Actual source code: ex25.c
petsc-3.3-p7 2013-05-11
1: static const char help[] ="Minimum surface problem in 2D.\n\
2: Uses 2-dimensional distributed arrays.\n\
3: \n\
4: Solves the linear systems via multilevel methods \n\
5: \n\n";
7: /*T
8: Concepts: SNES^solving a system of nonlinear equations
9: Concepts: DMDA^using distributed arrays
10: Concepts: multigrid;
11: Processors: n
12: T*/
14: /*
15:
16: This example models the partial differential equation
17:
18: - Div((1 + ||GRAD T||^2)^(1/2) (GRAD T)) = 0.
19:
20:
21: in the unit square, which is uniformly discretized in each of x and
22: y in this simple encoding. The degrees of freedom are vertex centered
23:
24: A finite difference approximation with the usual 5-point stencil
25: is used to discretize the boundary value problem to obtain a
26: nonlinear system of equations.
27:
28: */
30: #include <petscsnes.h>
31: #include <petscdmda.h>
32: #include <petscpcmg.h>
34: extern PetscErrorCode FormFunctionLocal(DMDALocalInfo*,PetscScalar**,PetscScalar**,void*);
38: int main(int argc,char **argv)
39: {
40: SNES snes;
42: PetscInt its,lits;
43: PetscReal litspit;
44: DM da;
46: PetscInitialize(&argc,&argv,PETSC_NULL,help);
48: /*
49: Set the DMDA (grid structure) for the grids.
50: */
51: DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-5,-5,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,&da);
52: DMDASetLocalFunction(da,(DMDALocalFunction1)FormFunctionLocal);
53: SNESCreate(PETSC_COMM_WORLD,&snes);
54: SNESSetDM(snes,da);
55: DMDestroy(&da);
57: SNESSetFromOptions(snes);
59: SNESSolve(snes,0,0);
60: SNESGetIterationNumber(snes,&its);
61: SNESGetLinearSolveIterations(snes,&lits);
62: litspit = ((PetscReal)lits)/((PetscReal)its);
63: PetscPrintf(PETSC_COMM_WORLD,"Number of SNES iterations = %D\n",its);
64: PetscPrintf(PETSC_COMM_WORLD,"Number of Linear iterations = %D\n",lits);
65: PetscPrintf(PETSC_COMM_WORLD,"Average Linear its / SNES = %e\n",litspit);
67: SNESDestroy(&snes);
68: PetscFinalize();
70: return 0;
71: }
75: PetscErrorCode FormFunctionLocal(DMDALocalInfo *info,PetscScalar **t,PetscScalar **f,void *ptr)
76: {
77: PetscInt i,j;
78: PetscScalar hx,hy;
79: PetscScalar gradup,graddown,gradleft,gradright,gradx,grady;
80: PetscScalar coeffup,coeffdown,coeffleft,coeffright;
83: hx = 1.0/(PetscReal)(info->mx-1); hy = 1.0/(PetscReal)(info->my-1);
84:
85: /* Evaluate function */
86: for (j=info->ys; j<info->ys+info->ym; j++) {
87: for (i=info->xs; i<info->xs+info->xm; i++) {
89: if (i == 0 || i == info->mx-1 || j == 0 || j == info->my-1) {
91: f[j][i] = t[j][i] - (1.0 - (2.0*hx*(PetscReal)i - 1.0)*(2.0*hx*(PetscReal)i - 1.0));
92:
93: } else {
95: gradup = (t[j+1][i] - t[j][i])/hy;
96: graddown = (t[j][i] - t[j-1][i])/hy;
97: gradright = (t[j][i+1] - t[j][i])/hx;
98: gradleft = (t[j][i] - t[j][i-1])/hx;
100: gradx = .5*(t[j][i+1] - t[j][i-1])/hx;
101: grady = .5*(t[j+1][i] - t[j-1][i])/hy;
103: coeffup = 1.0/PetscSqrtScalar(1.0 + gradup*gradup + gradx*gradx);
104: coeffdown = 1.0/PetscSqrtScalar(1.0 + graddown*graddown + gradx*gradx);
106: coeffleft = 1.0/PetscSqrtScalar(1.0 + gradleft*gradleft + grady*grady);
107: coeffright = 1.0/PetscSqrtScalar(1.0 + gradright*gradright + grady*grady);
109: f[j][i] = (coeffup*gradup - coeffdown*graddown)*hx + (coeffright*gradright - coeffleft*gradleft)*hy;
110:
111: }
113: }
114: }
115: return(0);
116: }