Actual source code: sbaijfact8.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  2: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  3: #include <petsc/private/kernels/blockinvert.h>

  5: /*
  6:       Version for when blocks are 5 by 5 Using natural ordering
  7: */
 10: PetscErrorCode MatCholeskyFactorNumeric_SeqSBAIJ_5_NaturalOrdering(Mat C,Mat A,const MatFactorInfo *info)
 11: {
 12:   Mat_SeqSBAIJ   *a = (Mat_SeqSBAIJ*)A->data,*b = (Mat_SeqSBAIJ*)C->data;
 14:   PetscInt       i,j,mbs=a->mbs,*bi=b->i,*bj=b->j;
 15:   PetscInt       *ai,*aj,k,k1,jmin,jmax,*jl,*il,vj,nexti,ili,ipvt[5];
 16:   MatScalar      *ba = b->a,*aa,*ap,*dk,*uik;
 17:   MatScalar      *u,*d,*rtmp,*rtmp_ptr,work[25];
 18:   PetscReal      shift = info->shiftamount;
 19:   PetscBool      allowzeropivot,zeropivotdetected;

 22:   /* initialization */
 23:   allowzeropivot = PetscNot(A->erroriffailure);
 24:   PetscCalloc1(25*mbs,&rtmp);
 25:   PetscMalloc2(mbs,&il,mbs,&jl);
 26:   il[0] = 0;
 27:   for (i=0; i<mbs; i++) jl[i] = mbs;
 28: 
 29:   PetscMalloc2(25,&dk,25,&uik);
 30:   ai   = a->i; aj = a->j; aa = a->a;

 32:   /* for each row k */
 33:   for (k = 0; k<mbs; k++) {

 35:     /*initialize k-th row with elements nonzero in row k of A */
 36:     jmin = ai[k]; jmax = ai[k+1];
 37:     if (jmin < jmax) {
 38:       ap = aa + jmin*25;
 39:       for (j = jmin; j < jmax; j++) {
 40:         vj       = aj[j];   /* block col. index */
 41:         rtmp_ptr = rtmp + vj*25;
 42:         for (i=0; i<25; i++) *rtmp_ptr++ = *ap++;
 43:       }
 44:     }

 46:     /* modify k-th row by adding in those rows i with U(i,k) != 0 */
 47:     PetscMemcpy(dk,rtmp+k*25,25*sizeof(MatScalar));
 48:     i    = jl[k]; /* first row to be added to k_th row  */

 50:     while (i < mbs) {
 51:       nexti = jl[i]; /* next row to be added to k_th row */

 53:       /* compute multiplier */
 54:       ili = il[i];  /* index of first nonzero element in U(i,k:bms-1) */

 56:       /* uik = -inv(Di)*U_bar(i,k) */
 57:       d = ba + i*25;
 58:       u = ba + ili*25;

 60:       uik[0] = -(d[0]*u[0] + d[5]*u[1] + d[10]*u[2] + d[15]*u[3] + d[20]*u[4]);
 61:       uik[1] = -(d[1]*u[0] + d[6]*u[1] + d[11]*u[2] + d[16]*u[3] + d[21]*u[4]);
 62:       uik[2] = -(d[2]*u[0] + d[7]*u[1] + d[12]*u[2] + d[17]*u[3] + d[22]*u[4]);
 63:       uik[3] = -(d[3]*u[0] + d[8]*u[1] + d[13]*u[2] + d[18]*u[3] + d[23]*u[4]);
 64:       uik[4] = -(d[4]*u[0] + d[9]*u[1] + d[14]*u[2] + d[19]*u[3] + d[24]*u[4]);

 66:       uik[5] = -(d[0]*u[5] + d[5]*u[6] + d[10]*u[7] + d[15]*u[8] + d[20]*u[9]);
 67:       uik[6] = -(d[1]*u[5] + d[6]*u[6] + d[11]*u[7] + d[16]*u[8] + d[21]*u[9]);
 68:       uik[7] = -(d[2]*u[5] + d[7]*u[6] + d[12]*u[7] + d[17]*u[8] + d[22]*u[9]);
 69:       uik[8] = -(d[3]*u[5] + d[8]*u[6] + d[13]*u[7] + d[18]*u[8] + d[23]*u[9]);
 70:       uik[9] = -(d[4]*u[5] + d[9]*u[6] + d[14]*u[7] + d[19]*u[8] + d[24]*u[9]);

 72:       uik[10]= -(d[0]*u[10] + d[5]*u[11] + d[10]*u[12] + d[15]*u[13] + d[20]*u[14]);
 73:       uik[11]= -(d[1]*u[10] + d[6]*u[11] + d[11]*u[12] + d[16]*u[13] + d[21]*u[14]);
 74:       uik[12]= -(d[2]*u[10] + d[7]*u[11] + d[12]*u[12] + d[17]*u[13] + d[22]*u[14]);
 75:       uik[13]= -(d[3]*u[10] + d[8]*u[11] + d[13]*u[12] + d[18]*u[13] + d[23]*u[14]);
 76:       uik[14]= -(d[4]*u[10] + d[9]*u[11] + d[14]*u[12] + d[19]*u[13] + d[24]*u[14]);

 78:       uik[15]= -(d[0]*u[15] + d[5]*u[16] + d[10]*u[17] + d[15]*u[18] + d[20]*u[19]);
 79:       uik[16]= -(d[1]*u[15] + d[6]*u[16] + d[11]*u[17] + d[16]*u[18] + d[21]*u[19]);
 80:       uik[17]= -(d[2]*u[15] + d[7]*u[16] + d[12]*u[17] + d[17]*u[18] + d[22]*u[19]);
 81:       uik[18]= -(d[3]*u[15] + d[8]*u[16] + d[13]*u[17] + d[18]*u[18] + d[23]*u[19]);
 82:       uik[19]= -(d[4]*u[15] + d[9]*u[16] + d[14]*u[17] + d[19]*u[18] + d[24]*u[19]);

 84:       uik[20]= -(d[0]*u[20] + d[5]*u[21] + d[10]*u[22] + d[15]*u[23] + d[20]*u[24]);
 85:       uik[21]= -(d[1]*u[20] + d[6]*u[21] + d[11]*u[22] + d[16]*u[23] + d[21]*u[24]);
 86:       uik[22]= -(d[2]*u[20] + d[7]*u[21] + d[12]*u[22] + d[17]*u[23] + d[22]*u[24]);
 87:       uik[23]= -(d[3]*u[20] + d[8]*u[21] + d[13]*u[22] + d[18]*u[23] + d[23]*u[24]);
 88:       uik[24]= -(d[4]*u[20] + d[9]*u[21] + d[14]*u[22] + d[19]*u[23] + d[24]*u[24]);


 91:       /* update D(k) += -U(i,k)^T * U_bar(i,k) */
 92:       dk[0] +=  uik[0]*u[0] + uik[1]*u[1] + uik[2]*u[2] + uik[3]*u[3] + uik[4]*u[4];
 93:       dk[1] +=  uik[5]*u[0] + uik[6]*u[1] + uik[7]*u[2] + uik[8]*u[3] + uik[9]*u[4];
 94:       dk[2] += uik[10]*u[0]+ uik[11]*u[1]+ uik[12]*u[2]+ uik[13]*u[3]+ uik[14]*u[4];
 95:       dk[3] += uik[15]*u[0]+ uik[16]*u[1]+ uik[17]*u[2]+ uik[18]*u[3]+ uik[19]*u[4];
 96:       dk[4] += uik[20]*u[0]+ uik[21]*u[1]+ uik[22]*u[2]+ uik[23]*u[3]+ uik[24]*u[4];

 98:       dk[5] +=  uik[0]*u[5] + uik[1]*u[6] + uik[2]*u[7] + uik[3]*u[8] + uik[4]*u[9];
 99:       dk[6] +=  uik[5]*u[5] + uik[6]*u[6] + uik[7]*u[7] + uik[8]*u[8] + uik[9]*u[9];
100:       dk[7] += uik[10]*u[5]+ uik[11]*u[6]+ uik[12]*u[7]+ uik[13]*u[8]+ uik[14]*u[9];
101:       dk[8] += uik[15]*u[5]+ uik[16]*u[6]+ uik[17]*u[7]+ uik[18]*u[8]+ uik[19]*u[9];
102:       dk[9] += uik[20]*u[5]+ uik[21]*u[6]+ uik[22]*u[7]+ uik[23]*u[8]+ uik[24]*u[9];

104:       dk[10] +=  uik[0]*u[10] + uik[1]*u[11] + uik[2]*u[12] + uik[3]*u[13] + uik[4]*u[14];
105:       dk[11] +=  uik[5]*u[10] + uik[6]*u[11] + uik[7]*u[12] + uik[8]*u[13] + uik[9]*u[14];
106:       dk[12] += uik[10]*u[10]+ uik[11]*u[11]+ uik[12]*u[12]+ uik[13]*u[13]+ uik[14]*u[14];
107:       dk[13] += uik[15]*u[10]+ uik[16]*u[11]+ uik[17]*u[12]+ uik[18]*u[13]+ uik[19]*u[14];
108:       dk[14] += uik[20]*u[10]+ uik[21]*u[11]+ uik[22]*u[12]+ uik[23]*u[13]+ uik[24]*u[14];

110:       dk[15] +=  uik[0]*u[15] + uik[1]*u[16] + uik[2]*u[17] + uik[3]*u[18] + uik[4]*u[19];
111:       dk[16] +=  uik[5]*u[15] + uik[6]*u[16] + uik[7]*u[17] + uik[8]*u[18] + uik[9]*u[19];
112:       dk[17] += uik[10]*u[15]+ uik[11]*u[16]+ uik[12]*u[17]+ uik[13]*u[18]+ uik[14]*u[19];
113:       dk[18] += uik[15]*u[15]+ uik[16]*u[16]+ uik[17]*u[17]+ uik[18]*u[18]+ uik[19]*u[19];
114:       dk[19] += uik[20]*u[15]+ uik[21]*u[16]+ uik[22]*u[17]+ uik[23]*u[18]+ uik[24]*u[19];

116:       dk[20] +=  uik[0]*u[20] + uik[1]*u[21] + uik[2]*u[22] + uik[3]*u[23] + uik[4]*u[24];
117:       dk[21] +=  uik[5]*u[20] + uik[6]*u[21] + uik[7]*u[22] + uik[8]*u[23] + uik[9]*u[24];
118:       dk[22] += uik[10]*u[20]+ uik[11]*u[21]+ uik[12]*u[22]+ uik[13]*u[23]+ uik[14]*u[24];
119:       dk[23] += uik[15]*u[20]+ uik[16]*u[21]+ uik[17]*u[22]+ uik[18]*u[23]+ uik[19]*u[24];
120:       dk[24] += uik[20]*u[20]+ uik[21]*u[21]+ uik[22]*u[22]+ uik[23]*u[23]+ uik[24]*u[24];

122:       PetscLogFlops(125.0*4.0);

124:       /* update -U(i,k) */
125:       PetscMemcpy(ba+ili*25,uik,25*sizeof(MatScalar));

127:       /* add multiple of row i to k-th row ... */
128:       jmin = ili + 1; jmax = bi[i+1];
129:       if (jmin < jmax) {
130:         for (j=jmin; j<jmax; j++) {
131:           /* rtmp += -U(i,k)^T * U_bar(i,j) */
132:           rtmp_ptr     = rtmp + bj[j]*25;
133:           u            = ba + j*25;
134:           rtmp_ptr[0] +=  uik[0]*u[0] + uik[1]*u[1] + uik[2]*u[2] + uik[3]*u[3] + uik[4]*u[4];
135:           rtmp_ptr[1] +=  uik[5]*u[0] + uik[6]*u[1] + uik[7]*u[2] + uik[8]*u[3] + uik[9]*u[4];
136:           rtmp_ptr[2] += uik[10]*u[0]+ uik[11]*u[1]+ uik[12]*u[2]+ uik[13]*u[3]+ uik[14]*u[4];
137:           rtmp_ptr[3] += uik[15]*u[0]+ uik[16]*u[1]+ uik[17]*u[2]+ uik[18]*u[3]+ uik[19]*u[4];
138:           rtmp_ptr[4] += uik[20]*u[0]+ uik[21]*u[1]+ uik[22]*u[2]+ uik[23]*u[3]+ uik[24]*u[4];

140:           rtmp_ptr[5] +=  uik[0]*u[5] + uik[1]*u[6] + uik[2]*u[7] + uik[3]*u[8] + uik[4]*u[9];
141:           rtmp_ptr[6] +=  uik[5]*u[5] + uik[6]*u[6] + uik[7]*u[7] + uik[8]*u[8] + uik[9]*u[9];
142:           rtmp_ptr[7] += uik[10]*u[5]+ uik[11]*u[6]+ uik[12]*u[7]+ uik[13]*u[8]+ uik[14]*u[9];
143:           rtmp_ptr[8] += uik[15]*u[5]+ uik[16]*u[6]+ uik[17]*u[7]+ uik[18]*u[8]+ uik[19]*u[9];
144:           rtmp_ptr[9] += uik[20]*u[5]+ uik[21]*u[6]+ uik[22]*u[7]+ uik[23]*u[8]+ uik[24]*u[9];

146:           rtmp_ptr[10] +=  uik[0]*u[10] + uik[1]*u[11] + uik[2]*u[12] + uik[3]*u[13] + uik[4]*u[14];
147:           rtmp_ptr[11] +=  uik[5]*u[10] + uik[6]*u[11] + uik[7]*u[12] + uik[8]*u[13] + uik[9]*u[14];
148:           rtmp_ptr[12] += uik[10]*u[10]+ uik[11]*u[11]+ uik[12]*u[12]+ uik[13]*u[13]+ uik[14]*u[14];
149:           rtmp_ptr[13] += uik[15]*u[10]+ uik[16]*u[11]+ uik[17]*u[12]+ uik[18]*u[13]+ uik[19]*u[14];
150:           rtmp_ptr[14] += uik[20]*u[10]+ uik[21]*u[11]+ uik[22]*u[12]+ uik[23]*u[13]+ uik[24]*u[14];

152:           rtmp_ptr[15] +=  uik[0]*u[15] + uik[1]*u[16] + uik[2]*u[17] + uik[3]*u[18] + uik[4]*u[19];
153:           rtmp_ptr[16] +=  uik[5]*u[15] + uik[6]*u[16] + uik[7]*u[17] + uik[8]*u[18] + uik[9]*u[19];
154:           rtmp_ptr[17] += uik[10]*u[15]+ uik[11]*u[16]+ uik[12]*u[17]+ uik[13]*u[18]+ uik[14]*u[19];
155:           rtmp_ptr[18] += uik[15]*u[15]+ uik[16]*u[16]+ uik[17]*u[17]+ uik[18]*u[18]+ uik[19]*u[19];
156:           rtmp_ptr[19] += uik[20]*u[15]+ uik[21]*u[16]+ uik[22]*u[17]+ uik[23]*u[18]+ uik[24]*u[19];

158:           rtmp_ptr[20] +=  uik[0]*u[20] + uik[1]*u[21] + uik[2]*u[22] + uik[3]*u[23] + uik[4]*u[24];
159:           rtmp_ptr[21] +=  uik[5]*u[20] + uik[6]*u[21] + uik[7]*u[22] + uik[8]*u[23] + uik[9]*u[24];
160:           rtmp_ptr[22] += uik[10]*u[20]+ uik[11]*u[21]+ uik[12]*u[22]+ uik[13]*u[23]+ uik[14]*u[24];
161:           rtmp_ptr[23] += uik[15]*u[20]+ uik[16]*u[21]+ uik[17]*u[22]+ uik[18]*u[23]+ uik[19]*u[24];
162:           rtmp_ptr[24] += uik[20]*u[20]+ uik[21]*u[21]+ uik[22]*u[22]+ uik[23]*u[23]+ uik[24]*u[24];
163:         }
164:         PetscLogFlops(2.0*125.0*(jmax-jmin));

166:         /* ... add i to row list for next nonzero entry */
167:         il[i] = jmin;             /* update il(i) in column k+1, ... mbs-1 */
168:         j     = bj[jmin];
169:         jl[i] = jl[j]; jl[j] = i; /* update jl */
170:       }
171:       i = nexti;
172:     }

174:     /* save nonzero entries in k-th row of U ... */

176:     /* invert diagonal block */
177:     d    = ba+k*25;
178:     PetscMemcpy(d,dk,25*sizeof(MatScalar));
179:     PetscKernel_A_gets_inverse_A_5(d,ipvt,work,shift,allowzeropivot,&zeropivotdetected);
180:     if (zeropivotdetected) C->errortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;

182:     jmin = bi[k]; jmax = bi[k+1];
183:     if (jmin < jmax) {
184:       for (j=jmin; j<jmax; j++) {
185:         vj       = bj[j];      /* block col. index of U */
186:         u        = ba + j*25;
187:         rtmp_ptr = rtmp + vj*25;
188:         for (k1=0; k1<25; k1++) {
189:           *u++        = *rtmp_ptr;
190:           *rtmp_ptr++ = 0.0;
191:         }
192:       }

194:       /* ... add k to row list for first nonzero entry in k-th row */
195:       il[k] = jmin;
196:       i     = bj[jmin];
197:       jl[k] = jl[i]; jl[i] = k;
198:     }
199:   }

201:   PetscFree(rtmp);
202:   PetscFree2(il,jl);
203:   PetscFree2(dk,uik);

205:   C->ops->solve          = MatSolve_SeqSBAIJ_5_NaturalOrdering_inplace;
206:   C->ops->solvetranspose = MatSolve_SeqSBAIJ_5_NaturalOrdering_inplace;
207:   C->ops->forwardsolve   = MatForwardSolve_SeqSBAIJ_5_NaturalOrdering_inplace;
208:   C->ops->backwardsolve  = MatBackwardSolve_SeqSBAIJ_5_NaturalOrdering_inplace;
209:   C->assembled           = PETSC_TRUE;
210:   C->preallocated        = PETSC_TRUE;

212:   PetscLogFlops(1.3333*125*b->mbs); /* from inverting diagonal blocks */
213:   return(0);
214: }