Actual source code: ssp.c

petsc-3.3-p7 2013-05-11
  1: /*
  2:        Code for Timestepping with explicit SSP.
  3: */
  4: #include <petsc-private/tsimpl.h>                /*I   "petscts.h"   I*/

  6: PetscFList TSSSPList = 0;

  8: typedef struct {
  9:   PetscErrorCode (*onestep)(TS,PetscReal,PetscReal,Vec);
 10:   char *type_name;
 11:   PetscInt nstages;
 12:   Vec *work;
 13:   PetscInt nwork;
 14:   PetscBool  workout;
 15: } TS_SSP;


 20: static PetscErrorCode TSSSPGetWorkVectors(TS ts,PetscInt n,Vec **work)
 21: {
 22:   TS_SSP *ssp = (TS_SSP*)ts->data;

 26:   if (ssp->workout) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Work vectors already gotten");
 27:   if (ssp->nwork < n) {
 28:     if (ssp->nwork > 0) {
 29:       VecDestroyVecs(ssp->nwork,&ssp->work);
 30:     }
 31:     VecDuplicateVecs(ts->vec_sol,n,&ssp->work);
 32:     ssp->nwork = n;
 33:   }
 34:   *work = ssp->work;
 35:   ssp->workout = PETSC_TRUE;
 36:   return(0);
 37: }

 41: static PetscErrorCode TSSSPRestoreWorkVectors(TS ts,PetscInt n,Vec **work)
 42: {
 43:   TS_SSP *ssp = (TS_SSP*)ts->data;

 46:   if (!ssp->workout) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Work vectors have not been gotten");
 47:   if (*work != ssp->work) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Wrong work vectors checked out");
 48:   ssp->workout = PETSC_FALSE;
 49:   *work = PETSC_NULL;
 50:   return(0);
 51: }


 56: /*MC
 57:    TSSSPRKS2 - Optimal second order SSP Runge-Kutta method, low-storage, c_eff=(s-1)/s

 59:    Pseudocode 2 of Ketcheson 2008

 61:    Level: beginner

 63: .seealso: TSSSP, TSSSPSetType(), TSSSPSetNumStages()
 64: M*/
 65: static PetscErrorCode TSSSPStep_RK_2(TS ts,PetscReal t0,PetscReal dt,Vec sol)
 66: {
 67:   TS_SSP *ssp = (TS_SSP*)ts->data;
 68:   Vec *work,F;
 69:   PetscInt i,s;

 73:   s = ssp->nstages;
 74:   TSSSPGetWorkVectors(ts,2,&work);
 75:   F = work[1];
 76:   VecCopy(sol,work[0]);
 77:   for (i=0; i<s-1; i++) {
 78:     PetscReal stage_time = t0+dt*(i/(s-1.));
 79:     TSPreStage(ts,stage_time);
 80:     TSComputeRHSFunction(ts,stage_time,work[0],F);
 81:     VecAXPY(work[0],dt/(s-1.),F);
 82:   }
 83:   TSComputeRHSFunction(ts,t0+dt,work[0],F);
 84:   VecAXPBYPCZ(sol,(s-1.)/s,dt/s,1./s,work[0],F);
 85:   TSSSPRestoreWorkVectors(ts,2,&work);
 86:   return(0);
 87: }

 91: /*MC
 92:    TSSSPRKS3 - Optimal third order SSP Runge-Kutta, low-storage, c_eff=(PetscSqrtReal(s)-1)/PetscSqrtReal(s), where PetscSqrtReal(s) is an integer

 94:    Pseudocode 2 of Ketcheson 2008

 96:    Level: beginner

 98: .seealso: TSSSP, TSSSPSetType(), TSSSPSetNumStages()
 99: M*/
100: static PetscErrorCode TSSSPStep_RK_3(TS ts,PetscReal t0,PetscReal dt,Vec sol)
101: {
102:   TS_SSP *ssp = (TS_SSP*)ts->data;
103:   Vec *work,F;
104:   PetscInt i,s,n,r;
105:   PetscReal c,stage_time;

109:   s = ssp->nstages;
110:   n = (PetscInt)(PetscSqrtReal((PetscReal)s)+0.001);
111:   r = s-n;
112:   if (n*n != s) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for optimal third order schemes with %d stages, must be a square number at least 4",s);
113:   TSSSPGetWorkVectors(ts,3,&work);
114:   F = work[2];
115:   VecCopy(sol,work[0]);
116:   for (i=0; i<(n-1)*(n-2)/2; i++) {
117:     c = (i<n*(n+1)/2) ? 1.*i/(s-n) : (1.*i-n)/(s-n);
118:     stage_time = t0+c*dt;
119:     TSPreStage(ts,stage_time);
120:     TSComputeRHSFunction(ts,stage_time,work[0],F);
121:     VecAXPY(work[0],dt/r,F);
122:   }
123:   VecCopy(work[0],work[1]);
124:   for ( ; i<n*(n+1)/2-1; i++) {
125:     c = (i<n*(n+1)/2) ? 1.*i/(s-n) : (1.*i-n)/(s-n);
126:     stage_time = t0+c*dt;
127:     TSPreStage(ts,stage_time);
128:     TSComputeRHSFunction(ts,stage_time,work[0],F);
129:     VecAXPY(work[0],dt/r,F);
130:   }
131:   {
132:     c = (i<n*(n+1)/2) ? 1.*i/(s-n) : (1.*i-n)/(s-n);
133:     stage_time = t0+c*dt;
134:     TSPreStage(ts,stage_time);
135:     TSComputeRHSFunction(ts,stage_time,work[0],F);
136:     VecAXPBYPCZ(work[0],1.*n/(2*n-1.),(n-1.)*dt/(r*(2*n-1)),(n-1.)/(2*n-1.),work[1],F);
137:     i++;
138:   }
139:   for ( ; i<s; i++) {
140:     c = (i<n*(n+1)/2) ? 1.*i/(s-n) : (1.*i-n)/(s-n);
141:     stage_time = t0+c*dt;
142:     TSPreStage(ts,stage_time);
143:     TSComputeRHSFunction(ts,stage_time,work[0],F);
144:     VecAXPY(work[0],dt/r,F);
145:   }
146:   VecCopy(work[0],sol);
147:   TSSSPRestoreWorkVectors(ts,3,&work);
148:   return(0);
149: }

153: /*MC
154:    TSSSPRKS104 - Optimal fourth order SSP Runge-Kutta, low-storage (2N), c_eff=0.6

156:    SSPRK(10,4), Pseudocode 3 of Ketcheson 2008

158:    Level: beginner

160: .seealso: TSSSP, TSSSPSetType()
161: M*/
162: static PetscErrorCode TSSSPStep_RK_10_4(TS ts,PetscReal t0,PetscReal dt,Vec sol)
163: {
164:   const PetscReal c[10] = {0, 1./6, 2./6, 3./6, 4./6, 2./6, 3./6, 4./6, 5./6, 1};
165:   Vec *work,F;
166:   PetscInt i;
167:   PetscReal stage_time;

171:   TSSSPGetWorkVectors(ts,3,&work);
172:   F = work[2];
173:   VecCopy(sol,work[0]);
174:   for (i=0; i<5; i++) {
175:     stage_time = t0+c[i]*dt;
176:     TSPreStage(ts,stage_time);
177:     TSComputeRHSFunction(ts,stage_time,work[0],F);
178:     VecAXPY(work[0],dt/6,F);
179:   }
180:   VecAXPBYPCZ(work[1],1./25,9./25,0,sol,work[0]);
181:   VecAXPBY(work[0],15,-5,work[1]);
182:   for ( ; i<9; i++) {
183:     stage_time = t0+c[i]*dt;
184:     TSPreStage(ts,stage_time);
185:     TSComputeRHSFunction(ts,stage_time,work[0],F);
186:     VecAXPY(work[0],dt/6,F);
187:   }
188:   stage_time = t0+dt;
189:   TSPreStage(ts,stage_time);
190:   TSComputeRHSFunction(ts,stage_time,work[0],F);
191:   VecAXPBYPCZ(work[1],3./5,dt/10,1,work[0],F);
192:   VecCopy(work[1],sol);
193:   TSSSPRestoreWorkVectors(ts,3,&work);
194:   return(0);
195: }


200: static PetscErrorCode TSSetUp_SSP(TS ts)
201: {

204:   return(0);
205: }

209: static PetscErrorCode TSStep_SSP(TS ts)
210: {
211:   TS_SSP        *ssp = (TS_SSP*)ts->data;
212:   Vec            sol = ts->vec_sol;

216:   TSPreStep(ts);
217:   (*ssp->onestep)(ts,ts->ptime,ts->time_step,sol);
218:   ts->ptime += ts->time_step;
219:   ts->steps++;
220:   return(0);
221: }
222: /*------------------------------------------------------------*/
225: static PetscErrorCode TSReset_SSP(TS ts)
226: {
227:   TS_SSP         *ssp = (TS_SSP*)ts->data;

231:   if (ssp->work) {VecDestroyVecs(ssp->nwork,&ssp->work);}
232:   ssp->nwork = 0;
233:   ssp->workout = PETSC_FALSE;
234:   return(0);
235: }

239: static PetscErrorCode TSDestroy_SSP(TS ts)
240: {
241:   TS_SSP         *ssp = (TS_SSP*)ts->data;

245:   TSReset_SSP(ts);
246:   PetscFree(ssp->type_name);
247:   PetscFree(ts->data);
248:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPGetType_C","",PETSC_NULL);
249:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPSetType_C","",PETSC_NULL);
250:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPGetNumStages_C","",PETSC_NULL);
251:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPSetNumStages_C","",PETSC_NULL);
252:   return(0);
253: }
254: /*------------------------------------------------------------*/

258: /*@C
259:    TSSSPSetType - set the SSP time integration scheme to use

261:    Logically Collective

263:    Input Arguments:
264:    ts - time stepping object
265:    type - type of scheme to use

267:    Options Database Keys:
268:    -ts_ssp_type <rks2>: Type of SSP method (one of) rks2 rks3 rk104
269:    -ts_ssp_nstages <5>: Number of stages

271:    Level: beginner

273: .seealso: TSSSP, TSSSPGetType(), TSSSPSetNumStages(), TSSSPRKS2, TSSSPRKS3, TSSSPRK104
274: @*/
275: PetscErrorCode TSSSPSetType(TS ts,const TSSSPType type)
276: {

281:   PetscTryMethod(ts,"TSSSPSetType_C",(TS,const TSSSPType),(ts,type));
282:   return(0);
283: }

287: /*@C
288:    TSSSPGetType - get the SSP time integration scheme

290:    Logically Collective

292:    Input Argument:
293:    ts - time stepping object

295:    Output Argument:
296:    type - type of scheme being used

298:    Level: beginner

300: .seealso: TSSSP, TSSSPSettype(), TSSSPSetNumStages(), TSSSPRKS2, TSSSPRKS3, TSSSPRK104
301: @*/
302: PetscErrorCode TSSSPGetType(TS ts,const TSSSPType *type)
303: {

308:   PetscTryMethod(ts,"TSSSPGetType_C",(TS,const TSSSPType*),(ts,type));
309:   return(0);
310: }

314: /*@
315:    TSSSPSetNumStages - set the number of stages to use with the SSP method

317:    Logically Collective

319:    Input Arguments:
320:    ts - time stepping object
321:    nstages - number of stages

323:    Options Database Keys:
324:    -ts_ssp_type <rks2>: NumStages of SSP method (one of) rks2 rks3 rk104
325:    -ts_ssp_nstages <5>: Number of stages

327:    Level: beginner

329: .seealso: TSSSP, TSSSPGetNumStages(), TSSSPSetNumStages(), TSSSPRKS2, TSSSPRKS3, TSSSPRK104
330: @*/
331: PetscErrorCode TSSSPSetNumStages(TS ts,PetscInt nstages)
332: {

337:   PetscTryMethod(ts,"TSSSPSetNumStages_C",(TS,PetscInt),(ts,nstages));
338:   return(0);
339: }

343: /*@
344:    TSSSPGetNumStages - get the number of stages in the SSP time integration scheme

346:    Logically Collective

348:    Input Argument:
349:    ts - time stepping object

351:    Output Argument:
352:    nstages - number of stages

354:    Level: beginner

356: .seealso: TSSSP, TSSSPGetType(), TSSSPSetNumStages(), TSSSPRKS2, TSSSPRKS3, TSSSPRK104
357: @*/
358: PetscErrorCode TSSSPGetNumStages(TS ts,PetscInt *nstages)
359: {

364:   PetscTryMethod(ts,"TSSSPGetNumStages_C",(TS,PetscInt*),(ts,nstages));
365:   return(0);
366: }

368: EXTERN_C_BEGIN
371: PetscErrorCode TSSSPSetType_SSP(TS ts,const TSSSPType type)
372: {
373:   PetscErrorCode ierr,(*r)(TS,PetscReal,PetscReal,Vec);
374:   TS_SSP *ssp = (TS_SSP*)ts->data;

377:   PetscFListFind(TSSSPList,((PetscObject)ts)->comm,type,PETSC_TRUE,(PetscVoidStarFunction)&r);
378:   if (!r) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown TS_SSP type %s given",type);
379:   ssp->onestep = r;
380:   PetscFree(ssp->type_name);
381:   PetscStrallocpy(type,&ssp->type_name);
382:   return(0);
383: }
386: PetscErrorCode TSSSPGetType_SSP(TS ts,const TSSSPType *type)
387: {
388:   TS_SSP *ssp = (TS_SSP*)ts->data;

391:   *type = ssp->type_name;
392:   return(0);
393: }
396: PetscErrorCode TSSSPSetNumStages_SSP(TS ts,PetscInt nstages)
397: {
398:   TS_SSP *ssp = (TS_SSP*)ts->data;

401:   ssp->nstages = nstages;
402:   return(0);
403: }
406: PetscErrorCode TSSSPGetNumStages_SSP(TS ts,PetscInt *nstages)
407: {
408:   TS_SSP *ssp = (TS_SSP*)ts->data;

411:   *nstages = ssp->nstages;
412:   return(0);
413: }
414: EXTERN_C_END

418: static PetscErrorCode TSSetFromOptions_SSP(TS ts)
419: {
420:   char tname[256] = TSSSPRKS2;
421:   TS_SSP *ssp = (TS_SSP*)ts->data;
423:   PetscBool  flg;

426:   PetscOptionsHead("SSP ODE solver options");
427:   {
428:     PetscOptionsList("-ts_ssp_type","Type of SSP method","TSSSPSetType",TSSSPList,tname,tname,sizeof(tname),&flg);
429:     if (flg) {
430:       TSSSPSetType(ts,tname);
431:     }
432:     PetscOptionsInt("-ts_ssp_nstages","Number of stages","TSSSPSetNumStages",ssp->nstages,&ssp->nstages,PETSC_NULL);
433:   }
434:   PetscOptionsTail();
435:   return(0);
436: }

440: static PetscErrorCode TSView_SSP(TS ts,PetscViewer viewer)
441: {
443:   return(0);
444: }

446: /* ------------------------------------------------------------ */

448: /*MC
449:       TSSSP - Explicit strong stability preserving ODE solver

451:   Most hyperbolic conservation laws have exact solutions that are total variation diminishing (TVD) or total variation
452:   bounded (TVB) although these solutions often contain discontinuities.  Spatial discretizations such as Godunov's
453:   scheme and high-resolution finite volume methods (TVD limiters, ENO/WENO) are designed to preserve these properties,
454:   but they are usually formulated using a forward Euler time discretization or by coupling the space and time
455:   discretization as in the classical Lax-Wendroff scheme.  When the space and time discretization is coupled, it is very
456:   difficult to produce schemes with high temporal accuracy while preserving TVD properties.  An alternative is the
457:   semidiscrete formulation where we choose a spatial discretization that is TVD with forward Euler and then choose a
458:   time discretization that preserves the TVD property.  Such integrators are called strong stability preserving (SSP).

460:   Let c_eff be the minimum number of function evaluations required to step as far as one step of forward Euler while
461:   still being SSP.  Some theoretical bounds

463:   1. There are no explicit methods with c_eff > 1.

465:   2. There are no explicit methods beyond order 4 (for nonlinear problems) and c_eff > 0.

467:   3. There are no implicit methods with order greater than 1 and c_eff > 2.

469:   This integrator provides Runge-Kutta methods of order 2, 3, and 4 with maximal values of c_eff.  More stages allows
470:   for larger values of c_eff which improves efficiency.  These implementations are low-memory and only use 2 or 3 work
471:   vectors regardless of the total number of stages, so e.g. 25-stage 3rd order methods may be an excellent choice.

473:   Methods can be chosen with -ts_ssp_type {rks2,rks3,rk104}

475:   rks2: Second order methods with any number s>1 of stages.  c_eff = (s-1)/s

477:   rks3: Third order methods with s=n^2 stages, n>1.  c_eff = (s-n)/s

479:   rk104: A 10-stage fourth order method.  c_eff = 0.6

481:   Level: beginner

483:   References:
484:   Ketcheson, Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations, SISC, 2008.

486:   Gottlieb, Ketcheson, and Shu, High order strong stability preserving time discretizations, J Scientific Computing, 2009.

488: .seealso:  TSCreate(), TS, TSSetType()

490: M*/
491: EXTERN_C_BEGIN
494: PetscErrorCode  TSCreate_SSP(TS ts)
495: {
496:   TS_SSP       *ssp;

500:   if (!TSSSPList) {
501:     PetscFListAdd(&TSSSPList,TSSSPRKS2,  "TSSSPStep_RK_2",   (void(*)(void))TSSSPStep_RK_2);
502:     PetscFListAdd(&TSSSPList,TSSSPRKS3,  "TSSSPStep_RK_3",   (void(*)(void))TSSSPStep_RK_3);
503:     PetscFListAdd(&TSSSPList,TSSSPRK104, "TSSSPStep_RK_10_4",(void(*)(void))TSSSPStep_RK_10_4);
504:   }

506:   ts->ops->setup           = TSSetUp_SSP;
507:   ts->ops->step            = TSStep_SSP;
508:   ts->ops->reset           = TSReset_SSP;
509:   ts->ops->destroy         = TSDestroy_SSP;
510:   ts->ops->setfromoptions  = TSSetFromOptions_SSP;
511:   ts->ops->view            = TSView_SSP;

513:   PetscNewLog(ts,TS_SSP,&ssp);
514:   ts->data = (void*)ssp;

516:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPGetType_C","TSSSPGetType_SSP",TSSSPGetType_SSP);
517:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPSetType_C","TSSSPSetType_SSP",TSSSPSetType_SSP);
518:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPGetNumStages_C","TSSSPGetNumStages_SSP",TSSSPGetNumStages_SSP);
519:   PetscObjectComposeFunctionDynamic((PetscObject)ts,"TSSSPSetNumStages_C","TSSSPSetNumStages_SSP",TSSSPSetNumStages_SSP);

521:   TSSSPSetType(ts,TSSSPRKS2);
522:   ssp->nstages = 5;
523:   return(0);
524: }
525: EXTERN_C_END