Actual source code: rosw.c

petsc-3.3-p7 2013-05-11
  1: /*
  2:   Code for timestepping with Rosenbrock W methods

  4:   Notes:
  5:   The general system is written as

  7:   G(t,X,Xdot) = F(t,X)

  9:   where G represents the stiff part of the physics and F represents the non-stiff part.
 10:   This method is designed to be linearly implicit on G and can use an approximate and lagged Jacobian.

 12: */
 13: #include <petsc-private/tsimpl.h>                /*I   "petscts.h"   I*/

 15: #include <../src/mat/blockinvert.h>

 17: static const TSRosWType TSRosWDefault = TSROSWRA34PW2;
 18: static PetscBool TSRosWRegisterAllCalled;
 19: static PetscBool TSRosWPackageInitialized;

 21: typedef struct _RosWTableau *RosWTableau;
 22: struct _RosWTableau {
 23:   char      *name;
 24:   PetscInt  order;              /* Classical approximation order of the method */
 25:   PetscInt  s;                  /* Number of stages */
 26:   PetscInt  pinterp;            /* Interpolation order */
 27:   PetscReal *A;                 /* Propagation table, strictly lower triangular */
 28:   PetscReal *Gamma;             /* Stage table, lower triangular with nonzero diagonal */
 29:   PetscBool *GammaZeroDiag;     /* Diagonal entries that are zero in stage table Gamma, vector indicating explicit statages */
 30:   PetscReal *GammaExplicitCorr; /* Coefficients for correction terms needed for explicit stages in transformed variables*/
 31:   PetscReal *b;                 /* Step completion table */
 32:   PetscReal *bembed;            /* Step completion table for embedded method of order one less */
 33:   PetscReal *ASum;              /* Row sum of A */
 34:   PetscReal *GammaSum;          /* Row sum of Gamma, only needed for non-autonomous systems */
 35:   PetscReal *At;                /* Propagation table in transformed variables */
 36:   PetscReal *bt;                /* Step completion table in transformed variables */
 37:   PetscReal *bembedt;           /* Step completion table of order one less in transformed variables */
 38:   PetscReal *GammaInv;          /* Inverse of Gamma, used for transformed variables */
 39:   PetscReal ccfl;               /* Placeholder for CFL coefficient relative to forward Euler */
 40:   PetscReal *binterpt;          /* Dense output formula */
 41: };
 42: typedef struct _RosWTableauLink *RosWTableauLink;
 43: struct _RosWTableauLink {
 44:   struct _RosWTableau tab;
 45:   RosWTableauLink next;
 46: };
 47: static RosWTableauLink RosWTableauList;

 49: typedef struct {
 50:   RosWTableau tableau;
 51:   Vec         *Y;               /* States computed during the step, used to complete the step */
 52:   Vec         Ydot;             /* Work vector holding Ydot during residual evaluation */
 53:   Vec         Ystage;           /* Work vector for the state value at each stage */
 54:   Vec         Zdot;             /* Ydot = Zdot + shift*Y */
 55:   Vec         Zstage;           /* Y = Zstage + Y */
 56:   Vec         VecSolPrev;       /* Work vector holding the solution from the previous step (used for interpolation)*/
 57:   PetscScalar *work;            /* Scalar work space of length number of stages, used to prepare VecMAXPY() */
 58:   PetscReal   shift;
 59:   PetscReal   stage_time;
 60:   PetscReal   stage_explicit;     /* Flag indicates that the current stage is explicit */
 61:   PetscBool   recompute_jacobian; /* Recompute the Jacobian at each stage, default is to freeze the Jacobian at the start of each step */
 62:   TSStepStatus status;
 63: } TS_RosW;

 65: /*MC
 66:      TSROSWTHETA1 - One stage first order L-stable Rosenbrock-W scheme (aka theta method).

 68:      Only an approximate Jacobian is needed.

 70:      Level: intermediate

 72: .seealso: TSROSW
 73: M*/

 75: /*MC
 76:      TSROSWTHETA2 - One stage second order A-stable Rosenbrock-W scheme (aka theta method).

 78:      Only an approximate Jacobian is needed.

 80:      Level: intermediate

 82: .seealso: TSROSW
 83: M*/

 85: /*MC
 86:      TSROSW2M - Two stage second order L-stable Rosenbrock-W scheme.

 88:      Only an approximate Jacobian is needed. By default, it is only recomputed once per step. This method is a reflection of TSROSW2P.

 90:      Level: intermediate

 92: .seealso: TSROSW
 93: M*/

 95: /*MC
 96:      TSROSW2P - Two stage second order L-stable Rosenbrock-W scheme.

 98:      Only an approximate Jacobian is needed. By default, it is only recomputed once per step. This method is a reflection of TSROSW2M.

100:      Level: intermediate

102: .seealso: TSROSW
103: M*/

105: /*MC
106:      TSROSWRA3PW - Three stage third order Rosenbrock-W scheme for PDAE of index 1.

108:      Only an approximate Jacobian is needed. By default, it is only recomputed once per step.

110:      This is strongly A-stable with R(infty) = 0.73. The embedded method of order 2 is strongly A-stable with R(infty) = 0.73.

112:      References:
113:      Rang and Angermann, New Rosenbrock-W methods of order 3 for partial differential algebraic equations of index 1, 2005.

115:      Level: intermediate

117: .seealso: TSROSW
118: M*/

120: /*MC
121:      TSROSWRA34PW2 - Four stage third order L-stable Rosenbrock-W scheme for PDAE of index 1.

123:      Only an approximate Jacobian is needed. By default, it is only recomputed once per step.

125:      This is strongly A-stable with R(infty) = 0. The embedded method of order 2 is strongly A-stable with R(infty) = 0.48.

127:      References:
128:      Rang and Angermann, New Rosenbrock-W methods of order 3 for partial differential algebraic equations of index 1, 2005.

130:      Level: intermediate

132: .seealso: TSROSW
133: M*/

135: /*MC
136:      TSROSWRODAS3 - Four stage third order L-stable Rosenbrock scheme

138:      By default, the Jacobian is only recomputed once per step.

140:      Both the third order and embedded second order methods are stiffly accurate and L-stable.

142:      References:
143:      Sandu et al, Benchmarking stiff ODE solvers for atmospheric chemistry problems II, Rosenbrock solvers, 1997.

145:      Level: intermediate

147: .seealso: TSROSW, TSROSWSANDU3
148: M*/

150: /*MC
151:      TSROSWSANDU3 - Three stage third order L-stable Rosenbrock scheme

153:      By default, the Jacobian is only recomputed once per step.

155:      The third order method is L-stable, but not stiffly accurate.
156:      The second order embedded method is strongly A-stable with R(infty) = 0.5.
157:      The internal stages are L-stable.
158:      This method is called ROS3 in the paper.

160:      References:
161:      Sandu et al, Benchmarking stiff ODE solvers for atmospheric chemistry problems II, Rosenbrock solvers, 1997.

163:      Level: intermediate

165: .seealso: TSROSW, TSROSWRODAS3
166: M*/

168: /*MC
169:      TSROSWASSP3P3S1C - A-stable Rosenbrock-W method with SSP explicit part, third order, three stages

171:      By default, the Jacobian is only recomputed once per step.

173:      A-stable SPP explicit order 3, 3 stages, CFL 1 (eff = 1/3)

175:      References:
176:      Emil Constantinescu

178:      Level: intermediate

180: .seealso: TSROSW, TSROSWLASSP3P4S2C, TSROSWLLSSP3P4S2C, SSP
181: M*/

183: /*MC
184:      TSROSWLASSP3P4S2C - L-stable Rosenbrock-W method with SSP explicit part, third order, four stages

186:      By default, the Jacobian is only recomputed once per step.

188:      L-stable (A-stable embedded) SPP explicit order 3, 4 stages, CFL 2 (eff = 1/2)

190:      References:
191:      Emil Constantinescu

193:      Level: intermediate

195: .seealso: TSROSW, TSROSWASSP3P3S1C, TSROSWLLSSP3P4S2C, TSSSP
196: M*/

198: /*MC
199:      TSROSWLLSSP3P4S2C - L-stable Rosenbrock-W method with SSP explicit part, third order, four stages

201:      By default, the Jacobian is only recomputed once per step.

203:      L-stable (L-stable embedded) SPP explicit order 3, 4 stages, CFL 2 (eff = 1/2)

205:      References:
206:      Emil Constantinescu

208:      Level: intermediate

210: .seealso: TSROSW, TSROSWASSP3P3S1C, TSROSWLASSP3P4S2C, TSSSP
211: M*/

215: /*@C
216:   TSRosWRegisterAll - Registers all of the additive Runge-Kutta implicit-explicit methods in TSRosW

218:   Not Collective, but should be called by all processes which will need the schemes to be registered

220:   Level: advanced

222: .keywords: TS, TSRosW, register, all

224: .seealso:  TSRosWRegisterDestroy()
225: @*/
226: PetscErrorCode TSRosWRegisterAll(void)
227: {

231:   if (TSRosWRegisterAllCalled) return(0);
232:   TSRosWRegisterAllCalled = PETSC_TRUE;

234:   {
235:     const PetscReal
236:       A = 0,
237:       Gamma = 1,
238:       b = 1,
239:       binterpt=1;

241:     TSRosWRegister(TSROSWTHETA1,1,1,&A,&Gamma,&b,PETSC_NULL,1,&binterpt);
242:   }

244:   {
245:     const PetscReal
246:       A= 0,
247:       Gamma = 0.5,
248:       b = 1,
249:       binterpt=1;
250:     TSRosWRegister(TSROSWTHETA2,2,1,&A,&Gamma,&b,PETSC_NULL,1,&binterpt);
251:   }

253:   {
254:     const PetscReal g = 1. + 1./PetscSqrtReal(2.0);
255:     const PetscReal
256:       A[2][2] = {{0,0}, {1.,0}},
257:       Gamma[2][2] = {{g,0}, {-2.*g,g}},
258:       b[2] = {0.5,0.5},
259:       b1[2] = {1.0,0.0};
260:       PetscReal  binterpt[2][2];
261:       binterpt[0][0]=g-1.0;
262:       binterpt[1][0]=2.0-g;
263:       binterpt[0][1]=g-1.5;
264:       binterpt[1][1]=1.5-g;
265:       TSRosWRegister(TSROSW2P,2,2,&A[0][0],&Gamma[0][0],b,b1,2,&binterpt[0][0]);
266:   }
267:   {
268:     const PetscReal g = 1. - 1./PetscSqrtReal(2.0);
269:     const PetscReal
270:       A[2][2] = {{0,0}, {1.,0}},
271:       Gamma[2][2] = {{g,0}, {-2.*g,g}},
272:       b[2] = {0.5,0.5},
273:       b1[2] = {1.0,0.0};
274:       PetscReal  binterpt[2][2];
275:       binterpt[0][0]=g-1.0;
276:       binterpt[1][0]=2.0-g;
277:       binterpt[0][1]=g-1.5;
278:       binterpt[1][1]=1.5-g;
279:     TSRosWRegister(TSROSW2M,2,2,&A[0][0],&Gamma[0][0],b,b1,2,&binterpt[0][0]);
280:   }
281:   {
282:     const PetscReal g = 7.8867513459481287e-01;
283:     PetscReal  binterpt[3][2];
284:     const PetscReal
285:       A[3][3] = {{0,0,0},
286:                  {1.5773502691896257e+00,0,0},
287:                  {0.5,0,0}},
288:       Gamma[3][3] = {{g,0,0},
289:                      {-1.5773502691896257e+00,g,0},
290:                      {-6.7075317547305480e-01,-1.7075317547305482e-01,g}},
291:       b[3] = {1.0566243270259355e-01,4.9038105676657971e-02,8.4529946162074843e-01},
292:       b2[3] = {-1.7863279495408180e-01,1./3.,8.4529946162074843e-01};

294:       binterpt[0][0]=-0.8094010767585034;
295:       binterpt[1][0]=-0.5;
296:       binterpt[2][0]=2.3094010767585034;
297:       binterpt[0][1]=0.9641016151377548;
298:       binterpt[1][1]=0.5;
299:       binterpt[2][1]=-1.4641016151377548;
300:       TSRosWRegister(TSROSWRA3PW,3,3,&A[0][0],&Gamma[0][0],b,b2,2,&binterpt[0][0]);
301:   }
302:   {
303:     PetscReal  binterpt[4][3];
304:     const PetscReal g = 4.3586652150845900e-01;
305:     const PetscReal
306:       A[4][4] = {{0,0,0,0},
307:                  {8.7173304301691801e-01,0,0,0},
308:                  {8.4457060015369423e-01,-1.1299064236484185e-01,0,0},
309:                  {0,0,1.,0}},
310:       Gamma[4][4] = {{g,0,0,0},
311:                      {-8.7173304301691801e-01,g,0,0},
312:                      {-9.0338057013044082e-01,5.4180672388095326e-02,g,0},
313:                      {2.4212380706095346e-01,-1.2232505839045147e+00,5.4526025533510214e-01,g}},
314:         b[4] = {2.4212380706095346e-01,-1.2232505839045147e+00,1.5452602553351020e+00,4.3586652150845900e-01},
315:           b2[4] = {3.7810903145819369e-01,-9.6042292212423178e-02,5.0000000000000000e-01,2.1793326075422950e-01};

317:           binterpt[0][0]=1.0564298455794094;
318:           binterpt[1][0]=2.296429974281067;
319:           binterpt[2][0]=-1.307599564525376;
320:           binterpt[3][0]=-1.045260255335102;
321:           binterpt[0][1]=-1.3864882699759573;
322:           binterpt[1][1]=-8.262611700275677;
323:           binterpt[2][1]=7.250979895056055;
324:           binterpt[3][1]=2.398120075195581;
325:           binterpt[0][2]=0.5721822314575016;
326:           binterpt[1][2]=4.742931142090097;
327:           binterpt[2][2]=-4.398120075195578;
328:           binterpt[3][2]=-0.9169932983520199;

330:           TSRosWRegister(TSROSWRA34PW2,3,4,&A[0][0],&Gamma[0][0],b,b2,3,&binterpt[0][0]);
331:   }
332:   {
333:     const PetscReal g = 0.5;
334:     const PetscReal
335:       A[4][4] = {{0,0,0,0},
336:                  {0,0,0,0},
337:                  {1.,0,0,0},
338:                  {0.75,-0.25,0.5,0}},
339:       Gamma[4][4] = {{g,0,0,0},
340:                      {1.,g,0,0},
341:                      {-0.25,-0.25,g,0},
342:                      {1./12,1./12,-2./3,g}},
343:       b[4] = {5./6,-1./6,-1./6,0.5},
344:       b2[4] = {0.75,-0.25,0.5,0};
345:     TSRosWRegister(TSROSWRODAS3,3,4,&A[0][0],&Gamma[0][0],b,b2,0,PETSC_NULL);
346:   }
347:   {
348:     const PetscReal g = 0.43586652150845899941601945119356;
349:     const PetscReal
350:       A[3][3] = {{0,0,0},
351:                  {g,0,0},
352:                  {g,0,0}},
353:       Gamma[3][3] = {{g,0,0},
354:                      {-0.19294655696029095575009695436041,g,0},
355:                      {0,1.74927148125794685173529749738960,g}},
356:       b[3] = {-0.75457412385404315829818998646589,1.94100407061964420292840123379419,-0.18642994676560104463021124732829},
357:       b2[3] = {-1.53358745784149585370766523913002,2.81745131148625772213931745457622,-0.28386385364476186843165221544619};

359:       PetscReal  binterpt[3][2];
360:       binterpt[0][0]=3.793692883777660870425141387941;
361:       binterpt[1][0]=-2.918692883777660870425141387941;
362:       binterpt[2][0]=0.125;
363:       binterpt[0][1]=-0.725741064379812106687651020584;
364:       binterpt[1][1]=0.559074397713145440020984353917;
365:       binterpt[2][1]=0.16666666666666666666666666666667;

367:       TSRosWRegister(TSROSWSANDU3,3,3,&A[0][0],&Gamma[0][0],b,b2,2,&binterpt[0][0]);
368:   }
369:   {
370:     const PetscReal s3 = PetscSqrtReal(3.),g = (3.0+s3)/6.0;
371:     const PetscReal
372:       A[3][3] = {{0,0,0},
373:                  {1,0,0},
374:                  {0.25,0.25,0}},
375:       Gamma[3][3] = {{0,0,0},
376:                      {(-3.0-s3)/6.0,g,0},
377:                      {(-3.0-s3)/24.0,(-3.0-s3)/8.0,g}},
378:         b[3] = {1./6.,1./6.,2./3.},
379:           b2[3] = {1./4.,1./4.,1./2.};

381:         PetscReal  binterpt[3][2];
382:         binterpt[0][0]=0.089316397477040902157517886164709;
383:         binterpt[1][0]=-0.91068360252295909784248211383529;
384:         binterpt[2][0]=1.8213672050459181956849642276706;
385:         binterpt[0][1]=0.077350269189625764509148780501957;
386:         binterpt[1][1]=1.077350269189625764509148780502;
387:         binterpt[2][1]=-1.1547005383792515290182975610039;
388:     TSRosWRegister(TSROSWASSP3P3S1C,3,3,&A[0][0],&Gamma[0][0],b,b2,2,&binterpt[0][0]);
389:   }

391:   {
392:     const PetscReal
393:       A[4][4] = {{0,0,0,0},
394:                  {1./2.,0,0,0},
395:                  {1./2.,1./2.,0,0},
396:                  {1./6.,1./6.,1./6.,0}},
397:       Gamma[4][4] = {{1./2.,0,0,0},
398:                      {0.0,1./4.,0,0},
399:                      {-2.,-2./3.,2./3.,0},
400:                      {1./2.,5./36.,-2./9,0}},
401:         b[4] = {1./6.,1./6.,1./6.,1./2.},
402:         b2[4] = {1./8.,3./4.,1./8.,0};
403:         PetscReal  binterpt[4][3];
404:         binterpt[0][0]=6.25;
405:         binterpt[1][0]=-30.25;
406:         binterpt[2][0]=1.75;
407:         binterpt[3][0]=23.25;
408:         binterpt[0][1]=-9.75;
409:         binterpt[1][1]=58.75;
410:         binterpt[2][1]=-3.25;
411:         binterpt[3][1]=-45.75;
412:         binterpt[0][2]=3.6666666666666666666666666666667;
413:         binterpt[1][2]=-28.333333333333333333333333333333;
414:         binterpt[2][2]=1.6666666666666666666666666666667;
415:         binterpt[3][2]=23.;
416:         TSRosWRegister(TSROSWLASSP3P4S2C,3,4,&A[0][0],&Gamma[0][0],b,b2,3,&binterpt[0][0]);
417:   }

419:   {
420:     const PetscReal
421:       A[4][4] = {{0,0,0,0},
422:                  {1./2.,0,0,0},
423:                  {1./2.,1./2.,0,0},
424:                  {1./6.,1./6.,1./6.,0}},
425:       Gamma[4][4] = {{1./2.,0,0,0},
426:                      {0.0,3./4.,0,0},
427:                      {-2./3.,-23./9.,2./9.,0},
428:                      {1./18.,65./108.,-2./27,0}},
429:         b[4] = {1./6.,1./6.,1./6.,1./2.},
430:         b2[4] = {3./16.,10./16.,3./16.,0};

432:         PetscReal  binterpt[4][3];
433:         binterpt[0][0]=1.6911764705882352941176470588235;
434:         binterpt[1][0]=3.6813725490196078431372549019608;
435:         binterpt[2][0]=0.23039215686274509803921568627451;
436:         binterpt[3][0]=-4.6029411764705882352941176470588;
437:         binterpt[0][1]=-0.95588235294117647058823529411765;
438:         binterpt[1][1]=-6.2401960784313725490196078431373;
439:         binterpt[2][1]=-0.31862745098039215686274509803922;
440:         binterpt[3][1]=7.5147058823529411764705882352941;
441:         binterpt[0][2]=-0.56862745098039215686274509803922;
442:         binterpt[1][2]=2.7254901960784313725490196078431;
443:         binterpt[2][2]=0.25490196078431372549019607843137;
444:         binterpt[3][2]=-2.4117647058823529411764705882353;
445:         TSRosWRegister(TSROSWLLSSP3P4S2C,3,4,&A[0][0],&Gamma[0][0],b,b2,3,&binterpt[0][0]);
446:   }

448:  {
449:    PetscReal A[4][4],Gamma[4][4],b[4],b2[4];
450:    PetscReal  binterpt[4][3];

452:    Gamma[0][0]=0.4358665215084589994160194475295062513822671686978816;
453:    Gamma[0][1]=0; Gamma[0][2]=0; Gamma[0][3]=0;
454:    Gamma[1][0]=-1.997527830934941248426324674704153457289527280554476;
455:    Gamma[1][1]=0.4358665215084589994160194475295062513822671686978816;
456:    Gamma[1][2]=0; Gamma[1][3]=0;
457:    Gamma[2][0]=-1.007948511795029620852002345345404191008352770119903;
458:    Gamma[2][1]=-0.004648958462629345562774289390054679806993396798458131;
459:    Gamma[2][2]=0.4358665215084589994160194475295062513822671686978816;
460:    Gamma[2][3]=0;
461:    Gamma[3][0]=-0.6685429734233467180451604600279552604364311322650783;
462:    Gamma[3][1]=0.6056625986449338476089525334450053439525178740492984;
463:    Gamma[3][2]=-0.9717899277217721234705114616271378792182450260943198;
464:    Gamma[3][3]=0;

466:    A[0][0]=0; A[0][1]=0; A[0][2]=0; A[0][3]=0;
467:    A[1][0]=0.8717330430169179988320388950590125027645343373957631;
468:    A[1][1]=0; A[1][2]=0; A[1][3]=0;
469:    A[2][0]=0.5275890119763004115618079766722914408876108660811028;
470:    A[2][1]=0.07241098802369958843819203208518599088698057726988732;
471:    A[2][2]=0; A[2][3]=0;
472:    A[3][0]=0.3990960076760701320627260685975778145384666450351314;
473:    A[3][1]=-0.4375576546135194437228463747348862825846903771419953;
474:    A[3][2]=1.038461646937449311660120300601880176655352737312713;
475:    A[3][3]=0;

477:    b[0]=0.1876410243467238251612921333138006734899663569186926;
478:    b[1]=-0.5952974735769549480478230473706443582188442040780541;
479:    b[2]=0.9717899277217721234705114616271378792182450260943198;
480:    b[3]=0.4358665215084589994160194475295062513822671686978816;

482:    b2[0]=0.2147402862233891404862383521089097657790734483804460;
483:    b2[1]=-0.4851622638849390928209050538171743017757490232519684;
484:    b2[2]=0.8687250025203875511662123688667549217531982787600080;
485:    b2[3]=0.4016969751411624011684543450940068201770721128357014;

487:    binterpt[0][0]=2.2565812720167954547104627844105;
488:    binterpt[1][0]=1.349166413351089573796243820819;
489:    binterpt[2][0]=-2.4695174540533503758652847586647;
490:    binterpt[3][0]=-0.13623023131453465264142184656474;
491:    binterpt[0][1]=-3.0826699111559187902922463354557;
492:    binterpt[1][1]=-2.4689115685996042534544925650515;
493:    binterpt[2][1]=5.7428279814696677152129332773553;
494:    binterpt[3][1]=-0.19124650171414467146619437684812;
495:    binterpt[0][2]=1.0137296634858471607430756831148;
496:    binterpt[1][2]=0.52444768167155973161042570784064;
497:    binterpt[2][2]=-2.3015205996945452158771370439586;
498:    binterpt[3][2]=0.76334325453713832352363565300308;

500:    TSRosWRegister(TSROSWARK3,3,4,&A[0][0],&Gamma[0][0],b,b2,3,&binterpt[0][0]);
501:   }

503:   return(0);
504: }

508: /*@C
509:    TSRosWRegisterDestroy - Frees the list of schemes that were registered by TSRosWRegister().

511:    Not Collective

513:    Level: advanced

515: .keywords: TSRosW, register, destroy
516: .seealso: TSRosWRegister(), TSRosWRegisterAll(), TSRosWRegisterDynamic()
517: @*/
518: PetscErrorCode TSRosWRegisterDestroy(void)
519: {
521:   RosWTableauLink link;

524:   while ((link = RosWTableauList)) {
525:     RosWTableau t = &link->tab;
526:     RosWTableauList = link->next;
527:     PetscFree5(t->A,t->Gamma,t->b,t->ASum,t->GammaSum);
528:     PetscFree5(t->At,t->bt,t->GammaInv,t->GammaZeroDiag,t->GammaExplicitCorr);
529:     PetscFree2(t->bembed,t->bembedt);
530:     PetscFree(t->binterpt);
531:     PetscFree(t->name);
532:     PetscFree(link);
533:   }
534:   TSRosWRegisterAllCalled = PETSC_FALSE;
535:   return(0);
536: }

540: /*@C
541:   TSRosWInitializePackage - This function initializes everything in the TSRosW package. It is called
542:   from PetscDLLibraryRegister() when using dynamic libraries, and on the first call to TSCreate_RosW()
543:   when using static libraries.

545:   Input Parameter:
546:   path - The dynamic library path, or PETSC_NULL

548:   Level: developer

550: .keywords: TS, TSRosW, initialize, package
551: .seealso: PetscInitialize()
552: @*/
553: PetscErrorCode TSRosWInitializePackage(const char path[])
554: {

558:   if (TSRosWPackageInitialized) return(0);
559:   TSRosWPackageInitialized = PETSC_TRUE;
560:   TSRosWRegisterAll();
561:   PetscRegisterFinalize(TSRosWFinalizePackage);
562:   return(0);
563: }

567: /*@C
568:   TSRosWFinalizePackage - This function destroys everything in the TSRosW package. It is
569:   called from PetscFinalize().

571:   Level: developer

573: .keywords: Petsc, destroy, package
574: .seealso: PetscFinalize()
575: @*/
576: PetscErrorCode TSRosWFinalizePackage(void)
577: {

581:   TSRosWPackageInitialized = PETSC_FALSE;
582:   TSRosWRegisterDestroy();
583:   return(0);
584: }

588: /*@C
589:    TSRosWRegister - register a Rosenbrock W scheme by providing the entries in the Butcher tableau and optionally embedded approximations and interpolation

591:    Not Collective, but the same schemes should be registered on all processes on which they will be used

593:    Input Parameters:
594: +  name - identifier for method
595: .  order - approximation order of method
596: .  s - number of stages, this is the dimension of the matrices below
597: .  A - Table of propagated stage coefficients (dimension s*s, row-major), strictly lower triangular
598: .  Gamma - Table of coefficients in implicit stage equations (dimension s*s, row-major), lower triangular with nonzero diagonal
599: .  b - Step completion table (dimension s)
600: -  bembed - Step completion table for a scheme of order one less (dimension s, PETSC_NULL if no embedded scheme is available)
601: .  pinterp - Order of the interpolation scheme, equal to the number of columns of binterpt 
602: .  binterpt - Coefficients of the interpolation formula (dimension s*pinterp)

604:    Notes:
605:    Several Rosenbrock W methods are provided, this function is only needed to create new methods.

607:    Level: advanced

609: .keywords: TS, register

611: .seealso: TSRosW
612: @*/
613: PetscErrorCode TSRosWRegister(const TSRosWType name,PetscInt order,PetscInt s,
614:                               const PetscReal A[],const PetscReal Gamma[],const PetscReal b[],const PetscReal bembed[],
615:                                  PetscInt pinterp,const PetscReal binterpt[])
616: {
618:   RosWTableauLink link;
619:   RosWTableau t;
620:   PetscInt i,j,k;
621:   PetscScalar *GammaInv;


630:   PetscMalloc(sizeof(*link),&link);
631:   PetscMemzero(link,sizeof(*link));
632:   t = &link->tab;
633:   PetscStrallocpy(name,&t->name);
634:   t->order = order;
635:   t->s = s;
636:   PetscMalloc5(s*s,PetscReal,&t->A,s*s,PetscReal,&t->Gamma,s,PetscReal,&t->b,s,PetscReal,&t->ASum,s,PetscReal,&t->GammaSum);
637:   PetscMalloc5(s*s,PetscReal,&t->At,s,PetscReal,&t->bt,s*s,PetscReal,&t->GammaInv,s,PetscBool,&t->GammaZeroDiag,s*s,PetscReal,&t->GammaExplicitCorr);
638:   PetscMemcpy(t->A,A,s*s*sizeof(A[0]));
639:   PetscMemcpy(t->Gamma,Gamma,s*s*sizeof(Gamma[0]));
640:   PetscMemcpy(t->GammaExplicitCorr,Gamma,s*s*sizeof(Gamma[0]));
641:   PetscMemcpy(t->b,b,s*sizeof(b[0]));
642:   if (bembed) {
643:     PetscMalloc2(s,PetscReal,&t->bembed,s,PetscReal,&t->bembedt);
644:     PetscMemcpy(t->bembed,bembed,s*sizeof(bembed[0]));
645:   }
646:   for (i=0; i<s; i++) {
647:     t->ASum[i] = 0;
648:     t->GammaSum[i] = 0;
649:     for (j=0; j<s; j++) {
650:       t->ASum[i] += A[i*s+j];
651:       t->GammaSum[i] += Gamma[i*s+j];
652:     }
653:   }
654:   PetscMalloc(s*s*sizeof(PetscScalar),&GammaInv); /* Need to use Scalar for inverse, then convert back to Real */
655:   for (i=0; i<s*s; i++) GammaInv[i] = Gamma[i];
656:   for (i=0; i<s; i++) {
657:     if (Gamma[i*s+i] == 0.0) {
658:       GammaInv[i*s+i] = 1.0;
659:       t->GammaZeroDiag[i] = PETSC_TRUE;
660:     } else {
661:       t->GammaZeroDiag[i] = PETSC_FALSE;
662:     }
663:   }

665:   switch (s) {
666:   case 1: GammaInv[0] = 1./GammaInv[0]; break;
667:   case 2: PetscKernel_A_gets_inverse_A_2(GammaInv,0); break;
668:   case 3: PetscKernel_A_gets_inverse_A_3(GammaInv,0); break;
669:   case 4: PetscKernel_A_gets_inverse_A_4(GammaInv,0); break;
670:   case 5: {
671:     PetscInt ipvt5[5];
672:     MatScalar work5[5*5];
673:     PetscKernel_A_gets_inverse_A_5(GammaInv,ipvt5,work5,0); break;
674:   }
675:   case 6: PetscKernel_A_gets_inverse_A_6(GammaInv,0); break;
676:   case 7: PetscKernel_A_gets_inverse_A_7(GammaInv,0); break;
677:   default: SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not implemented for %D stages",s);
678:   }
679:   for (i=0; i<s*s; i++) t->GammaInv[i] = PetscRealPart(GammaInv[i]);
680:   PetscFree(GammaInv);

682:   for (i=0; i<s; i++) {
683:     for (k=0; k<i+1; k++) {
684:       t->GammaExplicitCorr[i*s+k]=(t->GammaExplicitCorr[i*s+k])*(t->GammaInv[k*s+k]);
685:       for (j=k+1; j<i+1; j++) {
686:         t->GammaExplicitCorr[i*s+k]+=(t->GammaExplicitCorr[i*s+j])*(t->GammaInv[j*s+k]);
687:       }
688:     }
689:   }

691:   for (i=0; i<s; i++) {
692:     for (j=0; j<s; j++) {
693:       t->At[i*s+j] = 0;
694:       for (k=0; k<s; k++) {
695:         t->At[i*s+j] += t->A[i*s+k] * t->GammaInv[k*s+j];
696:       }
697:     }
698:     t->bt[i] = 0;
699:     for (j=0; j<s; j++) {
700:       t->bt[i] += t->b[j] * t->GammaInv[j*s+i];
701:     }
702:     if (bembed) {
703:       t->bembedt[i] = 0;
704:       for (j=0; j<s; j++) {
705:         t->bembedt[i] += t->bembed[j] * t->GammaInv[j*s+i];
706:       }
707:     }
708:   }
709:   t->ccfl = 1.0;                /* Fix this */

711:   t->pinterp = pinterp;
712:   PetscMalloc(s*pinterp*sizeof(binterpt[0]),&t->binterpt);
713:   PetscMemcpy(t->binterpt,binterpt,s*pinterp*sizeof(binterpt[0]));
714:   link->next = RosWTableauList;
715:   RosWTableauList = link;
716:   return(0);
717: }

721: /*
722:  The step completion formula is

724:  x1 = x0 + b^T Y

726:  where Y is the multi-vector of stages corrections. This function can be called before or after ts->vec_sol has been
727:  updated. Suppose we have a completion formula b and an embedded formula be of different order. We can write

729:  x1e = x0 + be^T Y
730:      = x1 - b^T Y + be^T Y
731:      = x1 + (be - b)^T Y

733:  so we can evaluate the method of different order even after the step has been optimistically completed.
734: */
735: static PetscErrorCode TSEvaluateStep_RosW(TS ts,PetscInt order,Vec X,PetscBool *done)
736: {
737:   TS_RosW        *ros = (TS_RosW*)ts->data;
738:   RosWTableau    tab  = ros->tableau;
739:   PetscScalar    *w = ros->work;
740:   PetscInt       i;

744:   if (order == tab->order) {
745:     if (ros->status == TS_STEP_INCOMPLETE) { /* Use standard completion formula */
746:       VecCopy(ts->vec_sol,X);
747:       for (i=0; i<tab->s; i++) w[i] = tab->bt[i];
748:       VecMAXPY(X,tab->s,w,ros->Y);
749:     } else {VecCopy(ts->vec_sol,X);}
750:     if (done) *done = PETSC_TRUE;
751:     return(0);
752:   } else if (order == tab->order-1) {
753:     if (!tab->bembedt) goto unavailable;
754:     if (ros->status == TS_STEP_INCOMPLETE) { /* Use embedded completion formula */
755:       VecCopy(ts->vec_sol,X);
756:       for (i=0; i<tab->s; i++) w[i] = tab->bembedt[i];
757:       VecMAXPY(X,tab->s,w,ros->Y);
758:     } else {                    /* Use rollback-and-recomplete formula (bembedt - bt) */
759:       for (i=0; i<tab->s; i++) w[i] = tab->bembedt[i] - tab->bt[i];
760:       VecCopy(ts->vec_sol,X);
761:       VecMAXPY(X,tab->s,w,ros->Y);
762:     }
763:     if (done) *done = PETSC_TRUE;
764:     return(0);
765:   }
766:   unavailable:
767:   if (done) *done = PETSC_FALSE;
768:   else SETERRQ3(((PetscObject)ts)->comm,PETSC_ERR_SUP,"Rosenbrock-W '%s' of order %D cannot evaluate step at order %D",tab->name,tab->order,order);
769:   return(0);
770: }

774: static PetscErrorCode TSStep_RosW(TS ts)
775: {
776:   TS_RosW         *ros = (TS_RosW*)ts->data;
777:   RosWTableau     tab  = ros->tableau;
778:   const PetscInt  s    = tab->s;
779:   const PetscReal *At  = tab->At,*Gamma = tab->Gamma,*ASum = tab->ASum,*GammaInv = tab->GammaInv;
780:   const PetscReal *GammaExplicitCorr = tab->GammaExplicitCorr;
781:   const PetscBool *GammaZeroDiag = tab->GammaZeroDiag;
782:   PetscScalar     *w   = ros->work;
783:   Vec             *Y   = ros->Y,Ydot = ros->Ydot,Zdot = ros->Zdot,Zstage = ros->Zstage;
784:   SNES            snes;
785:   TSAdapt         adapt;
786:   PetscInt        i,j,its,lits,reject,next_scheme;
787:   PetscReal       next_time_step;
788:   PetscBool       accept;
789:   PetscErrorCode  ierr;
790:   MatStructure    str;

793:   TSGetSNES(ts,&snes);
794:   next_time_step = ts->time_step;
795:   accept = PETSC_TRUE;
796:   ros->status = TS_STEP_INCOMPLETE;

798:   for (reject=0; reject<ts->max_reject && !ts->reason; reject++,ts->reject++) {
799:     const PetscReal h = ts->time_step;
800:     TSPreStep(ts);
801:     VecCopy(ts->vec_sol,ros->VecSolPrev);/*move this at the end*/
802:     for (i=0; i<s; i++) {
803:       ros->stage_time = ts->ptime + h*ASum[i];
804:       TSPreStage(ts,ros->stage_time);
805:       if (GammaZeroDiag[i]) {
806:         ros->stage_explicit = PETSC_TRUE;
807:         ros->shift = 1./h;
808:       } else {
809:         ros->stage_explicit = PETSC_FALSE;
810:         ros->shift = 1./(h*Gamma[i*s+i]);
811:       }

813:       VecCopy(ts->vec_sol,Zstage);
814:       for (j=0; j<i; j++) w[j] = At[i*s+j];
815:       VecMAXPY(Zstage,i,w,Y);

817:       for (j=0; j<i; j++) w[j] = 1./h * GammaInv[i*s+j];
818:       VecZeroEntries(Zdot);
819:       VecMAXPY(Zdot,i,w,Y);

821:       /* Initial guess taken from last stage */
822:       VecZeroEntries(Y[i]);

824:       if (!ros->stage_explicit) {
825:         if (!ros->recompute_jacobian && !i) {
826:           SNESSetLagJacobian(snes,-2); /* Recompute the Jacobian on this solve, but not again */
827:         }
828:         SNESSolve(snes,PETSC_NULL,Y[i]);
829:         SNESGetIterationNumber(snes,&its);
830:         SNESGetLinearSolveIterations(snes,&lits);
831:         ts->snes_its += its; ts->ksp_its += lits;
832:         TSGetAdapt(ts,&adapt);
833:         TSAdaptCheckStage(adapt,ts,&accept);
834:         if (!accept) goto reject_step;
835:       } else {
836:         Mat J,Jp;
837:         VecZeroEntries(Ydot); /* Evaluate Y[i]=G(t,Ydot=0,Zstage) */
838:         TSComputeIFunction(ts,ros->stage_time,Zstage,Ydot,Y[i],PETSC_FALSE);
839:         VecScale(Y[i],-1.0);
840:         VecAXPY(Y[i],-1.0,Zdot); /*Y[i]=F(Zstage)-Zdot[=GammaInv*Y]*/
841: 
842:         VecZeroEntries(Zstage); /* Zstage = GammaExplicitCorr[i,j] * Y[j] */
843:         for (j=0; j<i; j++) w[j] = GammaExplicitCorr[i*s+j];
844:         VecMAXPY(Zstage,i,w,Y);
845:         /*Y[i] += Y[i] + Jac*Zstage[=Jac*GammaExplicitCorr[i,j] * Y[j]] */
846:         str = SAME_NONZERO_PATTERN;
847:         TSGetIJacobian(ts,&J,&Jp,PETSC_NULL,PETSC_NULL);
848:         TSComputeIJacobian(ts,ros->stage_time,ts->vec_sol,Ydot,0,&J,&Jp,&str,PETSC_FALSE);
849:         MatMult(J,Zstage,Zdot);

851:         VecAXPY(Y[i],-1.0,Zdot);
852:         VecScale(Y[i],h);
853:         ts->ksp_its += 1;
854:       }
855:     }
856:     TSEvaluateStep(ts,tab->order,ts->vec_sol,PETSC_NULL);
857:     ros->status = TS_STEP_PENDING;

859:     /* Register only the current method as a candidate because we're not supporting multiple candidates yet. */
860:     TSGetAdapt(ts,&adapt);
861:     TSAdaptCandidatesClear(adapt);
862:     TSAdaptCandidateAdd(adapt,tab->name,tab->order,1,tab->ccfl,1.*tab->s,PETSC_TRUE);
863:     TSAdaptChoose(adapt,ts,ts->time_step,&next_scheme,&next_time_step,&accept);
864:     if (accept) {
865:       /* ignore next_scheme for now */
866:       ts->ptime += ts->time_step;
867:       ts->time_step = next_time_step;
868:       ts->steps++;
869:       ros->status = TS_STEP_COMPLETE;
870:       break;
871:     } else {                    /* Roll back the current step */
872:       for (i=0; i<s; i++) w[i] = -tab->bt[i];
873:       VecMAXPY(ts->vec_sol,s,w,Y);
874:       ts->time_step = next_time_step;
875:       ros->status = TS_STEP_INCOMPLETE;
876:     }
877:     reject_step: continue;
878:   }
879:   if (ros->status != TS_STEP_COMPLETE && !ts->reason) ts->reason = TS_DIVERGED_STEP_REJECTED;
880:   return(0);
881: }

885: static PetscErrorCode TSInterpolate_RosW(TS ts,PetscReal itime,Vec X)
886: {
887:   TS_RosW        *ros = (TS_RosW*)ts->data;
888:   PetscInt s = ros->tableau->s,pinterp = ros->tableau->pinterp,i,j;
889:   PetscReal h;
890:   PetscReal tt,t;
891:   PetscScalar *bt;
892:   const PetscReal *Bt = ros->tableau->binterpt;
894:   const PetscReal *GammaInv = ros->tableau->GammaInv;
895:   PetscScalar     *w   = ros->work;
896:   Vec             *Y   = ros->Y;

899:   if (!Bt) SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_SUP,"TSRosW %s does not have an interpolation formula",ros->tableau->name);

901:   switch (ros->status) {
902:   case TS_STEP_INCOMPLETE:
903:   case TS_STEP_PENDING:
904:     h = ts->time_step;
905:     t = (itime - ts->ptime)/h;
906:     break;
907:   case TS_STEP_COMPLETE:
908:     h = ts->time_step_prev;
909:     t = (itime - ts->ptime)/h + 1; /* In the interval [0,1] */
910:     break;
911:   default: SETERRQ(((PetscObject)ts)->comm,PETSC_ERR_PLIB,"Invalid TSStepStatus");
912:   }
913:   PetscMalloc(s*sizeof(bt[0]),&bt);
914:   for (i=0; i<s; i++) bt[i] = 0;
915:   for (j=0,tt=t; j<pinterp; j++,tt*=t) {
916:     for (i=0; i<s; i++) {
917:       bt[i] += Bt[i*pinterp+j] * tt;
918:     }
919:   }

921:   /* y(t+tt*h) = y(t) + Sum bt(tt) * GammaInv * Ydot */
922:   /*X<-0*/
923:   VecZeroEntries(X);
924: 
925:   /*X<- Sum bt_i * GammaInv(i,1:i) * Y(1:i) */
926:   for (j=0; j<s; j++)  w[j]=0;
927:   for (j=0; j<s; j++) {
928:     for (i=j; i<s; i++) {
929:       w[j] +=  bt[i]*GammaInv[i*s+j];
930:     }
931:   }
932:   VecMAXPY(X,i,w,Y);

934:   /*X<-y(t) + X*/
935:   VecAXPY(X,1.0,ros->VecSolPrev);
936: 
937:   PetscFree(bt);

939:   return(0);
940: }

942: /*------------------------------------------------------------*/
945: static PetscErrorCode TSReset_RosW(TS ts)
946: {
947:   TS_RosW        *ros = (TS_RosW*)ts->data;
948:   PetscInt       s;

952:   if (!ros->tableau) return(0);
953:    s = ros->tableau->s;
954:   VecDestroyVecs(s,&ros->Y);
955:   VecDestroy(&ros->Ydot);
956:   VecDestroy(&ros->Ystage);
957:   VecDestroy(&ros->Zdot);
958:   VecDestroy(&ros->Zstage);
959:   VecDestroy(&ros->VecSolPrev);
960:   PetscFree(ros->work);
961:   return(0);
962: }

966: static PetscErrorCode TSDestroy_RosW(TS ts)
967: {
968:   PetscErrorCode  ierr;

971:   TSReset_RosW(ts);
972:   PetscFree(ts->data);
973:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWGetType_C","",PETSC_NULL);
974:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWSetType_C","",PETSC_NULL);
975:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWSetRecomputeJacobian_C","",PETSC_NULL);
976:   return(0);
977: }

979: /*
980:   This defines the nonlinear equation that is to be solved with SNES
981:   G(U) = F[t0+Theta*dt, U, (U-U0)*shift] = 0
982: */
985: static PetscErrorCode SNESTSFormFunction_RosW(SNES snes,Vec X,Vec F,TS ts)
986: {
987:   TS_RosW        *ros = (TS_RosW*)ts->data;

991:   VecWAXPY(ros->Ydot,ros->shift,X,ros->Zdot); /* Ydot = shift*X + Zdot */
992:   VecWAXPY(ros->Ystage,1.0,X,ros->Zstage);    /* Ystage = X + Zstage */
993:   TSComputeIFunction(ts,ros->stage_time,ros->Ystage,ros->Ydot,F,PETSC_FALSE);
994:   return(0);
995: }

999: static PetscErrorCode SNESTSFormJacobian_RosW(SNES snes,Vec X,Mat *A,Mat *B,MatStructure *str,TS ts)
1000: {
1001:   TS_RosW        *ros = (TS_RosW*)ts->data;

1005:   /* ros->Ydot and ros->Ystage have already been computed in SNESTSFormFunction_RosW (SNES guarantees this) */
1006:   TSComputeIJacobian(ts,ros->stage_time,ros->Ystage,ros->Ydot,ros->shift,A,B,str,PETSC_TRUE);
1007:   return(0);
1008: }

1012: static PetscErrorCode TSSetUp_RosW(TS ts)
1013: {
1014:   TS_RosW        *ros = (TS_RosW*)ts->data;
1015:   RosWTableau    tab  = ros->tableau;
1016:   PetscInt       s    = tab->s;

1020:   if (!ros->tableau) {
1021:     TSRosWSetType(ts,TSRosWDefault);
1022:   }
1023:   VecDuplicateVecs(ts->vec_sol,s,&ros->Y);
1024:   VecDuplicate(ts->vec_sol,&ros->Ydot);
1025:   VecDuplicate(ts->vec_sol,&ros->Ystage);
1026:   VecDuplicate(ts->vec_sol,&ros->Zdot);
1027:   VecDuplicate(ts->vec_sol,&ros->Zstage);
1028:   VecDuplicate(ts->vec_sol,&ros->VecSolPrev);
1029:   PetscMalloc(s*sizeof(ros->work[0]),&ros->work);
1030:   return(0);
1031: }
1032: /*------------------------------------------------------------*/

1036: static PetscErrorCode TSSetFromOptions_RosW(TS ts)
1037: {
1038:   TS_RosW        *ros = (TS_RosW*)ts->data;
1040:   char           rostype[256];

1043:   PetscOptionsHead("RosW ODE solver options");
1044:   {
1045:     RosWTableauLink link;
1046:     PetscInt count,choice;
1047:     PetscBool flg;
1048:     const char **namelist;
1049:     SNES snes;

1051:     PetscStrncpy(rostype,TSRosWDefault,sizeof rostype);
1052:     for (link=RosWTableauList,count=0; link; link=link->next,count++) ;
1053:     PetscMalloc(count*sizeof(char*),&namelist);
1054:     for (link=RosWTableauList,count=0; link; link=link->next,count++) namelist[count] = link->tab.name;
1055:     PetscOptionsEList("-ts_rosw_type","Family of Rosenbrock-W method","TSRosWSetType",(const char*const*)namelist,count,rostype,&choice,&flg);
1056:     TSRosWSetType(ts,flg ? namelist[choice] : rostype);
1057:     PetscFree(namelist);

1059:     PetscOptionsBool("-ts_rosw_recompute_jacobian","Recompute the Jacobian at each stage","TSRosWSetRecomputeJacobian",ros->recompute_jacobian,&ros->recompute_jacobian,PETSC_NULL);

1061:     /* Rosenbrock methods are linearly implicit, so set that unless the user has specifically asked for something else */
1062:     TSGetSNES(ts,&snes);
1063:     if (!((PetscObject)snes)->type_name) {
1064:       SNESSetType(snes,SNESKSPONLY);
1065:     }
1066:     SNESSetFromOptions(snes);
1067:   }
1068:   PetscOptionsTail();
1069:   return(0);
1070: }

1074: static PetscErrorCode PetscFormatRealArray(char buf[],size_t len,const char *fmt,PetscInt n,const PetscReal x[])
1075: {
1077:   PetscInt i;
1078:   size_t left,count;
1079:   char *p;

1082:   for (i=0,p=buf,left=len; i<n; i++) {
1083:     PetscSNPrintfCount(p,left,fmt,&count,x[i]);
1084:     if (count >= left) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Insufficient space in buffer");
1085:     left -= count;
1086:     p += count;
1087:     *p++ = ' ';
1088:   }
1089:   p[i ? 0 : -1] = 0;
1090:   return(0);
1091: }

1095: static PetscErrorCode TSView_RosW(TS ts,PetscViewer viewer)
1096: {
1097:   TS_RosW        *ros = (TS_RosW*)ts->data;
1098:   RosWTableau    tab  = ros->tableau;
1099:   PetscBool      iascii;

1103:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1104:   if (iascii) {
1105:     const TSRosWType rostype;
1106:     PetscInt i;
1107:     PetscReal abscissa[512];
1108:     char buf[512];
1109:     TSRosWGetType(ts,&rostype);
1110:     PetscViewerASCIIPrintf(viewer,"  Rosenbrock-W %s\n",rostype);
1111:     PetscFormatRealArray(buf,sizeof buf,"% 8.6f",tab->s,tab->ASum);
1112:     PetscViewerASCIIPrintf(viewer,"  Abscissa of A       = %s\n",buf);
1113:     for (i=0; i<tab->s; i++) abscissa[i] = tab->ASum[i] + tab->Gamma[i];
1114:     PetscFormatRealArray(buf,sizeof buf,"% 8.6f",tab->s,abscissa);
1115:     PetscViewerASCIIPrintf(viewer,"  Abscissa of A+Gamma = %s\n",buf);
1116:   }
1117:   SNESView(ts->snes,viewer);
1118:   return(0);
1119: }

1123: /*@C
1124:   TSRosWSetType - Set the type of Rosenbrock-W scheme

1126:   Logically collective

1128:   Input Parameter:
1129: +  ts - timestepping context
1130: -  rostype - type of Rosenbrock-W scheme

1132:   Level: beginner

1134: .seealso: TSRosWGetType(), TSROSW, TSROSW2M, TSROSW2P, TSROSWRA3PW, TSROSWRA34PW2, TSROSWRODAS3, TSROSWSANDU3, TSROSWASSP3P3S1C, TSROSWLASSP3P4S2C, TSROSWLLSSP3P4S2C, TSROSWARK3
1135: @*/
1136: PetscErrorCode TSRosWSetType(TS ts,const TSRosWType rostype)
1137: {

1142:   PetscTryMethod(ts,"TSRosWSetType_C",(TS,const TSRosWType),(ts,rostype));
1143:   return(0);
1144: }

1148: /*@C
1149:   TSRosWGetType - Get the type of Rosenbrock-W scheme

1151:   Logically collective

1153:   Input Parameter:
1154: .  ts - timestepping context

1156:   Output Parameter:
1157: .  rostype - type of Rosenbrock-W scheme

1159:   Level: intermediate

1161: .seealso: TSRosWGetType()
1162: @*/
1163: PetscErrorCode TSRosWGetType(TS ts,const TSRosWType *rostype)
1164: {

1169:   PetscUseMethod(ts,"TSRosWGetType_C",(TS,const TSRosWType*),(ts,rostype));
1170:   return(0);
1171: }

1175: /*@C
1176:   TSRosWSetRecomputeJacobian - Set whether to recompute the Jacobian at each stage. The default is to update the Jacobian once per step.

1178:   Logically collective

1180:   Input Parameter:
1181: +  ts - timestepping context
1182: -  flg - PETSC_TRUE to recompute the Jacobian at each stage

1184:   Level: intermediate

1186: .seealso: TSRosWGetType()
1187: @*/
1188: PetscErrorCode TSRosWSetRecomputeJacobian(TS ts,PetscBool flg)
1189: {

1194:   PetscTryMethod(ts,"TSRosWSetRecomputeJacobian_C",(TS,PetscBool),(ts,flg));
1195:   return(0);
1196: }

1198: EXTERN_C_BEGIN
1201: PetscErrorCode  TSRosWGetType_RosW(TS ts,const TSRosWType *rostype)
1202: {
1203:   TS_RosW        *ros = (TS_RosW*)ts->data;

1207:   if (!ros->tableau) {TSRosWSetType(ts,TSRosWDefault);}
1208:   *rostype = ros->tableau->name;
1209:   return(0);
1210: }
1213: PetscErrorCode  TSRosWSetType_RosW(TS ts,const TSRosWType rostype)
1214: {
1215:   TS_RosW         *ros = (TS_RosW*)ts->data;
1216:   PetscErrorCode  ierr;
1217:   PetscBool       match;
1218:   RosWTableauLink link;

1221:   if (ros->tableau) {
1222:     PetscStrcmp(ros->tableau->name,rostype,&match);
1223:     if (match) return(0);
1224:   }
1225:   for (link = RosWTableauList; link; link=link->next) {
1226:     PetscStrcmp(link->tab.name,rostype,&match);
1227:     if (match) {
1228:       TSReset_RosW(ts);
1229:       ros->tableau = &link->tab;
1230:       return(0);
1231:     }
1232:   }
1233:   SETERRQ1(((PetscObject)ts)->comm,PETSC_ERR_ARG_UNKNOWN_TYPE,"Could not find '%s'",rostype);
1234:   return(0);
1235: }

1239: PetscErrorCode  TSRosWSetRecomputeJacobian_RosW(TS ts,PetscBool flg)
1240: {
1241:   TS_RosW *ros = (TS_RosW*)ts->data;

1244:   ros->recompute_jacobian = flg;
1245:   return(0);
1246: }
1247: EXTERN_C_END

1249: /* ------------------------------------------------------------ */
1250: /*MC
1251:       TSROSW - ODE solver using Rosenbrock-W schemes

1253:   These methods are intended for problems with well-separated time scales, especially when a slow scale is strongly
1254:   nonlinear such that it is expensive to solve with a fully implicit method. The user should provide the stiff part
1255:   of the equation using TSSetIFunction() and the non-stiff part with TSSetRHSFunction().

1257:   Notes:
1258:   This method currently only works with autonomous ODE and DAE.

1260:   Developer notes:
1261:   Rosenbrock-W methods are typically specified for autonomous ODE

1263: $  xdot = f(x)

1265:   by the stage equations

1267: $  k_i = h f(x_0 + sum_j alpha_ij k_j) + h J sum_j gamma_ij k_j

1269:   and step completion formula

1271: $  x_1 = x_0 + sum_j b_j k_j

1273:   with step size h and coefficients alpha_ij, gamma_ij, and b_i. Implementing the method in this form would require f(x)
1274:   and the Jacobian J to be available, in addition to the shifted matrix I - h gamma_ii J. Following Hairer and Wanner,
1275:   we define new variables for the stage equations

1277: $  y_i = gamma_ij k_j

1279:   The k_j can be recovered because Gamma is invertible. Let C be the lower triangular part of Gamma^{-1} and define

1281: $  A = Alpha Gamma^{-1}, bt^T = b^T Gamma^{-i}

1283:   to rewrite the method as

1285: $  [M/(h gamma_ii) - J] y_i = f(x_0 + sum_j a_ij y_j) + M sum_j (c_ij/h) y_j
1286: $  x_1 = x_0 + sum_j bt_j y_j

1288:    where we have introduced the mass matrix M. Continue by defining

1290: $  ydot_i = 1/(h gamma_ii) y_i - sum_j (c_ij/h) y_j

1292:    or, more compactly in tensor notation

1294: $  Ydot = 1/h (Gamma^{-1} \otimes I) Y .

1296:    Note that Gamma^{-1} is lower triangular. With this definition of Ydot in terms of known quantities and the current
1297:    stage y_i, the stage equations reduce to performing one Newton step (typically with a lagged Jacobian) on the
1298:    equation

1300: $  g(x_0 + sum_j a_ij y_j + y_i, ydot_i) = 0

1302:    with initial guess y_i = 0.

1304:   Level: beginner

1306: .seealso:  TSCreate(), TS, TSSetType(), TSRosWSetType(), TSRosWRegister()

1308: M*/
1309: EXTERN_C_BEGIN
1312: PetscErrorCode  TSCreate_RosW(TS ts)
1313: {
1314:   TS_RosW        *ros;

1318: #if !defined(PETSC_USE_DYNAMIC_LIBRARIES)
1319:   TSRosWInitializePackage(PETSC_NULL);
1320: #endif

1322:   ts->ops->reset          = TSReset_RosW;
1323:   ts->ops->destroy        = TSDestroy_RosW;
1324:   ts->ops->view           = TSView_RosW;
1325:   ts->ops->setup          = TSSetUp_RosW;
1326:   ts->ops->step           = TSStep_RosW;
1327:   ts->ops->interpolate    = TSInterpolate_RosW;
1328:   ts->ops->evaluatestep   = TSEvaluateStep_RosW;
1329:   ts->ops->setfromoptions = TSSetFromOptions_RosW;
1330:   ts->ops->snesfunction   = SNESTSFormFunction_RosW;
1331:   ts->ops->snesjacobian   = SNESTSFormJacobian_RosW;

1333:   PetscNewLog(ts,TS_RosW,&ros);
1334:   ts->data = (void*)ros;

1336:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWGetType_C","TSRosWGetType_RosW",TSRosWGetType_RosW);
1337:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWSetType_C","TSRosWSetType_RosW",TSRosWSetType_RosW);
1338:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSRosWSetRecomputeJacobian_C","TSRosWSetRecomputeJacobian_RosW",TSRosWSetRecomputeJacobian_RosW);
1339:   return(0);
1340: }
1341: EXTERN_C_END