Actual source code: mpidense.c

petsc-3.3-p7 2013-05-11
  2: /*
  3:    Basic functions for basic parallel dense matrices.
  4: */

  6: 
  7: #include <../src/mat/impls/dense/mpi/mpidense.h>    /*I   "petscmat.h"  I*/
  8: #if defined(PETSC_HAVE_PLAPACK)
  9: static PetscMPIInt Plapack_nprows,Plapack_npcols,Plapack_ierror,Plapack_nb_alg;
 10: static MPI_Comm Plapack_comm_2d;
 11: EXTERN_C_BEGIN
 12: #include <PLA.h>
 13: EXTERN_C_END

 15: typedef struct {
 16:   PLA_Obj        A,pivots;
 17:   PLA_Template   templ;
 18:   MPI_Datatype   datatype;
 19:   PetscInt       nb,rstart;
 20:   VecScatter     ctx;
 21:   IS             is_pla,is_petsc;
 22:   PetscBool      pla_solved;
 23:   MatStructure   mstruct;
 24: } Mat_Plapack;
 25: #endif

 29: /*@

 31:       MatDenseGetLocalMatrix - For a MATMPIDENSE or MATSEQDENSE matrix returns the sequential
 32:               matrix that represents the operator. For sequential matrices it returns itself.

 34:     Input Parameter:
 35: .      A - the Seq or MPI dense matrix

 37:     Output Parameter:
 38: .      B - the inner matrix

 40:     Level: intermediate

 42: @*/
 43: PetscErrorCode MatDenseGetLocalMatrix(Mat A,Mat *B)
 44: {
 45:   Mat_MPIDense   *mat = (Mat_MPIDense*)A->data;
 47:   PetscBool      flg;

 50:   PetscObjectTypeCompare((PetscObject)A,MATMPIDENSE,&flg);
 51:   if (flg) {
 52:     *B = mat->A;
 53:   } else {
 54:     *B = A;
 55:   }
 56:   return(0);
 57: }

 61: PetscErrorCode MatGetRow_MPIDense(Mat A,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
 62: {
 63:   Mat_MPIDense   *mat = (Mat_MPIDense*)A->data;
 65:   PetscInt       lrow,rstart = A->rmap->rstart,rend = A->rmap->rend;

 68:   if (row < rstart || row >= rend) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"only local rows");
 69:   lrow = row - rstart;
 70:   MatGetRow(mat->A,lrow,nz,(const PetscInt **)idx,(const PetscScalar **)v);
 71:   return(0);
 72: }

 76: PetscErrorCode MatRestoreRow_MPIDense(Mat mat,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
 77: {

 81:   if (idx) {PetscFree(*idx);}
 82:   if (v) {PetscFree(*v);}
 83:   return(0);
 84: }

 86: EXTERN_C_BEGIN
 89: PetscErrorCode  MatGetDiagonalBlock_MPIDense(Mat A,Mat *a)
 90: {
 91:   Mat_MPIDense   *mdn = (Mat_MPIDense*)A->data;
 93:   PetscInt       m = A->rmap->n,rstart = A->rmap->rstart;
 94:   PetscScalar    *array;
 95:   MPI_Comm       comm;
 96:   Mat            B;

 99:   if (A->rmap->N != A->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only square matrices supported.");

101:   PetscObjectQuery((PetscObject)A,"DiagonalBlock",(PetscObject*)&B);
102:   if (!B) {
103:     PetscObjectGetComm((PetscObject)(mdn->A),&comm);
104:     MatCreate(comm,&B);
105:     MatSetSizes(B,m,m,m,m);
106:     MatSetType(B,((PetscObject)mdn->A)->type_name);
107:     MatGetArray(mdn->A,&array);
108:     MatSeqDenseSetPreallocation(B,array+m*rstart);
109:     MatRestoreArray(mdn->A,&array);
110:     MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
111:     MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
112:     PetscObjectCompose((PetscObject)A,"DiagonalBlock",(PetscObject)B);
113:     *a = B;
114:     MatDestroy(&B);
115:   } else {
116:     *a = B;
117:   }
118:   return(0);
119: }
120: EXTERN_C_END

124: PetscErrorCode MatSetValues_MPIDense(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],const PetscScalar v[],InsertMode addv)
125: {
126:   Mat_MPIDense   *A = (Mat_MPIDense*)mat->data;
128:   PetscInt       i,j,rstart = mat->rmap->rstart,rend = mat->rmap->rend,row;
129:   PetscBool      roworiented = A->roworiented;

133:   for (i=0; i<m; i++) {
134:     if (idxm[i] < 0) continue;
135:     if (idxm[i] >= mat->rmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large");
136:     if (idxm[i] >= rstart && idxm[i] < rend) {
137:       row = idxm[i] - rstart;
138:       if (roworiented) {
139:         MatSetValues(A->A,1,&row,n,idxn,v+i*n,addv);
140:       } else {
141:         for (j=0; j<n; j++) {
142:           if (idxn[j] < 0) continue;
143:           if (idxn[j] >= mat->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large");
144:           MatSetValues(A->A,1,&row,1,&idxn[j],v+i+j*m,addv);
145:         }
146:       }
147:     } else {
148:       if (!A->donotstash) {
149:         mat->assembled = PETSC_FALSE;
150:         if (roworiented) {
151:           MatStashValuesRow_Private(&mat->stash,idxm[i],n,idxn,v+i*n,PETSC_FALSE);
152:         } else {
153:           MatStashValuesCol_Private(&mat->stash,idxm[i],n,idxn,v+i,m,PETSC_FALSE);
154:         }
155:       }
156:     }
157:   }
158:   return(0);
159: }

163: PetscErrorCode MatGetValues_MPIDense(Mat mat,PetscInt m,const PetscInt idxm[],PetscInt n,const PetscInt idxn[],PetscScalar v[])
164: {
165:   Mat_MPIDense   *mdn = (Mat_MPIDense*)mat->data;
167:   PetscInt       i,j,rstart = mat->rmap->rstart,rend = mat->rmap->rend,row;

170:   for (i=0; i<m; i++) {
171:     if (idxm[i] < 0) continue; /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row"); */
172:     if (idxm[i] >= mat->rmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large");
173:     if (idxm[i] >= rstart && idxm[i] < rend) {
174:       row = idxm[i] - rstart;
175:       for (j=0; j<n; j++) {
176:         if (idxn[j] < 0) continue; /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column"); */
177:         if (idxn[j] >= mat->cmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large");
178:         MatGetValues(mdn->A,1,&row,1,&idxn[j],v+i*n+j);
179:       }
180:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only local values currently supported");
181:   }
182:   return(0);
183: }

187: PetscErrorCode MatGetArray_MPIDense(Mat A,PetscScalar *array[])
188: {
189:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;

193:   MatGetArray(a->A,array);
194:   return(0);
195: }

199: static PetscErrorCode MatGetSubMatrix_MPIDense(Mat A,IS isrow,IS iscol,MatReuse scall,Mat *B)
200: {
201:   Mat_MPIDense   *mat = (Mat_MPIDense*)A->data,*newmatd;
202:   Mat_SeqDense   *lmat = (Mat_SeqDense*)mat->A->data;
204:   PetscInt       i,j,rstart,rend,nrows,ncols,Ncols,nlrows,nlcols;
205:   const PetscInt *irow,*icol;
206:   PetscScalar    *av,*bv,*v = lmat->v;
207:   Mat            newmat;
208:   IS             iscol_local;

211:   ISAllGather(iscol,&iscol_local);
212:   ISGetIndices(isrow,&irow);
213:   ISGetIndices(iscol_local,&icol);
214:   ISGetLocalSize(isrow,&nrows);
215:   ISGetLocalSize(iscol,&ncols);
216:   ISGetSize(iscol,&Ncols); /* global number of columns, size of iscol_local */

218:   /* No parallel redistribution currently supported! Should really check each index set
219:      to comfirm that it is OK.  ... Currently supports only submatrix same partitioning as
220:      original matrix! */

222:   MatGetLocalSize(A,&nlrows,&nlcols);
223:   MatGetOwnershipRange(A,&rstart,&rend);
224: 
225:   /* Check submatrix call */
226:   if (scall == MAT_REUSE_MATRIX) {
227:     /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Reused submatrix wrong size"); */
228:     /* Really need to test rows and column sizes! */
229:     newmat = *B;
230:   } else {
231:     /* Create and fill new matrix */
232:     MatCreate(((PetscObject)A)->comm,&newmat);
233:     MatSetSizes(newmat,nrows,ncols,PETSC_DECIDE,Ncols);
234:     MatSetType(newmat,((PetscObject)A)->type_name);
235:     MatMPIDenseSetPreallocation(newmat,PETSC_NULL);
236:   }

238:   /* Now extract the data pointers and do the copy, column at a time */
239:   newmatd = (Mat_MPIDense*)newmat->data;
240:   bv      = ((Mat_SeqDense *)newmatd->A->data)->v;
241: 
242:   for (i=0; i<Ncols; i++) {
243:     av = v + ((Mat_SeqDense *)mat->A->data)->lda*icol[i];
244:     for (j=0; j<nrows; j++) {
245:       *bv++ = av[irow[j] - rstart];
246:     }
247:   }

249:   /* Assemble the matrices so that the correct flags are set */
250:   MatAssemblyBegin(newmat,MAT_FINAL_ASSEMBLY);
251:   MatAssemblyEnd(newmat,MAT_FINAL_ASSEMBLY);

253:   /* Free work space */
254:   ISRestoreIndices(isrow,&irow);
255:   ISRestoreIndices(iscol_local,&icol);
256:   ISDestroy(&iscol_local);
257:   *B = newmat;
258:   return(0);
259: }

263: PetscErrorCode MatRestoreArray_MPIDense(Mat A,PetscScalar *array[])
264: {
266:   return(0);
267: }

271: PetscErrorCode MatAssemblyBegin_MPIDense(Mat mat,MatAssemblyType mode)
272: {
273:   Mat_MPIDense   *mdn = (Mat_MPIDense*)mat->data;
274:   MPI_Comm       comm = ((PetscObject)mat)->comm;
276:   PetscInt       nstash,reallocs;
277:   InsertMode     addv;

280:   /* make sure all processors are either in INSERTMODE or ADDMODE */
281:   MPI_Allreduce(&mat->insertmode,&addv,1,MPI_INT,MPI_BOR,comm);
282:   if (addv == (ADD_VALUES|INSERT_VALUES)) SETERRQ(((PetscObject)mat)->comm,PETSC_ERR_ARG_WRONGSTATE,"Cannot mix adds/inserts on different procs");
283:   mat->insertmode = addv; /* in case this processor had no cache */

285:   MatStashScatterBegin_Private(mat,&mat->stash,mat->rmap->range);
286:   MatStashGetInfo_Private(&mat->stash,&nstash,&reallocs);
287:   PetscInfo2(mdn->A,"Stash has %D entries, uses %D mallocs.\n",nstash,reallocs);
288:   return(0);
289: }

293: PetscErrorCode MatAssemblyEnd_MPIDense(Mat mat,MatAssemblyType mode)
294: {
295:   Mat_MPIDense    *mdn=(Mat_MPIDense*)mat->data;
296:   PetscErrorCode  ierr;
297:   PetscInt        i,*row,*col,flg,j,rstart,ncols;
298:   PetscMPIInt     n;
299:   PetscScalar     *val;
300:   InsertMode      addv=mat->insertmode;

303:   /*  wait on receives */
304:   while (1) {
305:     MatStashScatterGetMesg_Private(&mat->stash,&n,&row,&col,&val,&flg);
306:     if (!flg) break;
307: 
308:     for (i=0; i<n;) {
309:       /* Now identify the consecutive vals belonging to the same row */
310:       for (j=i,rstart=row[j]; j<n; j++) { if (row[j] != rstart) break; }
311:       if (j < n) ncols = j-i;
312:       else       ncols = n-i;
313:       /* Now assemble all these values with a single function call */
314:       MatSetValues_MPIDense(mat,1,row+i,ncols,col+i,val+i,addv);
315:       i = j;
316:     }
317:   }
318:   MatStashScatterEnd_Private(&mat->stash);
319: 
320:   MatAssemblyBegin(mdn->A,mode);
321:   MatAssemblyEnd(mdn->A,mode);

323:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) {
324:     MatSetUpMultiply_MPIDense(mat);
325:   }
326:   return(0);
327: }

331: PetscErrorCode MatZeroEntries_MPIDense(Mat A)
332: {
334:   Mat_MPIDense   *l = (Mat_MPIDense*)A->data;

337:   MatZeroEntries(l->A);
338:   return(0);
339: }

341: /* the code does not do the diagonal entries correctly unless the 
342:    matrix is square and the column and row owerships are identical.
343:    This is a BUG. The only way to fix it seems to be to access 
344:    mdn->A and mdn->B directly and not through the MatZeroRows() 
345:    routine. 
346: */
349: PetscErrorCode MatZeroRows_MPIDense(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
350: {
351:   Mat_MPIDense      *l = (Mat_MPIDense*)A->data;
352:   PetscErrorCode    ierr;
353:   PetscInt          i,*owners = A->rmap->range;
354:   PetscInt          *nprocs,j,idx,nsends;
355:   PetscInt          nmax,*svalues,*starts,*owner,nrecvs;
356:   PetscInt          *rvalues,tag = ((PetscObject)A)->tag,count,base,slen,*source;
357:   PetscInt          *lens,*lrows,*values;
358:   PetscMPIInt       n,imdex,rank = l->rank,size = l->size;
359:   MPI_Comm          comm = ((PetscObject)A)->comm;
360:   MPI_Request       *send_waits,*recv_waits;
361:   MPI_Status        recv_status,*send_status;
362:   PetscBool         found;
363:   const PetscScalar *xx;
364:   PetscScalar       *bb;

367:   if (A->rmap->N != A->cmap->N) SETERRQ(((PetscObject)A)->comm,PETSC_ERR_SUP,"Only handles square matrices");
368:   if (A->rmap->n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only handles matrices with identical column and row ownership");
369:   /*  first count number of contributors to each processor */
370:   PetscMalloc(2*size*sizeof(PetscInt),&nprocs);
371:   PetscMemzero(nprocs,2*size*sizeof(PetscInt));
372:   PetscMalloc((N+1)*sizeof(PetscInt),&owner); /* see note*/
373:   for (i=0; i<N; i++) {
374:     idx = rows[i];
375:     found = PETSC_FALSE;
376:     for (j=0; j<size; j++) {
377:       if (idx >= owners[j] && idx < owners[j+1]) {
378:         nprocs[2*j]++; nprocs[2*j+1] = 1; owner[i] = j; found = PETSC_TRUE; break;
379:       }
380:     }
381:     if (!found) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Index out of range");
382:   }
383:   nsends = 0;  for (i=0; i<size; i++) { nsends += nprocs[2*i+1];}

385:   /* inform other processors of number of messages and max length*/
386:   PetscMaxSum(comm,nprocs,&nmax,&nrecvs);

388:   /* post receives:   */
389:   PetscMalloc((nrecvs+1)*(nmax+1)*sizeof(PetscInt),&rvalues);
390:   PetscMalloc((nrecvs+1)*sizeof(MPI_Request),&recv_waits);
391:   for (i=0; i<nrecvs; i++) {
392:     MPI_Irecv(rvalues+nmax*i,nmax,MPIU_INT,MPI_ANY_SOURCE,tag,comm,recv_waits+i);
393:   }

395:   /* do sends:
396:       1) starts[i] gives the starting index in svalues for stuff going to 
397:          the ith processor
398:   */
399:   PetscMalloc((N+1)*sizeof(PetscInt),&svalues);
400:   PetscMalloc((nsends+1)*sizeof(MPI_Request),&send_waits);
401:   PetscMalloc((size+1)*sizeof(PetscInt),&starts);
402:   starts[0]  = 0;
403:   for (i=1; i<size; i++) { starts[i] = starts[i-1] + nprocs[2*i-2];}
404:   for (i=0; i<N; i++) {
405:     svalues[starts[owner[i]]++] = rows[i];
406:   }

408:   starts[0] = 0;
409:   for (i=1; i<size+1; i++) { starts[i] = starts[i-1] + nprocs[2*i-2];}
410:   count = 0;
411:   for (i=0; i<size; i++) {
412:     if (nprocs[2*i+1]) {
413:       MPI_Isend(svalues+starts[i],nprocs[2*i],MPIU_INT,i,tag,comm,send_waits+count++);
414:     }
415:   }
416:   PetscFree(starts);

418:   base = owners[rank];

420:   /*  wait on receives */
421:   PetscMalloc2(nrecvs,PetscInt,&lens,nrecvs,PetscInt,&source);
422:   count  = nrecvs;
423:   slen   = 0;
424:   while (count) {
425:     MPI_Waitany(nrecvs,recv_waits,&imdex,&recv_status);
426:     /* unpack receives into our local space */
427:     MPI_Get_count(&recv_status,MPIU_INT,&n);
428:     source[imdex]  = recv_status.MPI_SOURCE;
429:     lens[imdex]    = n;
430:     slen += n;
431:     count--;
432:   }
433:   PetscFree(recv_waits);
434: 
435:   /* move the data into the send scatter */
436:   PetscMalloc((slen+1)*sizeof(PetscInt),&lrows);
437:   count = 0;
438:   for (i=0; i<nrecvs; i++) {
439:     values = rvalues + i*nmax;
440:     for (j=0; j<lens[i]; j++) {
441:       lrows[count++] = values[j] - base;
442:     }
443:   }
444:   PetscFree(rvalues);
445:   PetscFree2(lens,source);
446:   PetscFree(owner);
447:   PetscFree(nprocs);
448: 
449:   /* fix right hand side if needed */
450:   if (x && b) {
451:     VecGetArrayRead(x,&xx);
452:     VecGetArray(b,&bb);
453:     for (i=0; i<slen; i++) {
454:       bb[lrows[i]] = diag*xx[lrows[i]];
455:     }
456:     VecRestoreArrayRead(x,&xx);
457:     VecRestoreArray(b,&bb);
458:   }

460:   /* actually zap the local rows */
461:   MatZeroRows(l->A,slen,lrows,0.0,0,0);
462:   if (diag != 0.0) {
463:     Mat_SeqDense *ll = (Mat_SeqDense*)l->A->data;
464:     PetscInt      m = ll->lda, i;
465: 
466:     for (i=0; i<slen; i++) {
467:       ll->v[lrows[i] + m*(A->cmap->rstart + lrows[i])] = diag;
468:     }
469:   }
470:   PetscFree(lrows);

472:   /* wait on sends */
473:   if (nsends) {
474:     PetscMalloc(nsends*sizeof(MPI_Status),&send_status);
475:     MPI_Waitall(nsends,send_waits,send_status);
476:     PetscFree(send_status);
477:   }
478:   PetscFree(send_waits);
479:   PetscFree(svalues);

481:   return(0);
482: }

486: PetscErrorCode MatMult_MPIDense(Mat mat,Vec xx,Vec yy)
487: {
488:   Mat_MPIDense   *mdn = (Mat_MPIDense*)mat->data;

492:   VecScatterBegin(mdn->Mvctx,xx,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
493:   VecScatterEnd(mdn->Mvctx,xx,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
494:   MatMult_SeqDense(mdn->A,mdn->lvec,yy);
495:   return(0);
496: }

500: PetscErrorCode MatMultAdd_MPIDense(Mat mat,Vec xx,Vec yy,Vec zz)
501: {
502:   Mat_MPIDense   *mdn = (Mat_MPIDense*)mat->data;

506:   VecScatterBegin(mdn->Mvctx,xx,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
507:   VecScatterEnd(mdn->Mvctx,xx,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
508:   MatMultAdd_SeqDense(mdn->A,mdn->lvec,yy,zz);
509:   return(0);
510: }

514: PetscErrorCode MatMultTranspose_MPIDense(Mat A,Vec xx,Vec yy)
515: {
516:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;
518:   PetscScalar    zero = 0.0;

521:   VecSet(yy,zero);
522:   MatMultTranspose_SeqDense(a->A,xx,a->lvec);
523:   VecScatterBegin(a->Mvctx,a->lvec,yy,ADD_VALUES,SCATTER_REVERSE);
524:   VecScatterEnd(a->Mvctx,a->lvec,yy,ADD_VALUES,SCATTER_REVERSE);
525:   return(0);
526: }

530: PetscErrorCode MatMultTransposeAdd_MPIDense(Mat A,Vec xx,Vec yy,Vec zz)
531: {
532:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;

536:   VecCopy(yy,zz);
537:   MatMultTranspose_SeqDense(a->A,xx,a->lvec);
538:   VecScatterBegin(a->Mvctx,a->lvec,zz,ADD_VALUES,SCATTER_REVERSE);
539:   VecScatterEnd(a->Mvctx,a->lvec,zz,ADD_VALUES,SCATTER_REVERSE);
540:   return(0);
541: }

545: PetscErrorCode MatGetDiagonal_MPIDense(Mat A,Vec v)
546: {
547:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;
548:   Mat_SeqDense   *aloc = (Mat_SeqDense*)a->A->data;
550:   PetscInt       len,i,n,m = A->rmap->n,radd;
551:   PetscScalar    *x,zero = 0.0;
552: 
554:   VecSet(v,zero);
555:   VecGetArray(v,&x);
556:   VecGetSize(v,&n);
557:   if (n != A->rmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming mat and vec");
558:   len  = PetscMin(a->A->rmap->n,a->A->cmap->n);
559:   radd = A->rmap->rstart*m;
560:   for (i=0; i<len; i++) {
561:     x[i] = aloc->v[radd + i*m + i];
562:   }
563:   VecRestoreArray(v,&x);
564:   return(0);
565: }

569: PetscErrorCode MatDestroy_MPIDense(Mat mat)
570: {
571:   Mat_MPIDense   *mdn = (Mat_MPIDense*)mat->data;
573: #if defined(PETSC_HAVE_PLAPACK)
574:   Mat_Plapack   *lu=(Mat_Plapack*)mat->spptr;
575: #endif


579: #if defined(PETSC_USE_LOG)
580:   PetscLogObjectState((PetscObject)mat,"Rows=%D, Cols=%D",mat->rmap->N,mat->cmap->N);
581: #endif
582:   MatStashDestroy_Private(&mat->stash);
583:   MatDestroy(&mdn->A);
584:   VecDestroy(&mdn->lvec);
585:   VecScatterDestroy(&mdn->Mvctx);
586: #if defined(PETSC_HAVE_PLAPACK)
587:   if (lu) {
588:     PLA_Obj_free(&lu->A);
589:     PLA_Obj_free (&lu->pivots);
590:     PLA_Temp_free(&lu->templ);
591:     ISDestroy(&lu->is_pla);
592:     ISDestroy(&lu->is_petsc);
593:     VecScatterDestroy(&lu->ctx);
594:   }
595:   PetscFree(mat->spptr);
596: #endif

598:   PetscFree(mat->data);
599:   PetscObjectChangeTypeName((PetscObject)mat,0);
600:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatGetDiagonalBlock_C","",PETSC_NULL);
601:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatMPIDenseSetPreallocation_C","",PETSC_NULL);
602:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMult_mpiaij_mpidense_C","",PETSC_NULL);
603:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultSymbolic_mpiaij_mpidense_C","",PETSC_NULL);
604:   PetscObjectComposeFunction((PetscObject)mat,"MatMatMultNumeric_mpiaij_mpidense_C","",PETSC_NULL);
605:   return(0);
606: }

610: static PetscErrorCode MatView_MPIDense_Binary(Mat mat,PetscViewer viewer)
611: {
612:   Mat_MPIDense      *mdn = (Mat_MPIDense*)mat->data;
613:   PetscErrorCode    ierr;
614:   PetscViewerFormat format;
615:   int               fd;
616:   PetscInt          header[4],mmax,N = mat->cmap->N,i,j,m,k;
617:   PetscMPIInt       rank,tag  = ((PetscObject)viewer)->tag,size;
618:   PetscScalar       *work,*v,*vv;
619:   Mat_SeqDense      *a = (Mat_SeqDense*)mdn->A->data;

622:   if (mdn->size == 1) {
623:     MatView(mdn->A,viewer);
624:   } else {
625:     PetscViewerBinaryGetDescriptor(viewer,&fd);
626:     MPI_Comm_rank(((PetscObject)mat)->comm,&rank);
627:     MPI_Comm_size(((PetscObject)mat)->comm,&size);

629:     PetscViewerGetFormat(viewer,&format);
630:     if (format == PETSC_VIEWER_NATIVE) {

632:       if (!rank) {
633:         /* store the matrix as a dense matrix */
634:         header[0] = MAT_FILE_CLASSID;
635:         header[1] = mat->rmap->N;
636:         header[2] = N;
637:         header[3] = MATRIX_BINARY_FORMAT_DENSE;
638:         PetscBinaryWrite(fd,header,4,PETSC_INT,PETSC_TRUE);

640:         /* get largest work array needed for transposing array */
641:         mmax = mat->rmap->n;
642:         for (i=1; i<size; i++) {
643:           mmax = PetscMax(mmax,mat->rmap->range[i+1] - mat->rmap->range[i]);
644:         }
645:         PetscMalloc(mmax*N*sizeof(PetscScalar),&work);

647:         /* write out local array, by rows */
648:         m    = mat->rmap->n;
649:         v    = a->v;
650:         for (j=0; j<N; j++) {
651:           for (i=0; i<m; i++) {
652:             work[j + i*N] = *v++;
653:           }
654:         }
655:         PetscBinaryWrite(fd,work,m*N,PETSC_SCALAR,PETSC_FALSE);
656:         /* get largest work array to receive messages from other processes, excludes process zero */
657:         mmax = 0;
658:         for (i=1; i<size; i++) {
659:           mmax = PetscMax(mmax,mat->rmap->range[i+1] - mat->rmap->range[i]);
660:         }
661:         PetscMalloc(mmax*N*sizeof(PetscScalar),&vv);
662:         for(k = 1; k < size; k++) {
663:           v    = vv;
664:           m    = mat->rmap->range[k+1] - mat->rmap->range[k];
665:           MPIULong_Recv(v,m*N,MPIU_SCALAR,k,tag,((PetscObject)mat)->comm);

667:           for(j = 0; j < N; j++) {
668:             for(i = 0; i < m; i++) {
669:               work[j + i*N] = *v++;
670:             }
671:           }
672:           PetscBinaryWrite(fd,work,m*N,PETSC_SCALAR,PETSC_FALSE);
673:         }
674:         PetscFree(work);
675:         PetscFree(vv);
676:       } else {
677:         MPIULong_Send(a->v,mat->rmap->n*mat->cmap->N,MPIU_SCALAR,0,tag,((PetscObject)mat)->comm);
678:       }
679:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"To store a parallel dense matrix you must first call PetscViewerSetFormat(viewer,PETSC_VIEWER_NATIVE)");
680:   }
681:   return(0);
682: }

686: static PetscErrorCode MatView_MPIDense_ASCIIorDraworSocket(Mat mat,PetscViewer viewer)
687: {
688:   Mat_MPIDense          *mdn = (Mat_MPIDense*)mat->data;
689:   PetscErrorCode        ierr;
690:   PetscMPIInt           size = mdn->size,rank = mdn->rank;
691:   const PetscViewerType vtype;
692:   PetscBool             iascii,isdraw;
693:   PetscViewer           sviewer;
694:   PetscViewerFormat     format;
695: #if defined(PETSC_HAVE_PLAPACK)
696:   Mat_Plapack           *lu;
697: #endif

700:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
701:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
702:   if (iascii) {
703:     PetscViewerGetType(viewer,&vtype);
704:     PetscViewerGetFormat(viewer,&format);
705:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
706:       MatInfo info;
707:       MatGetInfo(mat,MAT_LOCAL,&info);
708:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
709:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] local rows %D nz %D nz alloced %D mem %D \n",rank,mat->rmap->n,(PetscInt)info.nz_used,(PetscInt)info.nz_allocated,(PetscInt)info.memory);
710:       PetscViewerFlush(viewer);
711:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
712: #if defined(PETSC_HAVE_PLAPACK)
713:       PetscViewerASCIIPrintf(viewer,"PLAPACK run parameters:\n");
714:       PetscViewerASCIIPrintf(viewer,"  Processor mesh: nprows %d, npcols %d\n",Plapack_nprows, Plapack_npcols);
715:       PetscViewerASCIIPrintf(viewer,"  Error checking: %d\n",Plapack_ierror);
716:       PetscViewerASCIIPrintf(viewer,"  Algorithmic block size: %d\n",Plapack_nb_alg);
717:       if (mat->factortype){
718:         lu=(Mat_Plapack*)(mat->spptr);
719:         PetscViewerASCIIPrintf(viewer,"  Distr. block size nb: %d \n",lu->nb);
720:       }
721: #else
722:       VecScatterView(mdn->Mvctx,viewer);
723: #endif
724:       return(0);
725:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
726:       return(0);
727:     }
728:   } else if (isdraw) {
729:     PetscDraw  draw;
730:     PetscBool  isnull;

732:     PetscViewerDrawGetDraw(viewer,0,&draw);
733:     PetscDrawIsNull(draw,&isnull);
734:     if (isnull) return(0);
735:   }

737:   if (size == 1) {
738:     MatView(mdn->A,viewer);
739:   } else {
740:     /* assemble the entire matrix onto first processor. */
741:     Mat         A;
742:     PetscInt    M = mat->rmap->N,N = mat->cmap->N,m,row,i,nz;
743:     PetscInt    *cols;
744:     PetscScalar *vals;

746:     MatCreate(((PetscObject)mat)->comm,&A);
747:     if (!rank) {
748:       MatSetSizes(A,M,N,M,N);
749:     } else {
750:       MatSetSizes(A,0,0,M,N);
751:     }
752:     /* Since this is a temporary matrix, MATMPIDENSE instead of ((PetscObject)A)->type_name here is probably acceptable. */
753:     MatSetType(A,MATMPIDENSE);
754:     MatMPIDenseSetPreallocation(A,PETSC_NULL);
755:     PetscLogObjectParent(mat,A);

757:     /* Copy the matrix ... This isn't the most efficient means,
758:        but it's quick for now */
759:     A->insertmode = INSERT_VALUES;
760:     row = mat->rmap->rstart; m = mdn->A->rmap->n;
761:     for (i=0; i<m; i++) {
762:       MatGetRow_MPIDense(mat,row,&nz,&cols,&vals);
763:       MatSetValues_MPIDense(A,1,&row,nz,cols,vals,INSERT_VALUES);
764:       MatRestoreRow_MPIDense(mat,row,&nz,&cols,&vals);
765:       row++;
766:     }

768:     MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
769:     MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
770:     PetscViewerGetSingleton(viewer,&sviewer);
771:     if (!rank) {
772:       PetscObjectSetName((PetscObject)((Mat_MPIDense*)(A->data))->A,((PetscObject)mat)->name);
773:       /* Set the type name to MATMPIDense so that the correct type can be printed out by PetscObjectPrintClassNamePrefixType() in MatView_SeqDense_ASCII()*/
774:       PetscStrcpy(((PetscObject)((Mat_MPIDense*)(A->data))->A)->type_name,MATMPIDENSE);
775:       MatView(((Mat_MPIDense*)(A->data))->A,sviewer);
776:     }
777:     PetscViewerRestoreSingleton(viewer,&sviewer);
778:     PetscViewerFlush(viewer);
779:     MatDestroy(&A);
780:   }
781:   return(0);
782: }

786: PetscErrorCode MatView_MPIDense(Mat mat,PetscViewer viewer)
787: {
789:   PetscBool      iascii,isbinary,isdraw,issocket;
790: 
792: 
793:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
794:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
795:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSOCKET,&issocket);
796:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);

798:   if (iascii || issocket || isdraw) {
799:     MatView_MPIDense_ASCIIorDraworSocket(mat,viewer);
800:   } else if (isbinary) {
801:     MatView_MPIDense_Binary(mat,viewer);
802:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Viewer type %s not supported by MPI dense matrix",((PetscObject)viewer)->type_name);
803:   return(0);
804: }

808: PetscErrorCode MatGetInfo_MPIDense(Mat A,MatInfoType flag,MatInfo *info)
809: {
810:   Mat_MPIDense   *mat = (Mat_MPIDense*)A->data;
811:   Mat            mdn = mat->A;
813:   PetscReal      isend[5],irecv[5];

816:   info->block_size     = 1.0;
817:   MatGetInfo(mdn,MAT_LOCAL,info);
818:   isend[0] = info->nz_used; isend[1] = info->nz_allocated; isend[2] = info->nz_unneeded;
819:   isend[3] = info->memory;  isend[4] = info->mallocs;
820:   if (flag == MAT_LOCAL) {
821:     info->nz_used      = isend[0];
822:     info->nz_allocated = isend[1];
823:     info->nz_unneeded  = isend[2];
824:     info->memory       = isend[3];
825:     info->mallocs      = isend[4];
826:   } else if (flag == MAT_GLOBAL_MAX) {
827:     MPI_Allreduce(isend,irecv,5,MPIU_REAL,MPIU_MAX,((PetscObject)A)->comm);
828:     info->nz_used      = irecv[0];
829:     info->nz_allocated = irecv[1];
830:     info->nz_unneeded  = irecv[2];
831:     info->memory       = irecv[3];
832:     info->mallocs      = irecv[4];
833:   } else if (flag == MAT_GLOBAL_SUM) {
834:     MPI_Allreduce(isend,irecv,5,MPIU_REAL,MPIU_SUM,((PetscObject)A)->comm);
835:     info->nz_used      = irecv[0];
836:     info->nz_allocated = irecv[1];
837:     info->nz_unneeded  = irecv[2];
838:     info->memory       = irecv[3];
839:     info->mallocs      = irecv[4];
840:   }
841:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
842:   info->fill_ratio_needed = 0;
843:   info->factor_mallocs    = 0;
844:   return(0);
845: }

849: PetscErrorCode MatSetOption_MPIDense(Mat A,MatOption op,PetscBool  flg)
850: {
851:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;

855:   switch (op) {
856:   case MAT_NEW_NONZERO_LOCATIONS:
857:   case MAT_NEW_NONZERO_LOCATION_ERR:
858:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
859:     MatSetOption(a->A,op,flg);
860:     break;
861:   case MAT_ROW_ORIENTED:
862:     a->roworiented = flg;
863:     MatSetOption(a->A,op,flg);
864:     break;
865:   case MAT_NEW_DIAGONALS:
866:   case MAT_KEEP_NONZERO_PATTERN:
867:   case MAT_USE_HASH_TABLE:
868:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
869:     break;
870:   case MAT_IGNORE_OFF_PROC_ENTRIES:
871:     a->donotstash = flg;
872:     break;
873:   case MAT_SYMMETRIC:
874:   case MAT_STRUCTURALLY_SYMMETRIC:
875:   case MAT_HERMITIAN:
876:   case MAT_SYMMETRY_ETERNAL:
877:   case MAT_IGNORE_LOWER_TRIANGULAR:
878:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
879:     break;
880:   default:
881:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"unknown option %s",MatOptions[op]);
882:   }
883:   return(0);
884: }


889: PetscErrorCode MatDiagonalScale_MPIDense(Mat A,Vec ll,Vec rr)
890: {
891:   Mat_MPIDense   *mdn = (Mat_MPIDense*)A->data;
892:   Mat_SeqDense   *mat = (Mat_SeqDense*)mdn->A->data;
893:   PetscScalar    *l,*r,x,*v;
895:   PetscInt       i,j,s2a,s3a,s2,s3,m=mdn->A->rmap->n,n=mdn->A->cmap->n;

898:   MatGetLocalSize(A,&s2,&s3);
899:   if (ll) {
900:     VecGetLocalSize(ll,&s2a);
901:     if (s2a != s2) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Left scaling vector non-conforming local size, %d != %d.", s2a, s2);
902:     VecGetArray(ll,&l);
903:     for (i=0; i<m; i++) {
904:       x = l[i];
905:       v = mat->v + i;
906:       for (j=0; j<n; j++) { (*v) *= x; v+= m;}
907:     }
908:     VecRestoreArray(ll,&l);
909:     PetscLogFlops(n*m);
910:   }
911:   if (rr) {
912:     VecGetLocalSize(rr,&s3a);
913:     if (s3a != s3) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Right scaling vec non-conforming local size, %d != %d.", s3a, s3);
914:     VecScatterBegin(mdn->Mvctx,rr,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
915:     VecScatterEnd(mdn->Mvctx,rr,mdn->lvec,INSERT_VALUES,SCATTER_FORWARD);
916:     VecGetArray(mdn->lvec,&r);
917:     for (i=0; i<n; i++) {
918:       x = r[i];
919:       v = mat->v + i*m;
920:       for (j=0; j<m; j++) { (*v++) *= x;}
921:     }
922:     VecRestoreArray(mdn->lvec,&r);
923:     PetscLogFlops(n*m);
924:   }
925:   return(0);
926: }

930: PetscErrorCode MatNorm_MPIDense(Mat A,NormType type,PetscReal *nrm)
931: {
932:   Mat_MPIDense   *mdn = (Mat_MPIDense*)A->data;
933:   Mat_SeqDense   *mat = (Mat_SeqDense*)mdn->A->data;
935:   PetscInt       i,j;
936:   PetscReal      sum = 0.0;
937:   PetscScalar    *v = mat->v;

940:   if (mdn->size == 1) {
941:      MatNorm(mdn->A,type,nrm);
942:   } else {
943:     if (type == NORM_FROBENIUS) {
944:       for (i=0; i<mdn->A->cmap->n*mdn->A->rmap->n; i++) {
945: #if defined(PETSC_USE_COMPLEX)
946:         sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
947: #else
948:         sum += (*v)*(*v); v++;
949: #endif
950:       }
951:       MPI_Allreduce(&sum,nrm,1,MPIU_REAL,MPIU_SUM,((PetscObject)A)->comm);
952:       *nrm = PetscSqrtReal(*nrm);
953:       PetscLogFlops(2.0*mdn->A->cmap->n*mdn->A->rmap->n);
954:     } else if (type == NORM_1) {
955:       PetscReal *tmp,*tmp2;
956:       PetscMalloc2(A->cmap->N,PetscReal,&tmp,A->cmap->N,PetscReal,&tmp2);
957:       PetscMemzero(tmp,A->cmap->N*sizeof(PetscReal));
958:       PetscMemzero(tmp2,A->cmap->N*sizeof(PetscReal));
959:       *nrm = 0.0;
960:       v = mat->v;
961:       for (j=0; j<mdn->A->cmap->n; j++) {
962:         for (i=0; i<mdn->A->rmap->n; i++) {
963:           tmp[j] += PetscAbsScalar(*v);  v++;
964:         }
965:       }
966:       MPI_Allreduce(tmp,tmp2,A->cmap->N,MPIU_REAL,MPIU_SUM,((PetscObject)A)->comm);
967:       for (j=0; j<A->cmap->N; j++) {
968:         if (tmp2[j] > *nrm) *nrm = tmp2[j];
969:       }
970:       PetscFree2(tmp,tmp);
971:       PetscLogFlops(A->cmap->n*A->rmap->n);
972:     } else if (type == NORM_INFINITY) { /* max row norm */
973:       PetscReal ntemp;
974:       MatNorm(mdn->A,type,&ntemp);
975:       MPI_Allreduce(&ntemp,nrm,1,MPIU_REAL,MPIU_MAX,((PetscObject)A)->comm);
976:     } else SETERRQ(((PetscObject)A)->comm,PETSC_ERR_SUP,"No support for two norm");
977:   }
978:   return(0);
979: }

983: PetscErrorCode MatTranspose_MPIDense(Mat A,MatReuse reuse,Mat *matout)
984: {
985:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;
986:   Mat_SeqDense   *Aloc = (Mat_SeqDense*)a->A->data;
987:   Mat            B;
988:   PetscInt       M = A->rmap->N,N = A->cmap->N,m,n,*rwork,rstart = A->rmap->rstart;
990:   PetscInt       j,i;
991:   PetscScalar    *v;

994:   if (reuse == MAT_REUSE_MATRIX && A == *matout && M != N) SETERRQ(((PetscObject)A)->comm,PETSC_ERR_SUP,"Supports square matrix only in-place");
995:   if (reuse == MAT_INITIAL_MATRIX || A == *matout) {
996:     MatCreate(((PetscObject)A)->comm,&B);
997:     MatSetSizes(B,A->cmap->n,A->rmap->n,N,M);
998:     MatSetType(B,((PetscObject)A)->type_name);
999:     MatMPIDenseSetPreallocation(B,PETSC_NULL);
1000:   } else {
1001:     B = *matout;
1002:   }

1004:   m = a->A->rmap->n; n = a->A->cmap->n; v = Aloc->v;
1005:   PetscMalloc(m*sizeof(PetscInt),&rwork);
1006:   for (i=0; i<m; i++) rwork[i] = rstart + i;
1007:   for (j=0; j<n; j++) {
1008:     MatSetValues(B,1,&j,m,rwork,v,INSERT_VALUES);
1009:     v   += m;
1010:   }
1011:   PetscFree(rwork);
1012:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
1013:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
1014:   if (reuse == MAT_INITIAL_MATRIX || *matout != A) {
1015:     *matout = B;
1016:   } else {
1017:     MatHeaderMerge(A,B);
1018:   }
1019:   return(0);
1020: }


1023: static PetscErrorCode MatDuplicate_MPIDense(Mat,MatDuplicateOption,Mat *);
1024: extern PetscErrorCode MatScale_MPIDense(Mat,PetscScalar);

1028: PetscErrorCode MatSetUp_MPIDense(Mat A)
1029: {

1033:    MatMPIDenseSetPreallocation(A,0);
1034:   return(0);
1035: }

1037: #if defined(PETSC_HAVE_PLAPACK)

1041: PetscErrorCode MatMPIDenseCopyToPlapack(Mat A,Mat F)
1042: {
1043:   Mat_Plapack    *lu = (Mat_Plapack*)(F)->spptr;
1045:   PetscInt       M=A->cmap->N,m=A->rmap->n,rstart;
1046:   PetscScalar    *array;
1047:   PetscReal      one = 1.0;

1050:   /* Copy A into F->lu->A */
1051:   PLA_Obj_set_to_zero(lu->A);
1052:   PLA_API_begin();
1053:   PLA_Obj_API_open(lu->A);
1054:   MatGetOwnershipRange(A,&rstart,PETSC_NULL);
1055:   MatGetArray(A,&array);
1056:   PLA_API_axpy_matrix_to_global(m,M, &one,(void *)array,m,lu->A,rstart,0);
1057:   MatRestoreArray(A,&array);
1058:   PLA_Obj_API_close(lu->A);
1059:   PLA_API_end();
1060:   lu->rstart = rstart;
1061:   return(0);
1062: }

1066: PetscErrorCode MatMPIDenseCopyFromPlapack(Mat F,Mat A)
1067: {
1068:   Mat_Plapack    *lu = (Mat_Plapack*)(F)->spptr;
1070:   PetscInt       M=A->cmap->N,m=A->rmap->n,rstart;
1071:   PetscScalar    *array;
1072:   PetscReal      one = 1.0;

1075:   /* Copy F into A->lu->A */
1076:   MatZeroEntries(A);
1077:   PLA_API_begin();
1078:   PLA_Obj_API_open(lu->A);
1079:   MatGetOwnershipRange(A,&rstart,PETSC_NULL);
1080:   MatGetArray(A,&array);
1081:   PLA_API_axpy_global_to_matrix(m,M, &one,lu->A,rstart,0,(void *)array,m);
1082:   MatRestoreArray(A,&array);
1083:   PLA_Obj_API_close(lu->A);
1084:   PLA_API_end();
1085:   lu->rstart = rstart;
1086:   return(0);
1087: }

1091: PetscErrorCode MatMatMultNumeric_MPIDense_MPIDense(Mat A,Mat B,Mat C)
1092: {
1094:   Mat_Plapack    *luA = (Mat_Plapack*)A->spptr;
1095:   Mat_Plapack    *luB = (Mat_Plapack*)B->spptr;
1096:   Mat_Plapack    *luC = (Mat_Plapack*)C->spptr;
1097:   PLA_Obj        alpha = NULL,beta = NULL;

1100:   MatMPIDenseCopyToPlapack(A,A);
1101:   MatMPIDenseCopyToPlapack(B,B);

1103:   /* 
1104:   PLA_Global_show("A = ",luA->A,"%g ","");
1105:   PLA_Global_show("B = ",luB->A,"%g ","");
1106:   */

1108:   /* do the multiply in PLA  */
1109:   PLA_Create_constants_conf_to(luA->A,NULL,NULL,&alpha);
1110:   PLA_Create_constants_conf_to(luC->A,NULL,&beta,NULL);
1111:   CHKMEMQ;

1113:   PLA_Gemm(PLA_NO_TRANSPOSE,PLA_NO_TRANSPOSE,alpha,luA->A,luB->A,beta,luC->A); /*  */
1114:   CHKMEMQ;
1115:   PLA_Obj_free(&alpha);
1116:   PLA_Obj_free(&beta);

1118:   /*
1119:   PLA_Global_show("C = ",luC->A,"%g ","");
1120:   */
1121:   MatMPIDenseCopyFromPlapack(C,C);
1122:   return(0);
1123: }

1125: extern PetscErrorCode MatMatMult_MPIDense_MPIDense(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C);

1129: PetscErrorCode MatMatMultSymbolic_MPIDense_MPIDense(Mat A,Mat B,PetscReal fill,Mat *C)
1130: {
1132:   PetscInt       m=A->rmap->n,n=B->cmap->n;
1133:   Mat            Cmat;

1136:   if (A->cmap->n != B->rmap->n) SETERRQ2(((PetscObject)A)->comm,PETSC_ERR_ARG_SIZ,"A->cmap->n %d != B->rmap->n %d\n",A->cmap->n,B->rmap->n);
1137:   SETERRQ(((PetscObject)A)->comm,PETSC_ERR_LIB,"Due to apparent bugs in PLAPACK,this is not currently supported");
1138:   MatCreate(((PetscObject)B)->comm,&Cmat);
1139:   MatSetSizes(Cmat,m,n,A->rmap->N,B->cmap->N);
1140:   MatSetType(Cmat,MATMPIDENSE);
1141:   MatAssemblyBegin(Cmat,MAT_FINAL_ASSEMBLY);
1142:   MatAssemblyEnd(Cmat,MAT_FINAL_ASSEMBLY);
1143:   Cmat->ops->matmult = MatMatMult_MPIDense_MPIDense;
1144:   *C = Cmat;
1145:   return(0);
1146: }

1150: PetscErrorCode MatMatMult_MPIDense_MPIDense(Mat A,Mat B,MatReuse scall,PetscReal fill,Mat *C)
1151: {

1155:   if (scall == MAT_INITIAL_MATRIX){
1156:     MatMatMultSymbolic_MPIDense_MPIDense(A,B,fill,C);
1157:   }
1158:   MatMatMultNumeric_MPIDense_MPIDense(A,B,*C);
1159:   return(0);
1160: }

1164: PetscErrorCode MatSolve_MPIDense(Mat A,Vec b,Vec x)
1165: {
1166:   MPI_Comm       comm = ((PetscObject)A)->comm;
1167:   Mat_Plapack    *lu = (Mat_Plapack*)A->spptr;
1169:   PetscInt       M=A->rmap->N,m=A->rmap->n,rstart,i,j,*idx_pla,*idx_petsc,loc_m,loc_stride;
1170:   PetscScalar    *array;
1171:   PetscReal      one = 1.0;
1172:   PetscMPIInt    size,rank,r_rank,r_nproc,c_rank,c_nproc;;
1173:   PLA_Obj        v_pla = NULL;
1174:   PetscScalar    *loc_buf;
1175:   Vec            loc_x;
1176: 
1178:   MPI_Comm_size(comm,&size);
1179:   MPI_Comm_rank(comm,&rank);

1181:   /* Create PLAPACK vector objects, then copy b into PLAPACK b */
1182:   PLA_Mvector_create(lu->datatype,M,1,lu->templ,PLA_ALIGN_FIRST,&v_pla);
1183:   PLA_Obj_set_to_zero(v_pla);

1185:   /* Copy b into rhs_pla */
1186:   PLA_API_begin();
1187:   PLA_Obj_API_open(v_pla);
1188:   VecGetArray(b,&array);
1189:   PLA_API_axpy_vector_to_global(m,&one,(void *)array,1,v_pla,lu->rstart);
1190:   VecRestoreArray(b,&array);
1191:   PLA_Obj_API_close(v_pla);
1192:   PLA_API_end();

1194:   if (A->factortype == MAT_FACTOR_LU){
1195:     /* Apply the permutations to the right hand sides */
1196:     PLA_Apply_pivots_to_rows (v_pla,lu->pivots);

1198:     /* Solve L y = b, overwriting b with y */
1199:     PLA_Trsv( PLA_LOWER_TRIANGULAR,PLA_NO_TRANSPOSE,PLA_UNIT_DIAG,lu->A,v_pla );

1201:     /* Solve U x = y (=b), overwriting b with x */
1202:     PLA_Trsv( PLA_UPPER_TRIANGULAR,PLA_NO_TRANSPOSE,PLA_NONUNIT_DIAG,lu->A,v_pla );
1203:   } else { /* MAT_FACTOR_CHOLESKY */
1204:     PLA_Trsv( PLA_LOWER_TRIANGULAR,PLA_NO_TRANSPOSE,PLA_NONUNIT_DIAG,lu->A,v_pla);
1205:     PLA_Trsv( PLA_LOWER_TRIANGULAR,(lu->datatype == MPI_DOUBLE ? PLA_TRANSPOSE : PLA_CONJUGATE_TRANSPOSE),
1206:                                     PLA_NONUNIT_DIAG,lu->A,v_pla);
1207:   }

1209:   /* Copy PLAPACK x into Petsc vector x  */
1210:   PLA_Obj_local_length(v_pla, &loc_m);
1211:   PLA_Obj_local_buffer(v_pla, (void**)&loc_buf);
1212:   PLA_Obj_local_stride(v_pla, &loc_stride);
1213:   /*
1214:     PetscPrintf(PETSC_COMM_SELF," [%d] b - local_m %d local_stride %d, loc_buf: %g %g, nb: %d\n",rank,loc_m,loc_stride,loc_buf[0],loc_buf[(loc_m-1)*loc_stride],lu->nb); 
1215:   */
1216:   VecCreateSeqWithArray(PETSC_COMM_SELF,1,loc_m*loc_stride,loc_buf,&loc_x);
1217:   if (!lu->pla_solved){
1218: 
1219:     PLA_Temp_comm_row_info(lu->templ,&Plapack_comm_2d,&r_rank,&r_nproc);
1220:     PLA_Temp_comm_col_info(lu->templ,&Plapack_comm_2d,&c_rank,&c_nproc);

1222:     /* Create IS and cts for VecScatterring */
1223:     PLA_Obj_local_length(v_pla, &loc_m);
1224:     PLA_Obj_local_stride(v_pla, &loc_stride);
1225:     PetscMalloc2(loc_m,PetscInt,&idx_pla,loc_m,PetscInt,&idx_petsc);

1227:     rstart = (r_rank*c_nproc+c_rank)*lu->nb;
1228:     for (i=0; i<loc_m; i+=lu->nb){
1229:       j = 0;
1230:       while (j < lu->nb && i+j < loc_m){
1231:         idx_petsc[i+j] = rstart + j; j++;
1232:       }
1233:       rstart += size*lu->nb;
1234:     }

1236:     for (i=0; i<loc_m; i++) idx_pla[i] = i*loc_stride;

1238:     ISCreateGeneral(PETSC_COMM_SELF,loc_m,idx_pla,PETSC_COPY_VALUES,&lu->is_pla);
1239:     ISCreateGeneral(PETSC_COMM_SELF,loc_m,idx_petsc,PETSC_COPY_VALUES,&lu->is_petsc);
1240:     PetscFree2(idx_pla,idx_petsc);
1241:     VecScatterCreate(loc_x,lu->is_pla,x,lu->is_petsc,&lu->ctx);
1242:   }
1243:   VecScatterBegin(lu->ctx,loc_x,x,INSERT_VALUES,SCATTER_FORWARD);
1244:   VecScatterEnd(lu->ctx,loc_x,x,INSERT_VALUES,SCATTER_FORWARD);
1245: 
1246:   /* Free data */
1247:   VecDestroy(&loc_x);
1248:   PLA_Obj_free(&v_pla);

1250:   lu->pla_solved = PETSC_TRUE;
1251:   return(0);
1252: }

1256: PetscErrorCode MatLUFactorNumeric_MPIDense(Mat F,Mat A,const MatFactorInfo *info)
1257: {
1258:   Mat_Plapack    *lu = (Mat_Plapack*)(F)->spptr;
1260:   PetscInt       M=A->rmap->N,m=A->rmap->n,rstart,rend;
1261:   PetscInt       info_pla=0;
1262:   PetscScalar    *array,one = 1.0;

1265:   if (lu->mstruct == SAME_NONZERO_PATTERN){
1266:     PLA_Obj_free(&lu->A);
1267:     PLA_Obj_free (&lu->pivots);
1268:   }
1269:   /* Create PLAPACK matrix object */
1270:   lu->A = NULL; lu->pivots = NULL;
1271:   PLA_Matrix_create(lu->datatype,M,M,lu->templ,PLA_ALIGN_FIRST,PLA_ALIGN_FIRST,&lu->A);
1272:   PLA_Obj_set_to_zero(lu->A);
1273:   PLA_Mvector_create(MPI_INT,M,1,lu->templ,PLA_ALIGN_FIRST,&lu->pivots);

1275:   /* Copy A into lu->A */
1276:   PLA_API_begin();
1277:   PLA_Obj_API_open(lu->A);
1278:   MatGetOwnershipRange(A,&rstart,&rend);
1279:   MatGetArray(A,&array);
1280:   PLA_API_axpy_matrix_to_global(m,M, &one,(void *)array,m,lu->A,rstart,0);
1281:   MatRestoreArray(A,&array);
1282:   PLA_Obj_API_close(lu->A);
1283:   PLA_API_end();

1285:   /* Factor P A -> L U overwriting lower triangular portion of A with L, upper, U */
1286:   info_pla = PLA_LU(lu->A,lu->pivots);
1287:   if (info_pla != 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot encountered at row %d from PLA_LU()",info_pla);

1289:   lu->rstart         = rstart;
1290:   lu->mstruct        = SAME_NONZERO_PATTERN;
1291:   F->ops->solve      = MatSolve_MPIDense;
1292:   F->assembled       = PETSC_TRUE;  /* required by -ksp_view */
1293:   return(0);
1294: }

1298: PetscErrorCode MatCholeskyFactorNumeric_MPIDense(Mat F,Mat A,const MatFactorInfo *info)
1299: {
1300:   Mat_Plapack    *lu = (Mat_Plapack*)F->spptr;
1302:   PetscInt       M=A->rmap->N,m=A->rmap->n,rstart,rend;
1303:   PetscInt       info_pla=0;
1304:   PetscScalar    *array,one = 1.0;

1307:   if (lu->mstruct == SAME_NONZERO_PATTERN){
1308:     PLA_Obj_free(&lu->A);
1309:   }
1310:   /* Create PLAPACK matrix object */
1311:   lu->A      = NULL;
1312:   lu->pivots = NULL;
1313:   PLA_Matrix_create(lu->datatype,M,M,lu->templ,PLA_ALIGN_FIRST,PLA_ALIGN_FIRST,&lu->A);

1315:   /* Copy A into lu->A */
1316:   PLA_API_begin();
1317:   PLA_Obj_API_open(lu->A);
1318:   MatGetOwnershipRange(A,&rstart,&rend);
1319:   MatGetArray(A,&array);
1320:   PLA_API_axpy_matrix_to_global(m,M, &one,(void *)array,m,lu->A,rstart,0);
1321:   MatRestoreArray(A,&array);
1322:   PLA_Obj_API_close(lu->A);
1323:   PLA_API_end();

1325:   /* Factor P A -> Chol */
1326:   info_pla = PLA_Chol(PLA_LOWER_TRIANGULAR,lu->A);
1327:   if (info_pla != 0) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT,"Nonpositive definite matrix detected at row %d from PLA_Chol()",info_pla);

1329:   lu->rstart         = rstart;
1330:   lu->mstruct        = SAME_NONZERO_PATTERN;
1331:   F->ops->solve      = MatSolve_MPIDense;
1332:   F->assembled       = PETSC_TRUE;  /* required by -ksp_view */
1333:   return(0);
1334: }

1336: /* Note the Petsc perm permutation is ignored */
1339: PetscErrorCode MatCholeskyFactorSymbolic_MPIDense(Mat F,Mat A,IS perm,const MatFactorInfo *info)
1340: {
1342:   PetscBool      issymmetric,set;

1345:   MatIsSymmetricKnown(A,&set,&issymmetric);
1346:   if (!set || !issymmetric) SETERRQ(((PetscObject)A)->comm,PETSC_ERR_USER,"Matrix must be set as MAT_SYMMETRIC for CholeskyFactor()");
1347:   F->ops->choleskyfactornumeric  = MatCholeskyFactorNumeric_MPIDense;
1348:   F->preallocated                = PETSC_TRUE;
1349:   return(0);
1350: }

1352: /* Note the Petsc r and c permutations are ignored */
1355: PetscErrorCode MatLUFactorSymbolic_MPIDense(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
1356: {
1358:   PetscInt       M = A->rmap->N;
1359:   Mat_Plapack    *lu;

1362:   lu = (Mat_Plapack*)F->spptr;
1363:   PLA_Mvector_create(MPI_INT,M,1,lu->templ,PLA_ALIGN_FIRST,&lu->pivots);
1364:   F->ops->lufactornumeric  = MatLUFactorNumeric_MPIDense;
1365:   F->preallocated          = PETSC_TRUE;
1366:   return(0);
1367: }

1369: EXTERN_C_BEGIN
1372: PetscErrorCode MatFactorGetSolverPackage_mpidense_plapack(Mat A,const MatSolverPackage *type)
1373: {
1375:   *type = MATSOLVERPLAPACK;
1376:   return(0);
1377: }
1378: EXTERN_C_END

1380: EXTERN_C_BEGIN
1383: PetscErrorCode MatGetFactor_mpidense_plapack(Mat A,MatFactorType ftype,Mat *F)
1384: {
1386:   Mat_Plapack    *lu;
1387:   PetscMPIInt    size;
1388:   PetscInt       M=A->rmap->N;

1391:   /* Create the factorization matrix */
1392:   MatCreate(((PetscObject)A)->comm,F);
1393:   MatSetSizes(*F,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1394:   MatSetType(*F,((PetscObject)A)->type_name);
1395:   MatSetUp(*F);
1396:   PetscNewLog(*F,Mat_Plapack,&lu);
1397:   (*F)->spptr = (void*)lu;

1399:   /* Set default Plapack parameters */
1400:   MPI_Comm_size(((PetscObject)A)->comm,&size);
1401:   lu->nb = M/size;
1402:   if (M - lu->nb*size) lu->nb++; /* without cyclic distribution */
1403: 
1404:   /* Set runtime options */
1405:   PetscOptionsBegin(((PetscObject)A)->comm,((PetscObject)A)->prefix,"PLAPACK Options","Mat");
1406:     PetscOptionsInt("-mat_plapack_nb","block size of template vector","None",lu->nb,&lu->nb,PETSC_NULL);
1407:   PetscOptionsEnd();

1409:   /* Create object distribution template */
1410:   lu->templ = NULL;
1411:   PLA_Temp_create(lu->nb, 0, &lu->templ);

1413:   /* Set the datatype */
1414: #if defined(PETSC_USE_COMPLEX)
1415:   lu->datatype = MPI_DOUBLE_COMPLEX;
1416: #else
1417:   lu->datatype = MPI_DOUBLE;
1418: #endif

1420:   PLA_Matrix_create(lu->datatype,M,A->cmap->N,lu->templ,PLA_ALIGN_FIRST,PLA_ALIGN_FIRST,&lu->A);


1423:   lu->pla_solved     = PETSC_FALSE; /* MatSolve_Plapack() is called yet */
1424:   lu->mstruct        = DIFFERENT_NONZERO_PATTERN;

1426:   if (ftype == MAT_FACTOR_LU) {
1427:     (*F)->ops->lufactorsymbolic = MatLUFactorSymbolic_MPIDense;
1428:   } else if (ftype == MAT_FACTOR_CHOLESKY) {
1429:     (*F)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MPIDense;
1430:   } else SETERRQ(((PetscObject)A)->comm,PETSC_ERR_SUP,"No incomplete factorizations for dense matrices");
1431:   (*F)->factortype = ftype;
1432:   PetscObjectComposeFunctionDynamic((PetscObject)(*F),"MatFactorGetSolverPackage_C","MatFactorGetSolverPackage_mpidense_plapack",MatFactorGetSolverPackage_mpidense_plapack);
1433:   return(0);
1434: }
1435: EXTERN_C_END
1436: #endif

1440: PetscErrorCode MatGetFactor_mpidense_petsc(Mat A,MatFactorType ftype,Mat *F)
1441: {
1442: #if defined(PETSC_HAVE_PLAPACK)
1444: #endif

1447: #if defined(PETSC_HAVE_PLAPACK)
1448:   MatGetFactor_mpidense_plapack(A,ftype,F);
1449: #else
1450:   SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"Matrix format %s uses PLAPACK direct solver. Install PLAPACK",((PetscObject)A)->type_name);
1451: #endif
1452:   return(0);
1453: }

1457: PetscErrorCode MatAXPY_MPIDense(Mat Y,PetscScalar alpha,Mat X,MatStructure str)
1458: {
1460:   Mat_MPIDense   *A = (Mat_MPIDense*)Y->data, *B = (Mat_MPIDense*)X->data;

1463:   MatAXPY(A->A,alpha,B->A,str);
1464:   return(0);
1465: }

1469: PetscErrorCode  MatConjugate_MPIDense(Mat mat)
1470: {
1471:   Mat_MPIDense   *a = (Mat_MPIDense *)mat->data;

1475:   MatConjugate(a->A);
1476:   return(0);
1477: }

1481: PetscErrorCode MatRealPart_MPIDense(Mat A)
1482: {
1483:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;

1487:   MatRealPart(a->A);
1488:   return(0);
1489: }

1493: PetscErrorCode MatImaginaryPart_MPIDense(Mat A)
1494: {
1495:   Mat_MPIDense   *a = (Mat_MPIDense*)A->data;

1499:   MatImaginaryPart(a->A);
1500:   return(0);
1501: }

1503: extern PetscErrorCode MatGetColumnNorms_SeqDense(Mat,NormType,PetscReal*);
1506: PetscErrorCode MatGetColumnNorms_MPIDense(Mat A,NormType type,PetscReal *norms)
1507: {
1509:   PetscInt       i,n;
1510:   Mat_MPIDense   *a = (Mat_MPIDense*) A->data;
1511:   PetscReal      *work;

1514:   MatGetSize(A,PETSC_NULL,&n);
1515:   PetscMalloc(n*sizeof(PetscReal),&work);
1516:   MatGetColumnNorms_SeqDense(a->A,type,work);
1517:   if (type == NORM_2) {
1518:     for (i=0; i<n; i++) work[i] *= work[i];
1519:   }
1520:   if (type == NORM_INFINITY) {
1521:     MPI_Allreduce(work,norms,n,MPIU_REAL,MPIU_MAX,A->hdr.comm);
1522:   } else {
1523:     MPI_Allreduce(work,norms,n,MPIU_REAL,MPIU_SUM,A->hdr.comm);
1524:   }
1525:   PetscFree(work);
1526:   if (type == NORM_2) {
1527:     for (i=0; i<n; i++) norms[i] = PetscSqrtReal(norms[i]);
1528:   }
1529:   return(0);
1530: }

1532: /* -------------------------------------------------------------------*/
1533: static struct _MatOps MatOps_Values = {MatSetValues_MPIDense,
1534:        MatGetRow_MPIDense,
1535:        MatRestoreRow_MPIDense,
1536:        MatMult_MPIDense,
1537: /* 4*/ MatMultAdd_MPIDense,
1538:        MatMultTranspose_MPIDense,
1539:        MatMultTransposeAdd_MPIDense,
1540:        0,
1541:        0,
1542:        0,
1543: /*10*/ 0,
1544:        0,
1545:        0,
1546:        0,
1547:        MatTranspose_MPIDense,
1548: /*15*/ MatGetInfo_MPIDense,
1549:        MatEqual_MPIDense,
1550:        MatGetDiagonal_MPIDense,
1551:        MatDiagonalScale_MPIDense,
1552:        MatNorm_MPIDense,
1553: /*20*/ MatAssemblyBegin_MPIDense,
1554:        MatAssemblyEnd_MPIDense,
1555:        MatSetOption_MPIDense,
1556:        MatZeroEntries_MPIDense,
1557: /*24*/ MatZeroRows_MPIDense,
1558:        0,
1559:        0,
1560:        0,
1561:        0,
1562: /*29*/ MatSetUp_MPIDense,
1563:        0,
1564:        0,
1565:        MatGetArray_MPIDense,
1566:        MatRestoreArray_MPIDense,
1567: /*34*/ MatDuplicate_MPIDense,
1568:        0,
1569:        0,
1570:        0,
1571:        0,
1572: /*39*/ MatAXPY_MPIDense,
1573:        MatGetSubMatrices_MPIDense,
1574:        0,
1575:        MatGetValues_MPIDense,
1576:        0,
1577: /*44*/ 0,
1578:        MatScale_MPIDense,
1579:        0,
1580:        0,
1581:        0,
1582: /*49*/ 0,
1583:        0,
1584:        0,
1585:        0,
1586:        0,
1587: /*54*/ 0,
1588:        0,
1589:        0,
1590:        0,
1591:        0,
1592: /*59*/ MatGetSubMatrix_MPIDense,
1593:        MatDestroy_MPIDense,
1594:        MatView_MPIDense,
1595:        0,
1596:        0,
1597: /*64*/ 0,
1598:        0,
1599:        0,
1600:        0,
1601:        0,
1602: /*69*/ 0,
1603:        0,
1604:        0,
1605:        0,
1606:        0,
1607: /*74*/ 0,
1608:        0,
1609:        0,
1610:        0,
1611:        0,
1612: /*79*/ 0,
1613:        0,
1614:        0,
1615:        0,
1616: /*83*/ MatLoad_MPIDense,
1617:        0,
1618:        0,
1619:        0,
1620:        0,
1621:        0,
1622: /*89*/
1623: #if defined(PETSC_HAVE_PLAPACK)
1624:        MatMatMult_MPIDense_MPIDense,
1625:        MatMatMultSymbolic_MPIDense_MPIDense,
1626:        MatMatMultNumeric_MPIDense_MPIDense,
1627: #else
1628:        0,
1629:        0,
1630:        0,
1631: #endif
1632:        0,
1633:        0,
1634: /*94*/ 0,
1635:        0,
1636:        0,
1637:        0,
1638:        0,
1639: /*99*/ 0,
1640:        0,
1641:        0,
1642:        MatConjugate_MPIDense,
1643:        0,
1644: /*104*/0,
1645:        MatRealPart_MPIDense,
1646:        MatImaginaryPart_MPIDense,
1647:        0,
1648:        0,
1649: /*109*/0,
1650:        0,
1651:        0,
1652:        0,
1653:        0,
1654: /*114*/0,
1655:        0,
1656:        0,
1657:        0,
1658:        0,
1659: /*119*/0,
1660:        0,
1661:        0,
1662:        0,
1663:        0,
1664: /*124*/0,
1665:        MatGetColumnNorms_MPIDense
1666: };

1668: EXTERN_C_BEGIN
1671: PetscErrorCode  MatMPIDenseSetPreallocation_MPIDense(Mat mat,PetscScalar *data)
1672: {
1673:   Mat_MPIDense   *a;

1677:   mat->preallocated = PETSC_TRUE;
1678:   /* Note:  For now, when data is specified above, this assumes the user correctly
1679:    allocates the local dense storage space.  We should add error checking. */

1681:   a    = (Mat_MPIDense*)mat->data;
1682:   PetscLayoutSetUp(mat->rmap);
1683:   PetscLayoutSetUp(mat->cmap);
1684:   a->nvec = mat->cmap->n;

1686:   MatCreate(PETSC_COMM_SELF,&a->A);
1687:   MatSetSizes(a->A,mat->rmap->n,mat->cmap->N,mat->rmap->n,mat->cmap->N);
1688:   MatSetType(a->A,MATSEQDENSE);
1689:   MatSeqDenseSetPreallocation(a->A,data);
1690:   PetscLogObjectParent(mat,a->A);
1691:   return(0);
1692: }
1693: EXTERN_C_END

1695: /*MC
1696:    MATSOLVERPLAPACK = "mpidense" - Parallel LU and Cholesky factorization for MATMPIDENSE matrices

1698:   run ./configure with the option --download-plapack


1701:   Options Database Keys:
1702: . -mat_plapack_nprows <n> - number of rows in processor partition
1703: . -mat_plapack_npcols <n> - number of columns in processor partition
1704: . -mat_plapack_nb <n> - block size of template vector
1705: . -mat_plapack_nb_alg <n> - algorithmic block size
1706: - -mat_plapack_ckerror <n> - error checking flag

1708:    Level: intermediate

1710: .seealso: MatCreateDense(), MATDENSE, MATSEQDENSE, PCFactorSetSolverPackage(), MatSolverPackage

1712: M*/

1714: EXTERN_C_BEGIN
1717: PetscErrorCode  MatCreate_MPIDense(Mat mat)
1718: {
1719:   Mat_MPIDense   *a;

1723:   PetscNewLog(mat,Mat_MPIDense,&a);
1724:   mat->data         = (void*)a;
1725:   PetscMemcpy(mat->ops,&MatOps_Values,sizeof(struct _MatOps));

1727:   mat->insertmode = NOT_SET_VALUES;
1728:   MPI_Comm_rank(((PetscObject)mat)->comm,&a->rank);
1729:   MPI_Comm_size(((PetscObject)mat)->comm,&a->size);

1731:   /* build cache for off array entries formed */
1732:   a->donotstash = PETSC_FALSE;
1733:   MatStashCreate_Private(((PetscObject)mat)->comm,1,&mat->stash);

1735:   /* stuff used for matrix vector multiply */
1736:   a->lvec        = 0;
1737:   a->Mvctx       = 0;
1738:   a->roworiented = PETSC_TRUE;

1740:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatGetDiagonalBlock_C",
1741:                                      "MatGetDiagonalBlock_MPIDense",
1742:                                      MatGetDiagonalBlock_MPIDense);
1743:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatMPIDenseSetPreallocation_C",
1744:                                      "MatMPIDenseSetPreallocation_MPIDense",
1745:                                      MatMPIDenseSetPreallocation_MPIDense);
1746:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatMatMult_mpiaij_mpidense_C",
1747:                                      "MatMatMult_MPIAIJ_MPIDense",
1748:                                       MatMatMult_MPIAIJ_MPIDense);
1749:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatMatMultSymbolic_mpiaij_mpidense_C",
1750:                                      "MatMatMultSymbolic_MPIAIJ_MPIDense",
1751:                                       MatMatMultSymbolic_MPIAIJ_MPIDense);
1752:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatMatMultNumeric_mpiaij_mpidense_C",
1753:                                      "MatMatMultNumeric_MPIAIJ_MPIDense",
1754:                                       MatMatMultNumeric_MPIAIJ_MPIDense);
1755:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatGetFactor_petsc_C",
1756:                                      "MatGetFactor_mpidense_petsc",
1757:                                       MatGetFactor_mpidense_petsc);
1758: #if defined(PETSC_HAVE_PLAPACK)
1759:   PetscObjectComposeFunctionDynamic((PetscObject)mat,"MatGetFactor_plapack_C",
1760:                                      "MatGetFactor_mpidense_plapack",
1761:                                       MatGetFactor_mpidense_plapack);
1762:   PetscPLAPACKInitializePackage(((PetscObject)mat)->comm);
1763: #endif
1764:   PetscObjectChangeTypeName((PetscObject)mat,MATMPIDENSE);

1766:   return(0);
1767: }
1768: EXTERN_C_END

1770: /*MC
1771:    MATDENSE - MATDENSE = "dense" - A matrix type to be used for dense matrices.

1773:    This matrix type is identical to MATSEQDENSE when constructed with a single process communicator,
1774:    and MATMPIDENSE otherwise.

1776:    Options Database Keys:
1777: . -mat_type dense - sets the matrix type to "dense" during a call to MatSetFromOptions()

1779:   Level: beginner


1782: .seealso: MatCreateMPIDense,MATSEQDENSE,MATMPIDENSE
1783: M*/

1787: /*@C
1788:    MatMPIDenseSetPreallocation - Sets the array used to store the matrix entries

1790:    Not collective

1792:    Input Parameters:
1793: .  A - the matrix
1794: -  data - optional location of matrix data.  Set data=PETSC_NULL for PETSc
1795:    to control all matrix memory allocation.

1797:    Notes:
1798:    The dense format is fully compatible with standard Fortran 77
1799:    storage by columns.

1801:    The data input variable is intended primarily for Fortran programmers
1802:    who wish to allocate their own matrix memory space.  Most users should
1803:    set data=PETSC_NULL.

1805:    Level: intermediate

1807: .keywords: matrix,dense, parallel

1809: .seealso: MatCreate(), MatCreateSeqDense(), MatSetValues()
1810: @*/
1811: PetscErrorCode  MatMPIDenseSetPreallocation(Mat mat,PetscScalar *data)
1812: {

1816:   PetscTryMethod(mat,"MatMPIDenseSetPreallocation_C",(Mat,PetscScalar *),(mat,data));
1817:   return(0);
1818: }

1822: /*@C
1823:    MatCreateDense - Creates a parallel matrix in dense format.

1825:    Collective on MPI_Comm

1827:    Input Parameters:
1828: +  comm - MPI communicator
1829: .  m - number of local rows (or PETSC_DECIDE to have calculated if M is given)
1830: .  n - number of local columns (or PETSC_DECIDE to have calculated if N is given)
1831: .  M - number of global rows (or PETSC_DECIDE to have calculated if m is given)
1832: .  N - number of global columns (or PETSC_DECIDE to have calculated if n is given)
1833: -  data - optional location of matrix data.  Set data=PETSC_NULL (PETSC_NULL_SCALAR for Fortran users) for PETSc
1834:    to control all matrix memory allocation.

1836:    Output Parameter:
1837: .  A - the matrix

1839:    Notes:
1840:    The dense format is fully compatible with standard Fortran 77
1841:    storage by columns.

1843:    The data input variable is intended primarily for Fortran programmers
1844:    who wish to allocate their own matrix memory space.  Most users should
1845:    set data=PETSC_NULL (PETSC_NULL_SCALAR for Fortran users).

1847:    The user MUST specify either the local or global matrix dimensions
1848:    (possibly both).

1850:    Level: intermediate

1852: .keywords: matrix,dense, parallel

1854: .seealso: MatCreate(), MatCreateSeqDense(), MatSetValues()
1855: @*/
1856: PetscErrorCode  MatCreateDense(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscScalar *data,Mat *A)
1857: {
1859:   PetscMPIInt    size;

1862:   MatCreate(comm,A);
1863:   MatSetSizes(*A,m,n,M,N);
1864:   MPI_Comm_size(comm,&size);
1865:   if (size > 1) {
1866:     MatSetType(*A,MATMPIDENSE);
1867:     MatMPIDenseSetPreallocation(*A,data);
1868:   } else {
1869:     MatSetType(*A,MATSEQDENSE);
1870:     MatSeqDenseSetPreallocation(*A,data);
1871:   }
1872:   return(0);
1873: }

1877: static PetscErrorCode MatDuplicate_MPIDense(Mat A,MatDuplicateOption cpvalues,Mat *newmat)
1878: {
1879:   Mat            mat;
1880:   Mat_MPIDense   *a,*oldmat = (Mat_MPIDense*)A->data;

1884:   *newmat       = 0;
1885:   MatCreate(((PetscObject)A)->comm,&mat);
1886:   MatSetSizes(mat,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1887:   MatSetType(mat,((PetscObject)A)->type_name);
1888:   a                 = (Mat_MPIDense*)mat->data;
1889:   PetscMemcpy(mat->ops,A->ops,sizeof(struct _MatOps));

1891:   mat->factortype   = A->factortype;
1892:   mat->assembled    = PETSC_TRUE;
1893:   mat->preallocated = PETSC_TRUE;

1895:   a->size           = oldmat->size;
1896:   a->rank           = oldmat->rank;
1897:   mat->insertmode   = NOT_SET_VALUES;
1898:   a->nvec           = oldmat->nvec;
1899:   a->donotstash     = oldmat->donotstash;

1901:   PetscLayoutReference(A->rmap,&mat->rmap);
1902:   PetscLayoutReference(A->cmap,&mat->cmap);

1904:   MatSetUpMultiply_MPIDense(mat);
1905:   MatDuplicate(oldmat->A,cpvalues,&a->A);
1906:   PetscLogObjectParent(mat,a->A);

1908:   *newmat = mat;
1909:   return(0);
1910: }

1914: PetscErrorCode MatLoad_MPIDense_DenseInFile(MPI_Comm comm,PetscInt fd,PetscInt M,PetscInt N,Mat newmat,PetscInt sizesset)
1915: {
1917:   PetscMPIInt    rank,size;
1918:   PetscInt       *rowners,i,m,nz,j;
1919:   PetscScalar    *array,*vals,*vals_ptr;

1922:   MPI_Comm_rank(comm,&rank);
1923:   MPI_Comm_size(comm,&size);

1925:   /* determine ownership of all rows */
1926:   if (newmat->rmap->n < 0) m          = M/size + ((M % size) > rank);
1927:   else m = newmat->rmap->n;
1928:   PetscMalloc((size+2)*sizeof(PetscInt),&rowners);
1929:   MPI_Allgather(&m,1,MPIU_INT,rowners+1,1,MPIU_INT,comm);
1930:   rowners[0] = 0;
1931:   for (i=2; i<=size; i++) {
1932:     rowners[i] += rowners[i-1];
1933:   }

1935:   if (!sizesset) {
1936:     MatSetSizes(newmat,m,PETSC_DECIDE,M,N);
1937:   }
1938:   MatMPIDenseSetPreallocation(newmat,PETSC_NULL);
1939:   MatGetArray(newmat,&array);

1941:   if (!rank) {
1942:     PetscMalloc(m*N*sizeof(PetscScalar),&vals);

1944:     /* read in my part of the matrix numerical values  */
1945:     PetscBinaryRead(fd,vals,m*N,PETSC_SCALAR);
1946: 
1947:     /* insert into matrix-by row (this is why cannot directly read into array */
1948:     vals_ptr = vals;
1949:     for (i=0; i<m; i++) {
1950:       for (j=0; j<N; j++) {
1951:         array[i + j*m] = *vals_ptr++;
1952:       }
1953:     }

1955:     /* read in other processors and ship out */
1956:     for (i=1; i<size; i++) {
1957:       nz   = (rowners[i+1] - rowners[i])*N;
1958:       PetscBinaryRead(fd,vals,nz,PETSC_SCALAR);
1959:       MPIULong_Send(vals,nz,MPIU_SCALAR,i,((PetscObject)(newmat))->tag,comm);
1960:     }
1961:   } else {
1962:     /* receive numeric values */
1963:     PetscMalloc(m*N*sizeof(PetscScalar),&vals);

1965:     /* receive message of values*/
1966:     MPIULong_Recv(vals,m*N,MPIU_SCALAR,0,((PetscObject)(newmat))->tag,comm);

1968:     /* insert into matrix-by row (this is why cannot directly read into array */
1969:     vals_ptr = vals;
1970:     for (i=0; i<m; i++) {
1971:       for (j=0; j<N; j++) {
1972:         array[i + j*m] = *vals_ptr++;
1973:       }
1974:     }
1975:   }
1976:   PetscFree(rowners);
1977:   PetscFree(vals);
1978:   MatAssemblyBegin(newmat,MAT_FINAL_ASSEMBLY);
1979:   MatAssemblyEnd(newmat,MAT_FINAL_ASSEMBLY);
1980:   return(0);
1981: }

1985: PetscErrorCode MatLoad_MPIDense(Mat newmat,PetscViewer viewer)
1986: {
1987:   PetscScalar    *vals,*svals;
1988:   MPI_Comm       comm = ((PetscObject)viewer)->comm;
1989:   MPI_Status     status;
1990:   PetscMPIInt    rank,size,tag = ((PetscObject)viewer)->tag,*rowners,*sndcounts,m,maxnz;
1991:   PetscInt       header[4],*rowlengths = 0,M,N,*cols;
1992:   PetscInt       *ourlens,*procsnz = 0,*offlens,jj,*mycols,*smycols;
1993:   PetscInt       i,nz,j,rstart,rend,sizesset=1,grows,gcols;
1994:   int            fd;

1998:   MPI_Comm_size(comm,&size);
1999:   MPI_Comm_rank(comm,&rank);
2000:   if (!rank) {
2001:     PetscViewerBinaryGetDescriptor(viewer,&fd);
2002:     PetscBinaryRead(fd,(char *)header,4,PETSC_INT);
2003:     if (header[0] != MAT_FILE_CLASSID) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"not matrix object");
2004:   }
2005:   if (newmat->rmap->n < 0 && newmat->rmap->N < 0 && newmat->cmap->n < 0 && newmat->cmap->N < 0) sizesset = 0;

2007:   MPI_Bcast(header+1,3,MPIU_INT,0,comm);
2008:   M = header[1]; N = header[2]; nz = header[3];

2010:   /* If global rows/cols are set to PETSC_DECIDE, set it to the sizes given in the file */
2011:   if (sizesset && newmat->rmap->N < 0) newmat->rmap->N = M;
2012:   if (sizesset && newmat->cmap->N < 0) newmat->cmap->N = N;
2013: 
2014:   /* If global sizes are set, check if they are consistent with that given in the file */
2015:   if (sizesset) {
2016:     MatGetSize(newmat,&grows,&gcols);
2017:   }
2018:   if (sizesset && newmat->rmap->N != grows) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Inconsistent # of rows:Matrix in file has (%d) and input matrix has (%d)",M,grows);
2019:   if (sizesset && newmat->cmap->N != gcols) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Inconsistent # of cols:Matrix in file has (%d) and input matrix has (%d)",N,gcols);

2021:   /*
2022:        Handle case where matrix is stored on disk as a dense matrix 
2023:   */
2024:   if (nz == MATRIX_BINARY_FORMAT_DENSE) {
2025:     MatLoad_MPIDense_DenseInFile(comm,fd,M,N,newmat,sizesset);
2026:     return(0);
2027:   }

2029:   /* determine ownership of all rows */
2030:   if (newmat->rmap->n < 0) m          = PetscMPIIntCast(M/size + ((M % size) > rank));
2031:   else m = PetscMPIIntCast(newmat->rmap->n);
2032:   PetscMalloc((size+2)*sizeof(PetscMPIInt),&rowners);
2033:   MPI_Allgather(&m,1,MPI_INT,rowners+1,1,MPI_INT,comm);
2034:   rowners[0] = 0;
2035:   for (i=2; i<=size; i++) {
2036:     rowners[i] += rowners[i-1];
2037:   }
2038:   rstart = rowners[rank];
2039:   rend   = rowners[rank+1];

2041:   /* distribute row lengths to all processors */
2042:   PetscMalloc2(rend-rstart,PetscInt,&ourlens,rend-rstart,PetscInt,&offlens);
2043:   if (!rank) {
2044:     PetscMalloc(M*sizeof(PetscInt),&rowlengths);
2045:     PetscBinaryRead(fd,rowlengths,M,PETSC_INT);
2046:     PetscMalloc(size*sizeof(PetscMPIInt),&sndcounts);
2047:     for (i=0; i<size; i++) sndcounts[i] = rowners[i+1] - rowners[i];
2048:     MPI_Scatterv(rowlengths,sndcounts,rowners,MPIU_INT,ourlens,rend-rstart,MPIU_INT,0,comm);
2049:     PetscFree(sndcounts);
2050:   } else {
2051:     MPI_Scatterv(0,0,0,MPIU_INT,ourlens,rend-rstart,MPIU_INT,0,comm);
2052:   }

2054:   if (!rank) {
2055:     /* calculate the number of nonzeros on each processor */
2056:     PetscMalloc(size*sizeof(PetscInt),&procsnz);
2057:     PetscMemzero(procsnz,size*sizeof(PetscInt));
2058:     for (i=0; i<size; i++) {
2059:       for (j=rowners[i]; j< rowners[i+1]; j++) {
2060:         procsnz[i] += rowlengths[j];
2061:       }
2062:     }
2063:     PetscFree(rowlengths);

2065:     /* determine max buffer needed and allocate it */
2066:     maxnz = 0;
2067:     for (i=0; i<size; i++) {
2068:       maxnz = PetscMax(maxnz,procsnz[i]);
2069:     }
2070:     PetscMalloc(maxnz*sizeof(PetscInt),&cols);

2072:     /* read in my part of the matrix column indices  */
2073:     nz = procsnz[0];
2074:     PetscMalloc(nz*sizeof(PetscInt),&mycols);
2075:     PetscBinaryRead(fd,mycols,nz,PETSC_INT);

2077:     /* read in every one elses and ship off */
2078:     for (i=1; i<size; i++) {
2079:       nz   = procsnz[i];
2080:       PetscBinaryRead(fd,cols,nz,PETSC_INT);
2081:       MPI_Send(cols,nz,MPIU_INT,i,tag,comm);
2082:     }
2083:     PetscFree(cols);
2084:   } else {
2085:     /* determine buffer space needed for message */
2086:     nz = 0;
2087:     for (i=0; i<m; i++) {
2088:       nz += ourlens[i];
2089:     }
2090:     PetscMalloc((nz+1)*sizeof(PetscInt),&mycols);

2092:     /* receive message of column indices*/
2093:     MPI_Recv(mycols,nz,MPIU_INT,0,tag,comm,&status);
2094:     MPI_Get_count(&status,MPIU_INT,&maxnz);
2095:     if (maxnz != nz) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"something is wrong with file");
2096:   }

2098:   /* loop over local rows, determining number of off diagonal entries */
2099:   PetscMemzero(offlens,m*sizeof(PetscInt));
2100:   jj = 0;
2101:   for (i=0; i<m; i++) {
2102:     for (j=0; j<ourlens[i]; j++) {
2103:       if (mycols[jj] < rstart || mycols[jj] >= rend) offlens[i]++;
2104:       jj++;
2105:     }
2106:   }

2108:   /* create our matrix */
2109:   for (i=0; i<m; i++) {
2110:     ourlens[i] -= offlens[i];
2111:   }

2113:   if (!sizesset) {
2114:     MatSetSizes(newmat,m,PETSC_DECIDE,M,N);
2115:   }
2116:   MatMPIDenseSetPreallocation(newmat,PETSC_NULL);
2117:   for (i=0; i<m; i++) {
2118:     ourlens[i] += offlens[i];
2119:   }

2121:   if (!rank) {
2122:     PetscMalloc(maxnz*sizeof(PetscScalar),&vals);

2124:     /* read in my part of the matrix numerical values  */
2125:     nz = procsnz[0];
2126:     PetscBinaryRead(fd,vals,nz,PETSC_SCALAR);
2127: 
2128:     /* insert into matrix */
2129:     jj      = rstart;
2130:     smycols = mycols;
2131:     svals   = vals;
2132:     for (i=0; i<m; i++) {
2133:       MatSetValues(newmat,1,&jj,ourlens[i],smycols,svals,INSERT_VALUES);
2134:       smycols += ourlens[i];
2135:       svals   += ourlens[i];
2136:       jj++;
2137:     }

2139:     /* read in other processors and ship out */
2140:     for (i=1; i<size; i++) {
2141:       nz   = procsnz[i];
2142:       PetscBinaryRead(fd,vals,nz,PETSC_SCALAR);
2143:       MPI_Send(vals,nz,MPIU_SCALAR,i,((PetscObject)newmat)->tag,comm);
2144:     }
2145:     PetscFree(procsnz);
2146:   } else {
2147:     /* receive numeric values */
2148:     PetscMalloc((nz+1)*sizeof(PetscScalar),&vals);

2150:     /* receive message of values*/
2151:     MPI_Recv(vals,nz,MPIU_SCALAR,0,((PetscObject)newmat)->tag,comm,&status);
2152:     MPI_Get_count(&status,MPIU_SCALAR,&maxnz);
2153:     if (maxnz != nz) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"something is wrong with file");

2155:     /* insert into matrix */
2156:     jj      = rstart;
2157:     smycols = mycols;
2158:     svals   = vals;
2159:     for (i=0; i<m; i++) {
2160:       MatSetValues(newmat,1,&jj,ourlens[i],smycols,svals,INSERT_VALUES);
2161:       smycols += ourlens[i];
2162:       svals   += ourlens[i];
2163:       jj++;
2164:     }
2165:   }
2166:   PetscFree2(ourlens,offlens);
2167:   PetscFree(vals);
2168:   PetscFree(mycols);
2169:   PetscFree(rowners);

2171:   MatAssemblyBegin(newmat,MAT_FINAL_ASSEMBLY);
2172:   MatAssemblyEnd(newmat,MAT_FINAL_ASSEMBLY);
2173:   return(0);
2174: }

2178: PetscErrorCode MatEqual_MPIDense(Mat A,Mat B,PetscBool  *flag)
2179: {
2180:   Mat_MPIDense   *matB = (Mat_MPIDense*)B->data,*matA = (Mat_MPIDense*)A->data;
2181:   Mat            a,b;
2182:   PetscBool      flg;

2186:   a = matA->A;
2187:   b = matB->A;
2188:   MatEqual(a,b,&flg);
2189:   MPI_Allreduce(&flg,flag,1,MPI_INT,MPI_LAND,((PetscObject)A)->comm);
2190:   return(0);
2191: }

2193: #if defined(PETSC_HAVE_PLAPACK)

2197: /*@C
2198:   PetscPLAPACKFinalizePackage - This function destroys everything in the Petsc interface to PLAPACK.
2199:   Level: developer

2201: .keywords: Petsc, destroy, package, PLAPACK
2202: .seealso: PetscFinalize()
2203: @*/
2204: PetscErrorCode  PetscPLAPACKFinalizePackage(void)
2205: {

2209:   PLA_Finalize();
2210:   return(0);
2211: }

2215: /*@C
2216:   PetscPLAPACKInitializePackage - This function initializes everything in the Petsc interface to PLAPACK. It is
2217:   called from MatCreate_MPIDense() the first time an MPI dense matrix is called.

2219:   Input Parameter:
2220: .   comm - the communicator the matrix lives on

2222:   Level: developer

2224:    Notes: PLAPACK does not have a good fit with MPI communicators; all (parallel) PLAPACK objects have to live in the
2225:   same communicator (because there is some global state that is initialized and used for all matrices). In addition if 
2226:   PLAPACK is initialized (that is the initial matrices created) are on subcommunicators of MPI_COMM_WORLD, these subcommunicators
2227:   cannot overlap.

2229: .keywords: Petsc, initialize, package, PLAPACK
2230: .seealso: PetscSysInitializePackage(), PetscInitialize()
2231: @*/
2232: PetscErrorCode  PetscPLAPACKInitializePackage(MPI_Comm comm)
2233: {
2234:   PetscMPIInt    size;

2238:   if (!PLA_Initialized(PETSC_NULL)) {

2240:     MPI_Comm_size(comm,&size);
2241:     Plapack_nprows = 1;
2242:     Plapack_npcols = size;
2243: 
2244:     PetscOptionsBegin(comm,PETSC_NULL,"PLAPACK Options","Mat");
2245:       PetscOptionsInt("-mat_plapack_nprows","row dimension of 2D processor mesh","None",Plapack_nprows,&Plapack_nprows,PETSC_NULL);
2246:       PetscOptionsInt("-mat_plapack_npcols","column dimension of 2D processor mesh","None",Plapack_npcols,&Plapack_npcols,PETSC_NULL);
2247: #if defined(PETSC_USE_DEBUG)
2248:       Plapack_ierror = 3;
2249: #else
2250:       Plapack_ierror = 0;
2251: #endif
2252:       PetscOptionsInt("-mat_plapack_ckerror","error checking flag","None",Plapack_ierror,&Plapack_ierror,PETSC_NULL);
2253:       if (Plapack_ierror){
2254:         PLA_Set_error_checking(Plapack_ierror,PETSC_TRUE,PETSC_TRUE,PETSC_FALSE );
2255:       } else {
2256:         PLA_Set_error_checking(Plapack_ierror,PETSC_FALSE,PETSC_FALSE,PETSC_FALSE );
2257:       }
2258: 
2259:       Plapack_nb_alg = 0;
2260:       PetscOptionsInt("-mat_plapack_nb_alg","algorithmic block size","None",Plapack_nb_alg,&Plapack_nb_alg,PETSC_NULL);
2261:       if (Plapack_nb_alg) {
2262:         pla_Environ_set_nb_alg (PLA_OP_ALL_ALG,Plapack_nb_alg);
2263:       }
2264:     PetscOptionsEnd();

2266:     PLA_Comm_1D_to_2D(comm,Plapack_nprows,Plapack_npcols,&Plapack_comm_2d);
2267:     PLA_Init(Plapack_comm_2d);
2268:     PetscRegisterFinalize(PetscPLAPACKFinalizePackage);
2269:   }
2270:   return(0);
2271: }

2273: #endif