Actual source code: baijfact4.c
petsc-3.7.3 2016-08-01
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include <../src/mat/impls/baij/seq/baij.h>
6: #include <petsc/private/kernels/blockinvert.h>
8: /* ----------------------------------------------------------- */
11: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_N_inplace(Mat C,Mat A,const MatFactorInfo *info)
12: {
13: Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)C->data;
14: IS isrow = b->row,isicol = b->icol;
16: const PetscInt *r,*ic;
17: PetscInt i,j,n = a->mbs,*bi = b->i,*bj = b->j;
18: PetscInt *ajtmpold,*ajtmp,nz,row,*ai=a->i,*aj=a->j,k,flg;
19: PetscInt *diag_offset=b->diag,diag,bs=A->rmap->bs,bs2 = a->bs2,*pj,*v_pivots;
20: MatScalar *ba = b->a,*aa = a->a,*pv,*v,*rtmp,*multiplier,*v_work,*pc,*w;
21: PetscBool allowzeropivot,zeropivotdetected;
24: ISGetIndices(isrow,&r);
25: ISGetIndices(isicol,&ic);
26: allowzeropivot = PetscNot(A->erroriffailure);
28: PetscMalloc1(bs2*(n+1),&rtmp);
29: PetscMemzero(rtmp,(bs2*n+1)*sizeof(MatScalar));
30: /* generate work space needed by dense LU factorization */
31: PetscMalloc3(bs,&v_work,bs2,&multiplier,bs,&v_pivots);
33: for (i=0; i<n; i++) {
34: nz = bi[i+1] - bi[i];
35: ajtmp = bj + bi[i];
36: for (j=0; j<nz; j++) {
37: PetscMemzero(rtmp+bs2*ajtmp[j],bs2*sizeof(MatScalar));
38: }
39: /* load in initial (unfactored row) */
40: nz = ai[r[i]+1] - ai[r[i]];
41: ajtmpold = aj + ai[r[i]];
42: v = aa + bs2*ai[r[i]];
43: for (j=0; j<nz; j++) {
44: PetscMemcpy(rtmp+bs2*ic[ajtmpold[j]],v+bs2*j,bs2*sizeof(MatScalar));
45: }
46: row = *ajtmp++;
47: while (row < i) {
48: pc = rtmp + bs2*row;
49: /* if (*pc) { */
50: for (flg=0,k=0; k<bs2; k++) {
51: if (pc[k]!=0.0) {
52: flg = 1;
53: break;
54: }
55: }
56: if (flg) {
57: pv = ba + bs2*diag_offset[row];
58: pj = bj + diag_offset[row] + 1;
59: PetscKernel_A_gets_A_times_B(bs,pc,pv,multiplier);
60: nz = bi[row+1] - diag_offset[row] - 1;
61: pv += bs2;
62: for (j=0; j<nz; j++) {
63: PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j);
64: }
65: PetscLogFlops(2.0*bs*bs2*(nz+1.0)-bs);
66: }
67: row = *ajtmp++;
68: }
69: /* finished row so stick it into b->a */
70: pv = ba + bs2*bi[i];
71: pj = bj + bi[i];
72: nz = bi[i+1] - bi[i];
73: for (j=0; j<nz; j++) {
74: PetscMemcpy(pv+bs2*j,rtmp+bs2*pj[j],bs2*sizeof(MatScalar));
75: }
76: diag = diag_offset[i] - bi[i];
77: /* invert diagonal block */
78: w = pv + bs2*diag;
80: PetscKernel_A_gets_inverse_A(bs,w,v_pivots,v_work,allowzeropivot,&zeropivotdetected);
81: if (zeropivotdetected) C->errortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
82: }
84: PetscFree(rtmp);
85: PetscFree3(v_work,multiplier,v_pivots);
86: ISRestoreIndices(isicol,&ic);
87: ISRestoreIndices(isrow,&r);
89: C->ops->solve = MatSolve_SeqBAIJ_N_inplace;
90: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_N_inplace;
91: C->assembled = PETSC_TRUE;
93: PetscLogFlops(1.333333333333*bs*bs2*b->mbs); /* from inverting diagonal blocks */
94: return(0);
95: }