ts,&dm);
1098:   DMTSSetRHSFunction(dm,f,ctx);
1099:   TSGetSNES(ts,&snes);
1100:   if (!r && !ts->dm && ts->vec_sol) {
1101:     VecDuplicate(ts->vec_sol,&ralloc);
1102:     r = ralloc;
1103:   }
1104:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1105:   VecDestroy(&ralloc);
1106:   return(0);
1107: }

1109: /*@C
1110:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

1112:     Logically Collective on TS

1114:     Input Parameters:
1115: +   ts - the TS context obtained from TSCreate()
1116: .   f - routine for evaluating the solution
1117: -   ctx - [optional] user-defined context for private data for the
1118:           function evaluation routine (may be NULL)

1120:     Calling sequence of func:
1121: $     func (TS ts,PetscReal t,Vec u,void *ctx);

1123: +   t - current timestep
1124: .   u - output vector
1125: -   ctx - [optional] user-defined function context

1127:     Notes:
1128:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
1129:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1130:     create closed-form solutions with non-physical forcing terms.

1132:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1134:     Level: beginner

1136: .keywords: TS, timestep, set, right-hand-side, function

1138: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
1139: @*/
1140: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1141: {
1143:   DM             dm;

1147:   TSGetDM(ts,&dm);
1148:   DMTSSetSolutionFunction(dm,f,ctx);
1149:   return(0);
1150: }

1152: /*@C
1153:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

1155:     Logically Collective on TS

1157:     Input Parameters:
1158: +   ts - the TS context obtained from TSCreate()
1159: .   func - routine for evaluating the forcing function
1160: -   ctx - [optional] user-defined context for private data for the
1161:           function evaluation routine (may be NULL)

1163:     Calling sequence of func:
1164: $     func (TS ts,PetscReal t,Vec f,void *ctx);

1166: +   t - current timestep
1167: .   f - output vector
1168: -   ctx - [optional] user-defined function context

1170:     Notes:
1171:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1172:     create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1173:     definition of the problem you are solving and hence possibly introducing bugs.

1175:     This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0

1177:     This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1178:     parameters can be passed in the ctx variable.

1180:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1182:     Level: beginner

1184: .keywords: TS, timestep, set, right-hand-side, function

1186: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1187: @*/
1188: PetscErrorCode  TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1189: {
1191:   DM             dm;

1195:   TSGetDM(ts,&dm);
1196:   DMTSSetForcingFunction(dm,func,ctx);
1197:   return(0);
1198: }

1200: /*@C
1201:    TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1202:    where U_t = G(U,t), as well as the location to store the matrix.

1204:    Logically Collective on TS

1206:    Input Parameters:
1207: +  ts  - the TS context obtained from TSCreate()
1208: .  Amat - (approximate) Jacobian matrix
1209: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1210: .  f   - the Jacobian evaluation routine
1211: -  ctx - [optional] user-defined context for private data for the
1212:          Jacobian evaluation routine (may be NULL)

1214:    Calling sequence of f:
1215: $     func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);

1217: +  t - current timestep
1218: .  u - input vector
1219: .  Amat - (approximate) Jacobian matrix
1220: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1221: -  ctx - [optional] user-defined context for matrix evaluation routine

1223:    Notes:
1224:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1226:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1227:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1229:    Level: beginner

1231: .keywords: TS, timestep, set, right-hand-side, Jacobian

1233: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()

1235: @*/
1236: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1237: {
1239:   SNES           snes;
1240:   DM             dm;
1241:   TSIJacobian    ijacobian;


1250:   TSGetDM(ts,&dm);
1251:   DMTSSetRHSJacobian(dm,f,ctx);
1252:   if (f == TSComputeRHSJacobianConstant) {
1253:     /* Handle this case automatically for the user; otherwise user should call themselves. */
1254:     TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1255:   }
1256:   DMTSGetIJacobian(dm,&ijacobian,NULL);
1257:   TSGetSNES(ts,&snes);
1258:   if (!ijacobian) {
1259:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1260:   }
1261:   if (Amat) {
1262:     PetscObjectReference((PetscObject)Amat);
1263:     MatDestroy(&ts->Arhs);
1264:     ts->Arhs = Amat;
1265:   }
1266:   if (Pmat) {
1267:     PetscObjectReference((PetscObject)Pmat);
1268:     MatDestroy(&ts->Brhs);
1269:     ts->Brhs = Pmat;
1270:   }
1271:   return(0);
1272: }

1274: /*@C
1275:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1277:    Logically Collective on TS

1279:    Input Parameters:
1280: +  ts  - the TS context obtained from TSCreate()
1281: .  r   - vector to hold the residual (or NULL to have it created internally)
1282: .  f   - the function evaluation routine
1283: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1285:    Calling sequence of f:
1286: $  f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1288: +  t   - time at step/stage being solved
1289: .  u   - state vector
1290: .  u_t - time derivative of state vector
1291: .  F   - function vector
1292: -  ctx - [optional] user-defined context for matrix evaluation routine

1294:    Important:
1295:    The user MUST call either this routine or TSSetRHSFunction() to define the ODE.  When solving DAEs you must use this function.

1297:    Level: beginner

1299: .keywords: TS, timestep, set, DAE, Jacobian

1301: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1302: @*/
1303: PetscErrorCode  TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1304: {
1306:   SNES           snes;
1307:   Vec            ralloc = NULL;
1308:   DM             dm;


1314:   TSGetDM(ts,&dm);
1315:   DMTSSetIFunction(dm,f,ctx);

1317:   TSGetSNES(ts,&snes);
1318:   if (!r && !ts->dm && ts->vec_sol) {
1319:     VecDuplicate(ts->vec_sol,&ralloc);
1320:     r  = ralloc;
1321:   }
1322:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1323:   VecDestroy(&ralloc);
1324:   return(0);
1325: }

1327: /*@C
1328:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1330:    Not Collective

1332:    Input Parameter:
1333: .  ts - the TS context

1335:    Output Parameter:
1336: +  r - vector to hold residual (or NULL)
1337: .  func - the function to compute residual (or NULL)
1338: -  ctx - the function context (or NULL)

1340:    Level: advanced

1342: .keywords: TS, nonlinear, get, function

1344: .seealso: TSSetIFunction(), SNESGetFunction()
1345: @*/
1346: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1347: {
1349:   SNES           snes;
1350:   DM             dm;

1354:   TSGetSNES(ts,&snes);
1355:   SNESGetFunction(snes,r,NULL,NULL);
1356:   TSGetDM(ts,&dm);
1357:   DMTSGetIFunction(dm,func,ctx);
1358:   return(0);
1359: }

1361: /*@C
1362:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1364:    Not Collective

1366:    Input Parameter:
1367: .  ts - the TS context

1369:    Output Parameter:
1370: +  r - vector to hold computed right hand side (or NULL)
1371: .  func - the function to compute right hand side (or NULL)
1372: -  ctx - the function context (or NULL)

1374:    Level: advanced

1376: .keywords: TS, nonlinear, get, function

1378: .seealso: TSSetRHSFunction(), SNESGetFunction()
1379: @*/
1380: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1381: {
1383:   SNES           snes;
1384:   DM             dm;

1388:   TSGetSNES(ts,&snes);
1389:   SNESGetFunction(snes,r,NULL,NULL);
1390:   TSGetDM(ts,&dm);
1391:   DMTSGetRHSFunction(dm,func,ctx);
1392:   return(0);
1393: }

1395: /*@C
1396:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1397:         provided with TSSetIFunction().

1399:    Logically Collective on TS

1401:    Input Parameters:
1402: +  ts  - the TS context obtained from TSCreate()
1403: .  Amat - (approximate) Jacobian matrix
1404: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1405: .  f   - the Jacobian evaluation routine
1406: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1408:    Calling sequence of f:
1409: $  f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);

1411: +  t    - time at step/stage being solved
1412: .  U    - state vector
1413: .  U_t  - time derivative of state vector
1414: .  a    - shift
1415: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1416: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1417: -  ctx  - [optional] user-defined context for matrix evaluation routine

1419:    Notes:
1420:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1422:    If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1423:    space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.

1425:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1426:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1427:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1428:    a and vector W depend on the integration method, step size, and past states. For example with
1429:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1430:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1432:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1434:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1435:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1437:    Level: beginner

1439: .keywords: TS, timestep, DAE, Jacobian

1441: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()

1443: @*/
1444: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1445: {
1447:   SNES           snes;
1448:   DM             dm;


1457:   TSGetDM(ts,&dm);
1458:   DMTSSetIJacobian(dm,f,ctx);

1460:   TSGetSNES(ts,&snes);
1461:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1462:   return(0);
1463: }

1465: /*@
1466:    TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating.  Without this flag, TS will change the sign and
1467:    shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1468:    the entire Jacobian.  The reuse flag must be set if the evaluation function will assume that the matrix entries have
1469:    not been changed by the TS.

1471:    Logically Collective

1473:    Input Arguments:
1474: +  ts - TS context obtained from TSCreate()
1475: -  reuse - PETSC_TRUE if the RHS Jacobian

1477:    Level: intermediate

1479: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1480: @*/
1481: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1482: {
1484:   ts->rhsjacobian.reuse = reuse;
1485:   return(0);
1486: }

1488: /*@C
1489:    TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.

1491:    Logically Collective on TS

1493:    Input Parameters:
1494: +  ts  - the TS context obtained from TSCreate()
1495: .  F   - vector to hold the residual (or NULL to have it created internally)
1496: .  fun - the function evaluation routine
1497: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1499:    Calling sequence of fun:
1500: $  fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);

1502: +  t    - time at step/stage being solved
1503: .  U    - state vector
1504: .  U_t  - time derivative of state vector
1505: .  U_tt - second time derivative of state vector
1506: .  F    - function vector
1507: -  ctx  - [optional] user-defined context for matrix evaluation routine (may be NULL)

1509:    Level: beginner

1511: .keywords: TS, timestep, set, ODE, DAE, Function

1513: .seealso: TSSetI2Jacobian()
1514: @*/
1515: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1516: {
1517:   DM             dm;

1523:   TSSetIFunction(ts,F,NULL,NULL);
1524:   TSGetDM(ts,&dm);
1525:   DMTSSetI2Function(dm,fun,ctx);
1526:   return(0);
1527: }

1529: /*@C
1530:   TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1532:   Not Collective

1534:   Input Parameter:
1535: . ts - the TS context

1537:   Output Parameter:
1538: + r - vector to hold residual (or NULL)
1539: . fun - the function to compute residual (or NULL)
1540: - ctx - the function context (or NULL)

1542:   Level: advanced

1544: .keywords: TS, nonlinear, get, function

1546: .seealso: TSSetI2Function(), SNESGetFunction()
1547: @*/
1548: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1549: {
1551:   SNES           snes;
1552:   DM             dm;

1556:   TSGetSNES(ts,&snes);
1557:   SNESGetFunction(snes,r,NULL,NULL);
1558:   TSGetDM(ts,&dm);
1559:   DMTSGetI2Function(dm,fun,ctx);
1560:   return(0);
1561: }

1563: /*@C
1564:    TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t  + a*dF/dU_tt
1565:         where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().

1567:    Logically Collective on TS

1569:    Input Parameters:
1570: +  ts  - the TS context obtained from TSCreate()
1571: .  J   - Jacobian matrix
1572: .  P   - preconditioning matrix for J (may be same as J)
1573: .  jac - the Jacobian evaluation routine
1574: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1576:    Calling sequence of jac:
1577: $  jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);

1579: +  t    - time at step/stage being solved
1580: .  U    - state vector
1581: .  U_t  - time derivative of state vector
1582: .  U_tt - second time derivative of state vector
1583: .  v    - shift for U_t
1584: .  a    - shift for U_tt
1585: .  J    - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t  + a*dF/dU_tt
1586: .  P    - preconditioning matrix for J, may be same as J
1587: -  ctx  - [optional] user-defined context for matrix evaluation routine

1589:    Notes:
1590:    The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.

1592:    The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1593:    the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1594:    The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U  where the positive "shift"
1595:    parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.

1597:    Level: beginner

1599: .keywords: TS, timestep, set, ODE, DAE, Jacobian

1601: .seealso: TSSetI2Function()
1602: @*/
1603: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1604: {
1605:   DM             dm;

1612:   TSSetIJacobian(ts,J,P,NULL,NULL);
1613:   TSGetDM(ts,&dm);
1614:   DMTSSetI2Jacobian(dm,jac,ctx);
1615:   return(0);
1616: }

1618: /*@C
1619:   TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.

1621:   Not Collective, but parallel objects are returned if TS is parallel

1623:   Input Parameter:
1624: . ts  - The TS context obtained from TSCreate()

1626:   Output Parameters:
1627: + J  - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1628: . P - The matrix from which the preconditioner is constructed, often the same as J
1629: . jac - The function to compute the Jacobian matrices
1630: - ctx - User-defined context for Jacobian evaluation routine

1632:   Notes: You can pass in NULL for any return argument you do not need.

1634:   Level: advanced

1636: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

1638: .keywords: TS, timestep, get, matrix, Jacobian
1639: @*/
1640: PetscErrorCode  TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1641: {
1643:   SNES           snes;
1644:   DM             dm;

1647:   TSGetSNES(ts,&snes);
1648:   SNESSetUpMatrices(snes);
1649:   SNESGetJacobian(snes,J,P,NULL,NULL);
1650:   TSGetDM(ts,&dm);
1651:   DMTSGetI2Jacobian(dm,jac,ctx);
1652:   return(0);
1653: }

1655: /*@
1656:   TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0

1658:   Collective on TS and Vec

1660:   Input Parameters:
1661: + ts - the TS context
1662: . t - current time
1663: . U - state vector
1664: . V - time derivative of state vector (U_t)
1665: - A - second time derivative of state vector (U_tt)

1667:   Output Parameter:
1668: . F - the residual vector

1670:   Note:
1671:   Most users should not need to explicitly call this routine, as it
1672:   is used internally within the nonlinear solvers.

1674:   Level: developer

1676: .keywords: TS, compute, function, vector

1678: .seealso: TSSetI2Function()
1679: @*/
1680: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1681: {
1682:   DM             dm;
1683:   TSI2Function   I2Function;
1684:   void           *ctx;
1685:   TSRHSFunction  rhsfunction;


1695:   TSGetDM(ts,&dm);
1696:   DMTSGetI2Function(dm,&I2Function,&ctx);
1697:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

1699:   if (!I2Function) {
1700:     TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1701:     return(0);
1702:   }

1704:   PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);

1706:   PetscStackPush("TS user implicit function");
1707:   I2Function(ts,t,U,V,A,F,ctx);
1708:   PetscStackPop;

1710:   if (rhsfunction) {
1711:     Vec Frhs;
1712:     TSGetRHSVec_Private(ts,&Frhs);
1713:     TSComputeRHSFunction(ts,t,U,Frhs);
1714:     VecAXPY(F,-1,Frhs);
1715:   }

1717:   PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1718:   return(0);
1719: }

1721: /*@
1722:   TSComputeI2Jacobian - Evaluates the Jacobian of the DAE

1724:   Collective on TS and Vec

1726:   Input Parameters:
1727: + ts - the TS context
1728: . t - current timestep
1729: . U - state vector
1730: . V - time derivative of state vector
1731: . A - second time derivative of state vector
1732: . shiftV - shift to apply, see note below
1733: - shiftA - shift to apply, see note below

1735:   Output Parameters:
1736: + J - Jacobian matrix
1737: - P - optional preconditioning matrix

1739:   Notes:
1740:   If F(t,U,V,A)=0 is the DAE, the required Jacobian is

1742:   dF/dU + shiftV*dF/dV + shiftA*dF/dA

1744:   Most users should not need to explicitly call this routine, as it
1745:   is used internally within the nonlinear solvers.

1747:   Level: developer

1749: .keywords: TS, compute, Jacobian, matrix

1751: .seealso:  TSSetI2Jacobian()
1752: @*/
1753: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1754: {
1755:   DM             dm;
1756:   TSI2Jacobian   I2Jacobian;
1757:   void           *ctx;
1758:   TSRHSJacobian  rhsjacobian;


1769:   TSGetDM(ts,&dm);
1770:   DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1771:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

1773:   if (!I2Jacobian) {
1774:     TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1775:     return(0);
1776:   }

1778:   PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);

1780:   PetscStackPush("TS user implicit Jacobian");
1781:   I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1782:   PetscStackPop;

1784:   if (rhsjacobian) {
1785:     Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1786:     TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1787:     TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1788:     MatAXPY(J,-1,Jrhs,axpy);
1789:     if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1790:   }

1792:   PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1793:   return(0);
1794: }

1796: /*@
1797:    TS2SetSolution - Sets the initial solution and time derivative vectors
1798:    for use by the TS routines handling second order equations.

1800:    Logically Collective on TS and Vec

1802:    Input Parameters:
1803: +  ts - the TS context obtained from TSCreate()
1804: .  u - the solution vector
1805: -  v - the time derivative vector

1807:    Level: beginner

1809: .keywords: TS, timestep, set, solution, initial conditions
1810: @*/
1811: PetscErrorCode  TS2SetSolution(TS ts,Vec u,Vec v)
1812: {

1819:   TSSetSolution(ts,u);
1820:   PetscObjectReference((PetscObject)v);
1821:   VecDestroy(&ts->vec_dot);
1822:   ts->vec_dot = v;
1823:   return(0);
1824: }

1826: /*@
1827:    TS2GetSolution - Returns the solution and time derivative at the present timestep
1828:    for second order equations. It is valid to call this routine inside the function
1829:    that you are evaluating in order to move to the new timestep. This vector not
1830:    changed until the solution at the next timestep has been calculated.

1832:    Not Collective, but Vec returned is parallel if TS is parallel

1834:    Input Parameter:
1835: .  ts - the TS context obtained from TSCreate()

1837:    Output Parameter:
1838: +  u - the vector containing the solution
1839: -  v - the vector containing the time derivative

1841:    Level: intermediate

1843: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()

1845: .keywords: TS, timestep, get, solution
1846: @*/
1847: PetscErrorCode  TS2GetSolution(TS ts,Vec *u,Vec *v)
1848: {
1853:   if (u) *u = ts->vec_sol;
1854:   if (v) *v = ts->vec_dot;
1855:   return(0);
1856: }

1858: /*@C
1859:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1861:   Collective on PetscViewer

1863:   Input Parameters:
1864: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1865:            some related function before a call to TSLoad().
1866: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1868:    Level: intermediate

1870:   Notes:
1871:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1873:   Notes for advanced users:
1874:   Most users should not need to know the details of the binary storage
1875:   format, since TSLoad() and TSView() completely hide these details.
1876:   But for anyone who's interested, the standard binary matrix storage
1877:   format is
1878: .vb
1879:      has not yet been determined
1880: .ve

1882: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1883: @*/
1884: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1885: {
1887:   PetscBool      isbinary;
1888:   PetscInt       classid;
1889:   char           type[256];
1890:   DMTS           sdm;
1891:   DM             dm;

1896:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1897:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1899:   PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1900:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1901:   PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1902:   TSSetType(ts, type);
1903:   if (ts->ops->load) {
1904:     (*ts->ops->load)(ts,viewer);
1905:   }
1906:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1907:   DMLoad(dm,viewer);
1908:   TSSetDM(ts,dm);
1909:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1910:   VecLoad(ts->vec_sol,viewer);
1911:   DMGetDMTS(ts->dm,&sdm);
1912:   DMTSLoad(sdm,viewer);
1913:   return(0);
1914: }

1916:  #include <petscdraw.h>
1917: #if defined(PETSC_HAVE_SAWS)
1918:  #include <petscviewersaws.h>
1919: #endif
1920: /*@C
1921:     TSView - Prints the TS data structure.

1923:     Collective on TS

1925:     Input Parameters:
1926: +   ts - the TS context obtained from TSCreate()
1927: -   viewer - visualization context

1929:     Options Database Key:
1930: .   -ts_view - calls TSView() at end of TSStep()

1932:     Notes:
1933:     The available visualization contexts include
1934: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
1935: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1936:          output where only the first processor opens
1937:          the file.  All other processors send their
1938:          data to the first processor to print.

1940:     The user can open an alternative visualization context with
1941:     PetscViewerASCIIOpen() - output to a specified file.

1943:     Level: beginner

1945: .keywords: TS, timestep, view

1947: .seealso: PetscViewerASCIIOpen()
1948: @*/
1949: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
1950: {
1952:   TSType         type;
1953:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
1954:   DMTS           sdm;
1955: #if defined(PETSC_HAVE_SAWS)
1956:   PetscBool      issaws;
1957: #endif

1961:   if (!viewer) {
1962:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1963:   }

1967:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1968:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1969:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1970:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1971: #if defined(PETSC_HAVE_SAWS)
1972:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1973: #endif
1974:   if (iascii) {
1975:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1976:     if (ts->ops->view) {
1977:       PetscViewerASCIIPushTab(viewer);
1978:       (*ts->ops->view)(ts,viewer);
1979:       PetscViewerASCIIPopTab(viewer);
1980:     }
1981:     if (ts->max_steps < PETSC_MAX_INT) {
1982:       PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
1983:     }
1984:     if (ts->max_time < PETSC_MAX_REAL) {
1985:       PetscViewerASCIIPrintf(viewer,"  maximum time=%g\n",(double)ts->max_time);
1986:     }
1987:     if (ts->usessnes) {
1988:       PetscBool lin;
1989:       if (ts->problem_type == TS_NONLINEAR) {
1990:         PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
1991:       }
1992:       PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
1993:       PetscObjectTypeCompare((PetscObject)ts->snes,SNESKSPONLY,&lin);
1994:       PetscViewerASCIIPrintf(viewer,"  total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
1995:     }
1996:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
1997:     if (ts->vrtol) {
1998:       PetscViewerASCIIPrintf(viewer,"  using vector of relative error tolerances, ");
1999:     } else {
2000:       PetscViewerASCIIPrintf(viewer,"  using relative error tolerance of %g, ",(double)ts->rtol);
2001:     }
2002:     if (ts->vatol) {
2003:       PetscViewerASCIIPrintf(viewer,"  using vector of absolute error tolerances\n");
2004:     } else {
2005:       PetscViewerASCIIPrintf(viewer,"  using absolute error tolerance of %g\n",(double)ts->atol);
2006:     }
2007:     TSAdaptView(ts->adapt,viewer);
2008:     if (ts->snes && ts->usessnes)  {SNESView(ts->snes,viewer);}
2009:     DMGetDMTS(ts->dm,&sdm);
2010:     DMTSView(sdm,viewer);
2011:   } else if (isstring) {
2012:     TSGetType(ts,&type);
2013:     PetscViewerStringSPrintf(viewer," %-7.7s",type);
2014:   } else if (isbinary) {
2015:     PetscInt    classid = TS_FILE_CLASSID;
2016:     MPI_Comm    comm;
2017:     PetscMPIInt rank;
2018:     char        type[256];

2020:     PetscObjectGetComm((PetscObject)ts,&comm);
2021:     MPI_Comm_rank(comm,&rank);
2022:     if (!rank) {
2023:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
2024:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2025:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
2026:     }
2027:     if (ts->ops->view) {
2028:       (*ts->ops->view)(ts,viewer);
2029:     }
2030:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2031:     DMView(ts->dm,viewer);
2032:     VecView(ts->vec_sol,viewer);
2033:     DMGetDMTS(ts->dm,&sdm);
2034:     DMTSView(sdm,viewer);
2035:   } else if (isdraw) {
2036:     PetscDraw draw;
2037:     char      str[36];
2038:     PetscReal x,y,bottom,h;

2040:     PetscViewerDrawGetDraw(viewer,0,&draw);
2041:     PetscDrawGetCurrentPoint(draw,&x,&y);
2042:     PetscStrcpy(str,"TS: ");
2043:     PetscStrcat(str,((PetscObject)ts)->type_name);
2044:     PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2045:     bottom = y - h;
2046:     PetscDrawPushCurrentPoint(draw,x,bottom);
2047:     if (ts->ops->view) {
2048:       (*ts->ops->view)(ts,viewer);
2049:     }
2050:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2051:     if (ts->snes)  {SNESView(ts->snes,viewer);}
2052:     PetscDrawPopCurrentPoint(draw);
2053: #if defined(PETSC_HAVE_SAWS)
2054:   } else if (issaws) {
2055:     PetscMPIInt rank;
2056:     const char  *name;

2058:     PetscObjectGetName((PetscObject)ts,&name);
2059:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2060:     if (!((PetscObject)ts)->amsmem && !rank) {
2061:       char       dir[1024];

2063:       PetscObjectViewSAWs((PetscObject)ts,viewer);
2064:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2065:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2066:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2067:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2068:     }
2069:     if (ts->ops->view) {
2070:       (*ts->ops->view)(ts,viewer);
2071:     }
2072: #endif
2073:   }

2075:   PetscViewerASCIIPushTab(viewer);
2076:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2077:   PetscViewerASCIIPopTab(viewer);
2078:   return(0);
2079: }

2081: /*@
2082:    TSSetApplicationContext - Sets an optional user-defined context for
2083:    the timesteppers.

2085:    Logically Collective on TS

2087:    Input Parameters:
2088: +  ts - the TS context obtained from TSCreate()
2089: -  usrP - optional user context

2091:    Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2092:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2094:    Level: intermediate

2096: .keywords: TS, timestep, set, application, context

2098: .seealso: TSGetApplicationContext()
2099: @*/
2100: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
2101: {
2104:   ts->user = usrP;
2105:   return(0);
2106: }

2108: /*@
2109:     TSGetApplicationContext - Gets the user-defined context for the
2110:     timestepper.

2112:     Not Collective

2114:     Input Parameter:
2115: .   ts - the TS context obtained from TSCreate()

2117:     Output Parameter:
2118: .   usrP - user context

2120:    Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2121:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2123:     Level: intermediate

2125: .keywords: TS, timestep, get, application, context

2127: .seealso: TSSetApplicationContext()
2128: @*/
2129: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
2130: {
2133:   *(void**)usrP = ts->user;
2134:   return(0);
2135: }

2137: /*@
2138:    TSGetStepNumber - Gets the number of steps completed.

2140:    Not Collective

2142:    Input Parameter:
2143: .  ts - the TS context obtained from TSCreate()

2145:    Output Parameter:
2146: .  steps - number of steps completed so far

2148:    Level: intermediate

2150: .keywords: TS, timestep, get, iteration, number
2151: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2152: @*/
2153: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2154: {
2158:   *steps = ts->steps;
2159:   return(0);
2160: }

2162: /*@
2163:    TSSetStepNumber - Sets the number of steps completed.

2165:    Logically Collective on TS

2167:    Input Parameters:
2168: +  ts - the TS context
2169: -  steps - number of steps completed so far

2171:    Notes:
2172:    For most uses of the TS solvers the user need not explicitly call
2173:    TSSetStepNumber(), as the step counter is appropriately updated in
2174:    TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2175:    reinitialize timestepping by setting the step counter to zero (and time
2176:    to the initial time) to solve a similar problem with different initial
2177:    conditions or parameters. Other possible use case is to continue
2178:    timestepping from a previously interrupted run in such a way that TS
2179:    monitors will be called with a initial nonzero step counter.

2181:    Level: advanced

2183: .keywords: TS, timestep, set, iteration, number
2184: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2185: @*/
2186: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2187: {
2191:   if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2192:   ts->steps = steps;
2193:   return(0);
2194: }

2196: /*@
2197:    TSSetTimeStep - Allows one to reset the timestep at any time,
2198:    useful for simple pseudo-timestepping codes.

2200:    Logically Collective on TS

2202:    Input Parameters:
2203: +  ts - the TS context obtained from TSCreate()
2204: -  time_step - the size of the timestep

2206:    Level: intermediate

2208: .seealso: TSGetTimeStep(), TSSetTime()

2210: .keywords: TS, set, timestep
2211: @*/
2212: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
2213: {
2217:   ts->time_step = time_step;
2218:   return(0);
2219: }

2221: /*@
2222:    TSSetExactFinalTime - Determines whether to adapt the final time step to
2223:      match the exact final time, interpolate solution to the exact final time,
2224:      or just return at the final time TS computed.

2226:   Logically Collective on TS

2228:    Input Parameter:
2229: +   ts - the time-step context
2230: -   eftopt - exact final time option

2232: $  TS_EXACTFINALTIME_STEPOVER    - Don't do anything if final time is exceeded
2233: $  TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2234: $  TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time

2236:    Options Database:
2237: .   -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime

2239:    Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2240:     then the final time you selected.

2242:    Level: beginner

2244: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2245: @*/
2246: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2247: {
2251:   ts->exact_final_time = eftopt;
2252:   return(0);
2253: }

2255: /*@
2256:    TSGetExactFinalTime - Gets the exact final time option.

2258:    Not Collective

2260:    Input Parameter:
2261: .  ts - the TS context

2263:    Output Parameter:
2264: .  eftopt - exact final time option

2266:    Level: beginner

2268: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2269: @*/
2270: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2271: {
2275:   *eftopt = ts->exact_final_time;
2276:   return(0);
2277: }

2279: /*@
2280:    TSGetTimeStep - Gets the current timestep size.

2282:    Not Collective

2284:    Input Parameter:
2285: .  ts - the TS context obtained from TSCreate()

2287:    Output Parameter:
2288: .  dt - the current timestep size

2290:    Level: intermediate

2292: .seealso: TSSetTimeStep(), TSGetTime()

2294: .keywords: TS, get, timestep
2295: @*/
2296: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
2297: {
2301:   *dt = ts->time_step;
2302:   return(0);
2303: }

2305: /*@
2306:    TSGetSolution - Returns the solution at the present timestep. It
2307:    is valid to call this routine inside the function that you are evaluating
2308:    in order to move to the new timestep. This vector not changed until
2309:    the solution at the next timestep has been calculated.

2311:    Not Collective, but Vec returned is parallel if TS is parallel

2313:    Input Parameter:
2314: .  ts - the TS context obtained from TSCreate()

2316:    Output Parameter:
2317: .  v - the vector containing the solution

2319:    Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2320:    final time. It returns the solution at the next timestep.

2322:    Level: intermediate

2324: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents()

2326: .keywords: TS, timestep, get, solution
2327: @*/
2328: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
2329: {
2333:   *v = ts->vec_sol;
2334:   return(0);
2335: }

2337: /*@
2338:    TSGetSolutionComponents - Returns any solution components at the present
2339:    timestep, if available for the time integration method being used.
2340:    Solution components are quantities that share the same size and
2341:    structure as the solution vector.

2343:    Not Collective, but Vec returned is parallel if TS is parallel

2345:    Parameters :
2346: .  ts - the TS context obtained from TSCreate() (input parameter).
2347: .  n - If v is PETSC_NULL, then the number of solution components is
2348:        returned through n, else the n-th solution component is
2349:        returned in v.
2350: .  v - the vector containing the n-th solution component
2351:        (may be PETSC_NULL to use this function to find out
2352:         the number of solutions components).

2354:    Level: advanced

2356: .seealso: TSGetSolution()

2358: .keywords: TS, timestep, get, solution
2359: @*/
2360: PetscErrorCode  TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2361: {

2366:   if (!ts->ops->getsolutioncomponents) *n = 0;
2367:   else {
2368:     (*ts->ops->getsolutioncomponents)(ts,n,v);
2369:   }
2370:   return(0);
2371: }

2373: /*@
2374:    TSGetAuxSolution - Returns an auxiliary solution at the present
2375:    timestep, if available for the time integration method being used.

2377:    Not Collective, but Vec returned is parallel if TS is parallel

2379:    Parameters :
2380: .  ts - the TS context obtained from TSCreate() (input parameter).
2381: .  v - the vector containing the auxiliary solution

2383:    Level: intermediate

2385: .seealso: TSGetSolution()

2387: .keywords: TS, timestep, get, solution
2388: @*/
2389: PetscErrorCode  TSGetAuxSolution(TS ts,Vec *v)
2390: {

2395:   if (ts->ops->getauxsolution) {
2396:     (*ts->ops->getauxsolution)(ts,v);
2397:   } else {
2398:     VecZeroEntries(*v);
2399:   }
2400:   return(0);
2401: }

2403: /*@
2404:    TSGetTimeError - Returns the estimated error vector, if the chosen
2405:    TSType has an error estimation functionality.

2407:    Not Collective, but Vec returned is parallel if TS is parallel

2409:    Note: MUST call after TSSetUp()

2411:    Parameters :
2412: .  ts - the TS context obtained from TSCreate() (input parameter).
2413: .  n - current estimate (n=0) or previous one (n=-1)
2414: .  v - the vector containing the error (same size as the solution).

2416:    Level: intermediate

2418: .seealso: TSGetSolution(), TSSetTimeError()

2420: .keywords: TS, timestep, get, error
2421: @*/
2422: PetscErrorCode  TSGetTimeError(TS ts,PetscInt n,Vec *v)
2423: {

2428:   if (ts->ops->gettimeerror) {
2429:     (*ts->ops->gettimeerror)(ts,n,v);
2430:   } else {
2431:     VecZeroEntries(*v);
2432:   }
2433:   return(0);
2434: }

2436: /*@
2437:    TSSetTimeError - Sets the estimated error vector, if the chosen
2438:    TSType has an error estimation functionality. This can be used
2439:    to restart such a time integrator with a given error vector.

2441:    Not Collective, but Vec returned is parallel if TS is parallel

2443:    Parameters :
2444: .  ts - the TS context obtained from TSCreate() (input parameter).
2445: .  v - the vector containing the error (same size as the solution).

2447:    Level: intermediate

2449: .seealso: TSSetSolution(), TSGetTimeError)

2451: .keywords: TS, timestep, get, error
2452: @*/
2453: PetscErrorCode  TSSetTimeError(TS ts,Vec v)
2454: {

2459:   if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2460:   if (ts->ops->settimeerror) {
2461:     (*ts->ops->settimeerror)(ts,v);
2462:   }
2463:   return(0);
2464: }

2466: /*@
2467:    TSGetCostGradients - Returns the gradients from the TSAdjointSolve()

2469:    Not Collective, but Vec returned is parallel if TS is parallel

2471:    Input Parameter:
2472: .  ts - the TS context obtained from TSCreate()

2474:    Output Parameter:
2475: +  lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
2476: -  mu - vectors containing the gradients of the cost functions with respect to the problem parameters

2478:    Level: intermediate

2480: .seealso: TSGetTimeStep()

2482: .keywords: TS, timestep, get, sensitivity
2483: @*/
2484: PetscErrorCode  TSGetCostGradients(TS ts,PetscInt *numcost,Vec **lambda,Vec **mu)
2485: {
2488:   if (numcost) *numcost = ts->numcost;
2489:   if (lambda)  *lambda  = ts->vecs_sensi;
2490:   if (mu)      *mu      = ts->vecs_sensip;
2491:   return(0);
2492: }

2494: /* ----- Routines to initialize and destroy a timestepper ---- */
2495: /*@
2496:   TSSetProblemType - Sets the type of problem to be solved.

2498:   Not collective

2500:   Input Parameters:
2501: + ts   - The TS
2502: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2503: .vb
2504:          U_t - A U = 0      (linear)
2505:          U_t - A(t) U = 0   (linear)
2506:          F(t,U,U_t) = 0     (nonlinear)
2507: .ve

2509:    Level: beginner

2511: .keywords: TS, problem type
2512: .seealso: TSSetUp(), TSProblemType, TS
2513: @*/
2514: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
2515: {

2520:   ts->problem_type = type;
2521:   if (type == TS_LINEAR) {
2522:     SNES snes;
2523:     TSGetSNES(ts,&snes);
2524:     SNESSetType(snes,SNESKSPONLY);
2525:   }
2526:   return(0);
2527: }

2529: /*@C
2530:   TSGetProblemType - Gets the type of problem to be solved.

2532:   Not collective

2534:   Input Parameter:
2535: . ts   - The TS

2537:   Output Parameter:
2538: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2539: .vb
2540:          M U_t = A U
2541:          M(t) U_t = A(t) U
2542:          F(t,U,U_t)
2543: .ve

2545:    Level: beginner

2547: .keywords: TS, problem type
2548: .seealso: TSSetUp(), TSProblemType, TS
2549: @*/
2550: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
2551: {
2555:   *type = ts->problem_type;
2556:   return(0);
2557: }

2559: /*@
2560:    TSSetUp - Sets up the internal data structures for the later use
2561:    of a timestepper.

2563:    Collective on TS

2565:    Input Parameter:
2566: .  ts - the TS context obtained from TSCreate()

2568:    Notes:
2569:    For basic use of the TS solvers the user need not explicitly call
2570:    TSSetUp(), since these actions will automatically occur during
2571:    the call to TSStep() or TSSolve().  However, if one wishes to control this
2572:    phase separately, TSSetUp() should be called after TSCreate()
2573:    and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().

2575:    Level: advanced

2577: .keywords: TS, timestep, setup

2579: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2580: @*/
2581: PetscErrorCode  TSSetUp(TS ts)
2582: {
2584:   DM             dm;
2585:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2586:   PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2587:   TSIFunction    ifun;
2588:   TSIJacobian    ijac;
2589:   TSI2Jacobian   i2jac;
2590:   TSRHSJacobian  rhsjac;
2591:   PetscBool      isnone;

2595:   if (ts->setupcalled) return(0);

2597:   if (!((PetscObject)ts)->type_name) {
2598:     TSGetIFunction(ts,NULL,&ifun,NULL);
2599:     TSSetType(ts,ifun ? TSBEULER : TSEULER);
2600:   }

2602:   if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");

2604:   if (ts->rhsjacobian.reuse) {
2605:     Mat Amat,Pmat;
2606:     SNES snes;
2607:     TSGetSNES(ts,&snes);
2608:     SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2609:     /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2610:      * have displaced the RHS matrix */
2611:     if (Amat == ts->Arhs) {
2612:       /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2613:       MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2614:       SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2615:       MatDestroy(&Amat);
2616:     }
2617:     if (Pmat == ts->Brhs) {
2618:       MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2619:       SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2620:       MatDestroy(&Pmat);
2621:     }
2622:   }

2624:   TSGetAdapt(ts,&ts->adapt);
2625:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2627:   if (ts->ops->setup) {
2628:     (*ts->ops->setup)(ts);
2629:   }

2631:   /* Attempt to check/preset a default value for the exact final time option */
2632:   PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2633:   if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED)
2634:     ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;

2636:   /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2637:      to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2638:    */
2639:   TSGetDM(ts,&dm);
2640:   DMSNESGetFunction(dm,&func,NULL);
2641:   if (!func) {
2642:     DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2643:   }
2644:   /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2645:      Otherwise, the SNES will use coloring internally to form the Jacobian.
2646:    */
2647:   DMSNESGetJacobian(dm,&jac,NULL);
2648:   DMTSGetIJacobian(dm,&ijac,NULL);
2649:   DMTSGetI2Jacobian(dm,&i2jac,NULL);
2650:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2651:   if (!jac && (ijac || i2jac || rhsjac)) {
2652:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2653:   }

2655:   /* if time integration scheme has a starting method, call it */
2656:   if (ts->ops->startingmethod) {
2657:     (*ts->ops->startingmethod)(ts);
2658:   }

2660:   ts->setupcalled = PETSC_TRUE;
2661:   return(0);
2662: }

2664: /*@
2665:    TSAdjointSetUp - Sets up the internal data structures for the later use
2666:    of an adjoint solver

2668:    Collective on TS

2670:    Input Parameter:
2671: .  ts - the TS context obtained from TSCreate()

2673:    Level: advanced

2675: .keywords: TS, timestep, setup

2677: .seealso: TSCreate(), TSAdjointStep(), TSSetCostGradients()
2678: @*/
2679: PetscErrorCode  TSAdjointSetUp(TS ts)
2680: {

2685:   if (ts->adjointsetupcalled) return(0);
2686:   if (!ts->vecs_sensi) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetCostGradients() first");
2687:   if (ts->vecs_sensip && !ts->Jacp) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"Must call TSAdjointSetRHSJacobian() first");

2689:   if (ts->vec_costintegral) { /* if there is integral in the cost function */
2690:     VecDuplicateVecs(ts->vecs_sensi[0],ts->numcost,&ts->vecs_drdy);
2691:     if (ts->vecs_sensip){
2692:       VecDuplicateVecs(ts->vecs_sensip[0],ts->numcost,&ts->vecs_drdp);
2693:     }
2694:   }

2696:   if (ts->ops->adjointsetup) {
2697:     (*ts->ops->adjointsetup)(ts);
2698:   }
2699:   ts->adjointsetupcalled = PETSC_TRUE;
2700:   return(0);
2701: }

2703: /*@
2704:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

2706:    Collective on TS

2708:    Input Parameter:
2709: .  ts - the TS context obtained from TSCreate()

2711:    Level: beginner

2713: .keywords: TS, timestep, reset

2715: .seealso: TSCreate(), TSSetup(), TSDestroy()
2716: @*/
2717: PetscErrorCode  TSReset(TS ts)
2718: {


2724:   if (ts->ops->reset) {
2725:     (*ts->ops->reset)(ts);
2726:   }
2727:   if (ts->snes) {SNESReset(ts->snes);}
2728:   if (ts->adapt) {TSAdaptReset(ts->adapt);}

2730:   MatDestroy(&ts->Arhs);
2731:   MatDestroy(&ts->Brhs);
2732:   VecDestroy(&ts->Frhs);
2733:   VecDestroy(&ts->vec_sol);
2734:   VecDestroy(&ts->vec_dot);
2735:   VecDestroy(&ts->vatol);
2736:   VecDestroy(&ts->vrtol);
2737:   VecDestroyVecs(ts->nwork,&ts->work);

2739:   VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2740:   VecDestroyVecs(ts->numcost,&ts->vecs_drdp);

2742:   MatDestroy(&ts->Jacp);
2743:   VecDestroy(&ts->vec_costintegral);
2744:   VecDestroy(&ts->vec_costintegrand);

2746:   PetscFree(ts->vecs_fwdsensipacked);

2748:   ts->setupcalled = PETSC_FALSE;
2749:   return(0);
2750: }

2752: /*@
2753:    TSDestroy - Destroys the timestepper context that was created
2754:    with TSCreate().

2756:    Collective on TS

2758:    Input Parameter:
2759: .  ts - the TS context obtained from TSCreate()

2761:    Level: beginner

2763: .keywords: TS, timestepper, destroy

2765: .seealso: TSCreate(), TSSetUp(), TSSolve()
2766: @*/
2767: PetscErrorCode  TSDestroy(TS *ts)
2768: {

2772:   if (!*ts) return(0);
2774:   if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}

2776:   TSReset((*ts));

2778:   /* if memory was published with SAWs then destroy it */
2779:   PetscObjectSAWsViewOff((PetscObject)*ts);
2780:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

2782:   TSTrajectoryDestroy(&(*ts)->trajectory);

2784:   TSAdaptDestroy(&(*ts)->adapt);
2785:   TSEventDestroy(&(*ts)->event);

2787:   SNESDestroy(&(*ts)->snes);
2788:   DMDestroy(&(*ts)->dm);
2789:   TSMonitorCancel((*ts));
2790:   TSAdjointMonitorCancel((*ts));

2792:   PetscHeaderDestroy(ts);
2793:   return(0);
2794: }

2796: /*@
2797:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
2798:    a TS (timestepper) context. Valid only for nonlinear problems.

2800:    Not Collective, but SNES is parallel if TS is parallel

2802:    Input Parameter:
2803: .  ts - the TS context obtained from TSCreate()

2805:    Output Parameter:
2806: .  snes - the nonlinear solver context

2808:    Notes:
2809:    The user can then directly manipulate the SNES context to set various
2810:    options, etc.  Likewise, the user can then extract and manipulate the
2811:    KSP, KSP, and PC contexts as well.

2813:    TSGetSNES() does not work for integrators that do not use SNES; in
2814:    this case TSGetSNES() returns NULL in snes.

2816:    Level: beginner

2818: .keywords: timestep, get, SNES
2819: @*/
2820: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
2821: {

2827:   if (!ts->snes) {
2828:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2829:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2830:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2831:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2832:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2833:     if (ts->problem_type == TS_LINEAR) {
2834:       SNESSetType(ts->snes,SNESKSPONLY);
2835:     }
2836:   }
2837:   *snes = ts->snes;
2838:   return(0);
2839: }

2841: /*@
2842:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

2844:    Collective

2846:    Input Parameter:
2847: +  ts - the TS context obtained from TSCreate()
2848: -  snes - the nonlinear solver context

2850:    Notes:
2851:    Most users should have the TS created by calling TSGetSNES()

2853:    Level: developer

2855: .keywords: timestep, set, SNES
2856: @*/
2857: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2858: {
2860:   PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);

2865:   PetscObjectReference((PetscObject)snes);
2866:   SNESDestroy(&ts->snes);

2868:   ts->snes = snes;

2870:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2871:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2872:   if (func == SNESTSFormJacobian) {
2873:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2874:   }
2875:   return(0);
2876: }

2878: /*@
2879:    TSGetKSP - Returns the KSP (linear solver) associated with
2880:    a TS (timestepper) context.

2882:    Not Collective, but KSP is parallel if TS is parallel

2884:    Input Parameter:
2885: .  ts - the TS context obtained from TSCreate()

2887:    Output Parameter:
2888: .  ksp - the nonlinear solver context

2890:    Notes:
2891:    The user can then directly manipulate the KSP context to set various
2892:    options, etc.  Likewise, the user can then extract and manipulate the
2893:    KSP and PC contexts as well.

2895:    TSGetKSP() does not work for integrators that do not use KSP;
2896:    in this case TSGetKSP() returns NULL in ksp.

2898:    Level: beginner

2900: .keywords: timestep, get, KSP
2901: @*/
2902: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
2903: {
2905:   SNES           snes;

2910:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2911:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2912:   TSGetSNES(ts,&snes);
2913:   SNESGetKSP(snes,ksp);
2914:   return(0);
2915: }

2917: /* ----------- Routines to set solver parameters ---------- */

2919: /*@
2920:    TSSetMaxSteps - Sets the maximum number of steps to use.

2922:    Logically Collective on TS

2924:    Input Parameters:
2925: +  ts - the TS context obtained from TSCreate()
2926: -  maxsteps - maximum number of steps to use

2928:    Options Database Keys:
2929: .  -ts_max_steps <maxsteps> - Sets maxsteps

2931:    Notes:
2932:    The default maximum number of steps is 5000

2934:    Level: intermediate

2936: .keywords: TS, timestep, set, maximum, steps

2938: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2939: @*/
2940: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2941: {
2945:   if (maxsteps < 0 ) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2946:   ts->max_steps = maxsteps;
2947:   return(0);
2948: }

2950: /*@
2951:    TSGetMaxSteps - Gets the maximum number of steps to use.

2953:    Not Collective

2955:    Input Parameters:
2956: .  ts - the TS context obtained from TSCreate()

2958:    Output Parameter:
2959: .  maxsteps - maximum number of steps to use

2961:    Level: advanced

2963: .keywords: TS, timestep, get, maximum, steps

2965: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
2966: @*/
2967: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
2968: {
2972:   *maxsteps = ts->max_steps;
2973:   return(0);
2974: }

2976: /*@
2977:    TSSetMaxTime - Sets the maximum (or final) time for timestepping.

2979:    Logically Collective on TS

2981:    Input Parameters:
2982: +  ts - the TS context obtained from TSCreate()
2983: -  maxtime - final time to step to

2985:    Options Database Keys:
2986: .  -ts_max_time <maxtime> - Sets maxtime

2988:    Notes:
2989:    The default maximum time is 5.0

2991:    Level: intermediate

2993: .keywords: TS, timestep, set, maximum, time

2995: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
2996: @*/
2997: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
2998: {
3002:   ts->max_time = maxtime;
3003:   return(0);
3004: }

3006: /*@
3007:    TSGetMaxTime - Gets the maximum (or final) time for timestepping.

3009:    Not Collective

3011:    Input Parameters:
3012: .  ts - the TS context obtained from TSCreate()

3014:    Output Parameter:
3015: .  maxtime - final time to step to

3017:    Level: advanced

3019: .keywords: TS, timestep, get, maximum, time

3021: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3022: @*/
3023: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3024: {
3028:   *maxtime = ts->max_time;
3029:   return(0);
3030: }

3032: /*@
3033:    TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().

3035:    Level: deprecated

3037: @*/
3038: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3039: {
3043:   TSSetTime(ts,initial_time);
3044:   TSSetTimeStep(ts,time_step);
3045:   return(0);
3046: }

3048: /*@
3049:    TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().

3051:    Level: deprecated

3053: @*/
3054: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3055: {
3058:   if (maxsteps) {
3060:     *maxsteps = ts->max_steps;
3061:   }
3062:   if (maxtime) {
3064:     *maxtime = ts->max_time;
3065:   }
3066:   return(0);
3067: }

3069: /*@
3070:    TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().

3072:    Level: deprecated

3074: @*/
3075: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3076: {
3081:   if (maxsteps >= 0) ts->max_steps = maxsteps;
3082:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3083:   return(0);
3084: }

3086: /*@
3087:    TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().

3089:    Level: deprecated

3091: @*/
3092: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3094: /*@
3095:    TSGetTotalSteps - Deprecated, use TSGetStepNumber().

3097:    Level: deprecated

3099: @*/
3100: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3102: /*@
3103:    TSSetSolution - Sets the initial solution vector
3104:    for use by the TS routines.

3106:    Logically Collective on TS and Vec

3108:    Input Parameters:
3109: +  ts - the TS context obtained from TSCreate()
3110: -  u - the solution vector

3112:    Level: beginner

3114: .keywords: TS, timestep, set, solution, initial values
3115: @*/
3116: PetscErrorCode  TSSetSolution(TS ts,Vec u)
3117: {
3119:   DM             dm;

3124:   PetscObjectReference((PetscObject)u);
3125:   VecDestroy(&ts->vec_sol);
3126:   ts->vec_sol = u;

3128:   TSGetDM(ts,&dm);
3129:   DMShellSetGlobalVector(dm,u);
3130:   return(0);
3131: }

3133: /*@
3134:    TSAdjointSetSteps - Sets the number of steps the adjoint solver should take backward in time

3136:    Logically Collective on TS

3138:    Input Parameters:
3139: +  ts - the TS context obtained from TSCreate()
3140: .  steps - number of steps to use

3142:    Level: intermediate

3144:    Notes: Normally one does not call this and TSAdjointSolve() integrates back to the original timestep. One can call this
3145:           so as to integrate back to less than the original timestep

3147: .keywords: TS, timestep, set, maximum, iterations

3149: .seealso: TSSetExactFinalTime()
3150: @*/
3151: PetscErrorCode  TSAdjointSetSteps(TS ts,PetscInt steps)
3152: {
3156:   if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back a negative number of steps");
3157:   if (steps > ts->steps) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back more than the total number of forward steps");
3158:   ts->adjoint_max_steps = steps;
3159:   return(0);
3160: }

3162: /*@
3163:    TSSetCostGradients - Sets the initial value of the gradients of the cost function w.r.t. initial values and w.r.t. the problem parameters
3164:       for use by the TSAdjoint routines.

3166:    Logically Collective on TS and Vec

3168:    Input Parameters:
3169: +  ts - the TS context obtained from TSCreate()
3170: .  lambda - gradients with respect to the initial condition variables, the dimension and parallel layout of these vectors is the same as the ODE solution vector
3171: -  mu - gradients with respect to the parameters, the number of entries in these vectors is the same as the number of parameters

3173:    Level: beginner

3175:    Notes: the entries in these vectors must be correctly initialized with the values lamda_i = df/dy|finaltime  mu_i = df/dp|finaltime

3177: .keywords: TS, timestep, set, sensitivity, initial values
3178: @*/
3179: PetscErrorCode  TSSetCostGradients(TS ts,PetscInt numcost,Vec *lambda,Vec *mu)
3180: {
3184:   ts->vecs_sensi  = lambda;
3185:   ts->vecs_sensip = mu;
3186:   if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostIntegrand");
3187:   ts->numcost  = numcost;
3188:   return(0);
3189: }

3191: /*@C
3192:   TSAdjointSetRHSJacobian - Sets the function that computes the Jacobian of G w.r.t. the parameters p where y_t = G(y,p,t), as well as the location to store the matrix.

3194:   Logically Collective on TS

3196:   Input Parameters:
3197: + ts   - The TS context obtained from TSCreate()
3198: - func - The function

3200:   Calling sequence of func:
3201: $ func (TS ts,PetscReal t,Vec y,Mat A,void *ctx);
3202: +   t - current timestep
3203: .   y - input vector (current ODE solution)
3204: .   A - output matrix
3205: -   ctx - [optional] user-defined function context

3207:   Level: intermediate

3209:   Notes: Amat has the same number of rows and the same row parallel layout as u, Amat has the same number of columns and parallel layout as p

3211: .keywords: TS, sensitivity
3212: .seealso:
3213: @*/
3214: PetscErrorCode  TSAdjointSetRHSJacobian(TS ts,Mat Amat,PetscErrorCode (*func)(TS,PetscReal,Vec,Mat,void*),void *ctx)
3215: {


3222:   ts->rhsjacobianp    = func;
3223:   ts->rhsjacobianpctx = ctx;
3224:   if(Amat) {
3225:     PetscObjectReference((PetscObject)Amat);
3226:     MatDestroy(&ts->Jacp);
3227:     ts->Jacp = Amat;
3228:   }
3229:   return(0);
3230: }

3232: /*@C
3233:   TSAdjointComputeRHSJacobian - Runs the user-defined Jacobian function.

3235:   Collective on TS

3237:   Input Parameters:
3238: . ts   - The TS context obtained from TSCreate()

3240:   Level: developer

3242: .keywords: TS, sensitivity
3243: .seealso: TSAdjointSetRHSJacobian()
3244: @*/
3245: PetscErrorCode  TSAdjointComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat)
3246: {


3254:   PetscStackPush("TS user JacobianP function for sensitivity analysis");
3255:   (*ts->rhsjacobianp)(ts,t,X,Amat,ts->rhsjacobianpctx);
3256:   PetscStackPop;
3257:   return(0);
3258: }

3260: /*@C
3261:     TSSetCostIntegrand - Sets the routine for evaluating the integral term in one or more cost functions

3263:     Logically Collective on TS

3265:     Input Parameters:
3266: +   ts - the TS context obtained from TSCreate()
3267: .   numcost - number of gradients to be computed, this is the number of cost functions
3268: .   costintegral - vector that stores the integral values
3269: .   rf - routine for evaluating the integrand function
3270: .   drdyf - function that computes the gradients of the r's with respect to y,NULL if not a function y
3271: .   drdpf - function that computes the gradients of the r's with respect to p, NULL if not a function of p
3272: .   fwd - flag indicating whether to evaluate cost integral in the forward run or the adjoint run
3273: -   ctx - [optional] user-defined context for private data for the function evaluation routine (may be NULL)

3275:     Calling sequence of rf:
3276: $   PetscErrorCode rf(TS ts,PetscReal t,Vec y,Vec f,void *ctx);

3278:     Calling sequence of drdyf:
3279: $   PetscErroCode drdyf(TS ts,PetscReal t,Vec y,Vec *drdy,void *ctx);

3281:     Calling sequence of drdpf:
3282: $   PetscErroCode drdpf(TS ts,PetscReal t,Vec y,Vec *drdp,void *ctx);

3284:     Level: intermediate

3286:     Notes: For optimization there is usually a single cost function (numcost = 1). For sensitivities there may be multiple cost functions

3288: .keywords: TS, sensitivity analysis, timestep, set, quadrature, function

3290: .seealso: TSAdjointSetRHSJacobian(),TSGetCostGradients(), TSSetCostGradients()
3291: @*/
3292: PetscErrorCode  TSSetCostIntegrand(TS ts,PetscInt numcost,Vec costintegral,PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),
3293:                                                           PetscErrorCode (*drdyf)(TS,PetscReal,Vec,Vec*,void*),
3294:                                                           PetscErrorCode (*drdpf)(TS,PetscReal,Vec,Vec*,void*),
3295:                                                           PetscBool fwd,void *ctx)
3296: {

3302:   if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostGradients() or TSForwardSetIntegralGradients()");
3303:   if (!ts->numcost) ts->numcost=numcost;

3305:   if (costintegral) {
3306:     PetscObjectReference((PetscObject)costintegral);
3307:     VecDestroy(&ts->vec_costintegral);
3308:     ts->vec_costintegral = costintegral;
3309:   } else {
3310:     if (!ts->vec_costintegral) { /* Create a seq vec if user does not provide one */
3311:       VecCreateSeq(PETSC_COMM_SELF,numcost,&ts->vec_costintegral);
3312:     } else {
3313:       VecSet(ts->vec_costintegral,0.0);
3314:     }
3315:   }
3316:   if (!ts->vec_costintegrand) {
3317:     VecDuplicate(ts->vec_costintegral,&ts->vec_costintegrand);
3318:   } else {
3319:     VecSet(ts->vec_costintegrand,0.0);
3320:   }
3321:   ts->costintegralfwd  = fwd; /* Evaluate the cost integral in forward run if fwd is true */
3322:   ts->costintegrand    = rf;
3323:   ts->costintegrandctx = ctx;
3324:   ts->drdyfunction     = drdyf;
3325:   ts->drdpfunction     = drdpf;
3326:   return(0);
3327: }

3329: /*@
3330:    TSGetCostIntegral - Returns the values of the integral term in the cost functions.
3331:    It is valid to call the routine after a backward run.

3333:    Not Collective

3335:    Input Parameter:
3336: .  ts - the TS context obtained from TSCreate()

3338:    Output Parameter:
3339: .  v - the vector containing the integrals for each cost function

3341:    Level: intermediate

3343: .seealso: TSSetCostIntegrand()

3345: .keywords: TS, sensitivity analysis
3346: @*/
3347: PetscErrorCode  TSGetCostIntegral(TS ts,Vec *v)
3348: {
3352:   *v = ts->vec_costintegral;
3353:   return(0);
3354: }

3356: /*@
3357:    TSComputeCostIntegrand - Evaluates the integral function in the cost functions.

3359:    Input Parameters:
3360: +  ts - the TS context
3361: .  t - current time
3362: -  y - state vector, i.e. current solution

3364:    Output Parameter:
3365: .  q - vector of size numcost to hold the outputs

3367:    Note:
3368:    Most users should not need to explicitly call this routine, as it
3369:    is used internally within the sensitivity analysis context.

3371:    Level: developer

3373: .keywords: TS, compute

3375: .seealso: TSSetCostIntegrand()
3376: @*/
3377: PetscErrorCode TSComputeCostIntegrand(TS ts,PetscReal t,Vec y,Vec q)
3378: {


3386:   PetscLogEventBegin(TS_FunctionEval,ts,y,q,0);
3387:   if (ts->costintegrand) {
3388:     PetscStackPush("TS user integrand in the cost function");
3389:     (*ts->costintegrand)(ts,t,y,q,ts->costintegrandctx);
3390:     PetscStackPop;
3391:   } else {
3392:     VecZeroEntries(q);
3393:   }

3395:   PetscLogEventEnd(TS_FunctionEval,ts,y,q,0);
3396:   return(0);
3397: }

3399: /*@
3400:   TSAdjointComputeDRDYFunction - Runs the user-defined DRDY function.

3402:   Collective on TS

3404:   Input Parameters:
3405: . ts   - The TS context obtained from TSCreate()

3407:   Notes:
3408:   TSAdjointComputeDRDYFunction() is typically used for sensitivity implementation,
3409:   so most users would not generally call this routine themselves.

3411:   Level: developer

3413: .keywords: TS, sensitivity
3414: .seealso: TSAdjointComputeDRDYFunction()
3415: @*/
3416: PetscErrorCode  TSAdjointComputeDRDYFunction(TS ts,PetscReal t,Vec y,Vec *drdy)
3417: {


3424:   PetscStackPush("TS user DRDY function for sensitivity analysis");
3425:   (*ts->drdyfunction)(ts,t,y,drdy,ts->costintegrandctx);
3426:   PetscStackPop;
3427:   return(0);
3428: }

3430: /*@
3431:   TSAdjointComputeDRDPFunction - Runs the user-defined DRDP function.

3433:   Collective on TS

3435:   Input Parameters:
3436: . ts   - The TS context obtained from TSCreate()

3438:   Notes:
3439:   TSDRDPFunction() is typically used for sensitivity implementation,
3440:   so most users would not generally call this routine themselves.

3442:   Level: developer

3444: .keywords: TS, sensitivity
3445: .seealso: TSAdjointSetDRDPFunction()
3446: @*/
3447: PetscErrorCode  TSAdjointComputeDRDPFunction(TS ts,PetscReal t,Vec y,Vec *drdp)
3448: {


3455:   PetscStackPush("TS user DRDP function for sensitivity analysis");
3456:   (*ts->drdpfunction)(ts,t,y,drdp,ts->costintegrandctx);
3457:   PetscStackPop;
3458:   return(0);
3459: }

3461: /*@C
3462:   TSSetPreStep - Sets the general-purpose function
3463:   called once at the beginning of each time step.

3465:   Logically Collective on TS

3467:   Input Parameters:
3468: + ts   - The TS context obtained from TSCreate()
3469: - func - The function

3471:   Calling sequence of func:
3472: . func (TS ts);

3474:   Level: intermediate

3476: .keywords: TS, timestep
3477: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3478: @*/
3479: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3480: {
3483:   ts->prestep = func;
3484:   return(0);
3485: }

3487: /*@
3488:   TSPreStep - Runs the user-defined pre-step function.

3490:   Collective on TS

3492:   Input Parameters:
3493: . ts   - The TS context obtained from TSCreate()

3495:   Notes:
3496:   TSPreStep() is typically used within time stepping implementations,
3497:   so most users would not generally call this routine themselves.

3499:   Level: developer

3501: .keywords: TS, timestep
3502: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3503: @*/
3504: PetscErrorCode  TSPreStep(TS ts)
3505: {

3510:   if (ts->prestep) {
3511:     Vec              U;
3512:     PetscObjectState sprev,spost;

3514:     TSGetSolution(ts,&U);
3515:     PetscObjectStateGet((PetscObject)U,&sprev);
3516:     PetscStackCallStandard((*ts->prestep),(ts));
3517:     PetscObjectStateGet((PetscObject)U,&spost);
3518:     if (sprev != spost) {TSRestartStep(ts);}
3519:   }
3520:   return(0);
3521: }

3523: /*@C
3524:   TSSetPreStage - Sets the general-purpose function
3525:   called once at the beginning of each stage.

3527:   Logically Collective on TS

3529:   Input Parameters:
3530: + ts   - The TS context obtained from TSCreate()
3531: - func - The function

3533:   Calling sequence of func:
3534: . PetscErrorCode func(TS ts, PetscReal stagetime);

3536:   Level: intermediate

3538:   Note:
3539:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3540:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3541:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3543: .keywords: TS, timestep
3544: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3545: @*/
3546: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3547: {
3550:   ts->prestage = func;
3551:   return(0);
3552: }

3554: /*@C
3555:   TSSetPostStage - Sets the general-purpose function
3556:   called once at the end of each stage.

3558:   Logically Collective on TS

3560:   Input Parameters:
3561: + ts   - The TS context obtained from TSCreate()
3562: - func - The function

3564:   Calling sequence of func:
3565: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);

3567:   Level: intermediate

3569:   Note:
3570:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3571:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3572:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3574: .keywords: TS, timestep
3575: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3576: @*/
3577: PetscErrorCode  TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3578: {
3581:   ts->poststage = func;
3582:   return(0);
3583: }

3585: /*@C
3586:   TSSetPostEvaluate - Sets the general-purpose function
3587:   called once at the end of each step evaluation.

3589:   Logically Collective on TS

3591:   Input Parameters:
3592: + ts   - The TS context obtained from TSCreate()
3593: - func - The function

3595:   Calling sequence of func:
3596: . PetscErrorCode func(TS ts);

3598:   Level: intermediate

3600:   Note:
3601:   Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3602:   thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3603:   may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3604:   solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3605:   with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()

3607: .keywords: TS, timestep
3608: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3609: @*/
3610: PetscErrorCode  TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3611: {
3614:   ts->postevaluate = func;
3615:   return(0);
3616: }

3618: /*@
3619:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

3621:   Collective on TS

3623:   Input Parameters:
3624: . ts          - The TS context obtained from TSCreate()
3625:   stagetime   - The absolute time of the current stage

3627:   Notes:
3628:   TSPreStage() is typically used within time stepping implementations,
3629:   most users would not generally call this routine themselves.

3631:   Level: developer

3633: .keywords: TS, timestep
3634: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3635: @*/
3636: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
3637: {

3642:   if (ts->prestage) {
3643:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3644:   }
3645:   return(0);
3646: }

3648: /*@
3649:   TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()

3651:   Collective on TS

3653:   Input Parameters:
3654: . ts          - The TS context obtained from TSCreate()
3655:   stagetime   - The absolute time of the current stage
3656:   stageindex  - Stage number
3657:   Y           - Array of vectors (of size = total number
3658:                 of stages) with the stage solutions

3660:   Notes:
3661:   TSPostStage() is typically used within time stepping implementations,
3662:   most users would not generally call this routine themselves.

3664:   Level: developer

3666: .keywords: TS, timestep
3667: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3668: @*/
3669: PetscErrorCode  TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3670: {

3675:   if (ts->poststage) {
3676:     PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3677:   }
3678:   return(0);
3679: }

3681: /*@
3682:   TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()

3684:   Collective on TS

3686:   Input Parameters:
3687: . ts          - The TS context obtained from TSCreate()

3689:   Notes:
3690:   TSPostEvaluate() is typically used within time stepping implementations,
3691:   most users would not generally call this routine themselves.

3693:   Level: developer

3695: .keywords: TS, timestep
3696: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3697: @*/
3698: PetscErrorCode  TSPostEvaluate(TS ts)
3699: {

3704:   if (ts->postevaluate) {
3705:     Vec              U;
3706:     PetscObjectState sprev,spost;

3708:     TSGetSolution(ts,&U);
3709:     PetscObjectStateGet((PetscObject)U,&sprev);
3710:     PetscStackCallStandard((*ts->postevaluate),(ts));
3711:     PetscObjectStateGet((PetscObject)U,&spost);
3712:     if (sprev != spost) {TSRestartStep(ts);}
3713:   }
3714:   return(0);
3715: }

3717: /*@C
3718:   TSSetPostStep - Sets the general-purpose function
3719:   called once at the end of each time step.

3721:   Logically Collective on TS

3723:   Input Parameters:
3724: + ts   - The TS context obtained from TSCreate()
3725: - func - The function

3727:   Calling sequence of func:
3728: $ func (TS ts);

3730:   Notes:
3731:   The function set by TSSetPostStep() is called after each successful step. The solution vector X
3732:   obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3733:   locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.

3735:   Level: intermediate

3737: .keywords: TS, timestep
3738: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3739: @*/
3740: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3741: {
3744:   ts->poststep = func;
3745:   return(0);
3746: }

3748: /*@
3749:   TSPostStep - Runs the user-defined post-step function.

3751:   Collective on TS

3753:   Input Parameters:
3754: . ts   - The TS context obtained from TSCreate()

3756:   Notes:
3757:   TSPostStep() is typically used within time stepping implementations,
3758:   so most users would not generally call this routine themselves.

3760:   Level: developer

3762: .keywords: TS, timestep
3763: @*/
3764: PetscErrorCode  TSPostStep(TS ts)
3765: {

3770:   if (ts->poststep) {
3771:     Vec              U;
3772:     PetscObjectState sprev,spost;

3774:     TSGetSolution(ts,&U);
3775:     PetscObjectStateGet((PetscObject)U,&sprev);
3776:     PetscStackCallStandard((*ts->poststep),(ts));
3777:     PetscObjectStateGet((PetscObject)U,&spost);
3778:     if (sprev != spost) {TSRestartStep(ts);}
3779:   }
3780:   return(0);
3781: }

3783: /* ------------ Routines to set performance monitoring options ----------- */

3785: /*@C
3786:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3787:    timestep to display the iteration's  progress.

3789:    Logically Collective on TS

3791:    Input Parameters:
3792: +  ts - the TS context obtained from TSCreate()
3793: .  monitor - monitoring routine
3794: .  mctx - [optional] user-defined context for private data for the
3795:              monitor routine (use NULL if no context is desired)
3796: -  monitordestroy - [optional] routine that frees monitor context
3797:           (may be NULL)

3799:    Calling sequence of monitor:
3800: $    PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

3802: +    ts - the TS context
3803: .    steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3804: .    time - current time
3805: .    u - current iterate
3806: -    mctx - [optional] monitoring context

3808:    Notes:
3809:    This routine adds an additional monitor to the list of monitors that
3810:    already has been loaded.

3812:    Fortran notes: Only a single monitor function can be set for each TS object

3814:    Level: intermediate

3816: .keywords: TS, timestep, set, monitor

3818: .seealso: TSMonitorDefault(), TSMonitorCancel()
3819: @*/
3820: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3821: {
3823:   PetscInt       i;
3824:   PetscBool      identical;

3828:   for (i=0; i<ts->numbermonitors;i++) {
3829:     PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3830:     if (identical) return(0);
3831:   }
3832:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3833:   ts->monitor[ts->numbermonitors]          = monitor;
3834:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
3835:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3836:   return(0);
3837: }

3839: /*@C
3840:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

3842:    Logically Collective on TS

3844:    Input Parameters:
3845: .  ts - the TS context obtained from TSCreate()

3847:    Notes:
3848:    There is no way to remove a single, specific monitor.

3850:    Level: intermediate

3852: .keywords: TS, timestep, set, monitor

3854: .seealso: TSMonitorDefault(), TSMonitorSet()
3855: @*/
3856: PetscErrorCode  TSMonitorCancel(TS ts)
3857: {
3859:   PetscInt       i;

3863:   for (i=0; i<ts->numbermonitors; i++) {
3864:     if (ts->monitordestroy[i]) {
3865:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3866:     }
3867:   }
3868:   ts->numbermonitors = 0;
3869:   return(0);
3870: }

3872: /*@C
3873:    TSMonitorDefault - The Default monitor, prints the timestep and time for each step

3875:    Level: intermediate

3877: .keywords: TS, set, monitor

3879: .seealso:  TSMonitorSet()
3880: @*/
3881: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3882: {
3884:   PetscViewer    viewer =  vf->viewer;
3885:   PetscBool      iascii,ibinary;

3889:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3890:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3891:   PetscViewerPushFormat(viewer,vf->format);
3892:   if (iascii) {
3893:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3894:     if (step == -1){ /* this indicates it is an interpolated solution */
3895:       PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3896:     } else {
3897:       PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3898:     }
3899:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3900:   } else if (ibinary) {
3901:     PetscMPIInt rank;
3902:     MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3903:     if (!rank) {
3904:       PetscBool skipHeader;
3905:       PetscInt  classid = REAL_FILE_CLASSID;

3907:       PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3908:       if (!skipHeader) {
3909:          PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
3910:        }
3911:       PetscRealView(1,&ptime,viewer);
3912:     } else {
3913:       PetscRealView(0,&ptime,viewer);
3914:     }
3915:   }
3916:   PetscViewerPopFormat(viewer);
3917:   return(0);
3918: }

3920: /*@C
3921:    TSAdjointMonitorSet - Sets an ADDITIONAL function that is to be used at every
3922:    timestep to display the iteration's  progress.

3924:    Logically Collective on TS

3926:    Input Parameters:
3927: +  ts - the TS context obtained from TSCreate()
3928: .  adjointmonitor - monitoring routine
3929: .  adjointmctx - [optional] user-defined context for private data for the
3930:              monitor routine (use NULL if no context is desired)
3931: -  adjointmonitordestroy - [optional] routine that frees monitor context
3932:           (may be NULL)

3934:    Calling sequence of monitor:
3935: $    int adjointmonitor(TS ts,PetscInt steps,PetscReal time,Vec u,PetscInt numcost,Vec *lambda, Vec *mu,void *adjointmctx)

3937: +    ts - the TS context
3938: .    steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
3939:                                been interpolated to)
3940: .    time - current time
3941: .    u - current iterate
3942: .    numcost - number of cost functionos
3943: .    lambda - sensitivities to initial conditions
3944: .    mu - sensitivities to parameters
3945: -    adjointmctx - [optional] adjoint monitoring context

3947:    Notes:
3948:    This routine adds an additional monitor to the list of monitors that
3949:    already has been loaded.

3951:    Fortran notes: Only a single monitor function can be set for each TS object

3953:    Level: intermediate

3955: .keywords: TS, timestep, set, adjoint, monitor

3957: .seealso: TSAdjointMonitorCancel()
3958: @*/
3959: PetscErrorCode  TSAdjointMonitorSet(TS ts,PetscErrorCode (*adjointmonitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*),void *adjointmctx,PetscErrorCode (*adjointmdestroy)(void**))
3960: {
3962:   PetscInt       i;
3963:   PetscBool      identical;

3967:   for (i=0; i<ts->numbermonitors;i++) {
3968:     PetscMonitorCompare((PetscErrorCode (*)(void))adjointmonitor,adjointmctx,adjointmdestroy,(PetscErrorCode (*)(void))ts->adjointmonitor[i],ts->adjointmonitorcontext[i],ts->adjointmonitordestroy[i],&identical);
3969:     if (identical) return(0);
3970:   }
3971:   if (ts->numberadjointmonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many adjoint monitors set");
3972:   ts->adjointmonitor[ts->numberadjointmonitors]          = adjointmonitor;
3973:   ts->adjointmonitordestroy[ts->numberadjointmonitors]   = adjointmdestroy;
3974:   ts->adjointmonitorcontext[ts->numberadjointmonitors++] = (void*)adjointmctx;
3975:   return(0);
3976: }

3978: /*@C
3979:    TSAdjointMonitorCancel - Clears all the adjoint monitors that have been set on a time-step object.

3981:    Logically Collective on TS

3983:    Input Parameters:
3984: .  ts - the TS context obtained from TSCreate()

3986:    Notes:
3987:    There is no way to remove a single, specific monitor.

3989:    Level: intermediate

3991: .keywords: TS, timestep, set, adjoint, monitor

3993: .seealso: TSAdjointMonitorSet()
3994: @*/
3995: PetscErrorCode  TSAdjointMonitorCancel(TS ts)
3996: {
3998:   PetscInt       i;

4002:   for (i=0; i<ts->numberadjointmonitors; i++) {
4003:     if (ts->adjointmonitordestroy[i]) {
4004:       (*ts->adjointmonitordestroy[i])(&ts->adjointmonitorcontext[i]);
4005:     }
4006:   }
4007:   ts->numberadjointmonitors = 0;
4008:   return(0);
4009: }

4011: /*@C
4012:    TSAdjointMonitorDefault - the default monitor of adjoint computations

4014:    Level: intermediate

4016: .keywords: TS, set, monitor

4018: .seealso: TSAdjointMonitorSet()
4019: @*/
4020: PetscErrorCode TSAdjointMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscInt numcost,Vec *lambda,Vec *mu,PetscViewerAndFormat *vf)
4021: {
4023:   PetscViewer    viewer = vf->viewer;

4027:   PetscViewerPushFormat(viewer,vf->format);
4028:   PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
4029:   PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
4030:   PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
4031:   PetscViewerPopFormat(viewer);
4032:   return(0);
4033: }

4035: /*@
4036:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

4038:    Collective on TS

4040:    Input Argument:
4041: +  ts - time stepping context
4042: -  t - time to interpolate to

4044:    Output Argument:
4045: .  U - state at given time

4047:    Level: intermediate

4049:    Developer Notes:
4050:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

4052: .keywords: TS, set

4054: .seealso: TSSetExactFinalTime(), TSSolve()
4055: @*/
4056: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
4057: {

4063:   if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
4064:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
4065:   (*ts->ops->interpolate)(ts,t,U);
4066:   return(0);
4067: }

4069: /*@
4070:    TSStep - Steps one time step

4072:    Collective on TS

4074:    Input Parameter:
4075: .  ts - the TS context obtained from TSCreate()

4077:    Level: developer

4079:    Notes:
4080:    The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.

4082:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
4083:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

4085:    This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
4086:    time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

4088: .keywords: TS, timestep, solve

4090: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
4091: @*/
4092: PetscErrorCode  TSStep(TS ts)
4093: {
4094:   PetscErrorCode   ierr;
4095:   static PetscBool cite = PETSC_FALSE;
4096:   PetscReal        ptime;

4100:   PetscCitationsRegister("@techreport{tspaper,\n"
4101:                                 "  title       = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
4102:                                 "  author      = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
4103:                                 "  type        = {Preprint},\n"
4104:                                 "  number      = {ANL/MCS-P5061-0114},\n"
4105:                                 "  institution = {Argonne National Laboratory},\n"
4106:                                 "  year        = {2014}\n}\n",&cite);

4108:   TSSetUp(ts);
4109:   TSTrajectorySetUp(ts->trajectory,ts);

4111:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4112:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
4113:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

4115:   if (!ts->steps) ts->ptime_prev = ts->ptime;
4116:   ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
4117:   ts->reason = TS_CONVERGED_ITERATING;
4118:   if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
4119:   PetscLogEventBegin(TS_Step,ts,0,0,0);
4120:   (*ts->ops->step)(ts);
4121:   PetscLogEventEnd(TS_Step,ts,0,0,0);
4122:   ts->ptime_prev = ptime;
4123:   ts->steps++;
4124:   ts->steprollback = PETSC_FALSE;
4125:   ts->steprestart  = PETSC_FALSE;

4127:   if (ts->reason < 0) {
4128:     if (ts->errorifstepfailed) {
4129:       if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
4130:       else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
4131:     }
4132:   } else if (!ts->reason) {
4133:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4134:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
4135:   }
4136:   return(0);
4137: }

4139: /*@
4140:    TSAdjointStep - Steps one time step backward in the adjoint run

4142:    Collective on TS

4144:    Input Parameter:
4145: .  ts - the TS context obtained from TSCreate()

4147:    Level: intermediate

4149: .keywords: TS, adjoint, step

4151: .seealso: TSAdjointSetUp(), TSAdjointSolve()
4152: @*/
4153: PetscErrorCode  TSAdjointStep(TS ts)
4154: {
4155:   DM               dm;
4156:   PetscErrorCode   ierr;

4160:   TSGetDM(ts,&dm);
4161:   TSAdjointSetUp(ts);

4163:   VecViewFromOptions(ts->vec_sol,(PetscObject)ts,"-ts_view_solution");

4165:   ts->reason = TS_CONVERGED_ITERATING;
4166:   ts->ptime_prev = ts->ptime;
4167:   if (!ts->ops->adjointstep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed because the adjoint of  %s has not been implemented, try other time stepping methods for adjoint sensitivity analysis",((PetscObject)ts)->type_name);
4168:   PetscLogEventBegin(TS_AdjointStep,ts,0,0,0);
4169:   (*ts->ops->adjointstep)(ts);
4170:   PetscLogEventEnd(TS_AdjointStep,ts,0,0,0);
4171:   ts->adjoint_steps++; ts->steps--;

4173:   if (ts->reason < 0) {
4174:     if (ts->errorifstepfailed) {
4175:       if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
4176:       else if (ts->reason == TS_DIVERGED_STEP_REJECTED) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_reject or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
4177:       else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
4178:     }
4179:   } else if (!ts->reason) {
4180:     if (ts->adjoint_steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;
4181:   }
4182:   return(0);
4183: }

4185: /*@
4186:    TSEvaluateWLTE - Evaluate the weighted local truncation error norm
4187:    at the end of a time step with a given order of accuracy.

4189:    Collective on TS

4191:    Input Arguments:
4192: +  ts - time stepping context
4193: .  wnormtype - norm type, either NORM_2 or NORM_INFINITY
4194: -  order - optional, desired order for the error evaluation or PETSC_DECIDE

4196:    Output Arguments:
4197: +  order - optional, the actual order of the error evaluation
4198: -  wlte - the weighted local truncation error norm

4200:    Level: advanced

4202:    Notes:
4203:    If the timestepper cannot evaluate the error in a particular step
4204:    (eg. in the first step or restart steps after event handling),
4205:    this routine returns wlte=-1.0 .

4207: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
4208: @*/
4209: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
4210: {

4220:   if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
4221:   if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
4222:   (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
4223:   return(0);
4224: }

4226: /*@
4227:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

4229:    Collective on TS

4231:    Input Arguments:
4232: +  ts - time stepping context
4233: .  order - desired order of accuracy
4234: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

4236:    Output Arguments:
4237: .  U - state at the end of the current step

4239:    Level: advanced

4241:    Notes:
4242:    This function cannot be called until all stages have been evaluated.
4243:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

4245: .seealso: TSStep(), TSAdapt
4246: @*/
4247: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
4248: {

4255:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
4256:   (*ts->ops->evaluatestep)(ts,order,U,done);
4257:   return(0);
4258: }

4260: /*@
4261:    TSForwardCostIntegral - Evaluate the cost integral in the forward run.

4263:    Collective on TS

4265:    Input Arguments:
4266: .  ts - time stepping context

4268:    Level: advanced

4270:    Notes:
4271:    This function cannot be called until TSStep() has been completed.

4273: .seealso: TSSolve(), TSAdjointCostIntegral()
4274: @*/
4275: PetscErrorCode TSForwardCostIntegral(TS ts)
4276: {
4279:   if (!ts->ops->forwardintegral) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide integral evaluation in the forward run",((PetscObject)ts)->type_name);
4280:   (*ts->ops->forwardintegral)(ts);
4281:   return(0);
4282: }

4284: /*@
4285:    TSSolve - Steps the requested number of timesteps.

4287:    Collective on TS

4289:    Input Parameter:
4290: +  ts - the TS context obtained from TSCreate()
4291: -  u - the solution vector  (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4292:                              otherwise must contain the initial conditions and will contain the solution at the final requested time

4294:    Level: beginner

4296:    Notes:
4297:    The final time returned by this function may be different from the time of the internally
4298:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
4299:    stepped over the final time.

4301: .keywords: TS, timestep, solve

4303: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4304: @*/
4305: PetscErrorCode TSSolve(TS ts,Vec u)
4306: {
4307:   Vec               solution;
4308:   PetscErrorCode    ierr;


4314:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4315:     if (!ts->vec_sol || u == ts->vec_sol) {
4316:       VecDuplicate(u,&solution);
4317:       TSSetSolution(ts,solution);
4318:       VecDestroy(&solution); /* grant ownership */
4319:     }
4320:     VecCopy(u,ts->vec_sol);
4321:     if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4322:   } else if (u) {
4323:     TSSetSolution(ts,u);
4324:   }
4325:   TSSetUp(ts);
4326:   TSTrajectorySetUp(ts->trajectory,ts);

4328:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4329:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4330:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

4332:   if (ts->forward_solve) {
4333:     TSForwardSetUp(ts);
4334:   }

4336:   /* reset number of steps only when the step is not restarted. ARKIMEX
4337:      restarts the step after an event. Resetting these counters in such case causes
4338:      TSTrajectory to incorrectly save the output files
4339:   */
4340:   /* reset time step and iteration counters */
4341:   if (!ts->steps) {
4342:     ts->ksp_its           = 0;
4343:     ts->snes_its          = 0;
4344:     ts->num_snes_failures = 0;
4345:     ts->reject            = 0;
4346:     ts->steprestart       = PETSC_TRUE;
4347:     ts->steprollback      = PETSC_FALSE;
4348:   }
4349:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && ts->ptime + ts->time_step > ts->max_time) ts->time_step = ts->max_time - ts->ptime;
4350:   ts->reason = TS_CONVERGED_ITERATING;

4352:   TSViewFromOptions(ts,NULL,"-ts_view_pre");

4354:   if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4355:     (*ts->ops->solve)(ts);
4356:     if (u) {VecCopy(ts->vec_sol,u);}
4357:     ts->solvetime = ts->ptime;
4358:     solution = ts->vec_sol;
4359:   } else { /* Step the requested number of timesteps. */
4360:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4361:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;

4363:     if (!ts->steps) {
4364:       TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4365:       TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4366:     }

4368:     while (!ts->reason) {
4369:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4370:       if (!ts->steprollback) {
4371:         TSPreStep(ts);
4372:       }
4373:       TSStep(ts);
4374:       if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4375:         TSForwardCostIntegral(ts);
4376:       }
4377:       if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4378:         TSForwardStep(ts);
4379:       }
4380:       TSPostEvaluate(ts);
4381:       TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4382:       if (ts->steprollback) {
4383:         TSPostEvaluate(ts);
4384:       }
4385:       if (!ts->steprollback) {
4386:         TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4387:         TSPostStep(ts);
4388:       }
4389:     }
4390:     TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

4392:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4393:       TSInterpolate(ts,ts->max_time,u);
4394:       ts->solvetime = ts->max_time;
4395:       solution = u;
4396:       TSMonitor(ts,-1,ts->solvetime,solution);
4397:     } else {
4398:       if (u) {VecCopy(ts->vec_sol,u);}
4399:       ts->solvetime = ts->ptime;
4400:       solution = ts->vec_sol;
4401:     }
4402:   }

4404:   TSViewFromOptions(ts,NULL,"-ts_view");
4405:   VecViewFromOptions(solution,NULL,"-ts_view_solution");
4406:   PetscObjectSAWsBlock((PetscObject)ts);
4407:   if (ts->adjoint_solve) {
4408:     TSAdjointSolve(ts);
4409:   }
4410:   return(0);
4411: }

4413: /*@
4414:  TSAdjointCostIntegral - Evaluate the cost integral in the adjoint run.

4416:  Collective on TS

4418:  Input Arguments:
4419:  .  ts - time stepping context

4421:  Level: advanced

4423:  Notes:
4424:  This function cannot be called until TSAdjointStep() has been completed.

4426:  .seealso: TSAdjointSolve(), TSAdjointStep
4427:  @*/
4428: PetscErrorCode TSAdjointCostIntegral(TS ts)
4429: {
4432:     if (!ts->ops->adjointintegral) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide integral evaluation in the adjoint run",((PetscObject)ts)->type_name);
4433:     (*ts->ops->adjointintegral)(ts);
4434:     return(0);
4435: }

4437: /*@
4438:    TSAdjointSolve - Solves the discrete ajoint problem for an ODE/DAE

4440:    Collective on TS

4442:    Input Parameter:
4443: .  ts - the TS context obtained from TSCreate()

4445:    Options Database:
4446: . -ts_adjoint_view_solution <viewerinfo> - views the first gradient with respect to the initial values

4448:    Level: intermediate

4450:    Notes:
4451:    This must be called after a call to TSSolve() that solves the forward problem

4453:    By default this will integrate back to the initial time, one can use TSAdjointSetSteps() to step back to a later time

4455: .keywords: TS, timestep, solve

4457: .seealso: TSCreate(), TSSetCostGradients(), TSSetSolution(), TSAdjointStep()
4458: @*/
4459: PetscErrorCode TSAdjointSolve(TS ts)
4460: {
4461:   PetscErrorCode    ierr;

4465:   TSAdjointSetUp(ts);

4467:   /* reset time step and iteration counters */
4468:   ts->adjoint_steps     = 0;
4469:   ts->ksp_its           = 0;
4470:   ts->snes_its          = 0;
4471:   ts->num_snes_failures = 0;
4472:   ts->reject            = 0;
4473:   ts->reason            = TS_CONVERGED_ITERATING;

4475:   if (!ts->adjoint_max_steps) ts->adjoint_max_steps = ts->steps;
4476:   if (ts->adjoint_steps >= ts->adjoint_max_steps) ts->reason = TS_CONVERGED_ITS;

4478:   while (!ts->reason) {
4479:     TSTrajectoryGet(ts->trajectory,ts,ts->steps,&ts->ptime);
4480:     TSAdjointMonitor(ts,ts->steps,ts->ptime,ts->vec_sol,ts->numcost,ts->vecs_sensi,ts->vecs_sensip);
4481:     TSAdjointEventHandler(ts);
4482:     TSAdjointStep(ts);
4483:     if (ts->vec_costintegral && !ts->costintegralfwd) {
4484:       TSAdjointCostIntegral(ts);
4485:     }
4486:   }
4487:   TSTrajectoryGet(ts->trajectory,ts,ts->steps,&ts->ptime);
4488:   TSAdjointMonitor(ts,ts->steps,ts->ptime,ts->vec_sol,ts->numcost,ts->vecs_sensi,ts->vecs_sensip);
4489:   ts->solvetime = ts->ptime;
4490:   TSTrajectoryViewFromOptions(ts->trajectory,NULL,"-ts_trajectory_view");
4491:   VecViewFromOptions(ts->vecs_sensi[0],(PetscObject) ts, "-ts_adjoint_view_solution");
4492:   return(0);
4493: }

4495: /*@C
4496:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

4498:    Collective on TS

4500:    Input Parameters:
4501: +  ts - time stepping context obtained from TSCreate()
4502: .  step - step number that has just completed
4503: .  ptime - model time of the state
4504: -  u - state at the current model time

4506:    Notes:
4507:    TSMonitor() is typically used automatically within the time stepping implementations.
4508:    Users would almost never call this routine directly.

4510:    A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions

4512:    Level: developer

4514: .keywords: TS, timestep
4515: @*/
4516: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4517: {
4518:   DM             dm;
4519:   PetscInt       i,n = ts->numbermonitors;


4526:   TSGetDM(ts,&dm);
4527:   DMSetOutputSequenceNumber(dm,step,ptime);

4529:   VecLockPush(u);
4530:   for (i=0; i<n; i++) {
4531:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4532:   }
4533:   VecLockPop(u);
4534:   return(0);
4535: }

4537: /*@C
4538:    TSAdjointMonitor - Runs all user-provided adjoint monitor routines set using TSAdjointMonitorSet()

4540:    Collective on TS

4542:    Input Parameters:
4543: +  ts - time stepping context obtained from TSCreate()
4544: .  step - step number that has just completed
4545: .  ptime - model time of the state
4546: .  u - state at the current model time
4547: .  numcost - number of cost functions (dimension of lambda  or mu)
4548: .  lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
4549: -  mu - vectors containing the gradients of the cost functions with respect to the problem parameters

4551:    Notes:
4552:    TSAdjointMonitor() is typically used automatically within the time stepping implementations.
4553:    Users would almost never call this routine directly.

4555:    Level: developer

4557: .keywords: TS, timestep
4558: @*/
4559: PetscErrorCode TSAdjointMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscInt numcost,Vec *lambda, Vec *mu)
4560: {
4562:   PetscInt       i,n = ts->numberadjointmonitors;

4567:   VecLockPush(u);
4568:   for (i=0; i<n; i++) {
4569:     (*ts->adjointmonitor[i])(ts,step,ptime,u,numcost,lambda,mu,ts->adjointmonitorcontext[i]);
4570:   }
4571:   VecLockPop(u);
4572:   return(0);
4573: }

4575: /* ------------------------------------------------------------------------*/
4576: /*@C
4577:    TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4578:    TS to monitor the solution process graphically in various ways

4580:    Collective on TS

4582:    Input Parameters:
4583: +  host - the X display to open, or null for the local machine
4584: .  label - the title to put in the title bar
4585: .  x, y - the screen coordinates of the upper left coordinate of the window
4586: .  m, n - the screen width and height in pixels
4587: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

4589:    Output Parameter:
4590: .  ctx - the context

4592:    Options Database Key:
4593: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
4594: +  -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4595: .  -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4596: .  -ts_monitor_lg_error -  monitor the error
4597: .  -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4598: .  -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4599: -  -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true

4601:    Notes:
4602:    Use TSMonitorLGCtxDestroy() to destroy.

4604:    One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()

4606:    Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4607:    first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4608:    as the first argument.

4610:    One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()

4612:    Level: intermediate

4614: .keywords: TS, monitor, line graph, residual

4616: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4617:            TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4618:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4619:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4620:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()

4622: @*/
4623: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4624: {
4625:   PetscDraw      draw;

4629:   PetscNew(ctx);
4630:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4631:   PetscDrawSetFromOptions(draw);
4632:   PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4633:   PetscDrawLGSetFromOptions((*ctx)->lg);
4634:   PetscDrawDestroy(&draw);
4635:   (*ctx)->howoften = howoften;
4636:   return(0);
4637: }

4639: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4640: {
4641:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4642:   PetscReal      x   = ptime,y;

4646:   if (step < 0) return(0); /* -1 indicates an interpolated solution */
4647:   if (!step) {
4648:     PetscDrawAxis axis;
4649:     const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4650:     PetscDrawLGGetAxis(ctx->lg,&axis);
4651:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4652:     PetscDrawLGReset(ctx->lg);
4653:   }
4654:   TSGetTimeStep(ts,&y);
4655:   if (ctx->semilogy) y = PetscLog10Real(y);
4656:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4657:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4658:     PetscDrawLGDraw(ctx->lg);
4659:     PetscDrawLGSave(ctx->lg);
4660:   }
4661:   return(0);
4662: }

4664: /*@C
4665:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4666:    with TSMonitorLGCtxCreate().

4668:    Collective on TSMonitorLGCtx

4670:    Input Parameter:
4671: .  ctx - the monitor context

4673:    Level: intermediate

4675: .keywords: TS, monitor, line graph, destroy

4677: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
4678: @*/
4679: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4680: {

4684:   if ((*ctx)->transformdestroy) {
4685:     ((*ctx)->transformdestroy)((*ctx)->transformctx);
4686:   }
4687:   PetscDrawLGDestroy(&(*ctx)->lg);
4688:   PetscStrArrayDestroy(&(*ctx)->names);
4689:   PetscStrArrayDestroy(&(*ctx)->displaynames);
4690:   PetscFree((*ctx)->displayvariables);
4691:   PetscFree((*ctx)->displayvalues);
4692:   PetscFree(*ctx);
4693:   return(0);
4694: }

4696: /*@
4697:    TSGetTime - Gets the time of the most recently completed step.

4699:    Not Collective

4701:    Input Parameter:
4702: .  ts - the TS context obtained from TSCreate()

4704:    Output Parameter:
4705: .  t  - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().

4707:    Level: beginner

4709:    Note:
4710:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4711:    TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

4713: .seealso:  TSGetSolveTime(), TSSetTime(), TSGetTimeStep()

4715: .keywords: TS, get, time
4716: @*/
4717: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
4718: {
4722:   *t = ts->ptime;
4723:   return(0);
4724: }

4726: /*@
4727:    TSGetPrevTime - Gets the starting time of the previously completed step.

4729:    Not Collective

4731:    Input Parameter:
4732: .  ts - the TS context obtained from TSCreate()

4734:    Output Parameter:
4735: .  t  - the previous time

4737:    Level: beginner

4739: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()

4741: .keywords: TS, get, time
4742: @*/
4743: PetscErrorCode  TSGetPrevTime(TS ts,PetscReal *t)
4744: {
4748:   *t = ts->ptime_prev;
4749:   return(0);
4750: }

4752: /*@
4753:    TSSetTime - Allows one to reset the time.

4755:    Logically Collective on TS

4757:    Input Parameters:
4758: +  ts - the TS context obtained from TSCreate()
4759: -  time - the time

4761:    Level: intermediate

4763: .seealso: TSGetTime(), TSSetMaxSteps()

4765: .keywords: TS, set, time
4766: @*/
4767: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
4768: {
4772:   ts->ptime = t;
4773:   return(0);
4774: }

4776: /*@C
4777:    TSSetOptionsPrefix - Sets the prefix used for searching for all
4778:    TS options in the database.

4780:    Logically Collective on TS

4782:    Input Parameter:
4783: +  ts     - The TS context
4784: -  prefix - The prefix to prepend to all option names

4786:    Notes:
4787:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4788:    The first character of all runtime options is AUTOMATICALLY the
4789:    hyphen.

4791:    Level: advanced

4793: .keywords: TS, set, options, prefix, database

4795: .seealso: TSSetFromOptions()

4797: @*/
4798: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
4799: {
4801:   SNES           snes;

4805:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4806:   TSGetSNES(ts,&snes);
4807:   SNESSetOptionsPrefix(snes,prefix);
4808:   return(0);
4809: }

4811: /*@C
4812:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4813:    TS options in the database.

4815:    Logically Collective on TS

4817:    Input Parameter:
4818: +  ts     - The TS context
4819: -  prefix - The prefix to prepend to all option names

4821:    Notes:
4822:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4823:    The first character of all runtime options is AUTOMATICALLY the
4824:    hyphen.

4826:    Level: advanced

4828: .keywords: TS, append, options, prefix, database

4830: .seealso: TSGetOptionsPrefix()

4832: @*/
4833: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
4834: {
4836:   SNES           snes;

4840:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4841:   TSGetSNES(ts,&snes);
4842:   SNESAppendOptionsPrefix(snes,prefix);
4843:   return(0);
4844: }

4846: /*@C
4847:    TSGetOptionsPrefix - Sets the prefix used for searching for all
4848:    TS options in the database.

4850:    Not Collective

4852:    Input Parameter:
4853: .  ts - The TS context

4855:    Output Parameter:
4856: .  prefix - A pointer to the prefix string used

4858:    Notes: On the fortran side, the user should pass in a string 'prifix' of
4859:    sufficient length to hold the prefix.

4861:    Level: intermediate

4863: .keywords: TS, get, options, prefix, database

4865: .seealso: TSAppendOptionsPrefix()
4866: @*/
4867: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
4868: {

4874:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4875:   return(0);
4876: }

4878: /*@C
4879:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

4881:    Not Collective, but parallel objects are returned if TS is parallel

4883:    Input Parameter:
4884: .  ts  - The TS context obtained from TSCreate()

4886:    Output Parameters:
4887: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
4888: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
4889: .  func - Function to compute the Jacobian of the RHS  (or NULL)
4890: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

4892:    Notes: You can pass in NULL for any return argument you do not need.

4894:    Level: intermediate

4896: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4898: .keywords: TS, timestep, get, matrix, Jacobian
4899: @*/
4900: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4901: {
4903:   DM             dm;

4906:   if (Amat || Pmat) {
4907:     SNES snes;
4908:     TSGetSNES(ts,&snes);
4909:     SNESSetUpMatrices(snes);
4910:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4911:   }
4912:   TSGetDM(ts,&dm);
4913:   DMTSGetRHSJacobian(dm,func,ctx);
4914:   return(0);
4915: }

4917: /*@C
4918:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

4920:    Not Collective, but parallel objects are returned if TS is parallel

4922:    Input Parameter:
4923: .  ts  - The TS context obtained from TSCreate()

4925:    Output Parameters:
4926: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
4927: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4928: .  f   - The function to compute the matrices
4929: - ctx - User-defined context for Jacobian evaluation routine

4931:    Notes: You can pass in NULL for any return argument you do not need.

4933:    Level: advanced

4935: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4937: .keywords: TS, timestep, get, matrix, Jacobian
4938: @*/
4939: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4940: {
4942:   DM             dm;

4945:   if (Amat || Pmat) {
4946:     SNES snes;
4947:     TSGetSNES(ts,&snes);
4948:     SNESSetUpMatrices(snes);
4949:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4950:   }
4951:   TSGetDM(ts,&dm);
4952:   DMTSGetIJacobian(dm,f,ctx);
4953:   return(0);
4954: }

4956: /*@C
4957:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4958:    VecView() for the solution at each timestep

4960:    Collective on TS

4962:    Input Parameters:
4963: +  ts - the TS context
4964: .  step - current time-step
4965: .  ptime - current time
4966: -  dummy - either a viewer or NULL

4968:    Options Database:
4969: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4971:    Notes: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4972:        will look bad

4974:    Level: intermediate

4976: .keywords: TS,  vector, monitor, view

4978: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4979: @*/
4980: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4981: {
4982:   PetscErrorCode   ierr;
4983:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4984:   PetscDraw        draw;

4987:   if (!step && ictx->showinitial) {
4988:     if (!ictx->initialsolution) {
4989:       VecDuplicate(u,&ictx->initialsolution);
4990:     }
4991:     VecCopy(u,ictx->initialsolution);
4992:   }
4993:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

4995:   if (ictx->showinitial) {
4996:     PetscReal pause;
4997:     PetscViewerDrawGetPause(ictx->viewer,&pause);
4998:     PetscViewerDrawSetPause(ictx->viewer,0.0);
4999:     VecView(ictx->initialsolution,ictx->viewer);
5000:     PetscViewerDrawSetPause(ictx->viewer,pause);
5001:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
5002:   }
5003:   VecView(u,ictx->viewer);
5004:   if (ictx->showtimestepandtime) {
5005:     PetscReal xl,yl,xr,yr,h;
5006:     char      time[32];

5008:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
5009:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
5010:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
5011:     h    = yl + .95*(yr - yl);
5012:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
5013:     PetscDrawFlush(draw);
5014:   }

5016:   if (ictx->showinitial) {
5017:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
5018:   }
5019:   return(0);
5020: }

5022: /*@C
5023:    TSAdjointMonitorDrawSensi - Monitors progress of the adjoint TS solvers by calling
5024:    VecView() for the sensitivities to initial states at each timestep

5026:    Collective on TS

5028:    Input Parameters:
5029: +  ts - the TS context
5030: .  step - current time-step
5031: .  ptime - current time
5032: .  u - current state
5033: .  numcost - number of cost functions
5034: .  lambda - sensitivities to initial conditions
5035: .  mu - sensitivities to parameters
5036: -  dummy - either a viewer or NULL

5038:    Level: intermediate

5040: .keywords: TS,  vector, adjoint, monitor, view

5042: .seealso: TSAdjointMonitorSet(), TSAdjointMonitorDefault(), VecView()
5043: @*/
5044: PetscErrorCode  TSAdjointMonitorDrawSensi(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscInt numcost,Vec *lambda,Vec *mu,void *dummy)
5045: {
5046:   PetscErrorCode   ierr;
5047:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
5048:   PetscDraw        draw;
5049:   PetscReal        xl,yl,xr,yr,h;
5050:   char             time[32];

5053:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

5055:   VecView(lambda[0],ictx->viewer);
5056:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
5057:   PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
5058:   PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
5059:   h    = yl + .95*(yr - yl);
5060:   PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
5061:   PetscDrawFlush(draw);
5062:   return(0);
5063: }

5065: /*@C
5066:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

5068:    Collective on TS

5070:    Input Parameters:
5071: +  ts - the TS context
5072: .  step - current time-step
5073: .  ptime - current time
5074: -  dummy - either a viewer or NULL

5076:    Level: intermediate

5078: .keywords: TS,  vector, monitor, view

5080: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5081: @*/
5082: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
5083: {
5084:   PetscErrorCode    ierr;
5085:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
5086:   PetscDraw         draw;
5087:   PetscDrawAxis     axis;
5088:   PetscInt          n;
5089:   PetscMPIInt       size;
5090:   PetscReal         U0,U1,xl,yl,xr,yr,h;
5091:   char              time[32];
5092:   const PetscScalar *U;

5095:   MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
5096:   if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
5097:   VecGetSize(u,&n);
5098:   if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");

5100:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
5101:   PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
5102:   PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
5103:   if (!step) {
5104:     PetscDrawClear(draw);
5105:     PetscDrawAxisDraw(axis);
5106:   }

5108:   VecGetArrayRead(u,&U);
5109:   U0 = PetscRealPart(U[0]);
5110:   U1 = PetscRealPart(U[1]);
5111:   VecRestoreArrayRead(u,&U);
5112:   if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);

5114:   PetscDrawCollectiveBegin(draw);
5115:   PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
5116:   if (ictx->showtimestepandtime) {
5117:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
5118:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
5119:     h    = yl + .95*(yr - yl);
5120:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
5121:   }
5122:   PetscDrawCollectiveEnd(draw);
5123:   PetscDrawFlush(draw);
5124:   PetscDrawPause(draw);
5125:   PetscDrawSave(draw);
5126:   return(0);
5127: }

5129: /*@C
5130:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

5132:    Collective on TS

5134:    Input Parameters:
5135: .    ctx - the monitor context

5137:    Level: intermediate

5139: .keywords: TS,  vector, monitor, view

5141: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
5142: @*/
5143: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
5144: {

5148:   PetscViewerDestroy(&(*ictx)->viewer);
5149:   VecDestroy(&(*ictx)->initialsolution);
5150:   PetscFree(*ictx);
5151:   return(0);
5152: }

5154: /*@C
5155:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

5157:    Collective on TS

5159:    Input Parameter:
5160: .    ts - time-step context

5162:    Output Patameter:
5163: .    ctx - the monitor context

5165:    Options Database:
5166: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

5168:    Level: intermediate

5170: .keywords: TS,  vector, monitor, view

5172: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
5173: @*/
5174: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
5175: {
5176:   PetscErrorCode   ierr;

5179:   PetscNew(ctx);
5180:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
5181:   PetscViewerSetFromOptions((*ctx)->viewer);

5183:   (*ctx)->howoften    = howoften;
5184:   (*ctx)->showinitial = PETSC_FALSE;
5185:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

5187:   (*ctx)->showtimestepandtime = PETSC_FALSE;
5188:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
5189:   return(0);
5190: }

5192: /*@C
5193:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
5194:    VecView() for the error at each timestep

5196:    Collective on TS

5198:    Input Parameters:
5199: +  ts - the TS context
5200: .  step - current time-step
5201: .  ptime - current time
5202: -  dummy - either a viewer or NULL

5204:    Level: intermediate

5206: .keywords: TS,  vector, monitor, view

5208: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5209: @*/
5210: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
5211: {
5212:   PetscErrorCode   ierr;
5213:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
5214:   PetscViewer      viewer = ctx->viewer;
5215:   Vec              work;

5218:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
5219:   VecDuplicate(u,&work);
5220:   TSComputeSolutionFunction(ts,ptime,work);
5221:   VecAXPY(work,-1.0,u);
5222:   VecView(work,viewer);
5223:   VecDestroy(&work);
5224:   return(0);
5225: }

5227:  #include <petsc/private/dmimpl.h>
5228: /*@
5229:    TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS

5231:    Logically Collective on TS and DM

5233:    Input Parameters:
5234: +  ts - the ODE integrator object
5235: -  dm - the dm, cannot be NULL

5237:    Level: intermediate

5239: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
5240: @*/
5241: PetscErrorCode  TSSetDM(TS ts,DM dm)
5242: {
5244:   SNES           snes;
5245:   DMTS           tsdm;

5250:   PetscObjectReference((PetscObject)dm);
5251:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
5252:     if (ts->dm->dmts && !dm->dmts) {
5253:       DMCopyDMTS(ts->dm,dm);
5254:       DMGetDMTS(ts->dm,&tsdm);
5255:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
5256:         tsdm->originaldm = dm;
5257:       }
5258:     }
5259:     DMDestroy(&ts->dm);
5260:   }
5261:   ts->dm = dm;

5263:   TSGetSNES(ts,&snes);
5264:   SNESSetDM(snes,dm);
5265:   return(0);
5266: }

5268: /*@
5269:    TSGetDM - Gets the DM that may be used by some preconditioners

5271:    Not Collective

5273:    Input Parameter:
5274: . ts - the preconditioner context

5276:    Output Parameter:
5277: .  dm - the dm

5279:    Level: intermediate

5281: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
5282: @*/
5283: PetscErrorCode  TSGetDM(TS ts,DM *dm)
5284: {

5289:   if (!ts->dm) {
5290:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
5291:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
5292:   }
5293:   *dm = ts->dm;
5294:   return(0);
5295: }

5297: /*@
5298:    SNESTSFormFunction - Function to evaluate nonlinear residual

5300:    Logically Collective on SNES

5302:    Input Parameter:
5303: + snes - nonlinear solver
5304: . U - the current state at which to evaluate the residual
5305: - ctx - user context, must be a TS

5307:    Output Parameter:
5308: . F - the nonlinear residual

5310:    Notes:
5311:    This function is not normally called by users and is automatically registered with the SNES used by TS.
5312:    It is most frequently passed to MatFDColoringSetFunction().

5314:    Level: advanced

5316: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
5317: @*/
5318: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
5319: {
5320:   TS             ts = (TS)ctx;

5328:   (ts->ops->snesfunction)(snes,U,F,ts);
5329:   return(0);
5330: }

5332: /*@
5333:    SNESTSFormJacobian - Function to evaluate the Jacobian

5335:    Collective on SNES

5337:    Input Parameter:
5338: + snes - nonlinear solver
5339: . U - the current state at which to evaluate the residual
5340: - ctx - user context, must be a TS

5342:    Output Parameter:
5343: + A - the Jacobian
5344: . B - the preconditioning matrix (may be the same as A)
5345: - flag - indicates any structure change in the matrix

5347:    Notes:
5348:    This function is not normally called by users and is automatically registered with the SNES used by TS.

5350:    Level: developer

5352: .seealso: SNESSetJacobian()
5353: @*/
5354: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5355: {
5356:   TS             ts = (TS)ctx;

5367:   (ts->ops->snesjacobian)(snes,U,A,B,ts);
5368:   return(0);
5369: }

5371: /*@C
5372:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only

5374:    Collective on TS

5376:    Input Arguments:
5377: +  ts - time stepping context
5378: .  t - time at which to evaluate
5379: .  U - state at which to evaluate
5380: -  ctx - context

5382:    Output Arguments:
5383: .  F - right hand side

5385:    Level: intermediate

5387:    Notes:
5388:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5389:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

5391: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5392: @*/
5393: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5394: {
5396:   Mat            Arhs,Brhs;

5399:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5400:   TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5401:   MatMult(Arhs,U,F);
5402:   return(0);
5403: }

5405: /*@C
5406:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

5408:    Collective on TS

5410:    Input Arguments:
5411: +  ts - time stepping context
5412: .  t - time at which to evaluate
5413: .  U - state at which to evaluate
5414: -  ctx - context

5416:    Output Arguments:
5417: +  A - pointer to operator
5418: .  B - pointer to preconditioning matrix
5419: -  flg - matrix structure flag

5421:    Level: intermediate

5423:    Notes:
5424:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

5426: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5427: @*/
5428: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5429: {
5431:   return(0);
5432: }

5434: /*@C
5435:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

5437:    Collective on TS

5439:    Input Arguments:
5440: +  ts - time stepping context
5441: .  t - time at which to evaluate
5442: .  U - state at which to evaluate
5443: .  Udot - time derivative of state vector
5444: -  ctx - context

5446:    Output Arguments:
5447: .  F - left hand side

5449:    Level: intermediate

5451:    Notes:
5452:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5453:    user is required to write their own TSComputeIFunction.
5454:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5455:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

5457:    Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U

5459: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5460: @*/
5461: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5462: {
5464:   Mat            A,B;

5467:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
5468:   TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5469:   MatMult(A,Udot,F);
5470:   return(0);
5471: }

5473: /*@C
5474:    TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE

5476:    Collective on TS

5478:    Input Arguments:
5479: +  ts - time stepping context
5480: .  t - time at which to evaluate
5481: .  U - state at which to evaluate
5482: .  Udot - time derivative of state vector
5483: .  shift - shift to apply
5484: -  ctx - context

5486:    Output Arguments:
5487: +  A - pointer to operator
5488: .  B - pointer to preconditioning matrix
5489: -  flg - matrix structure flag

5491:    Level: advanced

5493:    Notes:
5494:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

5496:    It is only appropriate for problems of the form

5498: $     M Udot = F(U,t)

5500:   where M is constant and F is non-stiff.  The user must pass M to TSSetIJacobian().  The current implementation only
5501:   works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5502:   an implicit operator of the form

5504: $    shift*M + J

5506:   where J is the Jacobian of -F(U).  Support may be added in a future version of PETSc, but for now, the user must store
5507:   a copy of M or reassemble it when requested.

5509: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5510: @*/
5511: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5512: {

5516:   MatScale(A, shift / ts->ijacobian.shift);
5517:   ts->ijacobian.shift = shift;
5518:   return(0);
5519: }

5521: /*@
5522:    TSGetEquationType - Gets the type of the equation that TS is solving.

5524:    Not Collective

5526:    Input Parameter:
5527: .  ts - the TS context

5529:    Output Parameter:
5530: .  equation_type - see TSEquationType

5532:    Level: beginner

5534: .keywords: TS, equation type

5536: .seealso: TSSetEquationType(), TSEquationType
5537: @*/
5538: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
5539: {
5543:   *equation_type = ts->equation_type;
5544:   return(0);
5545: }

5547: /*@
5548:    TSSetEquationType - Sets the type of the equation that TS is solving.

5550:    Not Collective

5552:    Input Parameter:
5553: +  ts - the TS context
5554: -  equation_type - see TSEquationType

5556:    Level: advanced

5558: .keywords: TS, equation type

5560: .seealso: TSGetEquationType(), TSEquationType
5561: @*/
5562: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
5563: {
5566:   ts->equation_type = equation_type;
5567:   return(0);
5568: }

5570: /*@
5571:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

5573:    Not Collective

5575:    Input Parameter:
5576: .  ts - the TS context

5578:    Output Parameter:
5579: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5580:             manual pages for the individual convergence tests for complete lists

5582:    Level: beginner

5584:    Notes:
5585:    Can only be called after the call to TSSolve() is complete.

5587: .keywords: TS, nonlinear, set, convergence, test

5589: .seealso: TSSetConvergenceTest(), TSConvergedReason
5590: @*/
5591: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5592: {
5596:   *reason = ts->reason;
5597:   return(0);
5598: }

5600: /*@
5601:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

5603:    Not Collective

5605:    Input Parameter:
5606: +  ts - the TS context
5607: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5608:             manual pages for the individual convergence tests for complete lists

5610:    Level: advanced

5612:    Notes:
5613:    Can only be called during TSSolve() is active.

5615: .keywords: TS, nonlinear, set, convergence, test

5617: .seealso: TSConvergedReason
5618: @*/
5619: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
5620: {
5623:   ts->reason = reason;
5624:   return(0);
5625: }

5627: /*@
5628:    TSGetSolveTime - Gets the time after a call to TSSolve()

5630:    Not Collective

5632:    Input Parameter:
5633: .  ts - the TS context

5635:    Output Parameter:
5636: .  ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()

5638:    Level: beginner

5640:    Notes:
5641:    Can only be called after the call to TSSolve() is complete.

5643: .keywords: TS, nonlinear, set, convergence, test

5645: .seealso: TSSetConvergenceTest(), TSConvergedReason
5646: @*/
5647: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
5648: {
5652:   *ftime = ts->solvetime;
5653:   return(0);
5654: }

5656: /*@
5657:    TSGetSNESIterations - Gets the total number of nonlinear iterations
5658:    used by the time integrator.

5660:    Not Collective

5662:    Input Parameter:
5663: .  ts - TS context

5665:    Output Parameter:
5666: .  nits - number of nonlinear iterations

5668:    Notes:
5669:    This counter is reset to zero for each successive call to TSSolve().

5671:    Level: intermediate

5673: .keywords: TS, get, number, nonlinear, iterations

5675: .seealso:  TSGetKSPIterations()
5676: @*/
5677: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5678: {
5682:   *nits = ts->snes_its;
5683:   return(0);
5684: }

5686: /*@
5687:    TSGetKSPIterations - Gets the total number of linear iterations
5688:    used by the time integrator.

5690:    Not Collective

5692:    Input Parameter:
5693: .  ts - TS context

5695:    Output Parameter:
5696: .  lits - number of linear iterations

5698:    Notes:
5699:    This counter is reset to zero for each successive call to TSSolve().

5701:    Level: intermediate

5703: .keywords: TS, get, number, linear, iterations

5705: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
5706: @*/
5707: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5708: {
5712:   *lits = ts->ksp_its;
5713:   return(0);
5714: }

5716: /*@
5717:    TSGetStepRejections - Gets the total number of rejected steps.

5719:    Not Collective

5721:    Input Parameter:
5722: .  ts - TS context

5724:    Output Parameter:
5725: .  rejects - number of steps rejected

5727:    Notes:
5728:    This counter is reset to zero for each successive call to TSSolve().

5730:    Level: intermediate

5732: .keywords: TS, get, number

5734: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5735: @*/
5736: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5737: {
5741:   *rejects = ts->reject;
5742:   return(0);
5743: }

5745: /*@
5746:    TSGetSNESFailures - Gets the total number of failed SNES solves

5748:    Not Collective

5750:    Input Parameter:
5751: .  ts - TS context

5753:    Output Parameter:
5754: .  fails - number of failed nonlinear solves

5756:    Notes:
5757:    This counter is reset to zero for each successive call to TSSolve().

5759:    Level: intermediate

5761: .keywords: TS, get, number

5763: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5764: @*/
5765: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5766: {
5770:   *fails = ts->num_snes_failures;
5771:   return(0);
5772: }

5774: /*@
5775:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

5777:    Not Collective

5779:    Input Parameter:
5780: +  ts - TS context
5781: -  rejects - maximum number of rejected steps, pass -1 for unlimited

5783:    Notes:
5784:    The counter is reset to zero for each step

5786:    Options Database Key:
5787:  .  -ts_max_reject - Maximum number of step rejections before a step fails

5789:    Level: intermediate

5791: .keywords: TS, set, maximum, number

5793: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5794: @*/
5795: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5796: {
5799:   ts->max_reject = rejects;
5800:   return(0);
5801: }

5803: /*@
5804:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

5806:    Not Collective

5808:    Input Parameter:
5809: +  ts - TS context
5810: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

5812:    Notes:
5813:    The counter is reset to zero for each successive call to TSSolve().

5815:    Options Database Key:
5816:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

5818:    Level: intermediate

5820: .keywords: TS, set, maximum, number

5822: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5823: @*/
5824: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5825: {
5828:   ts->max_snes_failures = fails;
5829:   return(0);
5830: }

5832: /*@
5833:    TSSetErrorIfStepFails - Error if no step succeeds

5835:    Not Collective

5837:    Input Parameter:
5838: +  ts - TS context
5839: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

5841:    Options Database Key:
5842:  .  -ts_error_if_step_fails - Error if no step succeeds

5844:    Level: intermediate

5846: .keywords: TS, set, error

5848: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5849: @*/
5850: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5851: {
5854:   ts->errorifstepfailed = err;
5855:   return(0);
5856: }

5858: /*@C
5859:    TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object

5861:    Collective on TS

5863:    Input Parameters:
5864: +  ts - the TS context
5865: .  step - current time-step
5866: .  ptime - current time
5867: .  u - current state
5868: -  vf - viewer and its format

5870:    Level: intermediate

5872: .keywords: TS,  vector, monitor, view

5874: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5875: @*/
5876: PetscErrorCode  TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5877: {

5881:   PetscViewerPushFormat(vf->viewer,vf->format);
5882:   VecView(u,vf->viewer);
5883:   PetscViewerPopFormat(vf->viewer);
5884:   return(0);
5885: }

5887: /*@C
5888:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

5890:    Collective on TS

5892:    Input Parameters:
5893: +  ts - the TS context
5894: .  step - current time-step
5895: .  ptime - current time
5896: .  u - current state
5897: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5899:    Level: intermediate

5901:    Notes:
5902:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5903:    These are named according to the file name template.

5905:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

5907: .keywords: TS,  vector, monitor, view

5909: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5910: @*/
5911: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5912: {
5914:   char           filename[PETSC_MAX_PATH_LEN];
5915:   PetscViewer    viewer;

5918:   if (step < 0) return(0); /* -1 indicates interpolated solution */
5919:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5920:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5921:   VecView(u,viewer);
5922:   PetscViewerDestroy(&viewer);
5923:   return(0);
5924: }

5926: /*@C
5927:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

5929:    Collective on TS

5931:    Input Parameters:
5932: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5934:    Level: intermediate

5936:    Note:
5937:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

5939: .keywords: TS,  vector, monitor, view

5941: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5942: @*/
5943: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5944: {

5948:   PetscFree(*(char**)filenametemplate);
5949:   return(0);
5950: }

5952: /*@
5953:    TSGetAdapt - Get the adaptive controller context for the current method

5955:    Collective on TS if controller has not been created yet

5957:    Input Arguments:
5958: .  ts - time stepping context

5960:    Output Arguments:
5961: .  adapt - adaptive controller

5963:    Level: intermediate

5965: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5966: @*/
5967: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5968: {

5974:   if (!ts->adapt) {
5975:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5976:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5977:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5978:   }
5979:   *adapt = ts->adapt;
5980:   return(0);
5981: }

5983: /*@
5984:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

5986:    Logically Collective

5988:    Input Arguments:
5989: +  ts - time integration context
5990: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5991: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5992: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5993: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

5995:    Options Database keys:
5996: +  -ts_rtol <rtol> - relative tolerance for local truncation error
5997: -  -ts_atol <atol> Absolute tolerance for local truncation error

5999:    Notes:
6000:    With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
6001:    (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
6002:    computed only for the differential or the algebraic part then this can be done using the vector of
6003:    tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
6004:    differential part and infinity for the algebraic part, the LTE calculation will include only the
6005:    differential variables.

6007:    Level: beginner

6009: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
6010: @*/
6011: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
6012: {

6016:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
6017:   if (vatol) {
6018:     PetscObjectReference((PetscObject)vatol);
6019:     VecDestroy(&ts->vatol);
6020:     ts->vatol = vatol;
6021:   }
6022:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
6023:   if (vrtol) {
6024:     PetscObjectReference((PetscObject)vrtol);
6025:     VecDestroy(&ts->vrtol);
6026:     ts->vrtol = vrtol;
6027:   }
6028:   return(0);
6029: }

6031: /*@
6032:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

6034:    Logically Collective

6036:    Input Arguments:
6037: .  ts - time integration context

6039:    Output Arguments:
6040: +  atol - scalar absolute tolerances, NULL to ignore
6041: .  vatol - vector of absolute tolerances, NULL to ignore
6042: .  rtol - scalar relative tolerances, NULL to ignore
6043: -  vrtol - vector of relative tolerances, NULL to ignore

6045:    Level: beginner

6047: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
6048: @*/
6049: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
6050: {
6052:   if (atol)  *atol  = ts->atol;
6053:   if (vatol) *vatol = ts->vatol;
6054:   if (rtol)  *rtol  = ts->rtol;
6055:   if (vrtol) *vrtol = ts->vrtol;
6056:   return(0);
6057: }

6059: /*@
6060:    TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors

6062:    Collective on TS

6064:    Input Arguments:
6065: +  ts - time stepping context
6066: .  U - state vector, usually ts->vec_sol
6067: -  Y - state vector to be compared to U

6069:    Output Arguments:
6070: .  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6071: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6072: .  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6074:    Level: developer

6076: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
6077: @*/
6078: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6079: {
6080:   PetscErrorCode    ierr;
6081:   PetscInt          i,n,N,rstart;
6082:   PetscInt          n_loc,na_loc,nr_loc;
6083:   PetscReal         n_glb,na_glb,nr_glb;
6084:   const PetscScalar *u,*y;
6085:   PetscReal         sum,suma,sumr,gsum,gsuma,gsumr,diff;
6086:   PetscReal         tol,tola,tolr;
6087:   PetscReal         err_loc[6],err_glb[6];

6099:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

6101:   VecGetSize(U,&N);
6102:   VecGetLocalSize(U,&n);
6103:   VecGetOwnershipRange(U,&rstart,NULL);
6104:   VecGetArrayRead(U,&u);
6105:   VecGetArrayRead(Y,&y);
6106:   sum  = 0.; n_loc  = 0;
6107:   suma = 0.; na_loc = 0;
6108:   sumr = 0.; nr_loc = 0;
6109:   if (ts->vatol && ts->vrtol) {
6110:     const PetscScalar *atol,*rtol;
6111:     VecGetArrayRead(ts->vatol,&atol);
6112:     VecGetArrayRead(ts->vrtol,&rtol);
6113:     for (i=0; i<n; i++) {
6114:       diff = PetscAbsScalar(y[i] - u[i]);
6115:       tola = PetscRealPart(atol[i]);
6116:       if(tola>0.){
6117:         suma  += PetscSqr(diff/tola);
6118:         na_loc++;
6119:       }
6120:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6121:       if(tolr>0.){
6122:         sumr  += PetscSqr(diff/tolr);
6123:         nr_loc++;
6124:       }
6125:       tol=tola+tolr;
6126:       if(tol>0.){
6127:         sum  += PetscSqr(diff/tol);
6128:         n_loc++;
6129:       }
6130:     }
6131:     VecRestoreArrayRead(ts->vatol,&atol);
6132:     VecRestoreArrayRead(ts->vrtol,&rtol);
6133:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6134:     const PetscScalar *atol;
6135:     VecGetArrayRead(ts->vatol,&atol);
6136:     for (i=0; i<n; i++) {
6137:       diff = PetscAbsScalar(y[i] - u[i]);
6138:       tola = PetscRealPart(atol[i]);
6139:       if(tola>0.){
6140:         suma  += PetscSqr(diff/tola);
6141:         na_loc++;
6142:       }
6143:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6144:       if(tolr>0.){
6145:         sumr  += PetscSqr(diff/tolr);
6146:         nr_loc++;
6147:       }
6148:       tol=tola+tolr;
6149:       if(tol>0.){
6150:         sum  += PetscSqr(diff/tol);
6151:         n_loc++;
6152:       }
6153:     }
6154:     VecRestoreArrayRead(ts->vatol,&atol);
6155:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6156:     const PetscScalar *rtol;
6157:     VecGetArrayRead(ts->vrtol,&rtol);
6158:     for (i=0; i<n; i++) {
6159:       diff = PetscAbsScalar(y[i] - u[i]);
6160:       tola = ts->atol;
6161:       if(tola>0.){
6162:         suma  += PetscSqr(diff/tola);
6163:         na_loc++;
6164:       }
6165:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6166:       if(tolr>0.){
6167:         sumr  += PetscSqr(diff/tolr);
6168:         nr_loc++;
6169:       }
6170:       tol=tola+tolr;
6171:       if(tol>0.){
6172:         sum  += PetscSqr(diff/tol);
6173:         n_loc++;
6174:       }
6175:     }
6176:     VecRestoreArrayRead(ts->vrtol,&rtol);
6177:   } else {                      /* scalar atol, scalar rtol */
6178:     for (i=0; i<n; i++) {
6179:       diff = PetscAbsScalar(y[i] - u[i]);
6180:      tola = ts->atol;
6181:       if(tola>0.){
6182:         suma  += PetscSqr(diff/tola);
6183:         na_loc++;
6184:       }
6185:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6186:       if(tolr>0.){
6187:         sumr  += PetscSqr(diff/tolr);
6188:         nr_loc++;
6189:       }
6190:       tol=tola+tolr;
6191:       if(tol>0.){
6192:         sum  += PetscSqr(diff/tol);
6193:         n_loc++;
6194:       }
6195:     }
6196:   }
6197:   VecRestoreArrayRead(U,&u);
6198:   VecRestoreArrayRead(Y,&y);

6200:   err_loc[0] = sum;
6201:   err_loc[1] = suma;
6202:   err_loc[2] = sumr;
6203:   err_loc[3] = (PetscReal)n_loc;
6204:   err_loc[4] = (PetscReal)na_loc;
6205:   err_loc[5] = (PetscReal)nr_loc;

6207:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

6209:   gsum   = err_glb[0];
6210:   gsuma  = err_glb[1];
6211:   gsumr  = err_glb[2];
6212:   n_glb  = err_glb[3];
6213:   na_glb = err_glb[4];
6214:   nr_glb = err_glb[5];

6216:   *norm  = 0.;
6217:   if(n_glb>0. ){*norm  = PetscSqrtReal(gsum  / n_glb );}
6218:   *norma = 0.;
6219:   if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6220:   *normr = 0.;
6221:   if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

6223:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6224:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6225:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6226:   return(0);
6227: }

6229: /*@
6230:    TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors

6232:    Collective on TS

6234:    Input Arguments:
6235: +  ts - time stepping context
6236: .  U - state vector, usually ts->vec_sol
6237: -  Y - state vector to be compared to U

6239:    Output Arguments:
6240: .  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6241: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6242: .  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6244:    Level: developer

6246: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
6247: @*/
6248: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6249: {
6250:   PetscErrorCode    ierr;
6251:   PetscInt          i,n,N,rstart;
6252:   const PetscScalar *u,*y;
6253:   PetscReal         max,gmax,maxa,gmaxa,maxr,gmaxr;
6254:   PetscReal         tol,tola,tolr,diff;
6255:   PetscReal         err_loc[3],err_glb[3];

6267:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

6269:   VecGetSize(U,&N);
6270:   VecGetLocalSize(U,&n);
6271:   VecGetOwnershipRange(U,&rstart,NULL);
6272:   VecGetArrayRead(U,&u);
6273:   VecGetArrayRead(Y,&y);

6275:   max=0.;
6276:   maxa=0.;
6277:   maxr=0.;

6279:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
6280:     const PetscScalar *atol,*rtol;
6281:     VecGetArrayRead(ts->vatol,&atol);
6282:     VecGetArrayRead(ts->vrtol,&rtol);

6284:     for (i=0; i<n; i++) {
6285:       diff = PetscAbsScalar(y[i] - u[i]);
6286:       tola = PetscRealPart(atol[i]);
6287:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6288:       tol  = tola+tolr;
6289:       if(tola>0.){
6290:         maxa = PetscMax(maxa,diff / tola);
6291:       }
6292:       if(tolr>0.){
6293:         maxr = PetscMax(maxr,diff / tolr);
6294:       }
6295:       if(tol>0.){
6296:         max = PetscMax(max,diff / tol);
6297:       }
6298:     }
6299:     VecRestoreArrayRead(ts->vatol,&atol);
6300:     VecRestoreArrayRead(ts->vrtol,&rtol);
6301:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6302:     const PetscScalar *atol;
6303:     VecGetArrayRead(ts->vatol,&atol);
6304:     for (i=0; i<n; i++) {
6305:       diff = PetscAbsScalar(y[i] - u[i]);
6306:       tola = PetscRealPart(atol[i]);
6307:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6308:       tol  = tola+tolr;
6309:       if(tola>0.){
6310:         maxa = PetscMax(maxa,diff / tola);
6311:       }
6312:       if(tolr>0.){
6313:         maxr = PetscMax(maxr,diff / tolr);
6314:       }
6315:       if(tol>0.){
6316:         max = PetscMax(max,diff / tol);
6317:       }
6318:     }
6319:     VecRestoreArrayRead(ts->vatol,&atol);
6320:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6321:     const PetscScalar *rtol;
6322:     VecGetArrayRead(ts->vrtol,&rtol);

6324:     for (i=0; i<n; i++) {
6325:       diff = PetscAbsScalar(y[i] - u[i]);
6326:       tola = ts->atol;
6327:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6328:       tol  = tola+tolr;
6329:       if(tola>0.){
6330:         maxa = PetscMax(maxa,diff / tola);
6331:       }
6332:       if(tolr>0.){
6333:         maxr = PetscMax(maxr,diff / tolr);
6334:       }
6335:       if(tol>0.){
6336:         max = PetscMax(max,diff / tol);
6337:       }
6338:     }
6339:     VecRestoreArrayRead(ts->vrtol,&rtol);
6340:   } else {                      /* scalar atol, scalar rtol */

6342:     for (i=0; i<n; i++) {
6343:       diff = PetscAbsScalar(y[i] - u[i]);
6344:       tola = ts->atol;
6345:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6346:       tol  = tola+tolr;
6347:       if(tola>0.){
6348:         maxa = PetscMax(maxa,diff / tola);
6349:       }
6350:       if(tolr>0.){
6351:         maxr = PetscMax(maxr,diff / tolr);
6352:       }
6353:       if(tol>0.){
6354:         max = PetscMax(max,diff / tol);
6355:       }
6356:     }
6357:   }
6358:   VecRestoreArrayRead(U,&u);
6359:   VecRestoreArrayRead(Y,&y);
6360:   err_loc[0] = max;
6361:   err_loc[1] = maxa;
6362:   err_loc[2] = maxr;
6363:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6364:   gmax   = err_glb[0];
6365:   gmaxa  = err_glb[1];
6366:   gmaxr  = err_glb[2];

6368:   *norm = gmax;
6369:   *norma = gmaxa;
6370:   *normr = gmaxr;
6371:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6372:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6373:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6374:   return(0);
6375: }

6377: /*@
6378:    TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances

6380:    Collective on TS

6382:    Input Arguments:
6383: +  ts - time stepping context
6384: .  U - state vector, usually ts->vec_sol
6385: .  Y - state vector to be compared to U
6386: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6388:    Output Arguments:
6389: .  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6390: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6391: .  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6393:    Options Database Keys:
6394: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6396:    Level: developer

6398: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6399: @*/
6400: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6401: {

6405:   if (wnormtype == NORM_2) {
6406:     TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6407:   } else if(wnormtype == NORM_INFINITY) {
6408:     TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6409:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6410:   return(0);
6411: }


6414: /*@
6415:    TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances

6417:    Collective on TS

6419:    Input Arguments:
6420: +  ts - time stepping context
6421: .  E - error vector
6422: .  U - state vector, usually ts->vec_sol
6423: -  Y - state vector, previous time step

6425:    Output Arguments:
6426: .  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6427: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6428: .  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6430:    Level: developer

6432: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6433: @*/
6434: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6435: {
6436:   PetscErrorCode    ierr;
6437:   PetscInt          i,n,N,rstart;
6438:   PetscInt          n_loc,na_loc,nr_loc;
6439:   PetscReal         n_glb,na_glb,nr_glb;
6440:   const PetscScalar *e,*u,*y;
6441:   PetscReal         err,sum,suma,sumr,gsum,gsuma,gsumr;
6442:   PetscReal         tol,tola,tolr;
6443:   PetscReal         err_loc[6],err_glb[6];


6459:   VecGetSize(E,&N);
6460:   VecGetLocalSize(E,&n);
6461:   VecGetOwnershipRange(E,&rstart,NULL);
6462:   VecGetArrayRead(E,&e);
6463:   VecGetArrayRead(U,&u);
6464:   VecGetArrayRead(Y,&y);
6465:   sum  = 0.; n_loc  = 0;
6466:   suma = 0.; na_loc = 0;
6467:   sumr = 0.; nr_loc = 0;
6468:   if (ts->vatol && ts->vrtol) {
6469:     const PetscScalar *atol,*rtol;
6470:     VecGetArrayRead(ts->vatol,&atol);
6471:     VecGetArrayRead(ts->vrtol,&rtol);
6472:     for (i=0; i<n; i++) {
6473:       err = PetscAbsScalar(e[i]);
6474:       tola = PetscRealPart(atol[i]);
6475:       if(tola>0.){
6476:         suma  += PetscSqr(err/tola);
6477:         na_loc++;
6478:       }
6479:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6480:       if(tolr>0.){
6481:         sumr  += PetscSqr(err/tolr);
6482:         nr_loc++;
6483:       }
6484:       tol=tola+tolr;
6485:       if(tol>0.){
6486:         sum  += PetscSqr(err/tol);
6487:         n_loc++;
6488:       }
6489:     }
6490:     VecRestoreArrayRead(ts->vatol,&atol);
6491:     VecRestoreArrayRead(ts->vrtol,&rtol);
6492:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6493:     const PetscScalar *atol;
6494:     VecGetArrayRead(ts->vatol,&atol);
6495:     for (i=0; i<n; i++) {
6496:       err = PetscAbsScalar(e[i]);
6497:       tola = PetscRealPart(atol[i]);
6498:       if(tola>0.){
6499:         suma  += PetscSqr(err/tola);
6500:         na_loc++;
6501:       }
6502:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6503:       if(tolr>0.){
6504:         sumr  += PetscSqr(err/tolr);
6505:         nr_loc++;
6506:       }
6507:       tol=tola+tolr;
6508:       if(tol>0.){
6509:         sum  += PetscSqr(err/tol);
6510:         n_loc++;
6511:       }
6512:     }
6513:     VecRestoreArrayRead(ts->vatol,&atol);
6514:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6515:     const PetscScalar *rtol;
6516:     VecGetArrayRead(ts->vrtol,&rtol);
6517:     for (i=0; i<n; i++) {
6518:       err = PetscAbsScalar(e[i]);
6519:       tola = ts->atol;
6520:       if(tola>0.){
6521:         suma  += PetscSqr(err/tola);
6522:         na_loc++;
6523:       }
6524:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6525:       if(tolr>0.){
6526:         sumr  += PetscSqr(err/tolr);
6527:         nr_loc++;
6528:       }
6529:       tol=tola+tolr;
6530:       if(tol>0.){
6531:         sum  += PetscSqr(err/tol);
6532:         n_loc++;
6533:       }
6534:     }
6535:     VecRestoreArrayRead(ts->vrtol,&rtol);
6536:   } else {                      /* scalar atol, scalar rtol */
6537:     for (i=0; i<n; i++) {
6538:       err = PetscAbsScalar(e[i]);
6539:      tola = ts->atol;
6540:       if(tola>0.){
6541:         suma  += PetscSqr(err/tola);
6542:         na_loc++;
6543:       }
6544:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6545:       if(tolr>0.){
6546:         sumr  += PetscSqr(err/tolr);
6547:         nr_loc++;
6548:       }
6549:       tol=tola+tolr;
6550:       if(tol>0.){
6551:         sum  += PetscSqr(err/tol);
6552:         n_loc++;
6553:       }
6554:     }
6555:   }
6556:   VecRestoreArrayRead(E,&e);
6557:   VecRestoreArrayRead(U,&u);
6558:   VecRestoreArrayRead(Y,&y);

6560:   err_loc[0] = sum;
6561:   err_loc[1] = suma;
6562:   err_loc[2] = sumr;
6563:   err_loc[3] = (PetscReal)n_loc;
6564:   err_loc[4] = (PetscReal)na_loc;
6565:   err_loc[5] = (PetscReal)nr_loc;

6567:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

6569:   gsum   = err_glb[0];
6570:   gsuma  = err_glb[1];
6571:   gsumr  = err_glb[2];
6572:   n_glb  = err_glb[3];
6573:   na_glb = err_glb[4];
6574:   nr_glb = err_glb[5];

6576:   *norm  = 0.;
6577:   if(n_glb>0. ){*norm  = PetscSqrtReal(gsum  / n_glb );}
6578:   *norma = 0.;
6579:   if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6580:   *normr = 0.;
6581:   if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

6583:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6584:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6585:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6586:   return(0);
6587: }

6589: /*@
6590:    TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6591:    Collective on TS

6593:    Input Arguments:
6594: +  ts - time stepping context
6595: .  E - error vector
6596: .  U - state vector, usually ts->vec_sol
6597: -  Y - state vector, previous time step

6599:    Output Arguments:
6600: .  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6601: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6602: .  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6604:    Level: developer

6606: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6607: @*/
6608: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6609: {
6610:   PetscErrorCode    ierr;
6611:   PetscInt          i,n,N,rstart;
6612:   const PetscScalar *e,*u,*y;
6613:   PetscReal         err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6614:   PetscReal         tol,tola,tolr;
6615:   PetscReal         err_loc[3],err_glb[3];


6631:   VecGetSize(E,&N);
6632:   VecGetLocalSize(E,&n);
6633:   VecGetOwnershipRange(E,&rstart,NULL);
6634:   VecGetArrayRead(E,&e);
6635:   VecGetArrayRead(U,&u);
6636:   VecGetArrayRead(Y,&y);

6638:   max=0.;
6639:   maxa=0.;
6640:   maxr=0.;

6642:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
6643:     const PetscScalar *atol,*rtol;
6644:     VecGetArrayRead(ts->vatol,&atol);
6645:     VecGetArrayRead(ts->vrtol,&rtol);

6647:     for (i=0; i<n; i++) {
6648:       err = PetscAbsScalar(e[i]);
6649:       tola = PetscRealPart(atol[i]);
6650:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6651:       tol  = tola+tolr;
6652:       if(tola>0.){
6653:         maxa = PetscMax(maxa,err / tola);
6654:       }
6655:       if(tolr>0.){
6656:         maxr = PetscMax(maxr,err / tolr);
6657:       }
6658:       if(tol>0.){
6659:         max = PetscMax(max,err / tol);
6660:       }
6661:     }
6662:     VecRestoreArrayRead(ts->vatol,&atol);
6663:     VecRestoreArrayRead(ts->vrtol,&rtol);
6664:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6665:     const PetscScalar *atol;
6666:     VecGetArrayRead(ts->vatol,&atol);
6667:     for (i=0; i<n; i++) {
6668:       err = PetscAbsScalar(e[i]);
6669:       tola = PetscRealPart(atol[i]);
6670:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6671:       tol  = tola+tolr;
6672:       if(tola>0.){
6673:         maxa = PetscMax(maxa,err / tola);
6674:       }
6675:       if(tolr>0.){
6676:         maxr = PetscMax(maxr,err / tolr);
6677:       }
6678:       if(tol>0.){
6679:         max = PetscMax(max,err / tol);
6680:       }
6681:     }
6682:     VecRestoreArrayRead(ts->vatol,&atol);
6683:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6684:     const PetscScalar *rtol;
6685:     VecGetArrayRead(ts->vrtol,&rtol);

6687:     for (i=0; i<n; i++) {
6688:       err = PetscAbsScalar(e[i]);
6689:       tola = ts->atol;
6690:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6691:       tol  = tola+tolr;
6692:       if(tola>0.){
6693:         maxa = PetscMax(maxa,err / tola);
6694:       }
6695:       if(tolr>0.){
6696:         maxr = PetscMax(maxr,err / tolr);
6697:       }
6698:       if(tol>0.){
6699:         max = PetscMax(max,err / tol);
6700:       }
6701:     }
6702:     VecRestoreArrayRead(ts->vrtol,&rtol);
6703:   } else {                      /* scalar atol, scalar rtol */

6705:     for (i=0; i<n; i++) {
6706:       err = PetscAbsScalar(e[i]);
6707:       tola = ts->atol;
6708:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6709:       tol  = tola+tolr;
6710:       if(tola>0.){
6711:         maxa = PetscMax(maxa,err / tola);
6712:       }
6713:       if(tolr>0.){
6714:         maxr = PetscMax(maxr,err / tolr);
6715:       }
6716:       if(tol>0.){
6717:         max = PetscMax(max,err / tol);
6718:       }
6719:     }
6720:   }
6721:   VecRestoreArrayRead(E,&e);
6722:   VecRestoreArrayRead(U,&u);
6723:   VecRestoreArrayRead(Y,&y);
6724:   err_loc[0] = max;
6725:   err_loc[1] = maxa;
6726:   err_loc[2] = maxr;
6727:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6728:   gmax   = err_glb[0];
6729:   gmaxa  = err_glb[1];
6730:   gmaxr  = err_glb[2];

6732:   *norm = gmax;
6733:   *norma = gmaxa;
6734:   *normr = gmaxr;
6735:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6736:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6737:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6738:   return(0);
6739: }

6741: /*@
6742:    TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances

6744:    Collective on TS

6746:    Input Arguments:
6747: +  ts - time stepping context
6748: .  E - error vector
6749: .  U - state vector, usually ts->vec_sol
6750: .  Y - state vector, previous time step
6751: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6753:    Output Arguments:
6754: .  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6755: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6756: .  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6758:    Options Database Keys:
6759: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6761:    Level: developer

6763: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6764: @*/
6765: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6766: {

6770:   if (wnormtype == NORM_2) {
6771:     TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6772:   } else if(wnormtype == NORM_INFINITY) {
6773:     TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6774:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6775:   return(0);
6776: }


6779: /*@
6780:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

6782:    Logically Collective on TS

6784:    Input Arguments:
6785: +  ts - time stepping context
6786: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

6788:    Note:
6789:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

6791:    Level: intermediate

6793: .seealso: TSGetCFLTime(), TSADAPTCFL
6794: @*/
6795: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6796: {
6799:   ts->cfltime_local = cfltime;
6800:   ts->cfltime       = -1.;
6801:   return(0);
6802: }

6804: /*@
6805:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

6807:    Collective on TS

6809:    Input Arguments:
6810: .  ts - time stepping context

6812:    Output Arguments:
6813: .  cfltime - maximum stable time step for forward Euler

6815:    Level: advanced

6817: .seealso: TSSetCFLTimeLocal()
6818: @*/
6819: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6820: {

6824:   if (ts->cfltime < 0) {
6825:     MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6826:   }
6827:   *cfltime = ts->cfltime;
6828:   return(0);
6829: }

6831: /*@
6832:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

6834:    Input Parameters:
6835: .  ts   - the TS context.
6836: .  xl   - lower bound.
6837: .  xu   - upper bound.

6839:    Notes:
6840:    If this routine is not called then the lower and upper bounds are set to
6841:    PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().

6843:    Level: advanced

6845: @*/
6846: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6847: {
6849:   SNES           snes;

6852:   TSGetSNES(ts,&snes);
6853:   SNESVISetVariableBounds(snes,xl,xu);
6854:   return(0);
6855: }

6857: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6858: #include <mex.h>

6860: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;

6862: /*
6863:    TSComputeFunction_Matlab - Calls the function that has been set with
6864:                          TSSetFunctionMatlab().

6866:    Collective on TS

6868:    Input Parameters:
6869: +  snes - the TS context
6870: -  u - input vector

6872:    Output Parameter:
6873: .  y - function vector, as set by TSSetFunction()

6875:    Notes:
6876:    TSComputeFunction() is typically used within nonlinear solvers
6877:    implementations, so most users would not generally call this routine
6878:    themselves.

6880:    Level: developer

6882: .keywords: TS, nonlinear, compute, function

6884: .seealso: TSSetFunction(), TSGetFunction()
6885: */
6886: PetscErrorCode  TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6887: {
6888:   PetscErrorCode  ierr;
6889:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6890:   int             nlhs  = 1,nrhs = 7;
6891:   mxArray         *plhs[1],*prhs[7];
6892:   long long int   lx = 0,lxdot = 0,ly = 0,ls = 0;


6902:   PetscMemcpy(&ls,&snes,sizeof(snes));
6903:   PetscMemcpy(&lx,&u,sizeof(u));
6904:   PetscMemcpy(&lxdot,&udot,sizeof(udot));
6905:   PetscMemcpy(&ly,&y,sizeof(u));

6907:   prhs[0] =  mxCreateDoubleScalar((double)ls);
6908:   prhs[1] =  mxCreateDoubleScalar(time);
6909:   prhs[2] =  mxCreateDoubleScalar((double)lx);
6910:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
6911:   prhs[4] =  mxCreateDoubleScalar((double)ly);
6912:   prhs[5] =  mxCreateString(sctx->funcname);
6913:   prhs[6] =  sctx->ctx;
6914:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6915:    mxGetScalar(plhs[0]);
6916:   mxDestroyArray(prhs[0]);
6917:   mxDestroyArray(prhs[1]);
6918:   mxDestroyArray(prhs[2]);
6919:   mxDestroyArray(prhs[3]);
6920:   mxDestroyArray(prhs[4]);
6921:   mxDestroyArray(prhs[5]);
6922:   mxDestroyArray(plhs[0]);
6923:   return(0);
6924: }

6926: /*
6927:    TSSetFunctionMatlab - Sets the function evaluation routine and function
6928:    vector for use by the TS routines in solving ODEs
6929:    equations from MATLAB. Here the function is a string containing the name of a MATLAB function

6931:    Logically Collective on TS

6933:    Input Parameters:
6934: +  ts - the TS context
6935: -  func - function evaluation routine

6937:    Calling sequence of func:
6938: $    func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);

6940:    Level: beginner

6942: .keywords: TS, nonlinear, set, function

6944: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6945: */
6946: PetscErrorCode  TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6947: {
6948:   PetscErrorCode  ierr;
6949:   TSMatlabContext *sctx;

6952:   /* currently sctx is memory bleed */
6953:   PetscNew(&sctx);
6954:   PetscStrallocpy(func,&sctx->funcname);
6955:   /*
6956:      This should work, but it doesn't
6957:   sctx->ctx = ctx;
6958:   mexMakeArrayPersistent(sctx->ctx);
6959:   */
6960:   sctx->ctx = mxDuplicateArray(ctx);

6962:   TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6963:   return(0);
6964: }

6966: /*
6967:    TSComputeJacobian_Matlab - Calls the function that has been set with
6968:                          TSSetJacobianMatlab().

6970:    Collective on TS

6972:    Input Parameters:
6973: +  ts - the TS context
6974: .  u - input vector
6975: .  A, B - the matrices
6976: -  ctx - user context

6978:    Level: developer

6980: .keywords: TS, nonlinear, compute, function

6982: .seealso: TSSetFunction(), TSGetFunction()
6983: @*/
6984: PetscErrorCode  TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6985: {
6986:   PetscErrorCode  ierr;
6987:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6988:   int             nlhs  = 2,nrhs = 9;
6989:   mxArray         *plhs[2],*prhs[9];
6990:   long long int   lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;


6996:   /* call Matlab function in ctx with arguments u and y */

6998:   PetscMemcpy(&ls,&ts,sizeof(ts));
6999:   PetscMemcpy(&lx,&u,sizeof(u));
7000:   PetscMemcpy(&lxdot,&udot,sizeof(u));
7001:   PetscMemcpy(&lA,A,sizeof(u));
7002:   PetscMemcpy(&lB,B,sizeof(u));

7004:   prhs[0] =  mxCreateDoubleScalar((double)ls);
7005:   prhs[1] =  mxCreateDoubleScalar((double)time);
7006:   prhs[2] =  mxCreateDoubleScalar((double)lx);
7007:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
7008:   prhs[4] =  mxCreateDoubleScalar((double)shift);
7009:   prhs[5] =  mxCreateDoubleScalar((double)lA);
7010:   prhs[6] =  mxCreateDoubleScalar((double)lB);
7011:   prhs[7] =  mxCreateString(sctx->funcname);
7012:   prhs[8] =  sctx->ctx;
7013:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
7014:    mxGetScalar(plhs[0]);
7015:   mxDestroyArray(prhs[0]);
7016:   mxDestroyArray(prhs[1]);
7017:   mxDestroyArray(prhs[2]);
7018:   mxDestroyArray(prhs[3]);
7019:   mxDestroyArray(prhs[4]);
7020:   mxDestroyArray(prhs[5]);
7021:   mxDestroyArray(prhs[6]);
7022:   mxDestroyArray(prhs[7]);
7023:   mxDestroyArray(plhs[0]);
7024:   mxDestroyArray(plhs[1]);
7025:   return(0);
7026: }

7028: /*
7029:    TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
7030:    vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function

7032:    Logically Collective on TS

7034:    Input Parameters:
7035: +  ts - the TS context
7036: .  A,B - Jacobian matrices
7037: .  func - function evaluation routine
7038: -  ctx - user context

7040:    Calling sequence of func:
7041: $    flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);

7043:    Level: developer

7045: .keywords: TS, nonlinear, set, function

7047: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
7048: */
7049: PetscErrorCode  TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
7050: {
7051:   PetscErrorCode  ierr;
7052:   TSMatlabContext *sctx;

7055:   /* currently sctx is memory bleed */
7056:   PetscNew(&sctx);
7057:   PetscStrallocpy(func,&sctx->funcname);
7058:   /*
7059:      This should work, but it doesn't
7060:   sctx->ctx = ctx;
7061:   mexMakeArrayPersistent(sctx->ctx);
7062:   */
7063:   sctx->ctx = mxDuplicateArray(ctx);

7065:   TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
7066:   return(0);
7067: }

7069: /*
7070:    TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().

7072:    Collective on TS

7074: .seealso: TSSetFunction(), TSGetFunction()
7075: @*/
7076: PetscErrorCode  TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
7077: {
7078:   PetscErrorCode  ierr;
7079:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
7080:   int             nlhs  = 1,nrhs = 6;
7081:   mxArray         *plhs[1],*prhs[6];
7082:   long long int   lx = 0,ls = 0;


7088:   PetscMemcpy(&ls,&ts,sizeof(ts));
7089:   PetscMemcpy(&lx,&u,sizeof(u));

7091:   prhs[0] =  mxCreateDoubleScalar((double)ls);
7092:   prhs[1] =  mxCreateDoubleScalar((double)it);
7093:   prhs[2] =  mxCreateDoubleScalar((double)time);
7094:   prhs[3] =  mxCreateDoubleScalar((double)lx);
7095:   prhs[4] =  mxCreateString(sctx->funcname);
7096:   prhs[5] =  sctx->ctx;
7097:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
7098:    mxGetScalar(plhs[0]);
7099:   mxDestroyArray(prhs[0]);
7100:   mxDestroyArray(prhs[1]);
7101:   mxDestroyArray(prhs[2]);
7102:   mxDestroyArray(prhs[3]);
7103:   mxDestroyArray(prhs[4]);
7104:   mxDestroyArray(plhs[0]);
7105:   return(0);
7106: }

7108: /*
7109:    TSMonitorSetMatlab - Sets the monitor function from Matlab

7111:    Level: developer

7113: .keywords: TS, nonlinear, set, function

7115: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
7116: */
7117: PetscErrorCode  TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
7118: {
7119:   PetscErrorCode  ierr;
7120:   TSMatlabContext *sctx;

7123:   /* currently sctx is memory bleed */
7124:   PetscNew(&sctx);
7125:   PetscStrallocpy(func,&sctx->funcname);
7126:   /*
7127:      This should work, but it doesn't
7128:   sctx->ctx = ctx;
7129:   mexMakeArrayPersistent(sctx->ctx);
7130:   */
7131:   sctx->ctx = mxDuplicateArray(ctx);

7133:   TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
7134:   return(0);
7135: }
7136: #endif

7138: /*@C
7139:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
7140:        in a time based line graph

7142:    Collective on TS

7144:    Input Parameters:
7145: +  ts - the TS context
7146: .  step - current time-step
7147: .  ptime - current time
7148: .  u - current solution
7149: -  dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()

7151:    Options Database:
7152: .   -ts_monitor_lg_solution_variables

7154:    Level: intermediate

7156:    Notes: Each process in a parallel run displays its component solutions in a separate window

7158: .keywords: TS,  vector, monitor, view

7160: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
7161:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
7162:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
7163:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
7164: @*/
7165: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7166: {
7167:   PetscErrorCode    ierr;
7168:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dctx;
7169:   const PetscScalar *yy;
7170:   Vec               v;

7173:   if (step < 0) return(0); /* -1 indicates interpolated solution */
7174:   if (!step) {
7175:     PetscDrawAxis axis;
7176:     PetscInt      dim;
7177:     PetscDrawLGGetAxis(ctx->lg,&axis);
7178:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
7179:     if (!ctx->names) {
7180:       PetscBool flg;
7181:       /* user provides names of variables to plot but no names has been set so assume names are integer values */
7182:       PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
7183:       if (flg) {
7184:         PetscInt i,n;
7185:         char     **names;
7186:         VecGetSize(u,&n);
7187:         PetscMalloc1(n+1,&names);
7188:         for (i=0; i<n; i++) {
7189:           PetscMalloc1(5,&names[i]);
7190:           PetscSNPrintf(names[i],5,"%D",i);
7191:         }
7192:         names[n] = NULL;
7193:         ctx->names = names;
7194:       }
7195:     }
7196:     if (ctx->names && !ctx->displaynames) {
7197:       char      **displaynames;
7198:       PetscBool flg;
7199:       VecGetLocalSize(u,&dim);
7200:       PetscMalloc1(dim+1,&displaynames);
7201:       PetscMemzero(displaynames,(dim+1)*sizeof(char*));
7202:       PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
7203:       if (flg) {
7204:         TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
7205:       }
7206:       PetscStrArrayDestroy(&displaynames);
7207:     }
7208:     if (ctx->displaynames) {
7209:       PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
7210:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
7211:     } else if (ctx->names) {
7212:       VecGetLocalSize(u,&dim);
7213:       PetscDrawLGSetDimension(ctx->lg,dim);
7214:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
7215:     } else {
7216:       VecGetLocalSize(u,&dim);
7217:       PetscDrawLGSetDimension(ctx->lg,dim);
7218:     }
7219:     PetscDrawLGReset(ctx->lg);
7220:   }

7222:   if (!ctx->transform) v = u;
7223:   else {(*ctx->transform)(ctx->transformctx,u,&v);}
7224:   VecGetArrayRead(v,&yy);
7225:   if (ctx->displaynames) {
7226:     PetscInt i;
7227:     for (i=0; i<ctx->ndisplayvariables; i++)
7228:       ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
7229:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
7230:   } else {
7231: #if defined(PETSC_USE_COMPLEX)
7232:     PetscInt  i,n;
7233:     PetscReal *yreal;
7234:     VecGetLocalSize(v,&n);
7235:     PetscMalloc1(n,&yreal);
7236:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
7237:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
7238:     PetscFree(yreal);
7239: #else
7240:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
7241: #endif
7242:   }
7243:   VecRestoreArrayRead(v,&yy);
7244:   if (ctx->transform) {VecDestroy(&v);}

7246:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
7247:     PetscDrawLGDraw(ctx->lg);
7248:     PetscDrawLGSave(ctx->lg);
7249:   }
7250:   return(0);
7251: }

7253: /*@C
7254:    TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

7256:    Collective on TS

7258:    Input Parameters:
7259: +  ts - the TS context
7260: -  names - the names of the components, final string must be NULL

7262:    Level: intermediate

7264:    Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

7266: .keywords: TS,  vector, monitor, view

7268: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
7269: @*/
7270: PetscErrorCode  TSMonitorLGSetVariableNames(TS ts,const char * const *names)
7271: {
7272:   PetscErrorCode    ierr;
7273:   PetscInt          i;

7276:   for (i=0; i<ts->numbermonitors; i++) {
7277:     if (ts->monitor[i] == TSMonitorLGSolution) {
7278:       TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
7279:       break;
7280:     }
7281:   }
7282:   return(0);
7283: }

7285: /*@C
7286:    TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

7288:    Collective on TS

7290:    Input Parameters:
7291: +  ts - the TS context
7292: -  names - the names of the components, final string must be NULL

7294:    Level: intermediate

7296: .keywords: TS,  vector, monitor, view

7298: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
7299: @*/
7300: PetscErrorCode  TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
7301: {
7302:   PetscErrorCode    ierr;

7305:   PetscStrArrayDestroy(&ctx->names);
7306:   PetscStrArrayallocpy(names,&ctx->names);
7307:   return(0);
7308: }

7310: /*@C
7311:    TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot

7313:    Collective on TS

7315:    Input Parameter:
7316: .  ts - the TS context

7318:    Output Parameter:
7319: .  names - the names of the components, final string must be NULL

7321:    Level: intermediate

7323:    Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

7325: .keywords: TS,  vector, monitor, view

7327: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7328: @*/
7329: PetscErrorCode  TSMonitorLGGetVariableNames(TS ts,const char *const **names)
7330: {
7331:   PetscInt       i;

7334:   *names = NULL;
7335:   for (i=0; i<ts->numbermonitors; i++) {
7336:     if (ts->monitor[i] == TSMonitorLGSolution) {
7337:       TSMonitorLGCtx  ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
7338:       *names = (const char *const *)ctx->names;
7339:       break;
7340:     }
7341:   }
7342:   return(0);
7343: }

7345: /*@C
7346:    TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor

7348:    Collective on TS

7350:    Input Parameters:
7351: +  ctx - the TSMonitorLG context
7352: .  displaynames - the names of the components, final string must be NULL

7354:    Level: intermediate

7356: .keywords: TS,  vector, monitor, view

7358: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
7359: @*/
7360: PetscErrorCode  TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
7361: {
7362:   PetscInt          j = 0,k;
7363:   PetscErrorCode    ierr;

7366:   if (!ctx->names) return(0);
7367:   PetscStrArrayDestroy(&ctx->displaynames);
7368:   PetscStrArrayallocpy(displaynames,&ctx->displaynames);
7369:   while (displaynames[j]) j++;
7370:   ctx->ndisplayvariables = j;
7371:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
7372:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
7373:   j = 0;
7374:   while (displaynames[j]) {
7375:     k = 0;
7376:     while (ctx->names[k]) {
7377:       PetscBool flg;
7378:       PetscStrcmp(displaynames[j],ctx->names[k],&flg);
7379:       if (flg) {
7380:         ctx->displayvariables[j] = k;
7381:         break;
7382:       }
7383:       k++;
7384:     }
7385:     j++;
7386:   }
7387:   return(0);
7388: }

7390: /*@C
7391:    TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor

7393:    Collective on TS

7395:    Input Parameters:
7396: +  ts - the TS context
7397: .  displaynames - the names of the components, final string must be NULL

7399:    Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

7401:    Level: intermediate

7403: .keywords: TS,  vector, monitor, view

7405: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
7406: @*/
7407: PetscErrorCode  TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
7408: {
7409:   PetscInt          i;
7410:   PetscErrorCode    ierr;

7413:   for (i=0; i<ts->numbermonitors; i++) {
7414:     if (ts->monitor[i] == TSMonitorLGSolution) {
7415:       TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
7416:       break;
7417:     }
7418:   }
7419:   return(0);
7420: }

7422: /*@C
7423:    TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed

7425:    Collective on TS

7427:    Input Parameters:
7428: +  ts - the TS context
7429: .  transform - the transform function
7430: .  destroy - function to destroy the optional context
7431: -  ctx - optional context used by transform function

7433:    Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

7435:    Level: intermediate

7437: .keywords: TS,  vector, monitor, view

7439: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
7440: @*/
7441: PetscErrorCode  TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
7442: {
7443:   PetscInt          i;
7444:   PetscErrorCode    ierr;

7447:   for (i=0; i<ts->numbermonitors; i++) {
7448:     if (ts->monitor[i] == TSMonitorLGSolution) {
7449:       TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
7450:     }
7451:   }
7452:   return(0);
7453: }

7455: /*@C
7456:    TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed

7458:    Collective on TSLGCtx

7460:    Input Parameters:
7461: +  ts - the TS context
7462: .  transform - the transform function
7463: .  destroy - function to destroy the optional context
7464: -  ctx - optional context used by transform function

7466:    Level: intermediate

7468: .keywords: TS,  vector, monitor, view

7470: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
7471: @*/
7472: PetscErrorCode  TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
7473: {
7475:   ctx->transform    = transform;
7476:   ctx->transformdestroy = destroy;
7477:   ctx->transformctx = tctx;
7478:   return(0);
7479: }

7481: /*@C
7482:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
7483:        in a time based line graph

7485:    Collective on TS

7487:    Input Parameters:
7488: +  ts - the TS context
7489: .  step - current time-step
7490: .  ptime - current time
7491: .  u - current solution
7492: -  dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()

7494:    Level: intermediate

7496:    Notes: Each process in a parallel run displays its component errors in a separate window

7498:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

7500:    Options Database Keys:
7501: .  -ts_monitor_lg_error - create a graphical monitor of error history

7503: .keywords: TS,  vector, monitor, view

7505: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7506: @*/
7507: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
7508: {
7509:   PetscErrorCode    ierr;
7510:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
7511:   const PetscScalar *yy;
7512:   Vec               y;

7515:   if (!step) {
7516:     PetscDrawAxis axis;
7517:     PetscInt      dim;
7518:     PetscDrawLGGetAxis(ctx->lg,&axis);
7519:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
7520:     VecGetLocalSize(u,&dim);
7521:     PetscDrawLGSetDimension(ctx->lg,dim);
7522:     PetscDrawLGReset(ctx->lg);
7523:   }
7524:   VecDuplicate(u,&y);
7525:   TSComputeSolutionFunction(ts,ptime,y);
7526:   VecAXPY(y,-1.0,u);
7527:   VecGetArrayRead(y,&yy);
7528: #if defined(PETSC_USE_COMPLEX)
7529:   {
7530:     PetscReal *yreal;
7531:     PetscInt  i,n;
7532:     VecGetLocalSize(y,&n);
7533:     PetscMalloc1(n,&yreal);
7534:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
7535:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
7536:     PetscFree(yreal);
7537:   }
7538: #else
7539:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
7540: #endif
7541:   VecRestoreArrayRead(y,&yy);
7542:   VecDestroy(&y);
7543:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
7544:     PetscDrawLGDraw(ctx->lg);
7545:     PetscDrawLGSave(ctx->lg);
7546:   }
7547:   return(0);
7548: }

7550: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7551: {
7552:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7553:   PetscReal      x   = ptime,y;
7555:   PetscInt       its;

7558:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7559:   if (!n) {
7560:     PetscDrawAxis axis;
7561:     PetscDrawLGGetAxis(ctx->lg,&axis);
7562:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7563:     PetscDrawLGReset(ctx->lg);
7564:     ctx->snes_its = 0;
7565:   }
7566:   TSGetSNESIterations(ts,&its);
7567:   y    = its - ctx->snes_its;
7568:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7569:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7570:     PetscDrawLGDraw(ctx->lg);
7571:     PetscDrawLGSave(ctx->lg);
7572:   }
7573:   ctx->snes_its = its;
7574:   return(0);
7575: }

7577: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7578: {
7579:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7580:   PetscReal      x   = ptime,y;
7582:   PetscInt       its;

7585:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7586:   if (!n) {
7587:     PetscDrawAxis axis;
7588:     PetscDrawLGGetAxis(ctx->lg,&axis);
7589:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7590:     PetscDrawLGReset(ctx->lg);
7591:     ctx->ksp_its = 0;
7592:   }
7593:   TSGetKSPIterations(ts,&its);
7594:   y    = its - ctx->ksp_its;
7595:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7596:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7597:     PetscDrawLGDraw(ctx->lg);
7598:     PetscDrawLGSave(ctx->lg);
7599:   }
7600:   ctx->ksp_its = its;
7601:   return(0);
7602: }

7604: /*@
7605:    TSComputeLinearStability - computes the linear stability function at a point

7607:    Collective on TS and Vec

7609:    Input Parameters:
7610: +  ts - the TS context
7611: -  xr,xi - real and imaginary part of input arguments

7613:    Output Parameters:
7614: .  yr,yi - real and imaginary part of function value

7616:    Level: developer

7618: .keywords: TS, compute

7620: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7621: @*/
7622: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7623: {

7628:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7629:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7630:   return(0);
7631: }

7633: /* ------------------------------------------------------------------------*/
7634: /*@C
7635:    TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()

7637:    Collective on TS

7639:    Input Parameters:
7640: .  ts  - the ODE solver object

7642:    Output Parameter:
7643: .  ctx - the context

7645:    Level: intermediate

7647: .keywords: TS, monitor, line graph, residual, seealso

7649: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

7651: @*/
7652: PetscErrorCode  TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7653: {

7657:   PetscNew(ctx);
7658:   return(0);
7659: }

7661: /*@C
7662:    TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution

7664:    Collective on TS

7666:    Input Parameters:
7667: +  ts - the TS context
7668: .  step - current time-step
7669: .  ptime - current time
7670: .  u  - current solution
7671: -  dctx - the envelope context

7673:    Options Database:
7674: .  -ts_monitor_envelope

7676:    Level: intermediate

7678:    Notes: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope

7680: .keywords: TS,  vector, monitor, view

7682: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7683: @*/
7684: PetscErrorCode  TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7685: {
7686:   PetscErrorCode       ierr;
7687:   TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;

7690:   if (!ctx->max) {
7691:     VecDuplicate(u,&ctx->max);
7692:     VecDuplicate(u,&ctx->min);
7693:     VecCopy(u,ctx->max);
7694:     VecCopy(u,ctx->min);
7695:   } else {
7696:     VecPointwiseMax(ctx->max,u,ctx->max);
7697:     VecPointwiseMin(ctx->min,u,ctx->min);
7698:   }
7699:   return(0);
7700: }

7702: /*@C
7703:    TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution

7705:    Collective on TS

7707:    Input Parameter:
7708: .  ts - the TS context

7710:    Output Parameter:
7711: +  max - the maximum values
7712: -  min - the minimum values

7714:    Notes: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored

7716:    Level: intermediate

7718: .keywords: TS,  vector, monitor, view

7720: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7721: @*/
7722: PetscErrorCode  TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7723: {
7724:   PetscInt i;

7727:   if (max) *max = NULL;
7728:   if (min) *min = NULL;
7729:   for (i=0; i<ts->numbermonitors; i++) {
7730:     if (ts->monitor[i] == TSMonitorEnvelope) {
7731:       TSMonitorEnvelopeCtx  ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7732:       if (max) *max = ctx->max;
7733:       if (min) *min = ctx->min;
7734:       break;
7735:     }
7736:   }
7737:   return(0);
7738: }

7740: /*@C
7741:    TSMonitorEnvelopeCtxDestroy - Destroys a context that was created  with TSMonitorEnvelopeCtxCreate().

7743:    Collective on TSMonitorEnvelopeCtx

7745:    Input Parameter:
7746: .  ctx - the monitor context

7748:    Level: intermediate

7750: .keywords: TS, monitor, line graph, destroy

7752: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep()
7753: @*/
7754: PetscErrorCode  TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7755: {

7759:   VecDestroy(&(*ctx)->min);
7760:   VecDestroy(&(*ctx)->max);
7761:   PetscFree(*ctx);
7762:   return(0);
7763: }

7765: /*@
7766:    TSRestartStep - Flags the solver to restart the next step

7768:    Collective on TS

7770:    Input Parameter:
7771: .  ts - the TS context obtained from TSCreate()

7773:    Level: advanced

7775:    Notes:
7776:    Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7777:    discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7778:    vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7779:    the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7780:    discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7781:    discontinuous source terms).

7783: .keywords: TS, timestep, restart

7785: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7786: @*/
7787: PetscErrorCode TSRestartStep(TS ts)
7788: {
7791:   ts->steprestart = PETSC_TRUE;
7792:   return(0);
7793: }

7795: /*@
7796:    TSRollBack - Rolls back one time step

7798:    Collective on TS

7800:    Input Parameter:
7801: .  ts - the TS context obtained from TSCreate()

7803:    Level: advanced

7805: .keywords: TS, timestep, rollback

7807: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7808: @*/
7809: PetscErrorCode  TSRollBack(TS ts)
7810: {

7815:   if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7816:   if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7817:   (*ts->ops->rollback)(ts);
7818:   ts->time_step = ts->ptime - ts->ptime_prev;
7819:   ts->ptime = ts->ptime_prev;
7820:   ts->ptime_prev = ts->ptime_prev_rollback;
7821:   ts->steps--;
7822:   ts->steprollback = PETSC_TRUE;
7823:   return(0);
7824: }

7826: /*@
7827:    TSGetStages - Get the number of stages and stage values

7829:    Input Parameter:
7830: .  ts - the TS context obtained from TSCreate()

7832:    Level: advanced

7834: .keywords: TS, getstages

7836: .seealso: TSCreate()
7837: @*/
7838: PetscErrorCode  TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7839: {


7846:   if (!ts->ops->getstages) *ns=0;
7847:   else {
7848:     (*ts->ops->getstages)(ts,ns,Y);
7849:   }
7850:   return(0);
7851: }

7853: /*@C
7854:   TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.

7856:   Collective on SNES

7858:   Input Parameters:
7859: + ts - the TS context
7860: . t - current timestep
7861: . U - state vector
7862: . Udot - time derivative of state vector
7863: . shift - shift to apply, see note below
7864: - ctx - an optional user context

7866:   Output Parameters:
7867: + J - Jacobian matrix (not altered in this routine)
7868: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)

7870:   Level: intermediate

7872:   Notes:
7873:   If F(t,U,Udot)=0 is the DAE, the required Jacobian is

7875:   dF/dU + shift*dF/dUdot

7877:   Most users should not need to explicitly call this routine, as it
7878:   is used internally within the nonlinear solvers.

7880:   This will first try to get the coloring from the DM.  If the DM type has no coloring
7881:   routine, then it will try to get the coloring from the matrix.  This requires that the
7882:   matrix have nonzero entries precomputed.

7884: .keywords: TS, finite differences, Jacobian, coloring, sparse
7885: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7886: @*/
7887: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7888: {
7889:   SNES           snes;
7890:   MatFDColoring  color;
7891:   PetscBool      hascolor, matcolor = PETSC_FALSE;

7895:   PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7896:   PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7897:   if (!color) {
7898:     DM         dm;
7899:     ISColoring iscoloring;

7901:     TSGetDM(ts, &dm);
7902:     DMHasColoring(dm, &hascolor);
7903:     if (hascolor && !matcolor) {
7904:       DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7905:       MatFDColoringCreate(B, iscoloring, &color);
7906:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7907:       MatFDColoringSetFromOptions(color);
7908:       MatFDColoringSetUp(B, iscoloring, color);
7909:       ISColoringDestroy(&iscoloring);
7910:     } else {
7911:       MatColoring mc;

7913:       MatColoringCreate(B, &mc);
7914:       MatColoringSetDistance(mc, 2);
7915:       MatColoringSetType(mc, MATCOLORINGSL);
7916:       MatColoringSetFromOptions(mc);
7917:       MatColoringApply(mc, &iscoloring);
7918:       MatColoringDestroy(&mc);
7919:       MatFDColoringCreate(B, iscoloring, &color);
7920:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7921:       MatFDColoringSetFromOptions(color);
7922:       MatFDColoringSetUp(B, iscoloring, color);
7923:       ISColoringDestroy(&iscoloring);
7924:     }
7925:     PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7926:     PetscObjectDereference((PetscObject) color);
7927:   }
7928:   TSGetSNES(ts, &snes);
7929:   MatFDColoringApply(B, color, U, snes);
7930:   if (J != B) {
7931:     MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7932:     MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7933:   }
7934:   return(0);
7935: }

7937: /*@
7938:     TSSetFunctionDomainError - Set the function testing if the current state vector is valid

7940:     Input Parameters:
7941:     ts - the TS context
7942:     func - function called within TSFunctionDomainError

7944:     Level: intermediate

7946: .keywords: TS, state, domain
7947: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7948: @*/

7950: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7951: {
7954:   ts->functiondomainerror = func;
7955:   return(0);
7956: }

7958: /*@
7959:     TSFunctionDomainError - Check if the current state is valid

7961:     Input Parameters:
7962:     ts - the TS context
7963:     stagetime - time of the simulation
7964:     Y - state vector to check.

7966:     Output Parameter:
7967:     accept - Set to PETSC_FALSE if the current state vector is valid.

7969:     Note:
7970:     This function should be used to ensure the state is in a valid part of the space.
7971:     For example, one can ensure here all values are positive.

7973:     Level: advanced
7974: @*/
7975: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7976: {


7982:   *accept = PETSC_TRUE;
7983:   if (ts->functiondomainerror) {
7984:     PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7985:   }
7986:   return(0);
7987: }

7989: /*@C
7990:   TSClone - This function clones a time step object.

7992:   Collective on MPI_Comm

7994:   Input Parameter:
7995: . tsin    - The input TS

7997:   Output Parameter:
7998: . tsout   - The output TS (cloned)

8000:   Notes:
8001:   This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.

8003:   When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);

8005:   Level: developer

8007: .keywords: TS, clone
8008: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
8009: @*/
8010: PetscErrorCode  TSClone(TS tsin, TS *tsout)
8011: {
8012:   TS             t;
8014:   SNES           snes_start;
8015:   DM             dm;
8016:   TSType         type;

8020:   *tsout = NULL;

8022:   PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);

8024:   /* General TS description */
8025:   t->numbermonitors    = 0;
8026:   t->setupcalled       = 0;
8027:   t->ksp_its           = 0;
8028:   t->snes_its          = 0;
8029:   t->nwork             = 0;
8030:   t->rhsjacobian.time  = -1e20;
8031:   t->rhsjacobian.scale = 1.;
8032:   t->ijacobian.shift   = 1.;

8034:   TSGetSNES(tsin,&snes_start);
8035:   TSSetSNES(t,snes_start);

8037:   TSGetDM(tsin,&dm);
8038:   TSSetDM(t,dm);

8040:   t->adapt = tsin->adapt;
8041:   PetscObjectReference((PetscObject)t->adapt);

8043:   t->trajectory = tsin->trajectory;
8044:   PetscObjectReference((PetscObject)t->trajectory);

8046:   t->event = tsin->event;
8047:   if (t->event) t->event->refct++;

8049:   t->problem_type      = tsin->problem_type;
8050:   t->ptime             = tsin->ptime;
8051:   t->ptime_prev        = tsin->ptime_prev;
8052:   t->time_step         = tsin->time_step;
8053:   t->max_time          = tsin->max_time;
8054:   t->steps             = tsin->steps;
8055:   t->max_steps         = tsin->max_steps;
8056:   t->equation_type     = tsin->equation_type;
8057:   t->atol              = tsin->atol;
8058:   t->rtol              = tsin->rtol;
8059:   t->max_snes_failures = tsin->max_snes_failures;
8060:   t->max_reject        = tsin->max_reject;
8061:   t->errorifstepfailed = tsin->errorifstepfailed;

8063:   TSGetType(tsin,&type);
8064:   TSSetType(t,type);

8066:   t->vec_sol           = NULL;

8068:   t->cfltime          = tsin->cfltime;
8069:   t->cfltime_local    = tsin->cfltime_local;
8070:   t->exact_final_time = tsin->exact_final_time;

8072:   PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));

8074:   if (((PetscObject)tsin)->fortran_func_pointers) {
8075:     PetscInt i;
8076:     PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
8077:     for (i=0; i<10; i++) {
8078:       ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
8079:     }
8080:   }
8081:   *tsout = t;
8082:   return(0);
8083: }