Actual source code: mumps.c

petsc-3.4.5 2014-06-29
  2: /*
  3:     Provides an interface to the MUMPS sparse solver
  4: */

  6: #include <../src/mat/impls/aij/mpi/mpiaij.h> /*I  "petscmat.h"  I*/
  7: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>

  9: EXTERN_C_BEGIN
 10: #if defined(PETSC_USE_COMPLEX)
 11: #if defined(PETSC_USE_REAL_SINGLE)
 12: #include <cmumps_c.h>
 13: #else
 14: #include <zmumps_c.h>
 15: #endif
 16: #else
 17: #if defined(PETSC_USE_REAL_SINGLE)
 18: #include <smumps_c.h>
 19: #else
 20: #include <dmumps_c.h>
 21: #endif
 22: #endif
 23: EXTERN_C_END
 24: #define JOB_INIT -1
 25: #define JOB_FACTSYMBOLIC 1
 26: #define JOB_FACTNUMERIC 2
 27: #define JOB_SOLVE 3
 28: #define JOB_END -2

 30: /* calls to MUMPS */
 31: #if defined(PETSC_USE_COMPLEX)
 32: #if defined(PETSC_USE_REAL_SINGLE)
 33: #define PetscMUMPS_c cmumps_c
 34: #else
 35: #define PetscMUMPS_c zmumps_c
 36: #endif
 37: #else
 38: #if defined(PETSC_USE_REAL_SINGLE)
 39: #define PetscMUMPS_c smumps_c
 40: #else
 41: #define PetscMUMPS_c dmumps_c
 42: #endif
 43: #endif


 46: /* macros s.t. indices match MUMPS documentation */
 47: #define ICNTL(I) icntl[(I)-1]
 48: #define CNTL(I) cntl[(I)-1]
 49: #define INFOG(I) infog[(I)-1]
 50: #define INFO(I) info[(I)-1]
 51: #define RINFOG(I) rinfog[(I)-1]
 52: #define RINFO(I) rinfo[(I)-1]

 54: typedef struct {
 55: #if defined(PETSC_USE_COMPLEX)
 56: #if defined(PETSC_USE_REAL_SINGLE)
 57:   CMUMPS_STRUC_C id;
 58: #else
 59:   ZMUMPS_STRUC_C id;
 60: #endif
 61: #else
 62: #if defined(PETSC_USE_REAL_SINGLE)
 63:   SMUMPS_STRUC_C id;
 64: #else
 65:   DMUMPS_STRUC_C id;
 66: #endif
 67: #endif

 69:   MatStructure matstruc;
 70:   PetscMPIInt  myid,size;
 71:   PetscInt     *irn,*jcn,nz,sym;
 72:   PetscScalar  *val;
 73:   MPI_Comm     comm_mumps;
 74:   VecScatter   scat_rhs, scat_sol;
 75:   PetscBool    isAIJ,CleanUpMUMPS;
 76:   Vec          b_seq,x_seq;
 77:   PetscInt     ICNTL9_pre;   /* check if ICNTL(9) is changed from previous MatSolve */

 79:   PetscErrorCode (*Destroy)(Mat);
 80:   PetscErrorCode (*ConvertToTriples)(Mat, int, MatReuse, int*, int**, int**, PetscScalar**);
 81: } Mat_MUMPS;

 83: extern PetscErrorCode MatDuplicate_MUMPS(Mat,MatDuplicateOption,Mat*);


 86: /* MatConvertToTriples_A_B */
 87: /*convert Petsc matrix to triples: row[nz], col[nz], val[nz] */
 88: /*
 89:   input:
 90:     A       - matrix in aij,baij or sbaij (bs=1) format
 91:     shift   - 0: C style output triple; 1: Fortran style output triple.
 92:     reuse   - MAT_INITIAL_MATRIX: spaces are allocated and values are set for the triple
 93:               MAT_REUSE_MATRIX:   only the values in v array are updated
 94:   output:
 95:     nnz     - dim of r, c, and v (number of local nonzero entries of A)
 96:     r, c, v - row and col index, matrix values (matrix triples)
 97:  */

101: PetscErrorCode MatConvertToTriples_seqaij_seqaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
102: {
103:   const PetscInt *ai,*aj,*ajj,M=A->rmap->n;
104:   PetscInt       nz,rnz,i,j;
106:   PetscInt       *row,*col;
107:   Mat_SeqAIJ     *aa=(Mat_SeqAIJ*)A->data;

110:   *v=aa->a;
111:   if (reuse == MAT_INITIAL_MATRIX) {
112:     nz   = aa->nz;
113:     ai   = aa->i;
114:     aj   = aa->j;
115:     *nnz = nz;
116:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
117:     col  = row + nz;

119:     nz = 0;
120:     for (i=0; i<M; i++) {
121:       rnz = ai[i+1] - ai[i];
122:       ajj = aj + ai[i];
123:       for (j=0; j<rnz; j++) {
124:         row[nz] = i+shift; col[nz++] = ajj[j] + shift;
125:       }
126:     }
127:     *r = row; *c = col;
128:   }
129:   return(0);
130: }

134: PetscErrorCode MatConvertToTriples_seqbaij_seqaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
135: {
136:   Mat_SeqBAIJ    *aa=(Mat_SeqBAIJ*)A->data;
137:   const PetscInt *ai,*aj,*ajj,bs=A->rmap->bs,bs2=aa->bs2,M=A->rmap->N/bs;
138:   PetscInt       nz,idx=0,rnz,i,j,k,m;
140:   PetscInt       *row,*col;

143:   *v = aa->a;
144:   if (reuse == MAT_INITIAL_MATRIX) {
145:     ai   = aa->i; aj = aa->j;
146:     nz   = bs2*aa->nz;
147:     *nnz = nz;
148:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
149:     col  = row + nz;

151:     for (i=0; i<M; i++) {
152:       ajj = aj + ai[i];
153:       rnz = ai[i+1] - ai[i];
154:       for (k=0; k<rnz; k++) {
155:         for (j=0; j<bs; j++) {
156:           for (m=0; m<bs; m++) {
157:             row[idx]   = i*bs + m + shift;
158:             col[idx++] = bs*(ajj[k]) + j + shift;
159:           }
160:         }
161:       }
162:     }
163:     *r = row; *c = col;
164:   }
165:   return(0);
166: }

170: PetscErrorCode MatConvertToTriples_seqsbaij_seqsbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
171: {
172:   const PetscInt *ai, *aj,*ajj,M=A->rmap->n;
173:   PetscInt       nz,rnz,i,j;
175:   PetscInt       *row,*col;
176:   Mat_SeqSBAIJ   *aa=(Mat_SeqSBAIJ*)A->data;

179:   *v = aa->a;
180:   if (reuse == MAT_INITIAL_MATRIX) {
181:     nz   = aa->nz;
182:     ai   = aa->i;
183:     aj   = aa->j;
184:     *v   = aa->a;
185:     *nnz = nz;
186:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
187:     col  = row + nz;

189:     nz = 0;
190:     for (i=0; i<M; i++) {
191:       rnz = ai[i+1] - ai[i];
192:       ajj = aj + ai[i];
193:       for (j=0; j<rnz; j++) {
194:         row[nz] = i+shift; col[nz++] = ajj[j] + shift;
195:       }
196:     }
197:     *r = row; *c = col;
198:   }
199:   return(0);
200: }

204: PetscErrorCode MatConvertToTriples_seqaij_seqsbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
205: {
206:   const PetscInt    *ai,*aj,*ajj,*adiag,M=A->rmap->n;
207:   PetscInt          nz,rnz,i,j;
208:   const PetscScalar *av,*v1;
209:   PetscScalar       *val;
210:   PetscErrorCode    ierr;
211:   PetscInt          *row,*col;
212:   Mat_SeqSBAIJ      *aa=(Mat_SeqSBAIJ*)A->data;

215:   ai   =aa->i; aj=aa->j;av=aa->a;
216:   adiag=aa->diag;
217:   if (reuse == MAT_INITIAL_MATRIX) {
218:     nz   = M + (aa->nz-M)/2;
219:     *nnz = nz;
220:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
221:     col  = row + nz;
222:     val  = (PetscScalar*)(col + nz);

224:     nz = 0;
225:     for (i=0; i<M; i++) {
226:       rnz = ai[i+1] - adiag[i];
227:       ajj = aj + adiag[i];
228:       v1  = av + adiag[i];
229:       for (j=0; j<rnz; j++) {
230:         row[nz] = i+shift; col[nz] = ajj[j] + shift; val[nz++] = v1[j];
231:       }
232:     }
233:     *r = row; *c = col; *v = val;
234:   } else {
235:     nz = 0; val = *v;
236:     for (i=0; i <M; i++) {
237:       rnz = ai[i+1] - adiag[i];
238:       ajj = aj + adiag[i];
239:       v1  = av + adiag[i];
240:       for (j=0; j<rnz; j++) {
241:         val[nz++] = v1[j];
242:       }
243:     }
244:   }
245:   return(0);
246: }

250: PetscErrorCode MatConvertToTriples_mpisbaij_mpisbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
251: {
252:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
253:   PetscErrorCode    ierr;
254:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
255:   PetscInt          *row,*col;
256:   const PetscScalar *av, *bv,*v1,*v2;
257:   PetscScalar       *val;
258:   Mat_MPISBAIJ      *mat = (Mat_MPISBAIJ*)A->data;
259:   Mat_SeqSBAIJ      *aa  = (Mat_SeqSBAIJ*)(mat->A)->data;
260:   Mat_SeqBAIJ       *bb  = (Mat_SeqBAIJ*)(mat->B)->data;

263:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
264:   av=aa->a; bv=bb->a;

266:   garray = mat->garray;

268:   if (reuse == MAT_INITIAL_MATRIX) {
269:     nz   = aa->nz + bb->nz;
270:     *nnz = nz;
271:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
272:     col  = row + nz;
273:     val  = (PetscScalar*)(col + nz);

275:     *r = row; *c = col; *v = val;
276:   } else {
277:     row = *r; col = *c; val = *v;
278:   }

280:   jj = 0; irow = rstart;
281:   for (i=0; i<m; i++) {
282:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
283:     countA = ai[i+1] - ai[i];
284:     countB = bi[i+1] - bi[i];
285:     bjj    = bj + bi[i];
286:     v1     = av + ai[i];
287:     v2     = bv + bi[i];

289:     /* A-part */
290:     for (j=0; j<countA; j++) {
291:       if (reuse == MAT_INITIAL_MATRIX) {
292:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
293:       }
294:       val[jj++] = v1[j];
295:     }

297:     /* B-part */
298:     for (j=0; j < countB; j++) {
299:       if (reuse == MAT_INITIAL_MATRIX) {
300:         row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
301:       }
302:       val[jj++] = v2[j];
303:     }
304:     irow++;
305:   }
306:   return(0);
307: }

311: PetscErrorCode MatConvertToTriples_mpiaij_mpiaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
312: {
313:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
314:   PetscErrorCode    ierr;
315:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
316:   PetscInt          *row,*col;
317:   const PetscScalar *av, *bv,*v1,*v2;
318:   PetscScalar       *val;
319:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ*)A->data;
320:   Mat_SeqAIJ        *aa  = (Mat_SeqAIJ*)(mat->A)->data;
321:   Mat_SeqAIJ        *bb  = (Mat_SeqAIJ*)(mat->B)->data;

324:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
325:   av=aa->a; bv=bb->a;

327:   garray = mat->garray;

329:   if (reuse == MAT_INITIAL_MATRIX) {
330:     nz   = aa->nz + bb->nz;
331:     *nnz = nz;
332:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
333:     col  = row + nz;
334:     val  = (PetscScalar*)(col + nz);

336:     *r = row; *c = col; *v = val;
337:   } else {
338:     row = *r; col = *c; val = *v;
339:   }

341:   jj = 0; irow = rstart;
342:   for (i=0; i<m; i++) {
343:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
344:     countA = ai[i+1] - ai[i];
345:     countB = bi[i+1] - bi[i];
346:     bjj    = bj + bi[i];
347:     v1     = av + ai[i];
348:     v2     = bv + bi[i];

350:     /* A-part */
351:     for (j=0; j<countA; j++) {
352:       if (reuse == MAT_INITIAL_MATRIX) {
353:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
354:       }
355:       val[jj++] = v1[j];
356:     }

358:     /* B-part */
359:     for (j=0; j < countB; j++) {
360:       if (reuse == MAT_INITIAL_MATRIX) {
361:         row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
362:       }
363:       val[jj++] = v2[j];
364:     }
365:     irow++;
366:   }
367:   return(0);
368: }

372: PetscErrorCode MatConvertToTriples_mpibaij_mpiaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
373: {
374:   Mat_MPIBAIJ       *mat    = (Mat_MPIBAIJ*)A->data;
375:   Mat_SeqBAIJ       *aa     = (Mat_SeqBAIJ*)(mat->A)->data;
376:   Mat_SeqBAIJ       *bb     = (Mat_SeqBAIJ*)(mat->B)->data;
377:   const PetscInt    *ai     = aa->i, *bi = bb->i, *aj = aa->j, *bj = bb->j,*ajj, *bjj;
378:   const PetscInt    *garray = mat->garray,mbs=mat->mbs,rstart=A->rmap->rstart;
379:   const PetscInt    bs      = A->rmap->bs,bs2=mat->bs2;
380:   PetscErrorCode    ierr;
381:   PetscInt          nz,i,j,k,n,jj,irow,countA,countB,idx;
382:   PetscInt          *row,*col;
383:   const PetscScalar *av=aa->a, *bv=bb->a,*v1,*v2;
384:   PetscScalar       *val;

387:   if (reuse == MAT_INITIAL_MATRIX) {
388:     nz   = bs2*(aa->nz + bb->nz);
389:     *nnz = nz;
390:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
391:     col  = row + nz;
392:     val  = (PetscScalar*)(col + nz);

394:     *r = row; *c = col; *v = val;
395:   } else {
396:     row = *r; col = *c; val = *v;
397:   }

399:   jj = 0; irow = rstart;
400:   for (i=0; i<mbs; i++) {
401:     countA = ai[i+1] - ai[i];
402:     countB = bi[i+1] - bi[i];
403:     ajj    = aj + ai[i];
404:     bjj    = bj + bi[i];
405:     v1     = av + bs2*ai[i];
406:     v2     = bv + bs2*bi[i];

408:     idx = 0;
409:     /* A-part */
410:     for (k=0; k<countA; k++) {
411:       for (j=0; j<bs; j++) {
412:         for (n=0; n<bs; n++) {
413:           if (reuse == MAT_INITIAL_MATRIX) {
414:             row[jj] = irow + n + shift;
415:             col[jj] = rstart + bs*ajj[k] + j + shift;
416:           }
417:           val[jj++] = v1[idx++];
418:         }
419:       }
420:     }

422:     idx = 0;
423:     /* B-part */
424:     for (k=0; k<countB; k++) {
425:       for (j=0; j<bs; j++) {
426:         for (n=0; n<bs; n++) {
427:           if (reuse == MAT_INITIAL_MATRIX) {
428:             row[jj] = irow + n + shift;
429:             col[jj] = bs*garray[bjj[k]] + j + shift;
430:           }
431:           val[jj++] = v2[idx++];
432:         }
433:       }
434:     }
435:     irow += bs;
436:   }
437:   return(0);
438: }

442: PetscErrorCode MatConvertToTriples_mpiaij_mpisbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
443: {
444:   const PetscInt    *ai, *aj,*adiag, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
445:   PetscErrorCode    ierr;
446:   PetscInt          rstart,nz,nza,nzb,i,j,jj,irow,countA,countB;
447:   PetscInt          *row,*col;
448:   const PetscScalar *av, *bv,*v1,*v2;
449:   PetscScalar       *val;
450:   Mat_MPIAIJ        *mat =  (Mat_MPIAIJ*)A->data;
451:   Mat_SeqAIJ        *aa  =(Mat_SeqAIJ*)(mat->A)->data;
452:   Mat_SeqAIJ        *bb  =(Mat_SeqAIJ*)(mat->B)->data;

455:   ai=aa->i; aj=aa->j; adiag=aa->diag;
456:   bi=bb->i; bj=bb->j; garray = mat->garray;
457:   av=aa->a; bv=bb->a;

459:   rstart = A->rmap->rstart;

461:   if (reuse == MAT_INITIAL_MATRIX) {
462:     nza = 0;    /* num of upper triangular entries in mat->A, including diagonals */
463:     nzb = 0;    /* num of upper triangular entries in mat->B */
464:     for (i=0; i<m; i++) {
465:       nza   += (ai[i+1] - adiag[i]);
466:       countB = bi[i+1] - bi[i];
467:       bjj    = bj + bi[i];
468:       for (j=0; j<countB; j++) {
469:         if (garray[bjj[j]] > rstart) nzb++;
470:       }
471:     }

473:     nz   = nza + nzb; /* total nz of upper triangular part of mat */
474:     *nnz = nz;
475:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
476:     col  = row + nz;
477:     val  = (PetscScalar*)(col + nz);

479:     *r = row; *c = col; *v = val;
480:   } else {
481:     row = *r; col = *c; val = *v;
482:   }

484:   jj = 0; irow = rstart;
485:   for (i=0; i<m; i++) {
486:     ajj    = aj + adiag[i];                 /* ptr to the beginning of the diagonal of this row */
487:     v1     = av + adiag[i];
488:     countA = ai[i+1] - adiag[i];
489:     countB = bi[i+1] - bi[i];
490:     bjj    = bj + bi[i];
491:     v2     = bv + bi[i];

493:     /* A-part */
494:     for (j=0; j<countA; j++) {
495:       if (reuse == MAT_INITIAL_MATRIX) {
496:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
497:       }
498:       val[jj++] = v1[j];
499:     }

501:     /* B-part */
502:     for (j=0; j < countB; j++) {
503:       if (garray[bjj[j]] > rstart) {
504:         if (reuse == MAT_INITIAL_MATRIX) {
505:           row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
506:         }
507:         val[jj++] = v2[j];
508:       }
509:     }
510:     irow++;
511:   }
512:   return(0);
513: }

517: PetscErrorCode MatDestroy_MUMPS(Mat A)
518: {
519:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;

523:   if (mumps->CleanUpMUMPS) {
524:     /* Terminate instance, deallocate memories */
525:     PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
526:     VecScatterDestroy(&mumps->scat_rhs);
527:     VecDestroy(&mumps->b_seq);
528:     VecScatterDestroy(&mumps->scat_sol);
529:     VecDestroy(&mumps->x_seq);
530:     PetscFree(mumps->id.perm_in);
531:     PetscFree(mumps->irn);

533:     mumps->id.job = JOB_END;
534:     PetscMUMPS_c(&mumps->id);
535:     MPI_Comm_free(&(mumps->comm_mumps));
536:   }
537:   if (mumps->Destroy) {
538:     (mumps->Destroy)(A);
539:   }
540:   PetscFree(A->spptr);

542:   /* clear composed functions */
543:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverPackage_C",NULL);
544:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetIcntl_C",NULL);
545:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetCntl_C",NULL);
546:   return(0);
547: }

551: PetscErrorCode MatSolve_MUMPS(Mat A,Vec b,Vec x)
552: {
553:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;
554:   PetscScalar    *array;
555:   Vec            b_seq;
556:   IS             is_iden,is_petsc;
558:   PetscInt       i;

561:   mumps->id.nrhs = 1;
562:   b_seq          = mumps->b_seq;
563:   if (mumps->size > 1) {
564:     /* MUMPS only supports centralized rhs. Scatter b into a seqential rhs vector */
565:     VecScatterBegin(mumps->scat_rhs,b,b_seq,INSERT_VALUES,SCATTER_FORWARD);
566:     VecScatterEnd(mumps->scat_rhs,b,b_seq,INSERT_VALUES,SCATTER_FORWARD);
567:     if (!mumps->myid) {VecGetArray(b_seq,&array);}
568:   } else {  /* size == 1 */
569:     VecCopy(b,x);
570:     VecGetArray(x,&array);
571:   }
572:   if (!mumps->myid) { /* define rhs on the host */
573:     mumps->id.nrhs = 1;
574: #if defined(PETSC_USE_COMPLEX)
575: #if defined(PETSC_USE_REAL_SINGLE)
576:     mumps->id.rhs = (mumps_complex*)array;
577: #else
578:     mumps->id.rhs = (mumps_double_complex*)array;
579: #endif
580: #else
581:     mumps->id.rhs = array;
582: #endif
583:   }

585:   /* solve phase */
586:   /*-------------*/
587:   mumps->id.job = JOB_SOLVE;
588:   PetscMUMPS_c(&mumps->id);
589:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in solve phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

591:   if (mumps->size > 1) { /* convert mumps distributed solution to petsc mpi x */
592:     if (mumps->scat_sol && mumps->ICNTL9_pre != mumps->id.ICNTL(9)) {
593:       /* when id.ICNTL(9) changes, the contents of lsol_loc may change (not its size, lsol_loc), recreates scat_sol */
594:       VecScatterDestroy(&mumps->scat_sol);
595:     }
596:     if (!mumps->scat_sol) { /* create scatter scat_sol */
597:       ISCreateStride(PETSC_COMM_SELF,mumps->id.lsol_loc,0,1,&is_iden); /* from */
598:       for (i=0; i<mumps->id.lsol_loc; i++) {
599:         mumps->id.isol_loc[i] -= 1; /* change Fortran style to C style */
600:       }
601:       ISCreateGeneral(PETSC_COMM_SELF,mumps->id.lsol_loc,mumps->id.isol_loc,PETSC_COPY_VALUES,&is_petsc);  /* to */
602:       VecScatterCreate(mumps->x_seq,is_iden,x,is_petsc,&mumps->scat_sol);
603:       ISDestroy(&is_iden);
604:       ISDestroy(&is_petsc);

606:       mumps->ICNTL9_pre = mumps->id.ICNTL(9); /* save current value of id.ICNTL(9) */
607:     }

609:     VecScatterBegin(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
610:     VecScatterEnd(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
611:   }
612:   return(0);
613: }

617: PetscErrorCode MatSolveTranspose_MUMPS(Mat A,Vec b,Vec x)
618: {
619:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;

623:   mumps->id.ICNTL(9) = 0;

625:   MatSolve_MUMPS(A,b,x);

627:   mumps->id.ICNTL(9) = 1;
628:   return(0);
629: }

633: PetscErrorCode MatMatSolve_MUMPS(Mat A,Mat B,Mat X)
634: {
636:   PetscBool      flg;

639:   PetscObjectTypeCompareAny((PetscObject)B,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
640:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATDENSE matrix");
641:   PetscObjectTypeCompareAny((PetscObject)X,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
642:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATDENSE matrix");
643:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatMatSolve_MUMPS() is not implemented yet");
644:   return(0);
645: }

647: #if !defined(PETSC_USE_COMPLEX)
648: /*
649:   input:
650:    F:        numeric factor
651:   output:
652:    nneg:     total number of negative pivots
653:    nzero:    0
654:    npos:     (global dimension of F) - nneg
655: */

659: PetscErrorCode MatGetInertia_SBAIJMUMPS(Mat F,int *nneg,int *nzero,int *npos)
660: {
661:   Mat_MUMPS      *mumps =(Mat_MUMPS*)F->spptr;
663:   PetscMPIInt    size;

666:   MPI_Comm_size(PetscObjectComm((PetscObject)F),&size);
667:   /* MUMPS 4.3.1 calls ScaLAPACK when ICNTL(13)=0 (default), which does not offer the possibility to compute the inertia of a dense matrix. Set ICNTL(13)=1 to skip ScaLAPACK */
668:   if (size > 1 && mumps->id.ICNTL(13) != 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"ICNTL(13)=%d. -mat_mumps_icntl_13 must be set as 1 for correct global matrix inertia\n",mumps->id.INFOG(13));

670:   if (nneg) *nneg = mumps->id.INFOG(12);
671:   if (nzero || npos) {
672:     if (mumps->id.ICNTL(24) != 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"-mat_mumps_icntl_24 must be set as 1 for null pivot row detection");
673:     if (nzero) *nzero = mumps->id.INFOG(28);
674:     if (npos) *npos   = F->rmap->N - (mumps->id.INFOG(12) + mumps->id.INFOG(28));
675:   }
676:   return(0);
677: }
678: #endif /* !defined(PETSC_USE_COMPLEX) */

682: PetscErrorCode MatFactorNumeric_MUMPS(Mat F,Mat A,const MatFactorInfo *info)
683: {
684:   Mat_MUMPS      *mumps =(Mat_MUMPS*)(F)->spptr;
686:   Mat            F_diag;
687:   PetscBool      isMPIAIJ;

690:   (*mumps->ConvertToTriples)(A, 1, MAT_REUSE_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

692:   /* numerical factorization phase */
693:   /*-------------------------------*/
694:   mumps->id.job = JOB_FACTNUMERIC;
695:   if (!mumps->id.ICNTL(18)) {
696:     if (!mumps->myid) {
697: #if defined(PETSC_USE_COMPLEX)
698: #if defined(PETSC_USE_REAL_SINGLE)
699:       mumps->id.a = (mumps_complex*)mumps->val;
700: #else
701:       mumps->id.a = (mumps_double_complex*)mumps->val;
702: #endif
703: #else
704:       mumps->id.a = mumps->val;
705: #endif
706:     }
707:   } else {
708: #if defined(PETSC_USE_COMPLEX)
709: #if defined(PETSC_USE_REAL_SINGLE)
710:     mumps->id.a_loc = (mumps_complex*)mumps->val;
711: #else
712:     mumps->id.a_loc = (mumps_double_complex*)mumps->val;
713: #endif
714: #else
715:     mumps->id.a_loc = mumps->val;
716: #endif
717:   }
718:   PetscMUMPS_c(&mumps->id);
719:   if (mumps->id.INFOG(1) < 0) {
720:     if (mumps->id.INFO(1) == -13) {
721:       if (mumps->id.INFO(2) < 0) {
722:         SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: Cannot allocate required memory %d megabytes\n",-mumps->id.INFO(2));
723:       } else {
724:         SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: Cannot allocate required memory %d bytes\n",mumps->id.INFO(2));
725:       }
726:     } else SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: INFO(1)=%d, INFO(2)=%d\n",mumps->id.INFO(1),mumps->id.INFO(2));
727:   }
728:   if (!mumps->myid && mumps->id.ICNTL(16) > 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"  mumps->id.ICNTL(16):=%d\n",mumps->id.INFOG(16));

730:   if (mumps->size > 1) {
731:     PetscObjectTypeCompare((PetscObject)A,MATMPIAIJ,&isMPIAIJ);
732:     if (isMPIAIJ) F_diag = ((Mat_MPIAIJ*)(F)->data)->A;
733:     else F_diag = ((Mat_MPISBAIJ*)(F)->data)->A;
734:     F_diag->assembled = PETSC_TRUE;
735:     if (mumps->scat_sol) {
736:       VecScatterDestroy(&mumps->scat_sol);
737:       PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
738:       VecDestroy(&mumps->x_seq);
739:     }
740:   }
741:   (F)->assembled      = PETSC_TRUE;
742:   mumps->matstruc     = SAME_NONZERO_PATTERN;
743:   mumps->CleanUpMUMPS = PETSC_TRUE;

745:   if (mumps->size > 1) {
746:     /* distributed solution */
747:     if (!mumps->scat_sol) {
748:       /* Create x_seq=sol_loc for repeated use */
749:       PetscInt    lsol_loc;
750:       PetscScalar *sol_loc;

752:       lsol_loc = mumps->id.INFO(23); /* length of sol_loc */

754:       PetscMalloc2(lsol_loc,PetscScalar,&sol_loc,lsol_loc,PetscInt,&mumps->id.isol_loc);

756:       mumps->id.lsol_loc = lsol_loc;
757: #if defined(PETSC_USE_COMPLEX)
758: #if defined(PETSC_USE_REAL_SINGLE)
759:       mumps->id.sol_loc = (mumps_complex*)sol_loc;
760: #else
761:       mumps->id.sol_loc = (mumps_double_complex*)sol_loc;
762: #endif
763: #else
764:       mumps->id.sol_loc = sol_loc;
765: #endif
766:       VecCreateSeqWithArray(PETSC_COMM_SELF,1,lsol_loc,sol_loc,&mumps->x_seq);
767:     }
768:   }
769:   return(0);
770: }

772: /* Sets MUMPS options from the options database */
775: PetscErrorCode PetscSetMUMPSFromOptions(Mat F, Mat A)
776: {
777:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
779:   PetscInt       icntl;
780:   PetscBool      flg;

783:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MUMPS Options","Mat");
784:   PetscOptionsInt("-mat_mumps_icntl_1","ICNTL(1): output stream for error messages","None",mumps->id.ICNTL(1),&icntl,&flg);
785:   if (flg) mumps->id.ICNTL(1) = icntl;
786:   PetscOptionsInt("-mat_mumps_icntl_2","ICNTL(2): output stream for diagnostic printing, statistics, and warning","None",mumps->id.ICNTL(2),&icntl,&flg);
787:   if (flg) mumps->id.ICNTL(2) = icntl;
788:   PetscOptionsInt("-mat_mumps_icntl_3","ICNTL(3): output stream for global information, collected on the host","None",mumps->id.ICNTL(3),&icntl,&flg);
789:   if (flg) mumps->id.ICNTL(3) = icntl;

791:   PetscOptionsInt("-mat_mumps_icntl_4","ICNTL(4): level of printing (0 to 4)","None",mumps->id.ICNTL(4),&icntl,&flg);
792:   if (flg) mumps->id.ICNTL(4) = icntl;
793:   if (mumps->id.ICNTL(4) || PetscLogPrintInfo) mumps->id.ICNTL(3) = 6; /* resume MUMPS default id.ICNTL(3) = 6 */

795:   PetscOptionsInt("-mat_mumps_icntl_6","ICNTL(6): permuting and/or scaling the matrix (0 to 7)","None",mumps->id.ICNTL(6),&icntl,&flg);
796:   if (flg) mumps->id.ICNTL(6) = icntl;

798:   PetscOptionsInt("-mat_mumps_icntl_7","ICNTL(7): matrix ordering (0 to 7). 3=Scotch, 4=PORD, 5=Metis","None",mumps->id.ICNTL(7),&icntl,&flg);
799:   if (flg) {
800:     if (icntl== 1 && mumps->size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"pivot order be set by the user in PERM_IN -- not supported by the PETSc/MUMPS interface\n");
801:     else mumps->id.ICNTL(7) = icntl;
802:   }

804:   PetscOptionsInt("-mat_mumps_icntl_8","ICNTL(8): scaling strategy (-2 to 8 or 77)","None",mumps->id.ICNTL(8),&mumps->id.ICNTL(8),NULL);
805:   PetscOptionsInt("-mat_mumps_icntl_10","ICNTL(10): max num of refinements","None",mumps->id.ICNTL(10),&mumps->id.ICNTL(10),NULL);
806:   PetscOptionsInt("-mat_mumps_icntl_11","ICNTL(11): statistics related to the linear system solved (via -ksp_view)","None",mumps->id.ICNTL(11),&mumps->id.ICNTL(11),NULL);
807:   PetscOptionsInt("-mat_mumps_icntl_12","ICNTL(12): efficiency control: defines the ordering strategy with scaling constraints (0 to 3)","None",mumps->id.ICNTL(12),&mumps->id.ICNTL(12),NULL);
808:   PetscOptionsInt("-mat_mumps_icntl_13","ICNTL(13): efficiency control: with or without ScaLAPACK","None",mumps->id.ICNTL(13),&mumps->id.ICNTL(13),NULL);
809:   PetscOptionsInt("-mat_mumps_icntl_14","ICNTL(14): percentage of estimated workspace increase","None",mumps->id.ICNTL(14),&mumps->id.ICNTL(14),NULL);
810:   PetscOptionsInt("-mat_mumps_icntl_19","ICNTL(19): Schur complement","None",mumps->id.ICNTL(19),&mumps->id.ICNTL(19),NULL);

812:   PetscOptionsInt("-mat_mumps_icntl_22","ICNTL(22): in-core/out-of-core facility (0 or 1)","None",mumps->id.ICNTL(22),&mumps->id.ICNTL(22),NULL);
813:   PetscOptionsInt("-mat_mumps_icntl_23","ICNTL(23): max size of the working memory (MB) that can allocate per processor","None",mumps->id.ICNTL(23),&mumps->id.ICNTL(23),NULL);
814:   PetscOptionsInt("-mat_mumps_icntl_24","ICNTL(24): detection of null pivot rows (0 or 1)","None",mumps->id.ICNTL(24),&mumps->id.ICNTL(24),NULL);
815:   if (mumps->id.ICNTL(24)) {
816:     mumps->id.ICNTL(13) = 1; /* turn-off ScaLAPACK to help with the correct detection of null pivots */
817:   }

819:   PetscOptionsInt("-mat_mumps_icntl_25","ICNTL(25): computation of a null space basis","None",mumps->id.ICNTL(25),&mumps->id.ICNTL(25),NULL);
820:   PetscOptionsInt("-mat_mumps_icntl_26","ICNTL(26): Schur options for right-hand side or solution vector","None",mumps->id.ICNTL(26),&mumps->id.ICNTL(26),NULL);
821:   PetscOptionsInt("-mat_mumps_icntl_27","ICNTL(27): experimental parameter","None",mumps->id.ICNTL(27),&mumps->id.ICNTL(27),NULL);
822:   PetscOptionsInt("-mat_mumps_icntl_28","ICNTL(28): use 1 for sequential analysis and ictnl(7) ordering, or 2 for parallel analysis and ictnl(29) ordering","None",mumps->id.ICNTL(28),&mumps->id.ICNTL(28),NULL);
823:   PetscOptionsInt("-mat_mumps_icntl_29","ICNTL(29): parallel ordering 1 = ptscotch 2 = parmetis","None",mumps->id.ICNTL(29),&mumps->id.ICNTL(29),NULL);
824:   PetscOptionsInt("-mat_mumps_icntl_30","ICNTL(30): compute user-specified set of entries in inv(A)","None",mumps->id.ICNTL(30),&mumps->id.ICNTL(30),NULL);
825:   PetscOptionsInt("-mat_mumps_icntl_31","ICNTL(31): factors can be discarded in the solve phase","None",mumps->id.ICNTL(31),&mumps->id.ICNTL(31),NULL);
826:   PetscOptionsInt("-mat_mumps_icntl_33","ICNTL(33): compute determinant","None",mumps->id.ICNTL(33),&mumps->id.ICNTL(33),NULL);

828:   PetscOptionsReal("-mat_mumps_cntl_1","CNTL(1): relative pivoting threshold","None",mumps->id.CNTL(1),&mumps->id.CNTL(1),NULL);
829:   PetscOptionsReal("-mat_mumps_cntl_2","CNTL(2): stopping criterion of refinement","None",mumps->id.CNTL(2),&mumps->id.CNTL(2),NULL);
830:   PetscOptionsReal("-mat_mumps_cntl_3","CNTL(3): absolute pivoting threshold","None",mumps->id.CNTL(3),&mumps->id.CNTL(3),NULL);
831:   PetscOptionsReal("-mat_mumps_cntl_4","CNTL(4): value for static pivoting","None",mumps->id.CNTL(4),&mumps->id.CNTL(4),NULL);
832:   PetscOptionsReal("-mat_mumps_cntl_5","CNTL(5): fixation for null pivots","None",mumps->id.CNTL(5),&mumps->id.CNTL(5),NULL);

834:   PetscOptionsString("-mat_mumps_ooc_tmpdir", "out of core directory", "None", mumps->id.ooc_tmpdir, mumps->id.ooc_tmpdir, 256, NULL);
835:   PetscOptionsEnd();
836:   return(0);
837: }

841: PetscErrorCode PetscInitializeMUMPS(Mat A,Mat_MUMPS *mumps)
842: {

846:   MPI_Comm_rank(PetscObjectComm((PetscObject)A), &mumps->myid);
847:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&mumps->size);
848:   MPI_Comm_dup(PetscObjectComm((PetscObject)A),&(mumps->comm_mumps));

850:   mumps->id.comm_fortran = MPI_Comm_c2f(mumps->comm_mumps);

852:   mumps->id.job = JOB_INIT;
853:   mumps->id.par = 1;  /* host participates factorizaton and solve */
854:   mumps->id.sym = mumps->sym;
855:   PetscMUMPS_c(&mumps->id);

857:   mumps->CleanUpMUMPS = PETSC_FALSE;
858:   mumps->scat_rhs     = NULL;
859:   mumps->scat_sol     = NULL;

861:   /* set PETSc-MUMPS default options - override MUMPS default */
862:   mumps->id.ICNTL(3) = 0;
863:   mumps->id.ICNTL(4) = 0;
864:   if (mumps->size == 1) {
865:     mumps->id.ICNTL(18) = 0;   /* centralized assembled matrix input */
866:   } else {
867:     mumps->id.ICNTL(18) = 3;   /* distributed assembled matrix input */
868:     mumps->id.ICNTL(21) = 1;   /* distributed solution */
869:   }
870:   return(0);
871: }

873: /* Note Petsc r(=c) permutation is used when mumps->id.ICNTL(7)==1 with centralized assembled matrix input; otherwise r and c are ignored */
876: PetscErrorCode MatLUFactorSymbolic_AIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
877: {
878:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
880:   Vec            b;
881:   IS             is_iden;
882:   const PetscInt M = A->rmap->N;

885:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

887:   /* Set MUMPS options from the options database */
888:   PetscSetMUMPSFromOptions(F,A);

890:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

892:   /* analysis phase */
893:   /*----------------*/
894:   mumps->id.job = JOB_FACTSYMBOLIC;
895:   mumps->id.n   = M;
896:   switch (mumps->id.ICNTL(18)) {
897:   case 0:  /* centralized assembled matrix input */
898:     if (!mumps->myid) {
899:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
900:       if (mumps->id.ICNTL(6)>1) {
901: #if defined(PETSC_USE_COMPLEX)
902: #if defined(PETSC_USE_REAL_SINGLE)
903:         mumps->id.a = (mumps_complex*)mumps->val;
904: #else
905:         mumps->id.a = (mumps_double_complex*)mumps->val;
906: #endif
907: #else
908:         mumps->id.a = mumps->val;
909: #endif
910:       }
911:       if (mumps->id.ICNTL(7) == 1) { /* use user-provide matrix ordering - assuming r = c ordering */
912:         /*
913:         PetscBool      flag;
914:         ISEqual(r,c,&flag);
915:         if (!flag) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"row_perm != col_perm");
916:         ISView(r,PETSC_VIEWER_STDOUT_SELF);
917:          */
918:         if (!mumps->myid) {
919:           const PetscInt *idx;
920:           PetscInt       i,*perm_in;

922:           PetscMalloc(M*sizeof(PetscInt),&perm_in);
923:           ISGetIndices(r,&idx);

925:           mumps->id.perm_in = perm_in;
926:           for (i=0; i<M; i++) perm_in[i] = idx[i]+1; /* perm_in[]: start from 1, not 0! */
927:           ISRestoreIndices(r,&idx);
928:         }
929:       }
930:     }
931:     break;
932:   case 3:  /* distributed assembled matrix input (size>1) */
933:     mumps->id.nz_loc = mumps->nz;
934:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
935:     if (mumps->id.ICNTL(6)>1) {
936: #if defined(PETSC_USE_COMPLEX)
937: #if defined(PETSC_USE_REAL_SINGLE)
938:       mumps->id.a_loc = (mumps_complex*)mumps->val;
939: #else
940:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
941: #endif
942: #else
943:       mumps->id.a_loc = mumps->val;
944: #endif
945:     }
946:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
947:     if (!mumps->myid) {
948:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
949:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
950:     } else {
951:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
952:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
953:     }
954:     VecCreate(PetscObjectComm((PetscObject)A),&b);
955:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
956:     VecSetFromOptions(b);

958:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
959:     ISDestroy(&is_iden);
960:     VecDestroy(&b);
961:     break;
962:   }
963:   PetscMUMPS_c(&mumps->id);
964:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

966:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
967:   F->ops->solve           = MatSolve_MUMPS;
968:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;
969:   F->ops->matsolve        = 0;  /* use MatMatSolve_Basic() until mumps supports distributed rhs */
970:   return(0);
971: }

973: /* Note the Petsc r and c permutations are ignored */
976: PetscErrorCode MatLUFactorSymbolic_BAIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
977: {
978:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
980:   Vec            b;
981:   IS             is_iden;
982:   const PetscInt M = A->rmap->N;

985:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

987:   /* Set MUMPS options from the options database */
988:   PetscSetMUMPSFromOptions(F,A);

990:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

992:   /* analysis phase */
993:   /*----------------*/
994:   mumps->id.job = JOB_FACTSYMBOLIC;
995:   mumps->id.n   = M;
996:   switch (mumps->id.ICNTL(18)) {
997:   case 0:  /* centralized assembled matrix input */
998:     if (!mumps->myid) {
999:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
1000:       if (mumps->id.ICNTL(6)>1) {
1001: #if defined(PETSC_USE_COMPLEX)
1002: #if defined(PETSC_USE_REAL_SINGLE)
1003:         mumps->id.a = (mumps_complex*)mumps->val;
1004: #else
1005:         mumps->id.a = (mumps_double_complex*)mumps->val;
1006: #endif
1007: #else
1008:         mumps->id.a = mumps->val;
1009: #endif
1010:       }
1011:     }
1012:     break;
1013:   case 3:  /* distributed assembled matrix input (size>1) */
1014:     mumps->id.nz_loc = mumps->nz;
1015:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
1016:     if (mumps->id.ICNTL(6)>1) {
1017: #if defined(PETSC_USE_COMPLEX)
1018: #if defined(PETSC_USE_REAL_SINGLE)
1019:       mumps->id.a_loc = (mumps_complex*)mumps->val;
1020: #else
1021:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
1022: #endif
1023: #else
1024:       mumps->id.a_loc = mumps->val;
1025: #endif
1026:     }
1027:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
1028:     if (!mumps->myid) {
1029:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
1030:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
1031:     } else {
1032:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
1033:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
1034:     }
1035:     VecCreate(PetscObjectComm((PetscObject)A),&b);
1036:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
1037:     VecSetFromOptions(b);

1039:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
1040:     ISDestroy(&is_iden);
1041:     VecDestroy(&b);
1042:     break;
1043:   }
1044:   PetscMUMPS_c(&mumps->id);
1045:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

1047:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
1048:   F->ops->solve           = MatSolve_MUMPS;
1049:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;
1050:   return(0);
1051: }

1053: /* Note the Petsc r permutation and factor info are ignored */
1056: PetscErrorCode MatCholeskyFactorSymbolic_MUMPS(Mat F,Mat A,IS r,const MatFactorInfo *info)
1057: {
1058:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
1060:   Vec            b;
1061:   IS             is_iden;
1062:   const PetscInt M = A->rmap->N;

1065:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

1067:   /* Set MUMPS options from the options database */
1068:   PetscSetMUMPSFromOptions(F,A);

1070:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

1072:   /* analysis phase */
1073:   /*----------------*/
1074:   mumps->id.job = JOB_FACTSYMBOLIC;
1075:   mumps->id.n   = M;
1076:   switch (mumps->id.ICNTL(18)) {
1077:   case 0:  /* centralized assembled matrix input */
1078:     if (!mumps->myid) {
1079:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
1080:       if (mumps->id.ICNTL(6)>1) {
1081: #if defined(PETSC_USE_COMPLEX)
1082: #if defined(PETSC_USE_REAL_SINGLE)
1083:         mumps->id.a = (mumps_complex*)mumps->val;
1084: #else
1085:         mumps->id.a = (mumps_double_complex*)mumps->val;
1086: #endif
1087: #else
1088:         mumps->id.a = mumps->val;
1089: #endif
1090:       }
1091:     }
1092:     break;
1093:   case 3:  /* distributed assembled matrix input (size>1) */
1094:     mumps->id.nz_loc = mumps->nz;
1095:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
1096:     if (mumps->id.ICNTL(6)>1) {
1097: #if defined(PETSC_USE_COMPLEX)
1098: #if defined(PETSC_USE_REAL_SINGLE)
1099:       mumps->id.a_loc = (mumps_complex*)mumps->val;
1100: #else
1101:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
1102: #endif
1103: #else
1104:       mumps->id.a_loc = mumps->val;
1105: #endif
1106:     }
1107:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
1108:     if (!mumps->myid) {
1109:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
1110:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
1111:     } else {
1112:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
1113:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
1114:     }
1115:     VecCreate(PetscObjectComm((PetscObject)A),&b);
1116:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
1117:     VecSetFromOptions(b);

1119:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
1120:     ISDestroy(&is_iden);
1121:     VecDestroy(&b);
1122:     break;
1123:   }
1124:   PetscMUMPS_c(&mumps->id);
1125:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

1127:   F->ops->choleskyfactornumeric = MatFactorNumeric_MUMPS;
1128:   F->ops->solve                 = MatSolve_MUMPS;
1129:   F->ops->solvetranspose        = MatSolve_MUMPS;
1130:   F->ops->matsolve              = 0; /* use MatMatSolve_Basic() until mumps supports distributed rhs */
1131: #if !defined(PETSC_USE_COMPLEX)
1132:   F->ops->getinertia = MatGetInertia_SBAIJMUMPS;
1133: #else
1134:   F->ops->getinertia = NULL;
1135: #endif
1136:   return(0);
1137: }

1141: PetscErrorCode MatView_MUMPS(Mat A,PetscViewer viewer)
1142: {
1143:   PetscErrorCode    ierr;
1144:   PetscBool         iascii;
1145:   PetscViewerFormat format;
1146:   Mat_MUMPS         *mumps=(Mat_MUMPS*)A->spptr;

1149:   /* check if matrix is mumps type */
1150:   if (A->ops->solve != MatSolve_MUMPS) return(0);

1152:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1153:   if (iascii) {
1154:     PetscViewerGetFormat(viewer,&format);
1155:     if (format == PETSC_VIEWER_ASCII_INFO) {
1156:       PetscViewerASCIIPrintf(viewer,"MUMPS run parameters:\n");
1157:       PetscViewerASCIIPrintf(viewer,"  SYM (matrix type):                   %d \n",mumps->id.sym);
1158:       PetscViewerASCIIPrintf(viewer,"  PAR (host participation):            %d \n",mumps->id.par);
1159:       PetscViewerASCIIPrintf(viewer,"  ICNTL(1) (output for error):         %d \n",mumps->id.ICNTL(1));
1160:       PetscViewerASCIIPrintf(viewer,"  ICNTL(2) (output of diagnostic msg): %d \n",mumps->id.ICNTL(2));
1161:       PetscViewerASCIIPrintf(viewer,"  ICNTL(3) (output for global info):   %d \n",mumps->id.ICNTL(3));
1162:       PetscViewerASCIIPrintf(viewer,"  ICNTL(4) (level of printing):        %d \n",mumps->id.ICNTL(4));
1163:       PetscViewerASCIIPrintf(viewer,"  ICNTL(5) (input mat struct):         %d \n",mumps->id.ICNTL(5));
1164:       PetscViewerASCIIPrintf(viewer,"  ICNTL(6) (matrix prescaling):        %d \n",mumps->id.ICNTL(6));
1165:       PetscViewerASCIIPrintf(viewer,"  ICNTL(7) (sequentia matrix ordering):%d \n",mumps->id.ICNTL(7));
1166:       PetscViewerASCIIPrintf(viewer,"  ICNTL(8) (scalling strategy):        %d \n",mumps->id.ICNTL(8));
1167:       PetscViewerASCIIPrintf(viewer,"  ICNTL(10) (max num of refinements):  %d \n",mumps->id.ICNTL(10));
1168:       PetscViewerASCIIPrintf(viewer,"  ICNTL(11) (error analysis):          %d \n",mumps->id.ICNTL(11));
1169:       if (mumps->id.ICNTL(11)>0) {
1170:         PetscViewerASCIIPrintf(viewer,"    RINFOG(4) (inf norm of input mat):        %g\n",mumps->id.RINFOG(4));
1171:         PetscViewerASCIIPrintf(viewer,"    RINFOG(5) (inf norm of solution):         %g\n",mumps->id.RINFOG(5));
1172:         PetscViewerASCIIPrintf(viewer,"    RINFOG(6) (inf norm of residual):         %g\n",mumps->id.RINFOG(6));
1173:         PetscViewerASCIIPrintf(viewer,"    RINFOG(7),RINFOG(8) (backward error est): %g, %g\n",mumps->id.RINFOG(7),mumps->id.RINFOG(8));
1174:         PetscViewerASCIIPrintf(viewer,"    RINFOG(9) (error estimate):               %g \n",mumps->id.RINFOG(9));
1175:         PetscViewerASCIIPrintf(viewer,"    RINFOG(10),RINFOG(11)(condition numbers): %g, %g\n",mumps->id.RINFOG(10),mumps->id.RINFOG(11));
1176:       }
1177:       PetscViewerASCIIPrintf(viewer,"  ICNTL(12) (efficiency control):                         %d \n",mumps->id.ICNTL(12));
1178:       PetscViewerASCIIPrintf(viewer,"  ICNTL(13) (efficiency control):                         %d \n",mumps->id.ICNTL(13));
1179:       PetscViewerASCIIPrintf(viewer,"  ICNTL(14) (percentage of estimated workspace increase): %d \n",mumps->id.ICNTL(14));
1180:       /* ICNTL(15-17) not used */
1181:       PetscViewerASCIIPrintf(viewer,"  ICNTL(18) (input mat struct):                           %d \n",mumps->id.ICNTL(18));
1182:       PetscViewerASCIIPrintf(viewer,"  ICNTL(19) (Shur complement info):                       %d \n",mumps->id.ICNTL(19));
1183:       PetscViewerASCIIPrintf(viewer,"  ICNTL(20) (rhs sparse pattern):                         %d \n",mumps->id.ICNTL(20));
1184:       PetscViewerASCIIPrintf(viewer,"  ICNTL(21) (somumpstion struct):                            %d \n",mumps->id.ICNTL(21));
1185:       PetscViewerASCIIPrintf(viewer,"  ICNTL(22) (in-core/out-of-core facility):               %d \n",mumps->id.ICNTL(22));
1186:       PetscViewerASCIIPrintf(viewer,"  ICNTL(23) (max size of memory can be allocated locally):%d \n",mumps->id.ICNTL(23));

1188:       PetscViewerASCIIPrintf(viewer,"  ICNTL(24) (detection of null pivot rows):               %d \n",mumps->id.ICNTL(24));
1189:       PetscViewerASCIIPrintf(viewer,"  ICNTL(25) (computation of a null space basis):          %d \n",mumps->id.ICNTL(25));
1190:       PetscViewerASCIIPrintf(viewer,"  ICNTL(26) (Schur options for rhs or solution):          %d \n",mumps->id.ICNTL(26));
1191:       PetscViewerASCIIPrintf(viewer,"  ICNTL(27) (experimental parameter):                     %d \n",mumps->id.ICNTL(27));
1192:       PetscViewerASCIIPrintf(viewer,"  ICNTL(28) (use parallel or sequential ordering):        %d \n",mumps->id.ICNTL(28));
1193:       PetscViewerASCIIPrintf(viewer,"  ICNTL(29) (parallel ordering):                          %d \n",mumps->id.ICNTL(29));

1195:       PetscViewerASCIIPrintf(viewer,"  ICNTL(30) (user-specified set of entries in inv(A)):    %d \n",mumps->id.ICNTL(30));
1196:       PetscViewerASCIIPrintf(viewer,"  ICNTL(31) (factors is discarded in the solve phase):    %d \n",mumps->id.ICNTL(31));
1197:       PetscViewerASCIIPrintf(viewer,"  ICNTL(33) (compute determinant):                        %d \n",mumps->id.ICNTL(33));

1199:       PetscViewerASCIIPrintf(viewer,"  CNTL(1) (relative pivoting threshold):      %g \n",mumps->id.CNTL(1));
1200:       PetscViewerASCIIPrintf(viewer,"  CNTL(2) (stopping criterion of refinement): %g \n",mumps->id.CNTL(2));
1201:       PetscViewerASCIIPrintf(viewer,"  CNTL(3) (absomumpste pivoting threshold):      %g \n",mumps->id.CNTL(3));
1202:       PetscViewerASCIIPrintf(viewer,"  CNTL(4) (vamumpse of static pivoting):         %g \n",mumps->id.CNTL(4));
1203:       PetscViewerASCIIPrintf(viewer,"  CNTL(5) (fixation for null pivots):         %g \n",mumps->id.CNTL(5));

1205:       /* infomation local to each processor */
1206:       PetscViewerASCIIPrintf(viewer, "  RINFO(1) (local estimated flops for the elimination after analysis): \n");
1207:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
1208:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %g \n",mumps->myid,mumps->id.RINFO(1));
1209:       PetscViewerFlush(viewer);
1210:       PetscViewerASCIIPrintf(viewer, "  RINFO(2) (local estimated flops for the assembly after factorization): \n");
1211:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(2));
1212:       PetscViewerFlush(viewer);
1213:       PetscViewerASCIIPrintf(viewer, "  RINFO(3) (local estimated flops for the elimination after factorization): \n");
1214:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(3));
1215:       PetscViewerFlush(viewer);

1217:       PetscViewerASCIIPrintf(viewer, "  INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization): \n");
1218:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] %d \n",mumps->myid,mumps->id.INFO(15));
1219:       PetscViewerFlush(viewer);

1221:       PetscViewerASCIIPrintf(viewer, "  INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization): \n");
1222:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d \n",mumps->myid,mumps->id.INFO(16));
1223:       PetscViewerFlush(viewer);

1225:       PetscViewerASCIIPrintf(viewer, "  INFO(23) (num of pivots eliminated on this processor after factorization): \n");
1226:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d \n",mumps->myid,mumps->id.INFO(23));
1227:       PetscViewerFlush(viewer);
1228:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);

1230:       if (!mumps->myid) { /* information from the host */
1231:         PetscViewerASCIIPrintf(viewer,"  RINFOG(1) (global estimated flops for the elimination after analysis): %g \n",mumps->id.RINFOG(1));
1232:         PetscViewerASCIIPrintf(viewer,"  RINFOG(2) (global estimated flops for the assembly after factorization): %g \n",mumps->id.RINFOG(2));
1233:         PetscViewerASCIIPrintf(viewer,"  RINFOG(3) (global estimated flops for the elimination after factorization): %g \n",mumps->id.RINFOG(3));
1234:         PetscViewerASCIIPrintf(viewer,"  (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant): (%g,%g)*(2^%d)\n",mumps->id.RINFOG(12),mumps->id.RINFOG(13),mumps->id.INFOG(34));

1236:         PetscViewerASCIIPrintf(viewer,"  INFOG(3) (estimated real workspace for factors on all processors after analysis): %d \n",mumps->id.INFOG(3));
1237:         PetscViewerASCIIPrintf(viewer,"  INFOG(4) (estimated integer workspace for factors on all processors after analysis): %d \n",mumps->id.INFOG(4));
1238:         PetscViewerASCIIPrintf(viewer,"  INFOG(5) (estimated maximum front size in the complete tree): %d \n",mumps->id.INFOG(5));
1239:         PetscViewerASCIIPrintf(viewer,"  INFOG(6) (number of nodes in the complete tree): %d \n",mumps->id.INFOG(6));
1240:         PetscViewerASCIIPrintf(viewer,"  INFOG(7) (ordering option effectively use after analysis): %d \n",mumps->id.INFOG(7));
1241:         PetscViewerASCIIPrintf(viewer,"  INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): %d \n",mumps->id.INFOG(8));
1242:         PetscViewerASCIIPrintf(viewer,"  INFOG(9) (total real/complex workspace to store the matrix factors after factorization): %d \n",mumps->id.INFOG(9));
1243:         PetscViewerASCIIPrintf(viewer,"  INFOG(10) (total integer space store the matrix factors after factorization): %d \n",mumps->id.INFOG(10));
1244:         PetscViewerASCIIPrintf(viewer,"  INFOG(11) (order of largest frontal matrix after factorization): %d \n",mumps->id.INFOG(11));
1245:         PetscViewerASCIIPrintf(viewer,"  INFOG(12) (number of off-diagonal pivots): %d \n",mumps->id.INFOG(12));
1246:         PetscViewerASCIIPrintf(viewer,"  INFOG(13) (number of delayed pivots after factorization): %d \n",mumps->id.INFOG(13));
1247:         PetscViewerASCIIPrintf(viewer,"  INFOG(14) (number of memory compress after factorization): %d \n",mumps->id.INFOG(14));
1248:         PetscViewerASCIIPrintf(viewer,"  INFOG(15) (number of steps of iterative refinement after solution): %d \n",mumps->id.INFOG(15));
1249:         PetscViewerASCIIPrintf(viewer,"  INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): %d \n",mumps->id.INFOG(16));
1250:         PetscViewerASCIIPrintf(viewer,"  INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): %d \n",mumps->id.INFOG(17));
1251:         PetscViewerASCIIPrintf(viewer,"  INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): %d \n",mumps->id.INFOG(18));
1252:         PetscViewerASCIIPrintf(viewer,"  INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): %d \n",mumps->id.INFOG(19));
1253:         PetscViewerASCIIPrintf(viewer,"  INFOG(20) (estimated number of entries in the factors): %d \n",mumps->id.INFOG(20));
1254:         PetscViewerASCIIPrintf(viewer,"  INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): %d \n",mumps->id.INFOG(21));
1255:         PetscViewerASCIIPrintf(viewer,"  INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): %d \n",mumps->id.INFOG(22));
1256:         PetscViewerASCIIPrintf(viewer,"  INFOG(23) (after analysis: value of ICNTL(6) effectively used): %d \n",mumps->id.INFOG(23));
1257:         PetscViewerASCIIPrintf(viewer,"  INFOG(24) (after analysis: value of ICNTL(12) effectively used): %d \n",mumps->id.INFOG(24));
1258:         PetscViewerASCIIPrintf(viewer,"  INFOG(25) (after factorization: number of pivots modified by static pivoting): %d \n",mumps->id.INFOG(25));
1259:       }
1260:     }
1261:   }
1262:   return(0);
1263: }

1267: PetscErrorCode MatGetInfo_MUMPS(Mat A,MatInfoType flag,MatInfo *info)
1268: {
1269:   Mat_MUMPS *mumps =(Mat_MUMPS*)A->spptr;

1272:   info->block_size        = 1.0;
1273:   info->nz_allocated      = mumps->id.INFOG(20);
1274:   info->nz_used           = mumps->id.INFOG(20);
1275:   info->nz_unneeded       = 0.0;
1276:   info->assemblies        = 0.0;
1277:   info->mallocs           = 0.0;
1278:   info->memory            = 0.0;
1279:   info->fill_ratio_given  = 0;
1280:   info->fill_ratio_needed = 0;
1281:   info->factor_mallocs    = 0;
1282:   return(0);
1283: }

1285: /* -------------------------------------------------------------------------------------------*/
1288: PetscErrorCode MatMumpsSetIcntl_MUMPS(Mat F,PetscInt icntl,PetscInt ival)
1289: {
1290:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->spptr;

1293:   mumps->id.ICNTL(icntl) = ival;
1294:   return(0);
1295: }

1299: /*@
1300:   MatMumpsSetIcntl - Set MUMPS parameter ICNTL()

1302:    Logically Collective on Mat

1304:    Input Parameters:
1305: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
1306: .  icntl - index of MUMPS parameter array ICNTL()
1307: -  ival - value of MUMPS ICNTL(icntl)

1309:   Options Database:
1310: .   -mat_mumps_icntl_<icntl> <ival>

1312:    Level: beginner

1314:    References: MUMPS Users' Guide

1316: .seealso: MatGetFactor()
1317: @*/
1318: PetscErrorCode MatMumpsSetIcntl(Mat F,PetscInt icntl,PetscInt ival)
1319: {

1325:   PetscTryMethod(F,"MatMumpsSetIcntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
1326:   return(0);
1327: }

1329: /* -------------------------------------------------------------------------------------------*/
1332: PetscErrorCode MatMumpsSetCntl_MUMPS(Mat F,PetscInt icntl,PetscReal val)
1333: {
1334:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->spptr;

1337:   mumps->id.CNTL(icntl) = val;
1338:   return(0);
1339: }

1343: /*@
1344:   MatMumpsSetCntl - Set MUMPS parameter CNTL()

1346:    Logically Collective on Mat

1348:    Input Parameters:
1349: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
1350: .  icntl - index of MUMPS parameter array CNTL()
1351: -  val - value of MUMPS CNTL(icntl)

1353:   Options Database:
1354: .   -mat_mumps_cntl_<icntl> <val>

1356:    Level: beginner

1358:    References: MUMPS Users' Guide

1360: .seealso: MatGetFactor()
1361: @*/
1362: PetscErrorCode MatMumpsSetCntl(Mat F,PetscInt icntl,PetscReal val)
1363: {

1369:   PetscTryMethod(F,"MatMumpsSetCntl_C",(Mat,PetscInt,PetscReal),(F,icntl,val));
1370:   return(0);
1371: }

1373: /*MC
1374:   MATSOLVERMUMPS -  A matrix type providing direct solvers (LU and Cholesky) for
1375:   distributed and sequential matrices via the external package MUMPS.

1377:   Works with MATAIJ and MATSBAIJ matrices

1379:   Options Database Keys:
1380: + -mat_mumps_icntl_4 <0,...,4> - print level
1381: . -mat_mumps_icntl_6 <0,...,7> - matrix prescaling options (see MUMPS User's Guide)
1382: . -mat_mumps_icntl_7 <0,...,7> - matrix orderings (see MUMPS User's Guidec)
1383: . -mat_mumps_icntl_9 <1,2> - A or A^T x=b to be solved: 1 denotes A, 2 denotes A^T
1384: . -mat_mumps_icntl_10 <n> - maximum number of iterative refinements
1385: . -mat_mumps_icntl_11 <n> - error analysis, a positive value returns statistics during -ksp_view
1386: . -mat_mumps_icntl_12 <n> - efficiency control (see MUMPS User's Guide)
1387: . -mat_mumps_icntl_13 <n> - efficiency control (see MUMPS User's Guide)
1388: . -mat_mumps_icntl_14 <n> - efficiency control (see MUMPS User's Guide)
1389: . -mat_mumps_icntl_15 <n> - efficiency control (see MUMPS User's Guide)
1390: . -mat_mumps_cntl_1 <delta> - relative pivoting threshold
1391: . -mat_mumps_cntl_2 <tol> - stopping criterion for refinement
1392: - -mat_mumps_cntl_3 <adelta> - absolute pivoting threshold

1394:   Level: beginner

1396: .seealso: PCFactorSetMatSolverPackage(), MatSolverPackage

1398: M*/

1402: static PetscErrorCode MatFactorGetSolverPackage_mumps(Mat A,const MatSolverPackage *type)
1403: {
1405:   *type = MATSOLVERMUMPS;
1406:   return(0);
1407: }

1409: /* MatGetFactor for Seq and MPI AIJ matrices */
1412: PETSC_EXTERN PetscErrorCode MatGetFactor_aij_mumps(Mat A,MatFactorType ftype,Mat *F)
1413: {
1414:   Mat            B;
1416:   Mat_MUMPS      *mumps;
1417:   PetscBool      isSeqAIJ;

1420:   /* Create the factorization matrix */
1421:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
1422:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1423:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1424:   MatSetType(B,((PetscObject)A)->type_name);
1425:   if (isSeqAIJ) {
1426:     MatSeqAIJSetPreallocation(B,0,NULL);
1427:   } else {
1428:     MatMPIAIJSetPreallocation(B,0,NULL,0,NULL);
1429:   }

1431:   PetscNewLog(B,Mat_MUMPS,&mumps);

1433:   B->ops->view    = MatView_MUMPS;
1434:   B->ops->getinfo = MatGetInfo_MUMPS;

1436:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1437:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
1438:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
1439:   if (ftype == MAT_FACTOR_LU) {
1440:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
1441:     B->factortype            = MAT_FACTOR_LU;
1442:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqaij;
1443:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij;
1444:     mumps->sym = 0;
1445:   } else {
1446:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
1447:     B->factortype                  = MAT_FACTOR_CHOLESKY;
1448:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqsbaij;
1449:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpisbaij;
1450:     if (A->spd_set && A->spd) mumps->sym = 1;
1451:     else                      mumps->sym = 2;
1452:   }

1454:   mumps->isAIJ    = PETSC_TRUE;
1455:   mumps->Destroy  = B->ops->destroy;
1456:   B->ops->destroy = MatDestroy_MUMPS;
1457:   B->spptr        = (void*)mumps;

1459:   PetscInitializeMUMPS(A,mumps);

1461:   *F = B;
1462:   return(0);
1463: }

1465: /* MatGetFactor for Seq and MPI SBAIJ matrices */
1468: PETSC_EXTERN PetscErrorCode MatGetFactor_sbaij_mumps(Mat A,MatFactorType ftype,Mat *F)
1469: {
1470:   Mat            B;
1472:   Mat_MUMPS      *mumps;
1473:   PetscBool      isSeqSBAIJ;

1476:   if (ftype != MAT_FACTOR_CHOLESKY) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with MUMPS LU, use AIJ matrix");
1477:   if (A->rmap->bs > 1) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with block size > 1 with MUMPS Cholesky, use AIJ matrix instead");
1478:   PetscObjectTypeCompare((PetscObject)A,MATSEQSBAIJ,&isSeqSBAIJ);
1479:   /* Create the factorization matrix */
1480:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1481:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1482:   MatSetType(B,((PetscObject)A)->type_name);
1483:   PetscNewLog(B,Mat_MUMPS,&mumps);
1484:   if (isSeqSBAIJ) {
1485:     MatSeqSBAIJSetPreallocation(B,1,0,NULL);

1487:     mumps->ConvertToTriples = MatConvertToTriples_seqsbaij_seqsbaij;
1488:   } else {
1489:     MatMPISBAIJSetPreallocation(B,1,0,NULL,0,NULL);

1491:     mumps->ConvertToTriples = MatConvertToTriples_mpisbaij_mpisbaij;
1492:   }

1494:   B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
1495:   B->ops->view                   = MatView_MUMPS;

1497:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1498:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl);
1499:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl);

1501:   B->factortype = MAT_FACTOR_CHOLESKY;
1502:   if (A->spd_set && A->spd) mumps->sym = 1;
1503:   else                      mumps->sym = 2;

1505:   mumps->isAIJ    = PETSC_FALSE;
1506:   mumps->Destroy  = B->ops->destroy;
1507:   B->ops->destroy = MatDestroy_MUMPS;
1508:   B->spptr        = (void*)mumps;

1510:   PetscInitializeMUMPS(A,mumps);

1512:   *F = B;
1513:   return(0);
1514: }

1518: PETSC_EXTERN PetscErrorCode MatGetFactor_baij_mumps(Mat A,MatFactorType ftype,Mat *F)
1519: {
1520:   Mat            B;
1522:   Mat_MUMPS      *mumps;
1523:   PetscBool      isSeqBAIJ;

1526:   /* Create the factorization matrix */
1527:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&isSeqBAIJ);
1528:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1529:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1530:   MatSetType(B,((PetscObject)A)->type_name);
1531:   if (isSeqBAIJ) {
1532:     MatSeqBAIJSetPreallocation(B,A->rmap->bs,0,NULL);
1533:   } else {
1534:     MatMPIBAIJSetPreallocation(B,A->rmap->bs,0,NULL,0,NULL);
1535:   }

1537:   PetscNewLog(B,Mat_MUMPS,&mumps);
1538:   if (ftype == MAT_FACTOR_LU) {
1539:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_BAIJMUMPS;
1540:     B->factortype            = MAT_FACTOR_LU;
1541:     if (isSeqBAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqbaij_seqaij;
1542:     else mumps->ConvertToTriples = MatConvertToTriples_mpibaij_mpiaij;
1543:     mumps->sym = 0;
1544:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Cannot use PETSc BAIJ matrices with MUMPS Cholesky, use SBAIJ or AIJ matrix instead\n");

1546:   B->ops->view = MatView_MUMPS;

1548:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1549:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
1550:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);

1552:   mumps->isAIJ    = PETSC_TRUE;
1553:   mumps->Destroy  = B->ops->destroy;
1554:   B->ops->destroy = MatDestroy_MUMPS;
1555:   B->spptr        = (void*)mumps;

1557:   PetscInitializeMUMPS(A,mumps);

1559:   *F = B;
1560:   return(0);
1561: }