Actual source code: bjacobi.c
petsc-3.6.4 2016-04-12
2: /*
3: Defines a block Jacobi preconditioner.
4: */
5: #include <petsc/private/pcimpl.h> /*I "petscpc.h" I*/
6: #include <../src/ksp/pc/impls/bjacobi/bjacobi.h>
8: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC,Mat,Mat);
9: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC,Mat,Mat);
10: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC);
14: static PetscErrorCode PCSetUp_BJacobi(PC pc)
15: {
16: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
17: Mat mat = pc->mat,pmat = pc->pmat;
18: PetscErrorCode ierr,(*f)(Mat,Mat*);
19: PetscInt N,M,start,i,sum,end;
20: PetscInt bs,i_start=-1,i_end=-1;
21: PetscMPIInt rank,size;
22: const char *pprefix,*mprefix;
25: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
26: MPI_Comm_size(PetscObjectComm((PetscObject)pc),&size);
27: MatGetLocalSize(pc->pmat,&M,&N);
28: MatGetBlockSize(pc->pmat,&bs);
30: if (jac->n > 0 && jac->n < size) {
31: PCSetUp_BJacobi_Multiproc(pc);
32: return(0);
33: }
35: /* --------------------------------------------------------------------------
36: Determines the number of blocks assigned to each processor
37: -----------------------------------------------------------------------------*/
39: /* local block count given */
40: if (jac->n_local > 0 && jac->n < 0) {
41: MPI_Allreduce(&jac->n_local,&jac->n,1,MPIU_INT,MPI_SUM,PetscObjectComm((PetscObject)pc));
42: if (jac->l_lens) { /* check that user set these correctly */
43: sum = 0;
44: for (i=0; i<jac->n_local; i++) {
45: if (jac->l_lens[i]/bs*bs !=jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
46: sum += jac->l_lens[i];
47: }
48: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Local lens set incorrectly");
49: } else {
50: PetscMalloc1(jac->n_local,&jac->l_lens);
51: for (i=0; i<jac->n_local; i++) jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
52: }
53: } else if (jac->n > 0 && jac->n_local < 0) { /* global block count given */
54: /* global blocks given: determine which ones are local */
55: if (jac->g_lens) {
56: /* check if the g_lens is has valid entries */
57: for (i=0; i<jac->n; i++) {
58: if (!jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Zero block not allowed");
59: if (jac->g_lens[i]/bs*bs != jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
60: }
61: if (size == 1) {
62: jac->n_local = jac->n;
63: PetscMalloc1(jac->n_local,&jac->l_lens);
64: PetscMemcpy(jac->l_lens,jac->g_lens,jac->n_local*sizeof(PetscInt));
65: /* check that user set these correctly */
66: sum = 0;
67: for (i=0; i<jac->n_local; i++) sum += jac->l_lens[i];
68: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Global lens set incorrectly");
69: } else {
70: MatGetOwnershipRange(pc->pmat,&start,&end);
71: /* loop over blocks determing first one owned by me */
72: sum = 0;
73: for (i=0; i<jac->n+1; i++) {
74: if (sum == start) { i_start = i; goto start_1;}
75: if (i < jac->n) sum += jac->g_lens[i];
76: }
77: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
78: start_1:
79: for (i=i_start; i<jac->n+1; i++) {
80: if (sum == end) { i_end = i; goto end_1; }
81: if (i < jac->n) sum += jac->g_lens[i];
82: }
83: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
84: end_1:
85: jac->n_local = i_end - i_start;
86: PetscMalloc1(jac->n_local,&jac->l_lens);
87: PetscMemcpy(jac->l_lens,jac->g_lens+i_start,jac->n_local*sizeof(PetscInt));
88: }
89: } else { /* no global blocks given, determine then using default layout */
90: jac->n_local = jac->n/size + ((jac->n % size) > rank);
91: PetscMalloc1(jac->n_local,&jac->l_lens);
92: for (i=0; i<jac->n_local; i++) {
93: jac->l_lens[i] = ((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i))*bs;
94: if (!jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Too many blocks given");
95: }
96: }
97: } else if (jac->n < 0 && jac->n_local < 0) { /* no blocks given */
98: jac->n = size;
99: jac->n_local = 1;
100: PetscMalloc1(1,&jac->l_lens);
101: jac->l_lens[0] = M;
102: } else { /* jac->n > 0 && jac->n_local > 0 */
103: if (!jac->l_lens) {
104: PetscMalloc1(jac->n_local,&jac->l_lens);
105: for (i=0; i<jac->n_local; i++) jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
106: }
107: }
108: if (jac->n_local < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of blocks is less than number of processors");
110: /* -------------------------
111: Determines mat and pmat
112: ---------------------------*/
113: PetscObjectQueryFunction((PetscObject)pc->mat,"MatGetDiagonalBlock_C",&f);
114: if (!f && size == 1) {
115: mat = pc->mat;
116: pmat = pc->pmat;
117: } else {
118: if (pc->useAmat) {
119: /* use block from Amat matrix, not Pmat for local MatMult() */
120: MatGetDiagonalBlock(pc->mat,&mat);
121: /* make submatrix have same prefix as entire matrix */
122: PetscObjectGetOptionsPrefix((PetscObject)pc->mat,&mprefix);
123: PetscObjectSetOptionsPrefix((PetscObject)mat,mprefix);
124: }
125: if (pc->pmat != pc->mat || !pc->useAmat) {
126: MatGetDiagonalBlock(pc->pmat,&pmat);
127: /* make submatrix have same prefix as entire matrix */
128: PetscObjectGetOptionsPrefix((PetscObject)pc->pmat,&pprefix);
129: PetscObjectSetOptionsPrefix((PetscObject)pmat,pprefix);
130: } else pmat = mat;
131: }
133: /* ------
134: Setup code depends on the number of blocks
135: */
136: if (jac->n_local == 1) {
137: PCSetUp_BJacobi_Singleblock(pc,mat,pmat);
138: } else {
139: PCSetUp_BJacobi_Multiblock(pc,mat,pmat);
140: }
141: return(0);
142: }
144: /* Default destroy, if it has never been setup */
147: static PetscErrorCode PCDestroy_BJacobi(PC pc)
148: {
149: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
153: PetscFree(jac->g_lens);
154: PetscFree(jac->l_lens);
155: PetscFree(pc->data);
156: return(0);
157: }
162: static PetscErrorCode PCSetFromOptions_BJacobi(PetscOptions *PetscOptionsObject,PC pc)
163: {
164: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
166: PetscInt blocks,i;
167: PetscBool flg;
170: PetscOptionsHead(PetscOptionsObject,"Block Jacobi options");
171: PetscOptionsInt("-pc_bjacobi_blocks","Total number of blocks","PCBJacobiSetTotalBlocks",jac->n,&blocks,&flg);
172: if (flg) {
173: PCBJacobiSetTotalBlocks(pc,blocks,NULL);
174: }
175: if (jac->ksp) {
176: /* The sub-KSP has already been set up (e.g., PCSetUp_BJacobi_Singleblock), but KSPSetFromOptions was not called
177: * unless we had already been called. */
178: for (i=0; i<jac->n_local; i++) {
179: KSPSetFromOptions(jac->ksp[i]);
180: }
181: }
182: PetscOptionsTail();
183: return(0);
184: }
186: #include <petscdraw.h>
189: static PetscErrorCode PCView_BJacobi(PC pc,PetscViewer viewer)
190: {
191: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
192: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
193: PetscErrorCode ierr;
194: PetscMPIInt rank;
195: PetscInt i;
196: PetscBool iascii,isstring,isdraw;
197: PetscViewer sviewer;
200: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
201: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
202: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
203: if (iascii) {
204: if (pc->useAmat) {
205: PetscViewerASCIIPrintf(viewer," block Jacobi: using Amat local matrix, number of blocks = %D\n",jac->n);
206: }
207: PetscViewerASCIIPrintf(viewer," block Jacobi: number of blocks = %D\n",jac->n);
208: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
209: if (jac->same_local_solves) {
210: PetscViewerASCIIPrintf(viewer," Local solve is same for all blocks, in the following KSP and PC objects:\n");
211: if (jac->ksp && !jac->psubcomm) {
212: PetscViewerGetSingleton(viewer,&sviewer);
213: if (!rank) {
214: PetscViewerASCIIPushTab(viewer);
215: KSPView(jac->ksp[0],sviewer);
216: PetscViewerASCIIPopTab(viewer);
217: }
218: PetscViewerRestoreSingleton(viewer,&sviewer);
219: } else if (jac->psubcomm && !jac->psubcomm->color) {
220: PetscViewerASCIIGetStdout(PetscSubcommChild(mpjac->psubcomm),&sviewer);
221: PetscViewerASCIIPushTab(viewer);
222: KSPView(*(jac->ksp),sviewer);
223: PetscViewerASCIIPopTab(viewer);
224: }
225: } else {
226: PetscInt n_global;
227: MPI_Allreduce(&jac->n_local,&n_global,1,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)pc));
228: PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
229: PetscViewerASCIIPrintf(viewer," Local solve info for each block is in the following KSP and PC objects:\n");
230: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] number of local blocks = %D, first local block number = %D\n",
231: rank,jac->n_local,jac->first_local);
232: PetscViewerASCIIPushTab(viewer);
233: PetscViewerGetSingleton(viewer,&sviewer);
234: for (i=0; i<jac->n_local; i++) {
235: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] local block number %D\n",rank,i);
236: KSPView(jac->ksp[i],sviewer);
237: PetscViewerASCIISynchronizedPrintf(viewer,"- - - - - - - - - - - - - - - - - -\n");
238: }
239: PetscViewerRestoreSingleton(viewer,&sviewer);
240: PetscViewerASCIIPopTab(viewer);
241: PetscViewerFlush(viewer);
242: PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
243: }
244: } else if (isstring) {
245: PetscViewerStringSPrintf(viewer," blks=%D",jac->n);
246: PetscViewerGetSingleton(viewer,&sviewer);
247: if (jac->ksp) {KSPView(jac->ksp[0],sviewer);}
248: PetscViewerRestoreSingleton(viewer,&sviewer);
249: } else if (isdraw) {
250: PetscDraw draw;
251: char str[25];
252: PetscReal x,y,bottom,h;
254: PetscViewerDrawGetDraw(viewer,0,&draw);
255: PetscDrawGetCurrentPoint(draw,&x,&y);
256: PetscSNPrintf(str,25,"Number blocks %D",jac->n);
257: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_RED,PETSC_DRAW_BLACK,str,NULL,&h);
258: bottom = y - h;
259: PetscDrawPushCurrentPoint(draw,x,bottom);
260: /* warning the communicator on viewer is different then on ksp in parallel */
261: if (jac->ksp) {KSPView(jac->ksp[0],viewer);}
262: PetscDrawPopCurrentPoint(draw);
263: }
264: return(0);
265: }
267: /* -------------------------------------------------------------------------------------*/
271: static PetscErrorCode PCBJacobiGetSubKSP_BJacobi(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **ksp)
272: {
273: PC_BJacobi *jac = (PC_BJacobi*)pc->data;;
276: if (!pc->setupcalled) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_WRONGSTATE,"Must call KSPSetUp() or PCSetUp() first");
278: if (n_local) *n_local = jac->n_local;
279: if (first_local) *first_local = jac->first_local;
280: *ksp = jac->ksp;
281: jac->same_local_solves = PETSC_FALSE; /* Assume that local solves are now different;
282: not necessarily true though! This flag is
283: used only for PCView_BJacobi() */
284: return(0);
285: }
289: static PetscErrorCode PCBJacobiSetTotalBlocks_BJacobi(PC pc,PetscInt blocks,PetscInt *lens)
290: {
291: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
295: if (pc->setupcalled > 0 && jac->n!=blocks) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ORDER,"Cannot alter number of blocks after PCSetUp()/KSPSetUp() has been called");
296: jac->n = blocks;
297: if (!lens) jac->g_lens = 0;
298: else {
299: PetscMalloc1(blocks,&jac->g_lens);
300: PetscLogObjectMemory((PetscObject)pc,blocks*sizeof(PetscInt));
301: PetscMemcpy(jac->g_lens,lens,blocks*sizeof(PetscInt));
302: }
303: return(0);
304: }
308: static PetscErrorCode PCBJacobiGetTotalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
309: {
310: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
313: *blocks = jac->n;
314: if (lens) *lens = jac->g_lens;
315: return(0);
316: }
320: static PetscErrorCode PCBJacobiSetLocalBlocks_BJacobi(PC pc,PetscInt blocks,const PetscInt lens[])
321: {
322: PC_BJacobi *jac;
326: jac = (PC_BJacobi*)pc->data;
328: jac->n_local = blocks;
329: if (!lens) jac->l_lens = 0;
330: else {
331: PetscMalloc1(blocks,&jac->l_lens);
332: PetscLogObjectMemory((PetscObject)pc,blocks*sizeof(PetscInt));
333: PetscMemcpy(jac->l_lens,lens,blocks*sizeof(PetscInt));
334: }
335: return(0);
336: }
340: static PetscErrorCode PCBJacobiGetLocalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
341: {
342: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
345: *blocks = jac->n_local;
346: if (lens) *lens = jac->l_lens;
347: return(0);
348: }
350: /* -------------------------------------------------------------------------------------*/
354: /*@C
355: PCBJacobiGetSubKSP - Gets the local KSP contexts for all blocks on
356: this processor.
358: Note Collective
360: Input Parameter:
361: . pc - the preconditioner context
363: Output Parameters:
364: + n_local - the number of blocks on this processor, or NULL
365: . first_local - the global number of the first block on this processor, or NULL
366: - ksp - the array of KSP contexts
368: Notes:
369: After PCBJacobiGetSubKSP() the array of KSP contexts is not to be freed.
371: Currently for some matrix implementations only 1 block per processor
372: is supported.
374: You must call KSPSetUp() or PCSetUp() before calling PCBJacobiGetSubKSP().
376: Fortran Usage: You must pass in a KSP array that is large enough to contain all the local KSPs.
377: You can call PCBJacobiGetSubKSP(pc,nlocal,firstlocal,NULL_OBJECT,ierr) to determine how large the
378: KSP array must be.
380: Level: advanced
382: .keywords: block, Jacobi, get, sub, KSP, context
384: .seealso: PCBJacobiGetSubKSP()
385: @*/
386: PetscErrorCode PCBJacobiGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP *ksp[])
387: {
392: PetscUseMethod(pc,"PCBJacobiGetSubKSP_C",(PC,PetscInt*,PetscInt*,KSP **),(pc,n_local,first_local,ksp));
393: return(0);
394: }
398: /*@
399: PCBJacobiSetTotalBlocks - Sets the global number of blocks for the block
400: Jacobi preconditioner.
402: Collective on PC
404: Input Parameters:
405: + pc - the preconditioner context
406: . blocks - the number of blocks
407: - lens - [optional] integer array containing the size of each block
409: Options Database Key:
410: . -pc_bjacobi_blocks <blocks> - Sets the number of global blocks
412: Notes:
413: Currently only a limited number of blocking configurations are supported.
414: All processors sharing the PC must call this routine with the same data.
416: Level: intermediate
418: .keywords: set, number, Jacobi, global, total, blocks
420: .seealso: PCSetUseAmat(), PCBJacobiSetLocalBlocks()
421: @*/
422: PetscErrorCode PCBJacobiSetTotalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
423: {
428: if (blocks <= 0) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_OUTOFRANGE,"Must have positive blocks");
429: PetscTryMethod(pc,"PCBJacobiSetTotalBlocks_C",(PC,PetscInt,const PetscInt[]),(pc,blocks,lens));
430: return(0);
431: }
435: /*@C
436: PCBJacobiGetTotalBlocks - Gets the global number of blocks for the block
437: Jacobi preconditioner.
439: Not Collective
441: Input Parameter:
442: . pc - the preconditioner context
444: Output parameters:
445: + blocks - the number of blocks
446: - lens - integer array containing the size of each block
448: Level: intermediate
450: .keywords: get, number, Jacobi, global, total, blocks
452: .seealso: PCSetUseAmat(), PCBJacobiGetLocalBlocks()
453: @*/
454: PetscErrorCode PCBJacobiGetTotalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
455: {
461: PetscUseMethod(pc,"PCBJacobiGetTotalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
462: return(0);
463: }
467: /*@
468: PCBJacobiSetLocalBlocks - Sets the local number of blocks for the block
469: Jacobi preconditioner.
471: Not Collective
473: Input Parameters:
474: + pc - the preconditioner context
475: . blocks - the number of blocks
476: - lens - [optional] integer array containing size of each block
478: Note:
479: Currently only a limited number of blocking configurations are supported.
481: Level: intermediate
483: .keywords: PC, set, number, Jacobi, local, blocks
485: .seealso: PCSetUseAmat(), PCBJacobiSetTotalBlocks()
486: @*/
487: PetscErrorCode PCBJacobiSetLocalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
488: {
493: if (blocks < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must have nonegative blocks");
494: PetscTryMethod(pc,"PCBJacobiSetLocalBlocks_C",(PC,PetscInt,const PetscInt []),(pc,blocks,lens));
495: return(0);
496: }
500: /*@C
501: PCBJacobiGetLocalBlocks - Gets the local number of blocks for the block
502: Jacobi preconditioner.
504: Not Collective
506: Input Parameters:
507: + pc - the preconditioner context
508: . blocks - the number of blocks
509: - lens - [optional] integer array containing size of each block
511: Note:
512: Currently only a limited number of blocking configurations are supported.
514: Level: intermediate
516: .keywords: PC, get, number, Jacobi, local, blocks
518: .seealso: PCSetUseAmat(), PCBJacobiGetTotalBlocks()
519: @*/
520: PetscErrorCode PCBJacobiGetLocalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
521: {
527: PetscUseMethod(pc,"PCBJacobiGetLocalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
528: return(0);
529: }
531: /* -----------------------------------------------------------------------------------*/
533: /*MC
534: PCBJACOBI - Use block Jacobi preconditioning, each block is (approximately) solved with
535: its own KSP object.
537: Options Database Keys:
538: . -pc_use_amat - use Amat to apply block of operator in inner Krylov method
540: Notes: Each processor can have one or more blocks, but a block cannot be shared by more
541: than one processor. Defaults to one block per processor.
543: To set options on the solvers for each block append -sub_ to all the KSP, KSP, and PC
544: options database keys. For example, -sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly
546: To set the options on the solvers separate for each block call PCBJacobiGetSubKSP()
547: and set the options directly on the resulting KSP object (you can access its PC
548: KSPGetPC())
550: Level: beginner
552: Concepts: block Jacobi
554: Developer Notes: This preconditioner does not currently work with CUDA/CUSP for a couple of reasons.
555: (1) It creates seq vectors as work vectors that should be cusp
556: (2) The use of VecPlaceArray() is not handled properly by CUSP (that is it will not know where
557: the ownership of the vector is so may use wrong values) even if it did know the ownership
558: it may induce extra copy ups and downs. Satish suggests a VecTransplantArray() to handle two
559: vectors sharing the same pointer and handling the CUSP side as well instead of VecGetArray()/VecPlaceArray().
562: .seealso: PCCreate(), PCSetType(), PCType (for list of available types), PC,
563: PCASM, PCSetUseAmat(), PCGetUseAmat(), PCBJacobiGetSubKSP(), PCBJacobiSetTotalBlocks(),
564: PCBJacobiSetLocalBlocks(), PCSetModifySubmatrices()
565: M*/
569: PETSC_EXTERN PetscErrorCode PCCreate_BJacobi(PC pc)
570: {
572: PetscMPIInt rank;
573: PC_BJacobi *jac;
576: PetscNewLog(pc,&jac);
577: MPI_Comm_rank(PetscObjectComm((PetscObject)pc),&rank);
579: pc->ops->apply = 0;
580: pc->ops->applytranspose = 0;
581: pc->ops->setup = PCSetUp_BJacobi;
582: pc->ops->destroy = PCDestroy_BJacobi;
583: pc->ops->setfromoptions = PCSetFromOptions_BJacobi;
584: pc->ops->view = PCView_BJacobi;
585: pc->ops->applyrichardson = 0;
587: pc->data = (void*)jac;
588: jac->n = -1;
589: jac->n_local = -1;
590: jac->first_local = rank;
591: jac->ksp = 0;
592: jac->same_local_solves = PETSC_TRUE;
593: jac->g_lens = 0;
594: jac->l_lens = 0;
595: jac->psubcomm = 0;
597: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetSubKSP_C",PCBJacobiGetSubKSP_BJacobi);
598: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiSetTotalBlocks_C",PCBJacobiSetTotalBlocks_BJacobi);
599: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetTotalBlocks_C",PCBJacobiGetTotalBlocks_BJacobi);
600: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiSetLocalBlocks_C",PCBJacobiSetLocalBlocks_BJacobi);
601: PetscObjectComposeFunction((PetscObject)pc,"PCBJacobiGetLocalBlocks_C",PCBJacobiGetLocalBlocks_BJacobi);
602: return(0);
603: }
605: /* --------------------------------------------------------------------------------------------*/
606: /*
607: These are for a single block per processor; works for AIJ, BAIJ; Seq and MPI
608: */
611: PetscErrorCode PCReset_BJacobi_Singleblock(PC pc)
612: {
613: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
614: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
615: PetscErrorCode ierr;
618: KSPReset(jac->ksp[0]);
619: VecDestroy(&bjac->x);
620: VecDestroy(&bjac->y);
621: return(0);
622: }
626: PetscErrorCode PCDestroy_BJacobi_Singleblock(PC pc)
627: {
628: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
629: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
630: PetscErrorCode ierr;
633: PCReset_BJacobi_Singleblock(pc);
634: KSPDestroy(&jac->ksp[0]);
635: PetscFree(jac->ksp);
636: PetscFree(jac->l_lens);
637: PetscFree(jac->g_lens);
638: PetscFree(bjac);
639: PetscFree(pc->data);
640: return(0);
641: }
645: PetscErrorCode PCSetUpOnBlocks_BJacobi_Singleblock(PC pc)
646: {
648: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
651: KSPSetUp(jac->ksp[0]);
652: return(0);
653: }
657: PetscErrorCode PCApply_BJacobi_Singleblock(PC pc,Vec x,Vec y)
658: {
659: PetscErrorCode ierr;
660: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
661: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
664: VecGetLocalVectorRead(x, bjac->x);
665: VecGetLocalVector(y, bjac->y);
666: /* Since the inner KSP matrix may point directly to the diagonal block of an MPI matrix the inner
667: matrix may change even if the outter KSP/PC has not updated the preconditioner, this will trigger a rebuild
668: of the inner preconditioner automatically unless we pass down the outter preconditioners reuse flag.*/
669: KSPSetReusePreconditioner(jac->ksp[0],pc->reusepreconditioner);
670: KSPSolve(jac->ksp[0],bjac->x,bjac->y);
671: VecRestoreLocalVectorRead(x, bjac->x);
672: VecRestoreLocalVector(y, bjac->y);
673: return(0);
674: }
678: PetscErrorCode PCApplySymmetricLeft_BJacobi_Singleblock(PC pc,Vec x,Vec y)
679: {
680: PetscErrorCode ierr;
681: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
682: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
683: PetscScalar *y_array;
684: const PetscScalar *x_array;
685: PC subpc;
688: /*
689: The VecPlaceArray() is to avoid having to copy the
690: y vector into the bjac->x vector. The reason for
691: the bjac->x vector is that we need a sequential vector
692: for the sequential solve.
693: */
694: VecGetArrayRead(x,&x_array);
695: VecGetArray(y,&y_array);
696: VecPlaceArray(bjac->x,x_array);
697: VecPlaceArray(bjac->y,y_array);
698: /* apply the symmetric left portion of the inner PC operator */
699: /* note this by-passes the inner KSP and its options completely */
700: KSPGetPC(jac->ksp[0],&subpc);
701: PCApplySymmetricLeft(subpc,bjac->x,bjac->y);
702: VecResetArray(bjac->x);
703: VecResetArray(bjac->y);
704: VecRestoreArrayRead(x,&x_array);
705: VecRestoreArray(y,&y_array);
706: return(0);
707: }
711: PetscErrorCode PCApplySymmetricRight_BJacobi_Singleblock(PC pc,Vec x,Vec y)
712: {
713: PetscErrorCode ierr;
714: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
715: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
716: PetscScalar *y_array;
717: const PetscScalar *x_array;
718: PC subpc;
721: /*
722: The VecPlaceArray() is to avoid having to copy the
723: y vector into the bjac->x vector. The reason for
724: the bjac->x vector is that we need a sequential vector
725: for the sequential solve.
726: */
727: VecGetArrayRead(x,&x_array);
728: VecGetArray(y,&y_array);
729: VecPlaceArray(bjac->x,x_array);
730: VecPlaceArray(bjac->y,y_array);
732: /* apply the symmetric right portion of the inner PC operator */
733: /* note this by-passes the inner KSP and its options completely */
735: KSPGetPC(jac->ksp[0],&subpc);
736: PCApplySymmetricRight(subpc,bjac->x,bjac->y);
738: VecRestoreArrayRead(x,&x_array);
739: VecRestoreArray(y,&y_array);
740: return(0);
741: }
745: PetscErrorCode PCApplyTranspose_BJacobi_Singleblock(PC pc,Vec x,Vec y)
746: {
747: PetscErrorCode ierr;
748: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
749: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
750: PetscScalar *y_array;
751: const PetscScalar *x_array;
754: /*
755: The VecPlaceArray() is to avoid having to copy the
756: y vector into the bjac->x vector. The reason for
757: the bjac->x vector is that we need a sequential vector
758: for the sequential solve.
759: */
760: VecGetArrayRead(x,&x_array);
761: VecGetArray(y,&y_array);
762: VecPlaceArray(bjac->x,x_array);
763: VecPlaceArray(bjac->y,y_array);
764: KSPSolveTranspose(jac->ksp[0],bjac->x,bjac->y);
765: VecResetArray(bjac->x);
766: VecResetArray(bjac->y);
767: VecRestoreArrayRead(x,&x_array);
768: VecRestoreArray(y,&y_array);
769: return(0);
770: }
774: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC pc,Mat mat,Mat pmat)
775: {
776: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
777: PetscErrorCode ierr;
778: PetscInt m;
779: KSP ksp;
780: PC_BJacobi_Singleblock *bjac;
781: PetscBool wasSetup = PETSC_TRUE;
784: if (!pc->setupcalled) {
785: const char *prefix;
787: if (!jac->ksp) {
788: wasSetup = PETSC_FALSE;
790: KSPCreate(PETSC_COMM_SELF,&ksp);
791: KSPSetErrorIfNotConverged(ksp,pc->erroriffailure);
792: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
793: PetscLogObjectParent((PetscObject)pc,(PetscObject)ksp);
794: KSPSetType(ksp,KSPPREONLY);
795: PCGetOptionsPrefix(pc,&prefix);
796: KSPSetOptionsPrefix(ksp,prefix);
797: KSPAppendOptionsPrefix(ksp,"sub_");
799: pc->ops->reset = PCReset_BJacobi_Singleblock;
800: pc->ops->destroy = PCDestroy_BJacobi_Singleblock;
801: pc->ops->apply = PCApply_BJacobi_Singleblock;
802: pc->ops->applysymmetricleft = PCApplySymmetricLeft_BJacobi_Singleblock;
803: pc->ops->applysymmetricright = PCApplySymmetricRight_BJacobi_Singleblock;
804: pc->ops->applytranspose = PCApplyTranspose_BJacobi_Singleblock;
805: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Singleblock;
807: PetscMalloc1(1,&jac->ksp);
808: jac->ksp[0] = ksp;
810: PetscNewLog(pc,&bjac);
811: jac->data = (void*)bjac;
812: } else {
813: ksp = jac->ksp[0];
814: bjac = (PC_BJacobi_Singleblock*)jac->data;
815: }
817: /*
818: The reason we need to generate these vectors is to serve
819: as the right-hand side and solution vector for the solve on the
820: block. We do not need to allocate space for the vectors since
821: that is provided via VecPlaceArray() just before the call to
822: KSPSolve() on the block.
823: */
824: MatGetSize(pmat,&m,&m);
825: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&bjac->x);
826: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&bjac->y);
827: #ifdef PETSC_HAVE_CUSP
828: VecSetType(bjac->x,VECCUSP);
829: VecSetType(bjac->y,VECCUSP);
830: #endif
831: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->x);
832: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->y);
833: } else {
834: ksp = jac->ksp[0];
835: bjac = (PC_BJacobi_Singleblock*)jac->data;
836: }
837: if (pc->useAmat) {
838: KSPSetOperators(ksp,mat,pmat);
839: } else {
840: KSPSetOperators(ksp,pmat,pmat);
841: }
842: if (!wasSetup && pc->setfromoptionscalled) {
843: /* If PCSetFromOptions_BJacobi is called later, KSPSetFromOptions will be called at that time. */
844: KSPSetFromOptions(ksp);
845: }
846: return(0);
847: }
849: /* ---------------------------------------------------------------------------------------------*/
852: PetscErrorCode PCReset_BJacobi_Multiblock(PC pc)
853: {
854: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
855: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
856: PetscErrorCode ierr;
857: PetscInt i;
860: if (bjac && bjac->pmat) {
861: MatDestroyMatrices(jac->n_local,&bjac->pmat);
862: if (pc->useAmat) {
863: MatDestroyMatrices(jac->n_local,&bjac->mat);
864: }
865: }
867: for (i=0; i<jac->n_local; i++) {
868: KSPReset(jac->ksp[i]);
869: if (bjac && bjac->x) {
870: VecDestroy(&bjac->x[i]);
871: VecDestroy(&bjac->y[i]);
872: ISDestroy(&bjac->is[i]);
873: }
874: }
875: PetscFree(jac->l_lens);
876: PetscFree(jac->g_lens);
877: return(0);
878: }
882: PetscErrorCode PCDestroy_BJacobi_Multiblock(PC pc)
883: {
884: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
885: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
886: PetscErrorCode ierr;
887: PetscInt i;
890: PCReset_BJacobi_Multiblock(pc);
891: if (bjac) {
892: PetscFree2(bjac->x,bjac->y);
893: PetscFree(bjac->starts);
894: PetscFree(bjac->is);
895: }
896: PetscFree(jac->data);
897: for (i=0; i<jac->n_local; i++) {
898: KSPDestroy(&jac->ksp[i]);
899: }
900: PetscFree(jac->ksp);
901: PetscFree(pc->data);
902: return(0);
903: }
907: PetscErrorCode PCSetUpOnBlocks_BJacobi_Multiblock(PC pc)
908: {
909: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
911: PetscInt i,n_local = jac->n_local;
914: for (i=0; i<n_local; i++) {
915: KSPSetUp(jac->ksp[i]);
916: }
917: return(0);
918: }
920: /*
921: Preconditioner for block Jacobi
922: */
925: PetscErrorCode PCApply_BJacobi_Multiblock(PC pc,Vec x,Vec y)
926: {
927: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
928: PetscErrorCode ierr;
929: PetscInt i,n_local = jac->n_local;
930: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
931: PetscScalar *yin;
932: const PetscScalar *xin;
935: VecGetArrayRead(x,&xin);
936: VecGetArray(y,&yin);
937: for (i=0; i<n_local; i++) {
938: /*
939: To avoid copying the subvector from x into a workspace we instead
940: make the workspace vector array point to the subpart of the array of
941: the global vector.
942: */
943: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
944: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
946: PetscLogEventBegin(PC_ApplyOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
947: KSPSolve(jac->ksp[i],bjac->x[i],bjac->y[i]);
948: PetscLogEventEnd(PC_ApplyOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
950: VecResetArray(bjac->x[i]);
951: VecResetArray(bjac->y[i]);
952: }
953: VecRestoreArrayRead(x,&xin);
954: VecRestoreArray(y,&yin);
955: return(0);
956: }
958: /*
959: Preconditioner for block Jacobi
960: */
963: PetscErrorCode PCApplyTranspose_BJacobi_Multiblock(PC pc,Vec x,Vec y)
964: {
965: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
966: PetscErrorCode ierr;
967: PetscInt i,n_local = jac->n_local;
968: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
969: PetscScalar *yin;
970: const PetscScalar *xin;
973: VecGetArrayRead(x,&xin);
974: VecGetArray(y,&yin);
975: for (i=0; i<n_local; i++) {
976: /*
977: To avoid copying the subvector from x into a workspace we instead
978: make the workspace vector array point to the subpart of the array of
979: the global vector.
980: */
981: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
982: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
984: PetscLogEventBegin(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
985: KSPSolveTranspose(jac->ksp[i],bjac->x[i],bjac->y[i]);
986: PetscLogEventEnd(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
988: VecResetArray(bjac->x[i]);
989: VecResetArray(bjac->y[i]);
990: }
991: VecRestoreArrayRead(x,&xin);
992: VecRestoreArray(y,&yin);
993: return(0);
994: }
998: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC pc,Mat mat,Mat pmat)
999: {
1000: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1001: PetscErrorCode ierr;
1002: PetscInt m,n_local,N,M,start,i;
1003: const char *prefix,*pprefix,*mprefix;
1004: KSP ksp;
1005: Vec x,y;
1006: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
1007: PC subpc;
1008: IS is;
1009: MatReuse scall;
1012: MatGetLocalSize(pc->pmat,&M,&N);
1014: n_local = jac->n_local;
1016: if (pc->useAmat) {
1017: PetscBool same;
1018: PetscObjectTypeCompare((PetscObject)mat,((PetscObject)pmat)->type_name,&same);
1019: if (!same) SETERRQ(PetscObjectComm((PetscObject)pc),PETSC_ERR_ARG_INCOMP,"Matrices not of same type");
1020: }
1022: if (!pc->setupcalled) {
1023: scall = MAT_INITIAL_MATRIX;
1025: if (!jac->ksp) {
1026: pc->ops->reset = PCReset_BJacobi_Multiblock;
1027: pc->ops->destroy = PCDestroy_BJacobi_Multiblock;
1028: pc->ops->apply = PCApply_BJacobi_Multiblock;
1029: pc->ops->applytranspose= PCApplyTranspose_BJacobi_Multiblock;
1030: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Multiblock;
1032: PetscNewLog(pc,&bjac);
1033: PetscMalloc1(n_local,&jac->ksp);
1034: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(KSP)));
1035: PetscMalloc2(n_local,&bjac->x,n_local,&bjac->y);
1036: PetscMalloc1(n_local,&bjac->starts);
1037: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(PetscScalar)));
1039: jac->data = (void*)bjac;
1040: PetscMalloc1(n_local,&bjac->is);
1041: PetscLogObjectMemory((PetscObject)pc,sizeof(n_local*sizeof(IS)));
1043: for (i=0; i<n_local; i++) {
1044: KSPCreate(PETSC_COMM_SELF,&ksp);
1045: KSPSetErrorIfNotConverged(ksp,pc->erroriffailure);
1046: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
1047: PetscLogObjectParent((PetscObject)pc,(PetscObject)ksp);
1048: KSPSetType(ksp,KSPPREONLY);
1049: KSPGetPC(ksp,&subpc);
1050: PCGetOptionsPrefix(pc,&prefix);
1051: KSPSetOptionsPrefix(ksp,prefix);
1052: KSPAppendOptionsPrefix(ksp,"sub_");
1054: jac->ksp[i] = ksp;
1055: }
1056: } else {
1057: bjac = (PC_BJacobi_Multiblock*)jac->data;
1058: }
1060: start = 0;
1061: for (i=0; i<n_local; i++) {
1062: m = jac->l_lens[i];
1063: /*
1064: The reason we need to generate these vectors is to serve
1065: as the right-hand side and solution vector for the solve on the
1066: block. We do not need to allocate space for the vectors since
1067: that is provided via VecPlaceArray() just before the call to
1068: KSPSolve() on the block.
1070: */
1071: VecCreateSeq(PETSC_COMM_SELF,m,&x);
1072: VecCreateSeqWithArray(PETSC_COMM_SELF,1,m,NULL,&y);
1073: #ifdef PETSC_HAVE_CUSP
1074: VecSetType(x,VECCUSP);
1075: VecSetType(y,VECCUSP);
1076: #endif
1077: PetscLogObjectParent((PetscObject)pc,(PetscObject)x);
1078: PetscLogObjectParent((PetscObject)pc,(PetscObject)y);
1080: bjac->x[i] = x;
1081: bjac->y[i] = y;
1082: bjac->starts[i] = start;
1084: ISCreateStride(PETSC_COMM_SELF,m,start,1,&is);
1085: bjac->is[i] = is;
1086: PetscLogObjectParent((PetscObject)pc,(PetscObject)is);
1088: start += m;
1089: }
1090: } else {
1091: bjac = (PC_BJacobi_Multiblock*)jac->data;
1092: /*
1093: Destroy the blocks from the previous iteration
1094: */
1095: if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
1096: MatDestroyMatrices(n_local,&bjac->pmat);
1097: if (pc->useAmat) {
1098: MatDestroyMatrices(n_local,&bjac->mat);
1099: }
1100: scall = MAT_INITIAL_MATRIX;
1101: } else scall = MAT_REUSE_MATRIX;
1102: }
1104: MatGetSubMatrices(pmat,n_local,bjac->is,bjac->is,scall,&bjac->pmat);
1105: if (pc->useAmat) {
1106: PetscObjectGetOptionsPrefix((PetscObject)mat,&mprefix);
1107: MatGetSubMatrices(mat,n_local,bjac->is,bjac->is,scall,&bjac->mat);
1108: }
1109: /* Return control to the user so that the submatrices can be modified (e.g., to apply
1110: different boundary conditions for the submatrices than for the global problem) */
1111: PCModifySubMatrices(pc,n_local,bjac->is,bjac->is,bjac->pmat,pc->modifysubmatricesP);
1113: PetscObjectGetOptionsPrefix((PetscObject)pmat,&pprefix);
1114: for (i=0; i<n_local; i++) {
1115: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->pmat[i]);
1116: PetscObjectSetOptionsPrefix((PetscObject)bjac->pmat[i],pprefix);
1117: if (pc->useAmat) {
1118: PetscLogObjectParent((PetscObject)pc,(PetscObject)bjac->mat[i]);
1119: PetscObjectSetOptionsPrefix((PetscObject)bjac->mat[i],mprefix);
1120: KSPSetOperators(jac->ksp[i],bjac->mat[i],bjac->pmat[i]);
1121: } else {
1122: KSPSetOperators(jac->ksp[i],bjac->pmat[i],bjac->pmat[i]);
1123: }
1124: if (pc->setfromoptionscalled) {
1125: KSPSetFromOptions(jac->ksp[i]);
1126: }
1127: }
1128: return(0);
1129: }
1131: /* ---------------------------------------------------------------------------------------------*/
1132: /*
1133: These are for a single block with multiple processes;
1134: */
1137: static PetscErrorCode PCReset_BJacobi_Multiproc(PC pc)
1138: {
1139: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1140: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1141: PetscErrorCode ierr;
1144: VecDestroy(&mpjac->ysub);
1145: VecDestroy(&mpjac->xsub);
1146: MatDestroy(&mpjac->submats);
1147: if (jac->ksp) {KSPReset(jac->ksp[0]);}
1148: return(0);
1149: }
1153: static PetscErrorCode PCDestroy_BJacobi_Multiproc(PC pc)
1154: {
1155: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1156: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1157: PetscErrorCode ierr;
1160: PCReset_BJacobi_Multiproc(pc);
1161: KSPDestroy(&jac->ksp[0]);
1162: PetscFree(jac->ksp);
1163: PetscSubcommDestroy(&mpjac->psubcomm);
1165: PetscFree(mpjac);
1166: PetscFree(pc->data);
1167: return(0);
1168: }
1172: static PetscErrorCode PCApply_BJacobi_Multiproc(PC pc,Vec x,Vec y)
1173: {
1174: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1175: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1176: PetscErrorCode ierr;
1177: PetscScalar *yarray;
1178: const PetscScalar *xarray;
1181: /* place x's and y's local arrays into xsub and ysub */
1182: VecGetArrayRead(x,&xarray);
1183: VecGetArray(y,&yarray);
1184: VecPlaceArray(mpjac->xsub,xarray);
1185: VecPlaceArray(mpjac->ysub,yarray);
1187: /* apply preconditioner on each matrix block */
1188: PetscLogEventBegin(PC_ApplyOnMproc,jac->ksp[0],mpjac->xsub,mpjac->ysub,0);
1189: KSPSolve(jac->ksp[0],mpjac->xsub,mpjac->ysub);
1190: PetscLogEventEnd(PC_ApplyOnMproc,jac->ksp[0],mpjac->xsub,mpjac->ysub,0);
1192: VecResetArray(mpjac->xsub);
1193: VecResetArray(mpjac->ysub);
1194: VecRestoreArrayRead(x,&xarray);
1195: VecRestoreArray(y,&yarray);
1196: return(0);
1197: }
1199: #include <petsc/private/matimpl.h>
1202: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC pc)
1203: {
1204: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1205: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1206: PetscErrorCode ierr;
1207: PetscInt m,n;
1208: MPI_Comm comm,subcomm=0;
1209: const char *prefix;
1210: PetscBool wasSetup = PETSC_TRUE;
1213: PetscObjectGetComm((PetscObject)pc,&comm);
1214: if (jac->n_local > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Only a single block in a subcommunicator is supported");
1215: jac->n_local = 1; /* currently only a single block is supported for a subcommunicator */
1216: if (!pc->setupcalled) {
1217: wasSetup = PETSC_FALSE;
1218: PetscNewLog(pc,&mpjac);
1219: jac->data = (void*)mpjac;
1221: /* initialize datastructure mpjac */
1222: if (!jac->psubcomm) {
1223: /* Create default contiguous subcommunicatiors if user does not provide them */
1224: PetscSubcommCreate(comm,&jac->psubcomm);
1225: PetscSubcommSetNumber(jac->psubcomm,jac->n);
1226: PetscSubcommSetType(jac->psubcomm,PETSC_SUBCOMM_CONTIGUOUS);
1227: PetscLogObjectMemory((PetscObject)pc,sizeof(PetscSubcomm));
1228: }
1229: mpjac->psubcomm = jac->psubcomm;
1230: subcomm = PetscSubcommChild(mpjac->psubcomm);
1232: /* Get matrix blocks of pmat */
1233: if (!pc->pmat->ops->getmultiprocblock) SETERRQ(PetscObjectComm((PetscObject)pc->pmat),PETSC_ERR_SUP,"No support for the requested operation");
1234: (*pc->pmat->ops->getmultiprocblock)(pc->pmat,subcomm,MAT_INITIAL_MATRIX,&mpjac->submats);
1236: /* create a new PC that processors in each subcomm have copy of */
1237: PetscMalloc1(1,&jac->ksp);
1238: KSPCreate(subcomm,&jac->ksp[0]);
1239: KSPSetErrorIfNotConverged(jac->ksp[0],pc->erroriffailure);
1240: PetscObjectIncrementTabLevel((PetscObject)jac->ksp[0],(PetscObject)pc,1);
1241: PetscLogObjectParent((PetscObject)pc,(PetscObject)jac->ksp[0]);
1242: KSPSetOperators(jac->ksp[0],mpjac->submats,mpjac->submats);
1243: KSPGetPC(jac->ksp[0],&mpjac->pc);
1245: PCGetOptionsPrefix(pc,&prefix);
1246: KSPSetOptionsPrefix(jac->ksp[0],prefix);
1247: KSPAppendOptionsPrefix(jac->ksp[0],"sub_");
1248: /*
1249: PetscMPIInt rank,subsize,subrank;
1250: MPI_Comm_rank(comm,&rank);
1251: MPI_Comm_size(subcomm,&subsize);
1252: MPI_Comm_rank(subcomm,&subrank);
1254: MatGetLocalSize(mpjac->submats,&m,NULL);
1255: MatGetSize(mpjac->submats,&n,NULL);
1256: PetscSynchronizedPrintf(comm,"[%d], sub-size %d,sub-rank %d\n",rank,subsize,subrank);
1257: PetscSynchronizedFlush(comm,PETSC_STDOUT);
1258: */
1260: /* create dummy vectors xsub and ysub */
1261: MatGetLocalSize(mpjac->submats,&m,&n);
1262: VecCreateMPIWithArray(subcomm,1,n,PETSC_DECIDE,NULL,&mpjac->xsub);
1263: VecCreateMPIWithArray(subcomm,1,m,PETSC_DECIDE,NULL,&mpjac->ysub);
1264: #ifdef PETSC_HAVE_CUSP
1265: VecSetType(mpjac->xsub,VECMPICUSP);
1266: VecSetType(mpjac->ysub,VECMPICUSP);
1267: #endif
1268: PetscLogObjectParent((PetscObject)pc,(PetscObject)mpjac->xsub);
1269: PetscLogObjectParent((PetscObject)pc,(PetscObject)mpjac->ysub);
1271: pc->ops->reset = PCReset_BJacobi_Multiproc;
1272: pc->ops->destroy = PCDestroy_BJacobi_Multiproc;
1273: pc->ops->apply = PCApply_BJacobi_Multiproc;
1274: } else { /* pc->setupcalled */
1275: subcomm = PetscSubcommChild(mpjac->psubcomm);
1276: if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
1277: /* destroy old matrix blocks, then get new matrix blocks */
1278: if (mpjac->submats) {MatDestroy(&mpjac->submats);}
1279: (*pc->pmat->ops->getmultiprocblock)(pc->pmat,subcomm,MAT_INITIAL_MATRIX,&mpjac->submats);
1280: } else {
1281: (*pc->pmat->ops->getmultiprocblock)(pc->pmat,subcomm,MAT_REUSE_MATRIX,&mpjac->submats);
1282: }
1283: KSPSetOperators(jac->ksp[0],mpjac->submats,mpjac->submats);
1284: }
1286: if (!wasSetup && pc->setfromoptionscalled) {
1287: KSPSetFromOptions(jac->ksp[0]);
1288: }
1289: return(0);
1290: }