Actual source code: da3.c
petsc-3.9.4 2018-09-11
2: /*
3: Code for manipulating distributed regular 3d arrays in parallel.
4: File created by Peter Mell 7/14/95
5: */
7: #include <petsc/private/dmdaimpl.h>
9: #include <petscdraw.h>
10: static PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
11: {
13: PetscMPIInt rank;
14: PetscBool iascii,isdraw,isglvis,isbinary;
15: DM_DA *dd = (DM_DA*)da->data;
16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
17: PetscBool ismatlab;
18: #endif
21: MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);
23: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
24: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
25: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERGLVIS,&isglvis);
26: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
28: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
29: #endif
30: if (iascii) {
31: PetscViewerFormat format;
33: PetscViewerASCIIPushSynchronized(viewer);
34: PetscViewerGetFormat(viewer, &format);
35: if (format == PETSC_VIEWER_LOAD_BALANCE) {
36: PetscInt i,nmax = 0,nmin = PETSC_MAX_INT,navg = 0,*nz,nzlocal;
37: DMDALocalInfo info;
38: PetscMPIInt size;
39: MPI_Comm_size(PetscObjectComm((PetscObject)da),&size);
40: DMDAGetLocalInfo(da,&info);
41: nzlocal = info.xm*info.ym*info.zm;
42: PetscMalloc1(size,&nz);
43: MPI_Allgather(&nzlocal,1,MPIU_INT,nz,1,MPIU_INT,PetscObjectComm((PetscObject)da));
44: for (i=0; i<(PetscInt)size; i++) {
45: nmax = PetscMax(nmax,nz[i]);
46: nmin = PetscMin(nmin,nz[i]);
47: navg += nz[i];
48: }
49: PetscFree(nz);
50: navg = navg/size;
51: PetscViewerASCIIPrintf(viewer," Load Balance - Grid Points: Min %D avg %D max %D\n",nmin,navg,nmax);
52: return(0);
53: }
54: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
55: DMDALocalInfo info;
56: DMDAGetLocalInfo(da,&info);
57: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
58: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
59: info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
60: #if !defined(PETSC_USE_COMPLEX)
61: if (da->coordinates) {
62: PetscInt last;
63: const PetscReal *coors;
64: VecGetArrayRead(da->coordinates,&coors);
65: VecGetLocalSize(da->coordinates,&last);
66: last = last - 3;
67: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
68: VecRestoreArrayRead(da->coordinates,&coors);
69: }
70: #endif
71: PetscViewerFlush(viewer);
72: PetscViewerASCIIPopSynchronized(viewer);
73: } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
74: DMView_DA_GLVis(da,viewer);
75: } else {
76: DMView_DA_VTK(da,viewer);
77: }
78: } else if (isdraw) {
79: PetscDraw draw;
80: PetscReal ymin = -1.0,ymax = (PetscReal)dd->N;
81: PetscReal xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
82: PetscInt k,plane,base;
83: const PetscInt *idx;
84: char node[10];
85: PetscBool isnull;
87: PetscViewerDrawGetDraw(viewer,0,&draw);
88: PetscDrawIsNull(draw,&isnull);
89: if (isnull) return(0);
91: PetscDrawCheckResizedWindow(draw);
92: PetscDrawClear(draw);
93: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
95: PetscDrawCollectiveBegin(draw);
96: /* first processor draw all node lines */
97: if (!rank) {
98: for (k=0; k<dd->P; k++) {
99: ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
100: for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
101: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
102: }
103: xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
104: for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
105: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
106: }
107: }
108: }
109: PetscDrawCollectiveEnd(draw);
110: PetscDrawFlush(draw);
111: PetscDrawPause(draw);
113: PetscDrawCollectiveBegin(draw);
114: /*Go through and draw for each plane*/
115: for (k=0; k<dd->P; k++) {
116: if ((k >= dd->zs) && (k < dd->ze)) {
117: /* draw my box */
118: ymin = dd->ys;
119: ymax = dd->ye - 1;
120: xmin = dd->xs/dd->w + (dd->M+1)*k;
121: xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;
123: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
124: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
125: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
126: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
128: xmin = dd->xs/dd->w;
129: xmax =(dd->xe-1)/dd->w;
131: /* identify which processor owns the box */
132: PetscSNPrintf(node,sizeof(node),"%d",(int)rank);
133: PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
134: /* put in numbers*/
135: base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
136: for (y=ymin; y<=ymax; y++) {
137: for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
138: PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
139: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
140: }
141: }
143: }
144: }
145: PetscDrawCollectiveEnd(draw);
146: PetscDrawFlush(draw);
147: PetscDrawPause(draw);
149: PetscDrawCollectiveBegin(draw);
150: for (k=0-dd->s; k<dd->P+dd->s; k++) {
151: /* Go through and draw for each plane */
152: if ((k >= dd->Zs) && (k < dd->Ze)) {
153: /* overlay ghost numbers, useful for error checking */
154: base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
155: ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
156: plane=k;
157: /* Keep z wrap around points on the drawing */
158: if (k<0) plane=dd->P+k;
159: if (k>=dd->P) plane=k-dd->P;
160: ymin = dd->Ys; ymax = dd->Ye;
161: xmin = (dd->M+1)*plane*dd->w;
162: xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
163: for (y=ymin; y<ymax; y++) {
164: for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
165: sprintf(node,"%d",(int)(idx[base]));
166: ycoord = y;
167: /*Keep y wrap around points on drawing */
168: if (y<0) ycoord = dd->N+y;
169: if (y>=dd->N) ycoord = y-dd->N;
170: xcoord = x; /* Keep x wrap points on drawing */
171: if (x<xmin) xcoord = xmax - (xmin-x);
172: if (x>=xmax) xcoord = xmin + (x-xmax);
173: PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
174: base++;
175: }
176: }
177: ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
178: }
179: }
180: PetscDrawCollectiveEnd(draw);
181: PetscDrawFlush(draw);
182: PetscDrawPause(draw);
183: PetscDrawSave(draw);
184: } else if (isglvis) {
185: DMView_DA_GLVis(da,viewer);
186: } else if (isbinary) {
187: DMView_DA_Binary(da,viewer);
188: #if defined(PETSC_HAVE_MATLAB_ENGINE)
189: } else if (ismatlab) {
190: DMView_DA_Matlab(da,viewer);
191: #endif
192: }
193: return(0);
194: }
196: PetscErrorCode DMSetUp_DA_3D(DM da)
197: {
198: DM_DA *dd = (DM_DA*)da->data;
199: const PetscInt M = dd->M;
200: const PetscInt N = dd->N;
201: const PetscInt P = dd->P;
202: PetscInt m = dd->m;
203: PetscInt n = dd->n;
204: PetscInt p = dd->p;
205: const PetscInt dof = dd->w;
206: const PetscInt s = dd->s;
207: DMBoundaryType bx = dd->bx;
208: DMBoundaryType by = dd->by;
209: DMBoundaryType bz = dd->bz;
210: DMDAStencilType stencil_type = dd->stencil_type;
211: PetscInt *lx = dd->lx;
212: PetscInt *ly = dd->ly;
213: PetscInt *lz = dd->lz;
214: MPI_Comm comm;
215: PetscMPIInt rank,size;
216: PetscInt xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
217: PetscInt Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
218: PetscInt left,right,up,down,bottom,top,i,j,k,*idx,nn;
219: PetscInt n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
220: PetscInt n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
221: PetscInt *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
222: PetscInt sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
223: PetscInt sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
224: PetscInt sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
225: Vec local,global;
226: VecScatter gtol;
227: IS to,from;
228: PetscBool twod;
229: PetscErrorCode ierr;
233: if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
234: if ((bx == DM_BOUNDARY_MIRROR) || (by == DM_BOUNDARY_MIRROR) || (bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary not supported yet in 3d");
235: PetscObjectGetComm((PetscObject) da, &comm);
236: #if !defined(PETSC_USE_64BIT_INDICES)
237: if (((PetscInt64) M)*((PetscInt64) N)*((PetscInt64) P)*((PetscInt64) dof) > (PetscInt64) PETSC_MPI_INT_MAX) SETERRQ3(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D (dof) is too large for 32 bit indices",M,N,dof);
238: #endif
240: MPI_Comm_size(comm,&size);
241: MPI_Comm_rank(comm,&rank);
243: if (m != PETSC_DECIDE) {
244: if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
245: else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
246: }
247: if (n != PETSC_DECIDE) {
248: if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
249: else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
250: }
251: if (p != PETSC_DECIDE) {
252: if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
253: else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
254: }
255: if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);
257: /* Partition the array among the processors */
258: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
259: m = size/(n*p);
260: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
261: n = size/(m*p);
262: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
263: p = size/(m*n);
264: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
265: /* try for squarish distribution */
266: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
267: if (!m) m = 1;
268: while (m > 0) {
269: n = size/(m*p);
270: if (m*n*p == size) break;
271: m--;
272: }
273: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
274: if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
275: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
276: /* try for squarish distribution */
277: m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
278: if (!m) m = 1;
279: while (m > 0) {
280: p = size/(m*n);
281: if (m*n*p == size) break;
282: m--;
283: }
284: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
285: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
286: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
287: /* try for squarish distribution */
288: n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
289: if (!n) n = 1;
290: while (n > 0) {
291: p = size/(m*n);
292: if (m*n*p == size) break;
293: n--;
294: }
295: if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
296: if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
297: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
298: /* try for squarish distribution */
299: n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
300: if (!n) n = 1;
301: while (n > 0) {
302: pm = size/n;
303: if (n*pm == size) break;
304: n--;
305: }
306: if (!n) n = 1;
307: m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
308: if (!m) m = 1;
309: while (m > 0) {
310: p = size/(m*n);
311: if (m*n*p == size) break;
312: m--;
313: }
314: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
315: } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
317: if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
318: if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
319: if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
320: if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);
322: /*
323: Determine locally owned region
324: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
325: */
327: if (!lx) {
328: PetscMalloc1(m, &dd->lx);
329: lx = dd->lx;
330: for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
331: }
332: x = lx[rank % m];
333: xs = 0;
334: for (i=0; i<(rank%m); i++) xs += lx[i];
335: if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
337: if (!ly) {
338: PetscMalloc1(n, &dd->ly);
339: ly = dd->ly;
340: for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
341: }
342: y = ly[(rank % (m*n))/m];
343: if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);
345: ys = 0;
346: for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];
348: if (!lz) {
349: PetscMalloc1(p, &dd->lz);
350: lz = dd->lz;
351: for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
352: }
353: z = lz[rank/(m*n)];
355: /* note this is different than x- and y-, as we will handle as an important special
356: case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z. This is to deal with 2D problems
357: in a 3D code. Additional code for this case is noted with "2d case" comments */
358: twod = PETSC_FALSE;
359: if (P == 1) twod = PETSC_TRUE;
360: else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
361: zs = 0;
362: for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
363: ye = ys + y;
364: xe = xs + x;
365: ze = zs + z;
367: /* determine ghost region (Xs) and region scattered into (IXs) */
368: if (xs-s > 0) {
369: Xs = xs - s; IXs = xs - s;
370: } else {
371: if (bx) Xs = xs - s;
372: else Xs = 0;
373: IXs = 0;
374: }
375: if (xe+s <= M) {
376: Xe = xe + s; IXe = xe + s;
377: } else {
378: if (bx) {
379: Xs = xs - s; Xe = xe + s;
380: } else Xe = M;
381: IXe = M;
382: }
384: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
385: IXs = xs - s;
386: IXe = xe + s;
387: Xs = xs - s;
388: Xe = xe + s;
389: }
391: if (ys-s > 0) {
392: Ys = ys - s; IYs = ys - s;
393: } else {
394: if (by) Ys = ys - s;
395: else Ys = 0;
396: IYs = 0;
397: }
398: if (ye+s <= N) {
399: Ye = ye + s; IYe = ye + s;
400: } else {
401: if (by) Ye = ye + s;
402: else Ye = N;
403: IYe = N;
404: }
406: if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
407: IYs = ys - s;
408: IYe = ye + s;
409: Ys = ys - s;
410: Ye = ye + s;
411: }
413: if (zs-s > 0) {
414: Zs = zs - s; IZs = zs - s;
415: } else {
416: if (bz) Zs = zs - s;
417: else Zs = 0;
418: IZs = 0;
419: }
420: if (ze+s <= P) {
421: Ze = ze + s; IZe = ze + s;
422: } else {
423: if (bz) Ze = ze + s;
424: else Ze = P;
425: IZe = P;
426: }
428: if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
429: IZs = zs - s;
430: IZe = ze + s;
431: Zs = zs - s;
432: Ze = ze + s;
433: }
435: /* Resize all X parameters to reflect w */
436: s_x = s;
437: s_y = s;
438: s_z = s;
440: /* determine starting point of each processor */
441: nn = x*y*z;
442: PetscMalloc2(size+1,&bases,size,&ldims);
443: MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
444: bases[0] = 0;
445: for (i=1; i<=size; i++) bases[i] = ldims[i-1];
446: for (i=1; i<=size; i++) bases[i] += bases[i-1];
447: base = bases[rank]*dof;
449: /* allocate the base parallel and sequential vectors */
450: dd->Nlocal = x*y*z*dof;
451: VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
452: dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
453: VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);
455: /* generate global to local vector scatter and local to global mapping*/
457: /* global to local must include ghost points within the domain,
458: but not ghost points outside the domain that aren't periodic */
459: PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
460: if (stencil_type == DMDA_STENCIL_BOX) {
461: left = IXs - Xs; right = left + (IXe-IXs);
462: bottom = IYs - Ys; top = bottom + (IYe-IYs);
463: down = IZs - Zs; up = down + (IZe-IZs);
464: count = 0;
465: for (i=down; i<up; i++) {
466: for (j=bottom; j<top; j++) {
467: for (k=left; k<right; k++) {
468: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
469: }
470: }
471: }
472: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
473: } else {
474: /* This is way ugly! We need to list the funny cross type region */
475: left = xs - Xs; right = left + x;
476: bottom = ys - Ys; top = bottom + y;
477: down = zs - Zs; up = down + z;
478: count = 0;
479: /* the bottom chunck */
480: for (i=(IZs-Zs); i<down; i++) {
481: for (j=bottom; j<top; j++) {
482: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
483: }
484: }
485: /* the middle piece */
486: for (i=down; i<up; i++) {
487: /* front */
488: for (j=(IYs-Ys); j<bottom; j++) {
489: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
490: }
491: /* middle */
492: for (j=bottom; j<top; j++) {
493: for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
494: }
495: /* back */
496: for (j=top; j<top+IYe-ye; j++) {
497: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
498: }
499: }
500: /* the top piece */
501: for (i=up; i<up+IZe-ze; i++) {
502: for (j=bottom; j<top; j++) {
503: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
504: }
505: }
506: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
507: }
509: /* determine who lies on each side of use stored in n24 n25 n26
510: n21 n22 n23
511: n18 n19 n20
513: n15 n16 n17
514: n12 n14
515: n9 n10 n11
517: n6 n7 n8
518: n3 n4 n5
519: n0 n1 n2
520: */
522: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
523: /* Assume Nodes are Internal to the Cube */
524: n0 = rank - m*n - m - 1;
525: n1 = rank - m*n - m;
526: n2 = rank - m*n - m + 1;
527: n3 = rank - m*n -1;
528: n4 = rank - m*n;
529: n5 = rank - m*n + 1;
530: n6 = rank - m*n + m - 1;
531: n7 = rank - m*n + m;
532: n8 = rank - m*n + m + 1;
534: n9 = rank - m - 1;
535: n10 = rank - m;
536: n11 = rank - m + 1;
537: n12 = rank - 1;
538: n14 = rank + 1;
539: n15 = rank + m - 1;
540: n16 = rank + m;
541: n17 = rank + m + 1;
543: n18 = rank + m*n - m - 1;
544: n19 = rank + m*n - m;
545: n20 = rank + m*n - m + 1;
546: n21 = rank + m*n - 1;
547: n22 = rank + m*n;
548: n23 = rank + m*n + 1;
549: n24 = rank + m*n + m - 1;
550: n25 = rank + m*n + m;
551: n26 = rank + m*n + m + 1;
553: /* Assume Pieces are on Faces of Cube */
555: if (xs == 0) { /* First assume not corner or edge */
556: n0 = rank -1 - (m*n);
557: n3 = rank + m -1 - (m*n);
558: n6 = rank + 2*m -1 - (m*n);
559: n9 = rank -1;
560: n12 = rank + m -1;
561: n15 = rank + 2*m -1;
562: n18 = rank -1 + (m*n);
563: n21 = rank + m -1 + (m*n);
564: n24 = rank + 2*m -1 + (m*n);
565: }
567: if (xe == M) { /* First assume not corner or edge */
568: n2 = rank -2*m +1 - (m*n);
569: n5 = rank - m +1 - (m*n);
570: n8 = rank +1 - (m*n);
571: n11 = rank -2*m +1;
572: n14 = rank - m +1;
573: n17 = rank +1;
574: n20 = rank -2*m +1 + (m*n);
575: n23 = rank - m +1 + (m*n);
576: n26 = rank +1 + (m*n);
577: }
579: if (ys==0) { /* First assume not corner or edge */
580: n0 = rank + m * (n-1) -1 - (m*n);
581: n1 = rank + m * (n-1) - (m*n);
582: n2 = rank + m * (n-1) +1 - (m*n);
583: n9 = rank + m * (n-1) -1;
584: n10 = rank + m * (n-1);
585: n11 = rank + m * (n-1) +1;
586: n18 = rank + m * (n-1) -1 + (m*n);
587: n19 = rank + m * (n-1) + (m*n);
588: n20 = rank + m * (n-1) +1 + (m*n);
589: }
591: if (ye == N) { /* First assume not corner or edge */
592: n6 = rank - m * (n-1) -1 - (m*n);
593: n7 = rank - m * (n-1) - (m*n);
594: n8 = rank - m * (n-1) +1 - (m*n);
595: n15 = rank - m * (n-1) -1;
596: n16 = rank - m * (n-1);
597: n17 = rank - m * (n-1) +1;
598: n24 = rank - m * (n-1) -1 + (m*n);
599: n25 = rank - m * (n-1) + (m*n);
600: n26 = rank - m * (n-1) +1 + (m*n);
601: }
603: if (zs == 0) { /* First assume not corner or edge */
604: n0 = size - (m*n) + rank - m - 1;
605: n1 = size - (m*n) + rank - m;
606: n2 = size - (m*n) + rank - m + 1;
607: n3 = size - (m*n) + rank - 1;
608: n4 = size - (m*n) + rank;
609: n5 = size - (m*n) + rank + 1;
610: n6 = size - (m*n) + rank + m - 1;
611: n7 = size - (m*n) + rank + m;
612: n8 = size - (m*n) + rank + m + 1;
613: }
615: if (ze == P) { /* First assume not corner or edge */
616: n18 = (m*n) - (size-rank) - m - 1;
617: n19 = (m*n) - (size-rank) - m;
618: n20 = (m*n) - (size-rank) - m + 1;
619: n21 = (m*n) - (size-rank) - 1;
620: n22 = (m*n) - (size-rank);
621: n23 = (m*n) - (size-rank) + 1;
622: n24 = (m*n) - (size-rank) + m - 1;
623: n25 = (m*n) - (size-rank) + m;
624: n26 = (m*n) - (size-rank) + m + 1;
625: }
627: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
628: n0 = size - m*n + rank + m-1 - m;
629: n3 = size - m*n + rank + m-1;
630: n6 = size - m*n + rank + m-1 + m;
631: }
633: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
634: n18 = m*n - (size - rank) + m-1 - m;
635: n21 = m*n - (size - rank) + m-1;
636: n24 = m*n - (size - rank) + m-1 + m;
637: }
639: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
640: n0 = rank + m*n -1 - m*n;
641: n9 = rank + m*n -1;
642: n18 = rank + m*n -1 + m*n;
643: }
645: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
646: n6 = rank - m*(n-1) + m-1 - m*n;
647: n15 = rank - m*(n-1) + m-1;
648: n24 = rank - m*(n-1) + m-1 + m*n;
649: }
651: if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
652: n2 = size - (m*n-rank) - (m-1) - m;
653: n5 = size - (m*n-rank) - (m-1);
654: n8 = size - (m*n-rank) - (m-1) + m;
655: }
657: if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
658: n20 = m*n - (size - rank) - (m-1) - m;
659: n23 = m*n - (size - rank) - (m-1);
660: n26 = m*n - (size - rank) - (m-1) + m;
661: }
663: if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
664: n2 = rank + m*(n-1) - (m-1) - m*n;
665: n11 = rank + m*(n-1) - (m-1);
666: n20 = rank + m*(n-1) - (m-1) + m*n;
667: }
669: if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
670: n8 = rank - m*n +1 - m*n;
671: n17 = rank - m*n +1;
672: n26 = rank - m*n +1 + m*n;
673: }
675: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
676: n0 = size - m + rank -1;
677: n1 = size - m + rank;
678: n2 = size - m + rank +1;
679: }
681: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
682: n18 = m*n - (size - rank) + m*(n-1) -1;
683: n19 = m*n - (size - rank) + m*(n-1);
684: n20 = m*n - (size - rank) + m*(n-1) +1;
685: }
687: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
688: n6 = size - (m*n-rank) - m * (n-1) -1;
689: n7 = size - (m*n-rank) - m * (n-1);
690: n8 = size - (m*n-rank) - m * (n-1) +1;
691: }
693: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
694: n24 = rank - (size-m) -1;
695: n25 = rank - (size-m);
696: n26 = rank - (size-m) +1;
697: }
699: /* Check for Corners */
700: if ((xs==0) && (ys==0) && (zs==0)) n0 = size -1;
701: if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
702: if ((xs==0) && (ye==N) && (zs==0)) n6 = (size-1)-m*(n-1);
703: if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
704: if ((xe==M) && (ys==0) && (zs==0)) n2 = size-m;
705: if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
706: if ((xe==M) && (ye==N) && (zs==0)) n8 = size-m*n;
707: if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;
709: /* Check for when not X,Y, and Z Periodic */
711: /* If not X periodic */
712: if (bx != DM_BOUNDARY_PERIODIC) {
713: if (xs==0) n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;
714: if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
715: }
717: /* If not Y periodic */
718: if (by != DM_BOUNDARY_PERIODIC) {
719: if (ys==0) n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;
720: if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
721: }
723: /* If not Z periodic */
724: if (bz != DM_BOUNDARY_PERIODIC) {
725: if (zs==0) n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;
726: if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
727: }
729: PetscMalloc1(27,&dd->neighbors);
731: dd->neighbors[0] = n0;
732: dd->neighbors[1] = n1;
733: dd->neighbors[2] = n2;
734: dd->neighbors[3] = n3;
735: dd->neighbors[4] = n4;
736: dd->neighbors[5] = n5;
737: dd->neighbors[6] = n6;
738: dd->neighbors[7] = n7;
739: dd->neighbors[8] = n8;
740: dd->neighbors[9] = n9;
741: dd->neighbors[10] = n10;
742: dd->neighbors[11] = n11;
743: dd->neighbors[12] = n12;
744: dd->neighbors[13] = rank;
745: dd->neighbors[14] = n14;
746: dd->neighbors[15] = n15;
747: dd->neighbors[16] = n16;
748: dd->neighbors[17] = n17;
749: dd->neighbors[18] = n18;
750: dd->neighbors[19] = n19;
751: dd->neighbors[20] = n20;
752: dd->neighbors[21] = n21;
753: dd->neighbors[22] = n22;
754: dd->neighbors[23] = n23;
755: dd->neighbors[24] = n24;
756: dd->neighbors[25] = n25;
757: dd->neighbors[26] = n26;
759: /* If star stencil then delete the corner neighbors */
760: if (stencil_type == DMDA_STENCIL_STAR) {
761: /* save information about corner neighbors */
762: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
763: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
764: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
765: sn26 = n26;
766: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
767: }
769: PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);
771: nn = 0;
772: /* Bottom Level */
773: for (k=0; k<s_z; k++) {
774: for (i=1; i<=s_y; i++) {
775: if (n0 >= 0) { /* left below */
776: x_t = lx[n0 % m];
777: y_t = ly[(n0 % (m*n))/m];
778: z_t = lz[n0 / (m*n)];
779: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
780: if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
781: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
782: }
783: if (n1 >= 0) { /* directly below */
784: x_t = x;
785: y_t = ly[(n1 % (m*n))/m];
786: z_t = lz[n1 / (m*n)];
787: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
788: if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
789: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
790: }
791: if (n2 >= 0) { /* right below */
792: x_t = lx[n2 % m];
793: y_t = ly[(n2 % (m*n))/m];
794: z_t = lz[n2 / (m*n)];
795: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
796: if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
797: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
798: }
799: }
801: for (i=0; i<y; i++) {
802: if (n3 >= 0) { /* directly left */
803: x_t = lx[n3 % m];
804: y_t = y;
805: z_t = lz[n3 / (m*n)];
806: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
807: if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
808: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
809: }
811: if (n4 >= 0) { /* middle */
812: x_t = x;
813: y_t = y;
814: z_t = lz[n4 / (m*n)];
815: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
816: if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
817: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
818: } else if (bz == DM_BOUNDARY_MIRROR) {
819: for (j=0; j<x; j++) idx[nn++] = 0;
820: }
822: if (n5 >= 0) { /* directly right */
823: x_t = lx[n5 % m];
824: y_t = y;
825: z_t = lz[n5 / (m*n)];
826: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
827: if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
828: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
829: }
830: }
832: for (i=1; i<=s_y; i++) {
833: if (n6 >= 0) { /* left above */
834: x_t = lx[n6 % m];
835: y_t = ly[(n6 % (m*n))/m];
836: z_t = lz[n6 / (m*n)];
837: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
838: if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
839: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
840: }
841: if (n7 >= 0) { /* directly above */
842: x_t = x;
843: y_t = ly[(n7 % (m*n))/m];
844: z_t = lz[n7 / (m*n)];
845: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
846: if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
847: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
848: }
849: if (n8 >= 0) { /* right above */
850: x_t = lx[n8 % m];
851: y_t = ly[(n8 % (m*n))/m];
852: z_t = lz[n8 / (m*n)];
853: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
854: if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
855: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
856: }
857: }
858: }
860: /* Middle Level */
861: for (k=0; k<z; k++) {
862: for (i=1; i<=s_y; i++) {
863: if (n9 >= 0) { /* left below */
864: x_t = lx[n9 % m];
865: y_t = ly[(n9 % (m*n))/m];
866: /* z_t = z; */
867: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
868: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
869: }
870: if (n10 >= 0) { /* directly below */
871: x_t = x;
872: y_t = ly[(n10 % (m*n))/m];
873: /* z_t = z; */
874: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
875: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
876: } else if (by == DM_BOUNDARY_MIRROR) {
877: for (j=0; j<x; j++) idx[nn++] = 0;
878: }
879: if (n11 >= 0) { /* right below */
880: x_t = lx[n11 % m];
881: y_t = ly[(n11 % (m*n))/m];
882: /* z_t = z; */
883: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
884: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
885: }
886: }
888: for (i=0; i<y; i++) {
889: if (n12 >= 0) { /* directly left */
890: x_t = lx[n12 % m];
891: y_t = y;
892: /* z_t = z; */
893: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
894: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
895: } else if (bx == DM_BOUNDARY_MIRROR) {
896: for (j=0; j<s_x; j++) idx[nn++] = 0;
897: }
899: /* Interior */
900: s_t = bases[rank] + i*x + k*x*y;
901: for (j=0; j<x; j++) idx[nn++] = s_t++;
903: if (n14 >= 0) { /* directly right */
904: x_t = lx[n14 % m];
905: y_t = y;
906: /* z_t = z; */
907: s_t = bases[n14] + i*x_t + k*x_t*y_t;
908: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
909: } else if (bx == DM_BOUNDARY_MIRROR) {
910: for (j=0; j<s_x; j++) idx[nn++] = 0;
911: }
912: }
914: for (i=1; i<=s_y; i++) {
915: if (n15 >= 0) { /* left above */
916: x_t = lx[n15 % m];
917: y_t = ly[(n15 % (m*n))/m];
918: /* z_t = z; */
919: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
920: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
921: }
922: if (n16 >= 0) { /* directly above */
923: x_t = x;
924: y_t = ly[(n16 % (m*n))/m];
925: /* z_t = z; */
926: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
927: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
928: } else if (by == DM_BOUNDARY_MIRROR) {
929: for (j=0; j<x; j++) idx[nn++] = 0;
930: }
931: if (n17 >= 0) { /* right above */
932: x_t = lx[n17 % m];
933: y_t = ly[(n17 % (m*n))/m];
934: /* z_t = z; */
935: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
936: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
937: }
938: }
939: }
941: /* Upper Level */
942: for (k=0; k<s_z; k++) {
943: for (i=1; i<=s_y; i++) {
944: if (n18 >= 0) { /* left below */
945: x_t = lx[n18 % m];
946: y_t = ly[(n18 % (m*n))/m];
947: /* z_t = lz[n18 / (m*n)]; */
948: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
949: if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
950: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
951: }
952: if (n19 >= 0) { /* directly below */
953: x_t = x;
954: y_t = ly[(n19 % (m*n))/m];
955: /* z_t = lz[n19 / (m*n)]; */
956: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
957: if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
958: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
959: }
960: if (n20 >= 0) { /* right below */
961: x_t = lx[n20 % m];
962: y_t = ly[(n20 % (m*n))/m];
963: /* z_t = lz[n20 / (m*n)]; */
964: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
965: if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
966: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
967: }
968: }
970: for (i=0; i<y; i++) {
971: if (n21 >= 0) { /* directly left */
972: x_t = lx[n21 % m];
973: y_t = y;
974: /* z_t = lz[n21 / (m*n)]; */
975: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
976: if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x; /* 2d case */
977: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
978: }
980: if (n22 >= 0) { /* middle */
981: x_t = x;
982: y_t = y;
983: /* z_t = lz[n22 / (m*n)]; */
984: s_t = bases[n22] + i*x_t + k*x_t*y_t;
985: if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
986: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
987: } else if (bz == DM_BOUNDARY_MIRROR) {
988: for (j=0; j<x; j++) idx[nn++] = 0;
989: }
991: if (n23 >= 0) { /* directly right */
992: x_t = lx[n23 % m];
993: y_t = y;
994: /* z_t = lz[n23 / (m*n)]; */
995: s_t = bases[n23] + i*x_t + k*x_t*y_t;
996: if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
997: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
998: }
999: }
1001: for (i=1; i<=s_y; i++) {
1002: if (n24 >= 0) { /* left above */
1003: x_t = lx[n24 % m];
1004: y_t = ly[(n24 % (m*n))/m];
1005: /* z_t = lz[n24 / (m*n)]; */
1006: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1007: if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
1008: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1009: }
1010: if (n25 >= 0) { /* directly above */
1011: x_t = x;
1012: y_t = ly[(n25 % (m*n))/m];
1013: /* z_t = lz[n25 / (m*n)]; */
1014: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1015: if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1016: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1017: }
1018: if (n26 >= 0) { /* right above */
1019: x_t = lx[n26 % m];
1020: y_t = ly[(n26 % (m*n))/m];
1021: /* z_t = lz[n26 / (m*n)]; */
1022: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1023: if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1024: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1025: }
1026: }
1027: }
1029: ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1030: VecScatterCreate(global,from,local,to,>ol);
1031: PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1032: ISDestroy(&to);
1033: ISDestroy(&from);
1035: if (stencil_type == DMDA_STENCIL_STAR) {
1036: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
1037: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1038: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1039: n26 = sn26;
1040: }
1042: if (((stencil_type == DMDA_STENCIL_STAR) || (bx != DM_BOUNDARY_PERIODIC && bx) || (by != DM_BOUNDARY_PERIODIC && by) || (bz != DM_BOUNDARY_PERIODIC && bz))) {
1043: /*
1044: Recompute the local to global mappings, this time keeping the
1045: information about the cross corner processor numbers.
1046: */
1047: nn = 0;
1048: /* Bottom Level */
1049: for (k=0; k<s_z; k++) {
1050: for (i=1; i<=s_y; i++) {
1051: if (n0 >= 0) { /* left below */
1052: x_t = lx[n0 % m];
1053: y_t = ly[(n0 % (m*n))/m];
1054: z_t = lz[n0 / (m*n)];
1055: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1056: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1057: } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1058: for (j=0; j<s_x; j++) idx[nn++] = -1;
1059: }
1060: if (n1 >= 0) { /* directly below */
1061: x_t = x;
1062: y_t = ly[(n1 % (m*n))/m];
1063: z_t = lz[n1 / (m*n)];
1064: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1065: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1066: } else if (Ys-ys < 0 && Zs-zs < 0) {
1067: for (j=0; j<x; j++) idx[nn++] = -1;
1068: }
1069: if (n2 >= 0) { /* right below */
1070: x_t = lx[n2 % m];
1071: y_t = ly[(n2 % (m*n))/m];
1072: z_t = lz[n2 / (m*n)];
1073: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1074: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1075: } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1076: for (j=0; j<s_x; j++) idx[nn++] = -1;
1077: }
1078: }
1080: for (i=0; i<y; i++) {
1081: if (n3 >= 0) { /* directly left */
1082: x_t = lx[n3 % m];
1083: y_t = y;
1084: z_t = lz[n3 / (m*n)];
1085: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1086: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1087: } else if (Xs-xs < 0 && Zs-zs < 0) {
1088: for (j=0; j<s_x; j++) idx[nn++] = -1;
1089: }
1091: if (n4 >= 0) { /* middle */
1092: x_t = x;
1093: y_t = y;
1094: z_t = lz[n4 / (m*n)];
1095: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1096: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1097: } else if (Zs-zs < 0) {
1098: if (bz == DM_BOUNDARY_MIRROR) {
1099: for (j=0; j<x; j++) idx[nn++] = 0;
1100: } else {
1101: for (j=0; j<x; j++) idx[nn++] = -1;
1102: }
1103: }
1105: if (n5 >= 0) { /* directly right */
1106: x_t = lx[n5 % m];
1107: y_t = y;
1108: z_t = lz[n5 / (m*n)];
1109: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1110: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1111: } else if (xe-Xe < 0 && Zs-zs < 0) {
1112: for (j=0; j<s_x; j++) idx[nn++] = -1;
1113: }
1114: }
1116: for (i=1; i<=s_y; i++) {
1117: if (n6 >= 0) { /* left above */
1118: x_t = lx[n6 % m];
1119: y_t = ly[(n6 % (m*n))/m];
1120: z_t = lz[n6 / (m*n)];
1121: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1122: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1123: } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1124: for (j=0; j<s_x; j++) idx[nn++] = -1;
1125: }
1126: if (n7 >= 0) { /* directly above */
1127: x_t = x;
1128: y_t = ly[(n7 % (m*n))/m];
1129: z_t = lz[n7 / (m*n)];
1130: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1131: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1132: } else if (ye-Ye < 0 && Zs-zs < 0) {
1133: for (j=0; j<x; j++) idx[nn++] = -1;
1134: }
1135: if (n8 >= 0) { /* right above */
1136: x_t = lx[n8 % m];
1137: y_t = ly[(n8 % (m*n))/m];
1138: z_t = lz[n8 / (m*n)];
1139: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1140: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1141: } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1142: for (j=0; j<s_x; j++) idx[nn++] = -1;
1143: }
1144: }
1145: }
1147: /* Middle Level */
1148: for (k=0; k<z; k++) {
1149: for (i=1; i<=s_y; i++) {
1150: if (n9 >= 0) { /* left below */
1151: x_t = lx[n9 % m];
1152: y_t = ly[(n9 % (m*n))/m];
1153: /* z_t = z; */
1154: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1155: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1156: } else if (Xs-xs < 0 && Ys-ys < 0) {
1157: for (j=0; j<s_x; j++) idx[nn++] = -1;
1158: }
1159: if (n10 >= 0) { /* directly below */
1160: x_t = x;
1161: y_t = ly[(n10 % (m*n))/m];
1162: /* z_t = z; */
1163: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1164: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1165: } else if (Ys-ys < 0) {
1166: if (by == DM_BOUNDARY_MIRROR) {
1167: for (j=0; j<x; j++) idx[nn++] = -1;
1168: } else {
1169: for (j=0; j<x; j++) idx[nn++] = -1;
1170: }
1171: }
1172: if (n11 >= 0) { /* right below */
1173: x_t = lx[n11 % m];
1174: y_t = ly[(n11 % (m*n))/m];
1175: /* z_t = z; */
1176: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1177: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1178: } else if (xe-Xe < 0 && Ys-ys < 0) {
1179: for (j=0; j<s_x; j++) idx[nn++] = -1;
1180: }
1181: }
1183: for (i=0; i<y; i++) {
1184: if (n12 >= 0) { /* directly left */
1185: x_t = lx[n12 % m];
1186: y_t = y;
1187: /* z_t = z; */
1188: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1189: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1190: } else if (Xs-xs < 0) {
1191: if (bx == DM_BOUNDARY_MIRROR) {
1192: for (j=0; j<s_x; j++) idx[nn++] = 0;
1193: } else {
1194: for (j=0; j<s_x; j++) idx[nn++] = -1;
1195: }
1196: }
1198: /* Interior */
1199: s_t = bases[rank] + i*x + k*x*y;
1200: for (j=0; j<x; j++) idx[nn++] = s_t++;
1202: if (n14 >= 0) { /* directly right */
1203: x_t = lx[n14 % m];
1204: y_t = y;
1205: /* z_t = z; */
1206: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1207: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1208: } else if (xe-Xe < 0) {
1209: if (bx == DM_BOUNDARY_MIRROR) {
1210: for (j=0; j<s_x; j++) idx[nn++] = 0;
1211: } else {
1212: for (j=0; j<s_x; j++) idx[nn++] = -1;
1213: }
1214: }
1215: }
1217: for (i=1; i<=s_y; i++) {
1218: if (n15 >= 0) { /* left above */
1219: x_t = lx[n15 % m];
1220: y_t = ly[(n15 % (m*n))/m];
1221: /* z_t = z; */
1222: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1223: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1224: } else if (Xs-xs < 0 && ye-Ye < 0) {
1225: for (j=0; j<s_x; j++) idx[nn++] = -1;
1226: }
1227: if (n16 >= 0) { /* directly above */
1228: x_t = x;
1229: y_t = ly[(n16 % (m*n))/m];
1230: /* z_t = z; */
1231: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1232: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1233: } else if (ye-Ye < 0) {
1234: if (by == DM_BOUNDARY_MIRROR) {
1235: for (j=0; j<x; j++) idx[nn++] = 0;
1236: } else {
1237: for (j=0; j<x; j++) idx[nn++] = -1;
1238: }
1239: }
1240: if (n17 >= 0) { /* right above */
1241: x_t = lx[n17 % m];
1242: y_t = ly[(n17 % (m*n))/m];
1243: /* z_t = z; */
1244: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1245: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1246: } else if (xe-Xe < 0 && ye-Ye < 0) {
1247: for (j=0; j<s_x; j++) idx[nn++] = -1;
1248: }
1249: }
1250: }
1252: /* Upper Level */
1253: for (k=0; k<s_z; k++) {
1254: for (i=1; i<=s_y; i++) {
1255: if (n18 >= 0) { /* left below */
1256: x_t = lx[n18 % m];
1257: y_t = ly[(n18 % (m*n))/m];
1258: /* z_t = lz[n18 / (m*n)]; */
1259: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1260: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1261: } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1262: for (j=0; j<s_x; j++) idx[nn++] = -1;
1263: }
1264: if (n19 >= 0) { /* directly below */
1265: x_t = x;
1266: y_t = ly[(n19 % (m*n))/m];
1267: /* z_t = lz[n19 / (m*n)]; */
1268: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1269: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1270: } else if (Ys-ys < 0 && ze-Ze < 0) {
1271: for (j=0; j<x; j++) idx[nn++] = -1;
1272: }
1273: if (n20 >= 0) { /* right below */
1274: x_t = lx[n20 % m];
1275: y_t = ly[(n20 % (m*n))/m];
1276: /* z_t = lz[n20 / (m*n)]; */
1277: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1278: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1279: } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1280: for (j=0; j<s_x; j++) idx[nn++] = -1;
1281: }
1282: }
1284: for (i=0; i<y; i++) {
1285: if (n21 >= 0) { /* directly left */
1286: x_t = lx[n21 % m];
1287: y_t = y;
1288: /* z_t = lz[n21 / (m*n)]; */
1289: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1290: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1291: } else if (Xs-xs < 0 && ze-Ze < 0) {
1292: for (j=0; j<s_x; j++) idx[nn++] = -1;
1293: }
1295: if (n22 >= 0) { /* middle */
1296: x_t = x;
1297: y_t = y;
1298: /* z_t = lz[n22 / (m*n)]; */
1299: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1300: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1301: } else if (ze-Ze < 0) {
1302: if (bz == DM_BOUNDARY_MIRROR) {
1303: for (j=0; j<x; j++) idx[nn++] = 0;
1304: } else {
1305: for (j=0; j<x; j++) idx[nn++] = -1;
1306: }
1307: }
1309: if (n23 >= 0) { /* directly right */
1310: x_t = lx[n23 % m];
1311: y_t = y;
1312: /* z_t = lz[n23 / (m*n)]; */
1313: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1314: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1315: } else if (xe-Xe < 0 && ze-Ze < 0) {
1316: for (j=0; j<s_x; j++) idx[nn++] = -1;
1317: }
1318: }
1320: for (i=1; i<=s_y; i++) {
1321: if (n24 >= 0) { /* left above */
1322: x_t = lx[n24 % m];
1323: y_t = ly[(n24 % (m*n))/m];
1324: /* z_t = lz[n24 / (m*n)]; */
1325: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1326: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1327: } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1328: for (j=0; j<s_x; j++) idx[nn++] = -1;
1329: }
1330: if (n25 >= 0) { /* directly above */
1331: x_t = x;
1332: y_t = ly[(n25 % (m*n))/m];
1333: /* z_t = lz[n25 / (m*n)]; */
1334: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1335: for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1336: } else if (ye-Ye < 0 && ze-Ze < 0) {
1337: for (j=0; j<x; j++) idx[nn++] = -1;
1338: }
1339: if (n26 >= 0) { /* right above */
1340: x_t = lx[n26 % m];
1341: y_t = ly[(n26 % (m*n))/m];
1342: /* z_t = lz[n26 / (m*n)]; */
1343: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1344: for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1345: } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1346: for (j=0; j<s_x; j++) idx[nn++] = -1;
1347: }
1348: }
1349: }
1350: }
1351: /*
1352: Set the local to global ordering in the global vector, this allows use
1353: of VecSetValuesLocal().
1354: */
1355: ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1356: PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);
1358: PetscFree2(bases,ldims);
1359: dd->m = m; dd->n = n; dd->p = p;
1360: /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1361: dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1362: dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;
1364: VecDestroy(&local);
1365: VecDestroy(&global);
1367: dd->gtol = gtol;
1368: dd->base = base;
1369: da->ops->view = DMView_DA_3d;
1370: dd->ltol = NULL;
1371: dd->ao = NULL;
1372: return(0);
1373: }
1376: /*@C
1377: DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1378: regular array data that is distributed across some processors.
1380: Collective on MPI_Comm
1382: Input Parameters:
1383: + comm - MPI communicator
1384: . bx,by,bz - type of ghost nodes the array have.
1385: Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1386: . stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1387: . M,N,P - global dimension in each direction of the array
1388: . m,n,p - corresponding number of processors in each dimension
1389: (or PETSC_DECIDE to have calculated)
1390: . dof - number of degrees of freedom per node
1391: . s - stencil width
1392: - lx, ly, lz - arrays containing the number of nodes in each cell along
1393: the x, y, and z coordinates, or NULL. If non-null, these
1394: must be of length as m,n,p and the corresponding
1395: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1396: the ly[] must N, sum of the lz[] must be P
1398: Output Parameter:
1399: . da - the resulting distributed array object
1401: Options Database Key:
1402: + -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1403: . -da_grid_x <nx> - number of grid points in x direction
1404: . -da_grid_y <ny> - number of grid points in y direction
1405: . -da_grid_z <nz> - number of grid points in z direction
1406: . -da_processors_x <MX> - number of processors in x direction
1407: . -da_processors_y <MY> - number of processors in y direction
1408: . -da_processors_z <MZ> - number of processors in z direction
1409: . -da_refine_x <rx> - refinement ratio in x direction
1410: . -da_refine_y <ry> - refinement ratio in y direction
1411: . -da_refine_z <rz>- refinement ratio in z directio
1412: - -da_refine <n> - refine the DMDA n times before creating it
1414: Level: beginner
1416: Notes:
1417: The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1418: standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1419: the standard 27-pt stencil.
1421: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1422: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1423: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
1425: You must call DMSetUp() after this call before using this DM.
1427: If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
1428: but before DMSetUp().
1430: .keywords: distributed array, create, three-dimensional
1432: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1433: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1434: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
1436: @*/
1437: PetscErrorCode DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1438: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1439: {
1443: DMDACreate(comm, da);
1444: DMSetDimension(*da, 3);
1445: DMDASetSizes(*da, M, N, P);
1446: DMDASetNumProcs(*da, m, n, p);
1447: DMDASetBoundaryType(*da, bx, by, bz);
1448: DMDASetDof(*da, dof);
1449: DMDASetStencilType(*da, stencil_type);
1450: DMDASetStencilWidth(*da, s);
1451: DMDASetOwnershipRanges(*da, lx, ly, lz);
1452: return(0);
1453: }