Actual source code: matptap.c

petsc-3.3-p7 2013-05-11
  2: /*
  3:   Defines projective product routines where A is a SeqAIJ matrix
  4:           C = P^T * A * P
  5: */

  7: #include <../src/mat/impls/aij/seq/aij.h>   /*I "petscmat.h" I*/
  8: #include <../src/mat/utils/freespace.h>
  9: #include <petscbt.h>

 13: PetscErrorCode MatPtAPSymbolic_SeqAIJ(Mat A,Mat P,PetscReal fill,Mat *C)
 14: {

 18:   if (!P->ops->ptapsymbolic_seqaij) SETERRQ2(((PetscObject)A)->comm,PETSC_ERR_SUP,"Not implemented for A=%s and P=%s",((PetscObject)A)->type_name,((PetscObject)P)->type_name);
 19:   (*P->ops->ptapsymbolic_seqaij)(A,P,fill,C);
 20:   return(0);
 21: }

 25: PetscErrorCode MatPtAPNumeric_SeqAIJ(Mat A,Mat P,Mat C)
 26: {

 30:   if (!P->ops->ptapnumeric_seqaij) SETERRQ2(((PetscObject)A)->comm,PETSC_ERR_SUP,"Not implemented for A=%s and P=%s",((PetscObject)A)->type_name,((PetscObject)P)->type_name);
 31:   (*P->ops->ptapnumeric_seqaij)(A,P,C);
 32:   return(0);
 33: }

 37: PetscErrorCode MatDestroy_SeqAIJ_PtAP(Mat A)
 38: {
 40:   Mat_SeqAIJ     *a = (Mat_SeqAIJ *)A->data;
 41:   Mat_PtAP       *ptap = a->ptap;

 44:   /* free ptap, then A */
 45:   PetscFree(ptap->apa);
 46:   PetscFree(ptap->api);
 47:   PetscFree(ptap->apj);
 48:   (ptap->destroy)(A);
 49:   PetscFree(ptap);
 50:   return(0);
 51: }

 55: PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy2(Mat A,Mat P,PetscReal fill,Mat *C)
 56: {
 57:   PetscErrorCode     ierr;
 58:   PetscFreeSpaceList free_space=PETSC_NULL,current_space=PETSC_NULL;
 59:   Mat_SeqAIJ         *a = (Mat_SeqAIJ*)A->data,*p = (Mat_SeqAIJ*)P->data,*c;
 60:   PetscInt           *pti,*ptj,*ptJ,*ai=a->i,*aj=a->j,*ajj,*pi=p->i,*pj=p->j,*pjj;
 61:   PetscInt           *ci,*cj,*ptadenserow,*ptasparserow,*ptaj,nspacedouble=0;
 62:   PetscInt           an=A->cmap->N,am=A->rmap->N,pn=P->cmap->N;
 63:   PetscInt           i,j,k,ptnzi,arow,anzj,ptanzi,prow,pnzj,cnzi,nlnk,*lnk;
 64:   MatScalar          *ca;
 65:   PetscBT            lnkbt;

 68:   /* Get ij structure of P^T */
 69:   MatGetSymbolicTranspose_SeqAIJ(P,&pti,&ptj);
 70:   ptJ=ptj;

 72:   /* Allocate ci array, arrays for fill computation and */
 73:   /* free space for accumulating nonzero column info */
 74:   PetscMalloc((pn+1)*sizeof(PetscInt),&ci);
 75:   ci[0] = 0;

 77:   PetscMalloc((2*an+1)*sizeof(PetscInt),&ptadenserow);
 78:   PetscMemzero(ptadenserow,(2*an+1)*sizeof(PetscInt));
 79:   ptasparserow = ptadenserow  + an;

 81:   /* create and initialize a linked list */
 82:   nlnk = pn+1;
 83:   PetscLLCreate(pn,pn,nlnk,lnk,lnkbt);

 85:   /* Set initial free space to be fill*nnz(A). */
 86:   /* This should be reasonable if sparsity of PtAP is similar to that of A. */
 87:   PetscFreeSpaceGet((PetscInt)(fill*ai[am]),&free_space);
 88:   current_space = free_space;

 90:   /* Determine symbolic info for each row of C: */
 91:   for (i=0;i<pn;i++) {
 92:     ptnzi  = pti[i+1] - pti[i];
 93:     ptanzi = 0;
 94:     /* Determine symbolic row of PtA: */
 95:     for (j=0;j<ptnzi;j++) {
 96:       arow = *ptJ++;
 97:       anzj = ai[arow+1] - ai[arow];
 98:       ajj  = aj + ai[arow];
 99:       for (k=0;k<anzj;k++) {
100:         if (!ptadenserow[ajj[k]]) {
101:           ptadenserow[ajj[k]]    = -1;
102:           ptasparserow[ptanzi++] = ajj[k];
103:         }
104:       }
105:     }
106:     /* Using symbolic info for row of PtA, determine symbolic info for row of C: */
107:     ptaj = ptasparserow;
108:     cnzi   = 0;
109:     for (j=0;j<ptanzi;j++) {
110:       prow = *ptaj++;
111:       pnzj = pi[prow+1] - pi[prow];
112:       pjj  = pj + pi[prow];
113:       /* add non-zero cols of P into the sorted linked list lnk */
114:       PetscLLAddSorted(pnzj,pjj,pn,nlnk,lnk,lnkbt);
115:       cnzi += nlnk;
116:     }
117: 
118:     /* If free space is not available, make more free space */
119:     /* Double the amount of total space in the list */
120:     if (current_space->local_remaining<cnzi) {
121:       PetscFreeSpaceGet(cnzi+current_space->total_array_size,&current_space);
122:       nspacedouble++;
123:     }

125:     /* Copy data into free space, and zero out denserows */
126:     PetscLLClean(pn,pn,cnzi,lnk,current_space->array,lnkbt);
127:     current_space->array           += cnzi;
128:     current_space->local_used      += cnzi;
129:     current_space->local_remaining -= cnzi;
130: 
131:     for (j=0;j<ptanzi;j++) {
132:       ptadenserow[ptasparserow[j]] = 0;
133:     }
134:     /* Aside: Perhaps we should save the pta info for the numerical factorization. */
135:     /*        For now, we will recompute what is needed. */
136:     ci[i+1] = ci[i] + cnzi;
137:   }
138:   /* nnz is now stored in ci[ptm], column indices are in the list of free space */
139:   /* Allocate space for cj, initialize cj, and */
140:   /* destroy list of free space and other temporary array(s) */
141:   PetscMalloc((ci[pn]+1)*sizeof(PetscInt),&cj);
142:   PetscFreeSpaceContiguous(&free_space,cj);
143:   PetscFree(ptadenserow);
144:   PetscLLDestroy(lnk,lnkbt);
145: 
146:   /* Allocate space for ca */
147:   PetscMalloc((ci[pn]+1)*sizeof(MatScalar),&ca);
148:   PetscMemzero(ca,(ci[pn]+1)*sizeof(MatScalar));
149: 
150:   /* put together the new matrix */
151:   MatCreateSeqAIJWithArrays(((PetscObject)A)->comm,pn,pn,ci,cj,ca,C);
152:   (*C)->rmap->bs = P->cmap->bs;
153:   (*C)->cmap->bs = P->cmap->bs;
154: PetscPrintf(PETSC_COMM_SELF,"************%s C.bs=%d,%d\n",__FUNCT__,(*C)->rmap->bs,(*C)->cmap->bs);
155:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
156:   /* Since these are PETSc arrays, change flags to free them as necessary. */
157:   c = (Mat_SeqAIJ *)((*C)->data);
158:   c->free_a  = PETSC_TRUE;
159:   c->free_ij = PETSC_TRUE;
160:   c->nonew   = 0;
161:   A->ops->ptapnumeric = MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy2; /* should use *C->ops until PtAP insterface is updated to double dispatch as MatMatMult() */

163:   /* Clean up. */
164:   MatRestoreSymbolicTranspose_SeqAIJ(P,&pti,&ptj);
165: #if defined(PETSC_USE_INFO)
166:   if (ci[pn] != 0) {
167:     PetscReal afill = ((PetscReal)ci[pn])/ai[am];
168:     if (afill < 1.0) afill = 1.0;
169:     PetscInfo3((*C),"Reallocs %D; Fill ratio: given %G needed %G.\n",nspacedouble,fill,afill);
170:     PetscInfo1((*C),"Use MatPtAP(A,P,MatReuse,%G,&C) for best performance.\n",afill);
171:   } else {
172:     PetscInfo((*C),"Empty matrix product\n");
173:   }
174: #endif
175:   return(0);
176: }

180: PetscErrorCode MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy2(Mat A,Mat P,Mat C)
181: {
183:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ *) A->data;
184:   Mat_SeqAIJ     *p  = (Mat_SeqAIJ *) P->data;
185:   Mat_SeqAIJ     *c  = (Mat_SeqAIJ *) C->data;
186:   PetscInt       *ai=a->i,*aj=a->j,*apj,*apjdense,*pi=p->i,*pj=p->j,*pJ=p->j,*pjj;
187:   PetscInt       *ci=c->i,*cj=c->j,*cjj;
188:   PetscInt       am=A->rmap->N,cn=C->cmap->N,cm=C->rmap->N;
189:   PetscInt       i,j,k,anzi,pnzi,apnzj,nextap,pnzj,prow,crow;
190:   MatScalar      *aa=a->a,*apa,*pa=p->a,*pA=p->a,*paj,*ca=c->a,*caj;

193:   /* Allocate temporary array for storage of one row of A*P */
194:   PetscMalloc(cn*(sizeof(MatScalar)+sizeof(PetscInt))+c->rmax*sizeof(PetscInt),&apa);

196:   apjdense = (PetscInt *)(apa + cn);
197:   apj      = apjdense + cn;
198:   PetscMemzero(apa,cn*(sizeof(MatScalar)+sizeof(PetscInt)));

200:   /* Clear old values in C */
201:   PetscMemzero(ca,ci[cm]*sizeof(MatScalar));

203:   for (i=0; i<am; i++) {
204:     /* Form sparse row of A*P */
205:     anzi  = ai[i+1] - ai[i];
206:     apnzj = 0;
207:     for (j=0; j<anzi; j++) {
208:       prow = *aj++;
209:       pnzj = pi[prow+1] - pi[prow];
210:       pjj  = pj + pi[prow];
211:       paj  = pa + pi[prow];
212:       for (k=0;k<pnzj;k++) {
213:         if (!apjdense[pjj[k]]) {
214:           apjdense[pjj[k]] = -1;
215:           apj[apnzj++]     = pjj[k];
216:         }
217:         apa[pjj[k]] += (*aa)*paj[k];
218:       }
219:       PetscLogFlops(2.0*pnzj);
220:       aa++;
221:     }

223:     /* Sort the j index array for quick sparse axpy. */
224:     /* Note: a array does not need sorting as it is in dense storage locations. */
225:     PetscSortInt(apnzj,apj);

227:     /* Compute P^T*A*P using outer product (P^T)[:,j]*(A*P)[j,:]. */
228:     pnzi = pi[i+1] - pi[i];
229:     for (j=0; j<pnzi; j++) {
230:       nextap = 0;
231:       crow   = *pJ++;
232:       cjj    = cj + ci[crow];
233:       caj    = ca + ci[crow];
234:       /* Perform sparse axpy operation.  Note cjj includes apj. */
235:       for (k=0;nextap<apnzj;k++) {
236: #if defined(PETSC_USE_DEBUG)  
237:         if (k >= ci[crow+1] - ci[crow]) {
238:           SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"k too large k %d, crow %d",k,crow);
239:         }
240: #endif
241:         if (cjj[k]==apj[nextap]) {
242:           caj[k] += (*pA)*apa[apj[nextap++]];
243:         }
244:       }
245:       PetscLogFlops(2.0*apnzj);
246:       pA++;
247:     }

249:     /* Zero the current row info for A*P */
250:     for (j=0; j<apnzj; j++) {
251:       apa[apj[j]]      = 0.;
252:       apjdense[apj[j]] = 0;
253:     }
254:   }

256:   /* Assemble the final matrix and clean up */
257:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
258:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
259: PetscPrintf(PETSC_COMM_SELF,"************%s C.bs=%d,%d\n",__FUNCT__,C->rmap->bs,C->cmap->bs);
260:   PetscFree(apa);
261:   return(0);
262: }

266: PetscErrorCode MatPtAPSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat P,PetscReal fill,Mat *C)
267: {
268:   PetscErrorCode     ierr;
269:   Mat_SeqAIJ         *ap,*c;
270:   PetscInt           *api,*apj,*ci,pn=P->cmap->N,sparse_axpy=0;
271:   MatScalar          *ca;
272:   Mat_PtAP           *ptap;
273:   Mat                Pt,AP;
274: 
276:   /* flag 'sparse_axpy' determines which implementations to be used:
277:        0: do dense axpy in MatPtAPNumeric() - fastest, but requires storage of struct A*P; (default)
278:        1: do one sparse axpy - uses same memory as sparse_axpy=0 and might execute less flops 
279:           (apnz vs. cnz in the outerproduct), slower than case '0' when cnz is not too large than apnz;
280:        2: do two sparse axpy in MatPtAPNumeric() - slowest, does not store structure of A*P. */
281:   PetscOptionsGetInt(PETSC_NULL,"-matptap_sparseaxpy",&sparse_axpy,PETSC_NULL);
282:   if (sparse_axpy == 2){
283:     MatPtAPSymbolic_SeqAIJ_SeqAIJ_SparseAxpy2(A,P,fill,C);

285:     return(0);
286:   }

288:   /* Get symbolic Pt = P^T */
289:   MatTransposeSymbolic_SeqAIJ(P,&Pt);

291:   /* Get symbolic AP = A*P */
292:   MatMatMultSymbolic_SeqAIJ_SeqAIJ(A,P,fill,&AP);

294:   ap          = (Mat_SeqAIJ*)AP->data;
295:   api         = ap->i;
296:   apj         = ap->j;
297:   ap->free_ij = PETSC_FALSE; /* api and apj are kept in struct ptap, cannot be destroyed with AP */

299:   /* Get C = Pt*AP */
300:   MatMatMultSymbolic_SeqAIJ_SeqAIJ(Pt,AP,fill,C);

302:   c  = (Mat_SeqAIJ*)(*C)->data;
303:   ci = c->i;
304:   PetscMalloc((ci[pn]+1)*sizeof(MatScalar),&ca);
305:   PetscMemzero(ca,(ci[pn]+1)*sizeof(MatScalar));
306:   c->a       = ca;
307:   c->free_a  = PETSC_TRUE;

309:   /* Create a supporting struct for reuse by MatPtAPNumeric() */
310:   PetscNew(Mat_PtAP,&ptap);
311:   c->ptap            = ptap;
312:   ptap->destroy      = (*C)->ops->destroy;
313:   (*C)->ops->destroy = MatDestroy_SeqAIJ_PtAP;

315:   /* Allocate temporary array for storage of one row of A*P */
316:   PetscMalloc((pn+1)*sizeof(PetscScalar),&ptap->apa);
317:   PetscMemzero(ptap->apa,(pn+1)*sizeof(PetscScalar));
318:   if (sparse_axpy == 1){
319:     A->ops->ptapnumeric = MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy;
320:   } else {
321:     A->ops->ptapnumeric = MatPtAPNumeric_SeqAIJ_SeqAIJ;
322:   }
323:   ptap->api = api;
324:   ptap->apj = apj;

326:   /* Clean up. */
327:   MatDestroy(&Pt);
328:   MatDestroy(&AP);
329:   return(0);
330: }

332: /* #define PROFILE_MatPtAPNumeric */
335: PetscErrorCode MatPtAPNumeric_SeqAIJ_SeqAIJ(Mat A,Mat P,Mat C)
336: {
337:   PetscErrorCode    ierr;
338:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ *) A->data;
339:   Mat_SeqAIJ        *p  = (Mat_SeqAIJ *) P->data;
340:   Mat_SeqAIJ        *c  = (Mat_SeqAIJ *) C->data;
341:   const PetscInt    *ai=a->i,*aj=a->j,*pi=p->i,*pj=p->j,*ci=c->i,*cj=c->j;
342:   const PetscScalar *aa=a->a,*pa=p->a,*pval;
343:   const PetscInt    *apj,*pcol,*cjj;
344:   const PetscInt    am=A->rmap->N,cm=C->rmap->N;
345:   PetscInt          i,j,k,anz,apnz,pnz,prow,crow,cnz;
346:   PetscScalar       *apa,*ca=c->a,*caj,pvalj;
347:   Mat_PtAP          *ptap = c->ptap;
348: #if defined(PROFILE_MatPtAPNumeric)
349:   PetscLogDouble    t0,tf,time_Cseq0=0.0,time_Cseq1=0.0;
350:   PetscInt          flops0=0,flops1=0;
351: #endif

354:   /* Get temporary array for storage of one row of A*P */
355:   apa = ptap->apa;
356: 
357:   /* Clear old values in C */
358:   PetscMemzero(ca,ci[cm]*sizeof(MatScalar));

360:   for (i=0;i<am;i++) {
361:     /* Form sparse row of AP[i,:] = A[i,:]*P */
362: #if defined(PROFILE_MatPtAPNumeric)
363:     PetscGetTime(&t0);
364: #endif
365:     anz  = ai[i+1] - ai[i];
366:     apnz = 0;
367:     for (j=0; j<anz; j++) {
368:       prow = aj[j];
369:       pnz  = pi[prow+1] - pi[prow];
370:       pcol = pj + pi[prow];
371:       pval = pa + pi[prow];
372:       for (k=0; k<pnz; k++) {
373:         apa[pcol[k]] += aa[j]*pval[k];
374:       }
375:       PetscLogFlops(2.0*pnz);
376: #if defined(PROFILE_MatPtAPNumeric)
377:       flops0 += 2.0*pnz;
378: #endif
379:     }
380:     aj += anz; aa += anz;
381: #if defined(PROFILE_MatPtAPNumeric)
382:     PetscGetTime(&tf);
383:     time_Cseq0 += tf - t0;
384: #endif
385: 
386:     /* Compute P^T*A*P using outer product P[i,:]^T*AP[i,:]. */
387: #if defined(PROFILE_MatPtAPNumeric)
388:     PetscGetTime(&t0);
389: #endif
390:     apj  = ptap->apj + ptap->api[i];
391:     apnz = ptap->api[i+1] - ptap->api[i];
392:     pnz  = pi[i+1] - pi[i];
393:     pcol = pj + pi[i];
394:     pval = pa + pi[i];
395: 
396:     /* Perform dense axpy */
397:     for (j=0; j<pnz; j++) {
398:       crow  = pcol[j];
399:       cjj   = cj + ci[crow];
400:       caj   = ca + ci[crow];
401:       pvalj = pval[j];
402:       cnz   = ci[crow+1] - ci[crow];
403:       for (k=0; k<cnz; k++){
404:         caj[k] += pvalj*apa[cjj[k]];
405:       }
406:       PetscLogFlops(2.0*cnz);
407: #if defined(PROFILE_MatPtAPNumeric)
408:       flops1 += 2.0*cnz;
409: #endif
410:     }
411: #if defined(PROFILE_MatPtAPNumeric)
412:     PetscGetTime(&tf);
413:     time_Cseq1 += tf - t0;
414: #endif

416:     /* Zero the current row info for A*P */
417:     for (j=0; j<apnz; j++) apa[apj[j]] = 0.0;
418:   }

420:   /* Assemble the final matrix and clean up */
421:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
422:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
423: #if defined(PROFILE_MatPtAPNumeric)
424:   printf("PtAPNumeric_SeqAIJ time %g + %g, flops %d %d\n",time_Cseq0,time_Cseq1,flops0,flops1);
425: #endif
426:   return(0);
427: }

431: PetscErrorCode MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy(Mat A,Mat P,Mat C)
432: {
433:   PetscErrorCode    ierr;
434:   Mat_SeqAIJ        *a  = (Mat_SeqAIJ *) A->data;
435:   Mat_SeqAIJ        *p  = (Mat_SeqAIJ *) P->data;
436:   Mat_SeqAIJ        *c  = (Mat_SeqAIJ *) C->data;
437:   const PetscInt    *ai=a->i,*aj=a->j,*pi=p->i,*pj=p->j,*ci=c->i,*cj=c->j;
438:   const PetscScalar *aa=a->a,*pa=p->a,*pval;
439:   const PetscInt    *apj,*pcol,*cjj;
440:   const PetscInt    am=A->rmap->N,cm=C->rmap->N;
441:   PetscInt          i,j,k,anz,apnz,pnz,prow,crow,apcol,nextap;
442:   PetscScalar       *apa,*ca=c->a,*caj,pvalj;
443:   Mat_PtAP          *ptap = c->ptap;
444: #if defined(PROFILE_MatPtAPNumeric)
445:   PetscLogDouble    t0,tf,time_Cseq0=0.0,time_Cseq1=0.0;
446:   PetscInt          flops0=0,flops1=0;
447: #endif

450:   /* Get temporary array for storage of one row of A*P */
451:   apa = ptap->apa;
452: 
453:   /* Clear old values in C */
454:   PetscMemzero(ca,ci[cm]*sizeof(MatScalar));

456:   for (i=0;i<am;i++) {
457:     /* Form sparse row of AP[i,:] = A[i,:]*P */
458: #if defined(PROFILE_MatPtAPNumeric)
459:     PetscGetTime(&t0);
460: #endif
461:     anz  = ai[i+1] - ai[i];
462:     apnz = 0;
463:     for (j=0; j<anz; j++) {
464:       prow = aj[j];
465:       pnz  = pi[prow+1] - pi[prow];
466:       pcol = pj + pi[prow];
467:       pval = pa + pi[prow];
468:       for (k=0; k<pnz; k++) {
469:         apa[pcol[k]] += aa[j]*pval[k];
470:       }
471:       PetscLogFlops(2.0*pnz);
472: #if defined(PROFILE_MatPtAPNumeric)
473:       flops0 += 2.0*pnz;
474: #endif
475:     }
476:     aj += anz; aa += anz;
477: #if defined(PROFILE_MatPtAPNumeric)
478:     PetscGetTime(&tf);
479:     time_Cseq0 += tf - t0;
480: #endif
481: 
482:     /* Compute P^T*A*P using outer product P[i,:]^T*AP[i,:]. */
483: #if defined(PROFILE_MatPtAPNumeric)
484:     PetscGetTime(&t0);
485: #endif
486:     apj  = ptap->apj + ptap->api[i];
487:     apnz = ptap->api[i+1] - ptap->api[i];
488:     pnz  = pi[i+1] - pi[i];
489:     pcol = pj + pi[i];
490:     pval = pa + pi[i];
491: 
492:     /* Perform sparse axpy */
493:     for (j=0; j<pnz; j++) {
494:       crow   = pcol[j];
495:       cjj    = cj + ci[crow];
496:       caj    = ca + ci[crow];
497:       pvalj  = pval[j];
498:       nextap = 1;
499:       apcol  = apj[nextap];
500:       for (k=0; nextap<apnz; k++) {
501:         if (cjj[k] == apcol) {
502:           caj[k] += pvalj*apa[apcol];
503:           apcol   = apj[nextap++];
504:         }
505:       }
506:       PetscLogFlops(2.0*apnz);
507: #if defined(PROFILE_MatPtAPNumeric)
508:       flops1 += 2.0*apnz;
509: #endif
510:     }
511: #if defined(PROFILE_MatPtAPNumeric)
512:     PetscGetTime(&tf);
513:     time_Cseq1 += tf - t0;
514: #endif
515: 
516:     /* Zero the current row info for A*P */
517:     for (j=0; j<apnz; j++) {
518:       apcol      = apj[j];
519:       apa[apcol] = 0.;
520:     }
521:   }

523:   /* Assemble the final matrix and clean up */
524:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
525:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
526: #if defined(PROFILE_MatPtAPNumeric)
527:   printf("MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy time %g + %g, flops %d %d\n",time_Cseq0,time_Cseq1,flops0,flops1);
528: #endif
529:   return(0);
530: }