Actual source code: ex19.c
petsc-3.8.4 2018-03-24
2: static char help[] = "Nonlinear driven cavity with multigrid in 2d.\n \
3: \n\
4: The 2D driven cavity problem is solved in a velocity-vorticity formulation.\n\
5: The flow can be driven with the lid or with bouyancy or both:\n\
6: -lidvelocity <lid>, where <lid> = dimensionless velocity of lid\n\
7: -grashof <gr>, where <gr> = dimensionless temperature gradent\n\
8: -prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio\n\
9: -contours : draw contour plots of solution\n\n" ;
10: /* in HTML, '<' = '<' and '>' = '>' */
12: /*
13: See src/ksp/ksp/examples/tutorials/ex45.c
14: */
16: /*T
17: Concepts: SNES ^solving a system of nonlinear equations (parallel multicomponent example);
18: Concepts: DMDA ^using distributed arrays;
19: Concepts: multicomponent
20: Processors: n
21: T*/
We thank David E. Keyes for contributing the driven cavity discretization within this example code.
This problem is modeled by the partial differential equation system
\begin{eqnarray}
- \triangle U - \nabla_y \Omega & = & 0 \\
- \triangle V + \nabla_x\Omega & = & 0 \\
- \triangle \Omega + \nabla \cdot ([U*\Omega,V*\Omega]) - GR* \nabla_x T & = & 0 \\
- \triangle T + PR* \nabla \cdot ([U*T,V*T]) & = & 0
\end{eqnarray}
in the unit square, which is uniformly discretized in each of x and y in this simple encoding.
No-slip, rigid-wall Dirichlet conditions are used for $ [U,V]$.
Dirichlet conditions are used for Omega, based on the definition of
vorticity: $ \Omega = - \nabla_y U + \nabla_x V$, where along each
constant coordinate boundary, the tangential derivative is zero.
Dirichlet conditions are used for T on the left and right walls,
and insulation homogeneous Neumann conditions are used for T on
the top and bottom walls.
A finite difference approximation with the usual 5-point stencil
is used to discretize the boundary value problem to obtain a
nonlinear system of equations. Upwinding is used for the divergence
(convective) terms and central for the gradient (source) terms.
The Jacobian can be either
* formed via finite differencing using coloring (the default), or
* applied matrix-free via the option -snes_mf
(for larger grid problems this variant may not converge
without a preconditioner due to ill-conditioning).
58: /*
59: Include "petscdmda.h" so that we can use distributed arrays (DMDAs).
60: Include "petscsnes.h" so that we can use SNES solvers. Note that this
61: file automatically includes:
62: petscsys.h - base PETSc routines petscvec.h - vectors
63: petscmat.h - matrices
64: petscis.h - index sets petscksp.h - Krylov subspace methods
65: petscviewer.h - viewers petscpc.h - preconditioners
66: petscksp.h - linear solvers
67: */
68: #if defined(PETSC_APPLE_FRAMEWORK)
69: #import <PETSc/petscsnes.h>
70: #import <PETSc/petscdmda.h>
71: #else
72: #include <petscsnes.h>
73: #include <petscdm.h>
74: #include <petscdmda.h>
75: #endif
77: /*
78: User-defined routines and data structures
79: */
80: typedef struct {
81: PetscScalar u,v,omega,temp;
82: } Field;
84: PetscErrorCode FormFunctionLocal(DMDALocalInfo *,Field**,Field**,void*) ;
86: typedef struct {
87: PetscReal lidvelocity,prandtl,grashof; /* physical parameters */
88: PetscBool draw_contours; /* flag - 1 indicates drawing contours */
89: } AppCtx;
91: extern PetscErrorCode FormInitialGuess(AppCtx*,DM ,Vec ) ;
92: extern PetscErrorCode NonlinearGS(SNES ,Vec ,Vec ,void*) ;
94: int main(int argc,char **argv)
95: {
96: AppCtx user; /* user-defined work context */
97: PetscInt mx,my,its;
99: MPI_Comm comm;
100: SNES snes;
101: DM da;
102: Vec x;
104: PetscInitialize (&argc,&argv,(char*)0,help);if (ierr) return (1);
107: comm = PETSC_COMM_WORLD ;
108: SNESCreate (comm,&snes);
110: /*
111: Create distributed array object to manage parallel grid and vectors
112: for principal unknowns (x) and governing residuals (f)
113: */
114: DMDACreate2d (PETSC_COMM_WORLD ,DM_BOUNDARY_NONE ,DM_BOUNDARY_NONE ,DMDA_STENCIL_STAR ,4,4,PETSC_DECIDE ,PETSC_DECIDE ,4,1,0,0,&da);
115: DMSetFromOptions (da);
116: DMSetUp (da);
117: SNESSetDM (snes,(DM )da);
118: SNESSetNGS (snes, NonlinearGS, (void*)&user);
120: DMDAGetInfo (da,0,&mx,&my,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE ,PETSC_IGNORE );
121: /*
122: Problem parameters (velocity of lid, prandtl, and grashof numbers)
123: */
124: user.lidvelocity = 1.0/(mx*my);
125: user.prandtl = 1.0;
126: user.grashof = 1.0;
128: PetscOptionsGetReal (NULL,NULL,"-lidvelocity" ,&user.lidvelocity,NULL);
129: PetscOptionsGetReal (NULL,NULL,"-prandtl" ,&user.prandtl,NULL);
130: PetscOptionsGetReal (NULL,NULL,"-grashof" ,&user.grashof,NULL);
131: PetscOptionsHasName (NULL,NULL,"-contours" ,&user.draw_contours);
133: DMDASetFieldName (da,0,"x_velocity" );
134: DMDASetFieldName (da,1,"y_velocity" );
135: DMDASetFieldName (da,2,"Omega" );
136: DMDASetFieldName (da,3,"temperature" );
138: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
139: Create user context, set problem data, create vector data structures.
140: Also, compute the initial guess.
141: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
143: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
144: Create nonlinear solver context
146: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
147: DMSetApplicationContext (da,&user);
148: DMDASNESSetFunctionLocal (da,INSERT_VALUES ,(PetscErrorCode (*)(DMDALocalInfo *,void*,void*,void*))FormFunctionLocal,&user);
149: SNESSetFromOptions (snes);
150: PetscPrintf (comm,"lid velocity = %g, prandtl # = %g, grashof # = %g\n" ,(double)user.lidvelocity,(double)user.prandtl,(double)user.grashof);
153: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
154: Solve the nonlinear system
155: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
156: DMCreateGlobalVector (da,&x);
157: FormInitialGuess(&user,da,x);
159: SNESSolve (snes,NULL,x);
161: SNESGetIterationNumber (snes,&its);
162: PetscPrintf (comm,"Number of SNES iterations = %D\n" , its);
164: /*
165: Visualize solution
166: */
167: if (user.draw_contours) {
168: VecView (x,PETSC_VIEWER_DRAW_WORLD );
169: }
171: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
172: Free work space. All PETSc objects should be destroyed when they
173: are no longer needed.
174: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
175: VecDestroy (&x);
176: DMDestroy (&da);
177: SNESDestroy (&snes);
178: PetscFinalize ();
179: return ierr;
180: }
182: /* ------------------------------------------------------------------- */
184: /*
185: FormInitialGuess - Forms initial approximation.
187: Input Parameters:
188: user - user-defined application context
189: X - vector
191: Output Parameter:
192: X - vector
193: */
194: PetscErrorCode FormInitialGuess(AppCtx *user,DM da,Vec X)
195: {
196: PetscInt i,j,mx,xs,ys,xm,ym;
198: PetscReal grashof,dx;
199: Field **x;
202: grashof = user->grashof;
204: DMDAGetInfo (da,0,&mx,0,0,0,0,0,0,0,0,0,0,0);
205: dx = 1.0/(mx-1);
207: /*
208: Get local grid boundaries (for 2-dimensional DMDA ):
209: xs, ys - starting grid indices (no ghost points)
210: xm, ym - widths of local grid (no ghost points)
211: */
212: DMDAGetCorners (da,&xs,&ys,NULL,&xm,&ym,NULL);
214: /*
215: Get a pointer to vector data.
216: - For default PETSc vectors, VecGetArray () returns a pointer to
217: the data array. Otherwise, the routine is implementation dependent.
218: - You MUST call VecRestoreArray () when you no longer need access to
219: the array.
220: */
221: DMDAVecGetArray (da,X,&x);
223: /*
224: Compute initial guess over the locally owned part of the grid
225: Initial condition is motionless fluid and equilibrium temperature
226: */
227: for (j=ys; j<ys+ym; j++) {
228: for (i=xs; i<xs+xm; i++) {
229: x[j][i].u = 0.0;
230: x[j][i].v = 0.0;
231: x[j][i].omega = 0.0;
232: x[j][i].temp = (grashof>0)*i*dx;
233: }
234: }
236: /*
237: Restore vector
238: */
239: DMDAVecRestoreArray (da,X,&x);
240: return (0);
241: }
243: PetscErrorCode FormFunctionLocal(DMDALocalInfo *info,Field **x,Field **f,void *ptr)
244: {
245: AppCtx *user = (AppCtx*)ptr;
247: PetscInt xints,xinte,yints,yinte,i,j;
248: PetscReal hx,hy,dhx,dhy,hxdhy,hydhx;
249: PetscReal grashof,prandtl,lid;
250: PetscScalar u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;
253: grashof = user->grashof;
254: prandtl = user->prandtl;
255: lid = user->lidvelocity;
257: /*
258: Define mesh intervals ratios for uniform grid.
260: Note: FD formulae below are normalized by multiplying through by
261: local volume element (i.e. hx*hy) to obtain coefficients O(1) in two dimensions.
264: */
265: dhx = (PetscReal )(info->mx-1); dhy = (PetscReal )(info->my-1);
266: hx = 1.0/dhx; hy = 1.0/dhy;
267: hxdhy = hx*dhy; hydhx = hy*dhx;
269: xints = info->xs; xinte = info->xs+info->xm; yints = info->ys; yinte = info->ys+info->ym;
271: /* Test whether we are on the bottom edge of the global array */
272: if (yints == 0) {
273: j = 0;
274: yints = yints + 1;
275: /* bottom edge */
276: for (i=info->xs; i<info->xs+info->xm; i++) {
277: f[j][i].u = x[j][i].u;
278: f[j][i].v = x[j][i].v;
279: f[j][i].omega = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy;
280: f[j][i].temp = x[j][i].temp-x[j+1][i].temp;
281: }
282: }
284: /* Test whether we are on the top edge of the global array */
285: if (yinte == info->my) {
286: j = info->my - 1;
287: yinte = yinte - 1;
288: /* top edge */
289: for (i=info->xs; i<info->xs+info->xm; i++) {
290: f[j][i].u = x[j][i].u - lid;
291: f[j][i].v = x[j][i].v;
292: f[j][i].omega = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy;
293: f[j][i].temp = x[j][i].temp-x[j-1][i].temp;
294: }
295: }
297: /* Test whether we are on the left edge of the global array */
298: if (xints == 0) {
299: i = 0;
300: xints = xints + 1;
301: /* left edge */
302: for (j=info->ys; j<info->ys+info->ym; j++) {
303: f[j][i].u = x[j][i].u;
304: f[j][i].v = x[j][i].v;
305: f[j][i].omega = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx;
306: f[j][i].temp = x[j][i].temp;
307: }
308: }
310: /* Test whether we are on the right edge of the global array */
311: if (xinte == info->mx) {
312: i = info->mx - 1;
313: xinte = xinte - 1;
314: /* right edge */
315: for (j=info->ys; j<info->ys+info->ym; j++) {
316: f[j][i].u = x[j][i].u;
317: f[j][i].v = x[j][i].v;
318: f[j][i].omega = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx;
319: f[j][i].temp = x[j][i].temp - (PetscReal )(grashof>0);
320: }
321: }
323: /* Compute over the interior points */
324: for (j=yints; j<yinte; j++) {
325: for (i=xints; i<xinte; i++) {
327: /*
328: convective coefficients for upwinding
329: */
330: vx = x[j][i].u; avx = PetscAbsScalar(vx);
331: vxp = .5*(vx+avx); vxm = .5*(vx-avx);
332: vy = x[j][i].v; avy = PetscAbsScalar(vy);
333: vyp = .5*(vy+avy); vym = .5*(vy-avy);
335: /* U velocity */
336: u = x[j][i].u;
337: uxx = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
338: uyy = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
339: f[j][i].u = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx;
341: /* V velocity */
342: u = x[j][i].v;
343: uxx = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
344: uyy = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
345: f[j][i].v = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy;
347: /* Omega */
348: u = x[j][i].omega;
349: uxx = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
350: uyy = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
351: f[j][i].omega = uxx + uyy + (vxp*(u - x[j][i-1].omega) + vxm*(x[j][i+1].omega - u))*hy +
352: (vyp*(u - x[j-1][i].omega) + vym*(x[j+1][i].omega - u))*hx -
353: .5*grashof*(x[j][i+1].temp - x[j][i-1].temp)*hy;
355: /* Temperature */
356: u = x[j][i].temp;
357: uxx = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
358: uyy = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
359: f[j][i].temp = uxx + uyy + prandtl*((vxp*(u - x[j][i-1].temp) + vxm*(x[j][i+1].temp - u))*hy +
360: (vyp*(u - x[j-1][i].temp) + vym*(x[j+1][i].temp - u))*hx);
361: }
362: }
364: /*
365: Flop count (multiply-adds are counted as 2 operations)
366: */
367: PetscLogFlops (84.0*info->ym*info->xm);
368: return (0);
369: }
371: PetscErrorCode NonlinearGS(SNES snes, Vec X, Vec B, void *ctx)
372: {
373: DMDALocalInfo info;
374: Field **x,**b;
376: Vec localX, localB;
377: DM da;
378: PetscInt xints,xinte,yints,yinte,i,j,k,l;
379: PetscInt max_its,tot_its;
380: PetscInt sweeps;
381: PetscReal rtol,atol,stol;
382: PetscReal hx,hy,dhx,dhy,hxdhy,hydhx;
383: PetscReal grashof,prandtl,lid;
384: PetscScalar u,uxx,uyy,vx,vy,avx,avy,vxp,vxm,vyp,vym;
385: PetscScalar fu, fv, fomega, ftemp;
386: PetscScalar dfudu;
387: PetscScalar dfvdv;
388: PetscScalar dfodu, dfodv, dfodo;
389: PetscScalar dftdu, dftdv, dftdt;
390: PetscScalar yu=0, yv=0, yo=0, yt=0;
391: PetscScalar bjiu, bjiv, bjiomega, bjitemp;
392: PetscBool ptconverged;
393: PetscReal pfnorm,pfnorm0,pynorm,pxnorm;
394: AppCtx *user = (AppCtx*)ctx;
397: grashof = user->grashof;
398: prandtl = user->prandtl;
399: lid = user->lidvelocity;
400: tot_its = 0;
401: SNESNGSGetTolerances (snes,&rtol,&atol,&stol,&max_its);
402: SNESNGSGetSweeps (snes,&sweeps);
403: SNESGetDM (snes,(DM *)&da);
404: DMGetLocalVector (da,&localX);
405: if (B) {
406: DMGetLocalVector (da,&localB);
407: }
408: /*
409: Scatter ghost points to local vector, using the 2-step process
410: DMGlobalToLocalBegin (), DMGlobalToLocalEnd ().
411: */
412: DMGlobalToLocalBegin (da,X,INSERT_VALUES ,localX);
413: DMGlobalToLocalEnd (da,X,INSERT_VALUES ,localX);
414: if (B) {
415: DMGlobalToLocalBegin (da,B,INSERT_VALUES ,localB);
416: DMGlobalToLocalEnd (da,B,INSERT_VALUES ,localB);
417: }
418: DMDAGetLocalInfo (da,&info);
419: DMDAVecGetArray (da,localX,&x);
420: if (B) {
421: DMDAVecGetArrayRead (da,localB,&b);
422: }
423: /* looks like a combination of the formfunction / formjacobian routines */
424: dhx = (PetscReal )(info.mx-1);dhy = (PetscReal )(info.my-1);
425: hx = 1.0/dhx; hy = 1.0/dhy;
426: hxdhy = hx*dhy; hydhx = hy*dhx;
428: xints = info.xs; xinte = info.xs+info.xm; yints = info.ys; yinte = info.ys+info.ym;
430: /* Set the boundary conditions on the momentum equations */
431: /* Test whether we are on the bottom edge of the global array */
432: if (yints == 0) {
433: j = 0;
434: /* bottom edge */
435: for (i=info.xs; i<info.xs+info.xm; i++) {
437: if (B) {
438: bjiu = b[j][i].u;
439: bjiv = b[j][i].v;
440: } else {
441: bjiu = 0.0;
442: bjiv = 0.0;
443: }
444: x[j][i].u = 0.0 + bjiu;
445: x[j][i].v = 0.0 + bjiv;
446: }
447: }
449: /* Test whether we are on the top edge of the global array */
450: if (yinte == info.my) {
451: j = info.my - 1;
452: /* top edge */
453: for (i=info.xs; i<info.xs+info.xm; i++) {
454: if (B) {
455: bjiu = b[j][i].u;
456: bjiv = b[j][i].v;
457: } else {
458: bjiu = 0.0;
459: bjiv = 0.0;
460: }
461: x[j][i].u = lid + bjiu;
462: x[j][i].v = bjiv;
463: }
464: }
466: /* Test whether we are on the left edge of the global array */
467: if (xints == 0) {
468: i = 0;
469: /* left edge */
470: for (j=info.ys; j<info.ys+info.ym; j++) {
471: if (B) {
472: bjiu = b[j][i].u;
473: bjiv = b[j][i].v;
474: } else {
475: bjiu = 0.0;
476: bjiv = 0.0;
477: }
478: x[j][i].u = 0.0 + bjiu;
479: x[j][i].v = 0.0 + bjiv;
480: }
481: }
483: /* Test whether we are on the right edge of the global array */
484: if (xinte == info.mx) {
485: i = info.mx - 1;
486: /* right edge */
487: for (j=info.ys; j<info.ys+info.ym; j++) {
488: if (B) {
489: bjiu = b[j][i].u;
490: bjiv = b[j][i].v;
491: } else {
492: bjiu = 0.0;
493: bjiv = 0.0;
494: }
495: x[j][i].u = 0.0 + bjiu;
496: x[j][i].v = 0.0 + bjiv;
497: }
498: }
500: for (k=0; k < sweeps; k++) {
501: for (j=info.ys; j<info.ys + info.ym; j++) {
502: for (i=info.xs; i<info.xs + info.xm; i++) {
503: ptconverged = PETSC_FALSE ;
504: pfnorm0 = 0.0;
505: fu = 0.0;
506: fv = 0.0;
507: fomega = 0.0;
508: ftemp = 0.0;
509: for (l = 0; l < max_its && !ptconverged; l++) {
510: if (B) {
511: bjiu = b[j][i].u;
512: bjiv = b[j][i].v;
513: bjiomega = b[j][i].omega;
514: bjitemp = b[j][i].temp;
515: } else {
516: bjiu = 0.0;
517: bjiv = 0.0;
518: bjiomega = 0.0;
519: bjitemp = 0.0;
520: }
522: if (i != 0 && i != info.mx - 1 && j != 0 && j != info.my-1) {
523: /* U velocity */
524: u = x[j][i].u;
525: uxx = (2.0*u - x[j][i-1].u - x[j][i+1].u)*hydhx;
526: uyy = (2.0*u - x[j-1][i].u - x[j+1][i].u)*hxdhy;
527: fu = uxx + uyy - .5*(x[j+1][i].omega-x[j-1][i].omega)*hx - bjiu;
528: dfudu = 2.0*(hydhx + hxdhy);
529: /* V velocity */
530: u = x[j][i].v;
531: uxx = (2.0*u - x[j][i-1].v - x[j][i+1].v)*hydhx;
532: uyy = (2.0*u - x[j-1][i].v - x[j+1][i].v)*hxdhy;
533: fv = uxx + uyy + .5*(x[j][i+1].omega-x[j][i-1].omega)*hy - bjiv;
534: dfvdv = 2.0*(hydhx + hxdhy);
535: /*
536: convective coefficients for upwinding
537: */
538: vx = x[j][i].u; avx = PetscAbsScalar(vx);
539: vxp = .5*(vx+avx); vxm = .5*(vx-avx);
540: vy = x[j][i].v; avy = PetscAbsScalar(vy);
541: vyp = .5*(vy+avy); vym = .5*(vy-avy);
542: /* Omega */
543: u = x[j][i].omega;
544: uxx = (2.0*u - x[j][i-1].omega - x[j][i+1].omega)*hydhx;
545: uyy = (2.0*u - x[j-1][i].omega - x[j+1][i].omega)*hxdhy;
546: fomega = uxx + uyy + (vxp*(u - x[j][i-1].omega) + vxm*(x[j][i+1].omega - u))*hy +
547: (vyp*(u - x[j-1][i].omega) + vym*(x[j+1][i].omega - u))*hx -
548: .5*grashof*(x[j][i+1].temp - x[j][i-1].temp)*hy - bjiomega;
549: /* convective coefficient derivatives */
550: dfodo = 2.0*(hydhx + hxdhy) + ((vxp - vxm)*hy + (vyp - vym)*hx);
551: if (PetscRealPart(vx) > 0.0) dfodu = (u - x[j][i-1].omega)*hy;
552: else dfodu = (x[j][i+1].omega - u)*hy;
554: if (PetscRealPart(vy) > 0.0) dfodv = (u - x[j-1][i].omega)*hx;
555: else dfodv = (x[j+1][i].omega - u)*hx;
557: /* Temperature */
558: u = x[j][i].temp;
559: uxx = (2.0*u - x[j][i-1].temp - x[j][i+1].temp)*hydhx;
560: uyy = (2.0*u - x[j-1][i].temp - x[j+1][i].temp)*hxdhy;
561: ftemp = uxx + uyy + prandtl*((vxp*(u - x[j][i-1].temp) + vxm*(x[j][i+1].temp - u))*hy + (vyp*(u - x[j-1][i].temp) + vym*(x[j+1][i].temp - u))*hx) - bjitemp;
562: dftdt = 2.0*(hydhx + hxdhy) + prandtl*((vxp - vxm)*hy + (vyp - vym)*hx);
563: if (PetscRealPart(vx) > 0.0) dftdu = prandtl*(u - x[j][i-1].temp)*hy;
564: else dftdu = prandtl*(x[j][i+1].temp - u)*hy;
566: if (PetscRealPart(vy) > 0.0) dftdv = prandtl*(u - x[j-1][i].temp)*hx;
567: else dftdv = prandtl*(x[j+1][i].temp - u)*hx;
569: /* invert the system:
570: [ dfu / du 0 0 0 ][yu] = [fu]
571: [ 0 dfv / dv 0 0 ][yv] [fv]
572: [ dfo / du dfo / dv dfo / do 0 ][yo] [fo]
573: [ dft / du dft / dv 0 dft / dt ][yt] [ft]
574: by simple back-substitution
575: */
576: yu = fu / dfudu;
577: yv = fv / dfvdv;
578: yo = (fomega - (dfodu*yu + dfodv*yv)) / dfodo;
579: yt = (ftemp - (dftdu*yu + dftdv*yv)) / dftdt;
581: x[j][i].u = x[j][i].u - yu;
582: x[j][i].v = x[j][i].v - yv;
583: x[j][i].temp = x[j][i].temp - yt;
584: x[j][i].omega = x[j][i].omega - yo;
585: }
586: if (i == 0) {
587: fomega = x[j][i].omega - (x[j][i+1].v - x[j][i].v)*dhx - bjiomega;
588: ftemp = x[j][i].temp - bjitemp;
589: yo = fomega;
590: yt = ftemp;
591: x[j][i].omega = x[j][i].omega - fomega;
592: x[j][i].temp = x[j][i].temp - ftemp;
593: }
594: if (i == info.mx - 1) {
595: fomega = x[j][i].omega - (x[j][i].v - x[j][i-1].v)*dhx - bjiomega;
596: ftemp = x[j][i].temp - (PetscReal )(grashof>0) - bjitemp;
597: yo = fomega;
598: yt = ftemp;
599: x[j][i].omega = x[j][i].omega - fomega;
600: x[j][i].temp = x[j][i].temp - ftemp;
601: }
602: if (j == 0) {
603: fomega = x[j][i].omega + (x[j+1][i].u - x[j][i].u)*dhy - bjiomega;
604: ftemp = x[j][i].temp-x[j+1][i].temp - bjitemp;
605: yo = fomega;
606: yt = ftemp;
607: x[j][i].omega = x[j][i].omega - fomega;
608: x[j][i].temp = x[j][i].temp - ftemp;
609: }
610: if (j == info.my - 1) {
611: fomega = x[j][i].omega + (x[j][i].u - x[j-1][i].u)*dhy - bjiomega;
612: ftemp = x[j][i].temp-x[j-1][i].temp - bjitemp;
613: yo = fomega;
614: yt = ftemp;
615: x[j][i].omega = x[j][i].omega - fomega;
616: x[j][i].temp = x[j][i].temp - ftemp;
617: }
618: tot_its++;
619: pfnorm = PetscRealPart(fu*fu + fv*fv + fomega*fomega + ftemp*ftemp);
620: pfnorm = PetscSqrtReal(pfnorm);
621: pynorm = PetscRealPart(yu*yu + yv*yv + yo*yo + yt*yt);
622: pynorm = PetscSqrtReal(pynorm);
623: pxnorm = PetscRealPart(x[j][i].u*x[j][i].u + x[j][i].v*x[j][i].v + x[j][i].omega*x[j][i].omega + x[j][i].temp*x[j][i].temp);
624: pxnorm = PetscSqrtReal(pxnorm);
625: if (l == 0) pfnorm0 = pfnorm;
626: if (rtol*pfnorm0 >pfnorm ||
627: atol > pfnorm ||
628: pxnorm*stol > pynorm) ptconverged = PETSC_TRUE ;
629: }
630: }
631: }
632: }
633: DMDAVecRestoreArray (da,localX,&x);
634: if (B) {
635: DMDAVecRestoreArrayRead (da,localB,&b);
636: }
637: DMLocalToGlobalBegin (da,localX,INSERT_VALUES ,X);
638: DMLocalToGlobalEnd (da,localX,INSERT_VALUES ,X);
639: PetscLogFlops (tot_its*(84.0 + 41.0 + 26.0));
640: DMRestoreLocalVector (da,&localX);
641: if (B) {
642: DMRestoreLocalVector (da,&localB);
643: }
644: return (0);
645: }