Actual source code: plexland.c

  1: #include <../src/mat/impls/aij/seq/aij.h>
  2: #include <petsc/private/dmpleximpl.h>
  3: #include <petsclandau.h>
  4: #include <petscts.h>
  5: #include <petscdmforest.h>
  6: #include <petscdmcomposite.h>

  8: /* Landau collision operator */

 10: /* relativistic terms */
 11: #if defined(PETSC_USE_REAL_SINGLE)
 12:   #define SPEED_OF_LIGHT 2.99792458e8F
 13:   #define C_0(v0)        (SPEED_OF_LIGHT / v0) /* needed for relativistic tensor on all architectures */
 14: #else
 15:   #define SPEED_OF_LIGHT 2.99792458e8
 16:   #define C_0(v0)        (SPEED_OF_LIGHT / v0) /* needed for relativistic tensor on all architectures */
 17: #endif

 19: #include "land_tensors.h"

 21: #if defined(PETSC_HAVE_OPENMP)
 22:   #include <omp.h>
 23: #endif

 25: static PetscErrorCode LandauGPUMapsDestroy(void *ptr)
 26: {
 27:   P4estVertexMaps *maps = (P4estVertexMaps *)ptr;

 29:   PetscFunctionBegin;
 30:   // free device data
 31:   if (maps[0].deviceType != LANDAU_CPU) {
 32: #if defined(PETSC_HAVE_KOKKOS)
 33:     if (maps[0].deviceType == LANDAU_KOKKOS) {
 34:       PetscCall(LandauKokkosDestroyMatMaps(maps, maps[0].numgrids)); // implies Kokkos does
 35:     }
 36: #endif
 37:   }
 38:   // free host data
 39:   for (PetscInt grid = 0; grid < maps[0].numgrids; grid++) {
 40:     PetscCall(PetscFree(maps[grid].c_maps));
 41:     PetscCall(PetscFree(maps[grid].gIdx));
 42:   }
 43:   PetscCall(PetscFree(maps));
 44:   PetscFunctionReturn(PETSC_SUCCESS);
 45: }
 46: static PetscErrorCode energy_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
 47: {
 48:   PetscReal v2 = 0;

 50:   PetscFunctionBegin;
 51:   /* compute v^2 / 2 */
 52:   for (int i = 0; i < dim; ++i) v2 += x[i] * x[i];
 53:   /* evaluate the Maxwellian */
 54:   u[0] = v2 / 2;
 55:   PetscFunctionReturn(PETSC_SUCCESS);
 56: }

 58: /* needs double */
 59: static PetscErrorCode gamma_m1_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
 60: {
 61:   PetscReal *c2_0_arr = ((PetscReal *)actx);
 62:   double     u2 = 0, c02 = (double)*c2_0_arr, xx;

 64:   PetscFunctionBegin;
 65:   /* compute u^2 / 2 */
 66:   for (int i = 0; i < dim; ++i) u2 += x[i] * x[i];
 67:   /* gamma - 1 = g_eps, for conditioning and we only take derivatives */
 68:   xx = u2 / c02;
 69: #if defined(PETSC_USE_DEBUG)
 70:   u[0] = PetscSqrtReal(1. + xx);
 71: #else
 72:   u[0] = xx / (PetscSqrtReal(1. + xx) + 1.) - 1.; // better conditioned. -1 might help condition and only used for derivative
 73: #endif
 74:   PetscFunctionReturn(PETSC_SUCCESS);
 75: }

 77: /*
 78:  LandauFormJacobian_Internal - Evaluates Jacobian matrix.

 80:  Input Parameters:
 81:  .  globX - input vector
 82:  .  actx - optional user-defined context
 83:  .  dim - dimension

 85:  Output Parameter:
 86:  .  J0acP - Jacobian matrix filled, not created
 87:  */
 88: static PetscErrorCode LandauFormJacobian_Internal(Vec a_X, Mat JacP, const PetscInt dim, PetscReal shift, void *a_ctx)
 89: {
 90:   LandauCtx         *ctx = (LandauCtx *)a_ctx;
 91:   PetscInt           numCells[LANDAU_MAX_GRIDS], Nq, Nb;
 92:   PetscQuadrature    quad;
 93:   PetscReal          Eq_m[LANDAU_MAX_SPECIES]; // could be static data w/o quench (ex2)
 94:   PetscScalar       *cellClosure = NULL;
 95:   const PetscScalar *xdata       = NULL;
 96:   PetscDS            prob;
 97:   PetscContainer     container;
 98:   P4estVertexMaps   *maps;
 99:   Mat                subJ[LANDAU_MAX_GRIDS * LANDAU_MAX_BATCH_SZ];

101:   PetscFunctionBegin;
104:   PetscAssertPointer(ctx, 5);
105:   /* check for matrix container for GPU assembly. Support CPU assembly for debugging */
106:   PetscCheck(ctx->plex[0] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
107:   PetscCall(PetscLogEventBegin(ctx->events[10], 0, 0, 0, 0));
108:   PetscCall(DMGetDS(ctx->plex[0], &prob)); // same DS for all grids
109:   PetscCall(PetscObjectQuery((PetscObject)JacP, "assembly_maps", (PetscObject *)&container));
110:   if (container) {
111:     PetscCheck(ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "maps but no GPU assembly");
112:     PetscCall(PetscContainerGetPointer(container, (void **)&maps));
113:     PetscCheck(maps, ctx->comm, PETSC_ERR_ARG_WRONG, "empty GPU matrix container");
114:     for (PetscInt i = 0; i < ctx->num_grids * ctx->batch_sz; i++) subJ[i] = NULL;
115:   } else {
116:     PetscCheck(!ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "No maps but GPU assembly");
117:     for (PetscInt tid = 0; tid < ctx->batch_sz; tid++) {
118:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCreateMatrix(ctx->plex[grid], &subJ[LAND_PACK_IDX(tid, grid)]));
119:     }
120:     maps = NULL;
121:   }
122:   // get dynamic data (Eq is odd, for quench and Spitzer test) for CPU assembly and raw data for Jacobian GPU assembly. Get host numCells[], Nq (yuck)
123:   PetscCall(PetscFEGetQuadrature(ctx->fe[0], &quad));
124:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
125:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
126:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
127:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
128:   // get metadata for collecting dynamic data
129:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
130:     PetscInt cStart, cEnd;
131:     PetscCheck(ctx->plex[grid] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
132:     PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
133:     numCells[grid] = cEnd - cStart; // grids can have different topology
134:   }
135:   PetscCall(PetscLogEventEnd(ctx->events[10], 0, 0, 0, 0));
136:   if (shift == 0) { /* create dynamic point data: f_alpha for closure of each cell (cellClosure[nbatch,ngrids,ncells[g],f[Nb,ns[g]]]) or xdata */
137:     DM pack;
138:     PetscCall(VecGetDM(a_X, &pack));
139:     PetscCheck(pack, PETSC_COMM_SELF, PETSC_ERR_PLIB, "pack has no DM");
140:     PetscCall(PetscLogEventBegin(ctx->events[1], 0, 0, 0, 0));
141:     for (PetscInt fieldA = 0; fieldA < ctx->num_species; fieldA++) {
142:       Eq_m[fieldA] = ctx->Ez * ctx->t_0 * ctx->charges[fieldA] / (ctx->v_0 * ctx->masses[fieldA]); /* normalize dimensionless */
143:       if (dim == 2) Eq_m[fieldA] *= 2 * PETSC_PI;                                                  /* add the 2pi term that is not in Landau */
144:     }
145:     if (!ctx->gpu_assembly) {
146:       Vec         *locXArray, *globXArray;
147:       PetscScalar *cellClosure_it;
148:       PetscInt     cellClosure_sz = 0, nDMs, Nf[LANDAU_MAX_GRIDS];
149:       PetscSection section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
150:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
151:         PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
152:         PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
153:         PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
154:       }
155:       /* count cellClosure size */
156:       PetscCall(DMCompositeGetNumberDM(pack, &nDMs));
157:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) cellClosure_sz += Nb * Nf[grid] * numCells[grid];
158:       PetscCall(PetscMalloc1(cellClosure_sz * ctx->batch_sz, &cellClosure));
159:       cellClosure_it = cellClosure;
160:       PetscCall(PetscMalloc(sizeof(*locXArray) * nDMs, &locXArray));
161:       PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
162:       PetscCall(DMCompositeGetLocalAccessArray(pack, a_X, nDMs, NULL, locXArray));
163:       PetscCall(DMCompositeGetAccessArray(pack, a_X, nDMs, NULL, globXArray));
164:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // OpenMP (once)
165:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
166:           Vec      locX = locXArray[LAND_PACK_IDX(b_id, grid)], globX = globXArray[LAND_PACK_IDX(b_id, grid)], locX2;
167:           PetscInt cStart, cEnd, ei;
168:           PetscCall(VecDuplicate(locX, &locX2));
169:           PetscCall(DMGlobalToLocalBegin(ctx->plex[grid], globX, INSERT_VALUES, locX2));
170:           PetscCall(DMGlobalToLocalEnd(ctx->plex[grid], globX, INSERT_VALUES, locX2));
171:           PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
172:           for (ei = cStart; ei < cEnd; ++ei) {
173:             PetscScalar *coef = NULL;
174:             PetscCall(DMPlexVecGetClosure(ctx->plex[grid], section[grid], locX2, ei, NULL, &coef));
175:             PetscCall(PetscMemcpy(cellClosure_it, coef, Nb * Nf[grid] * sizeof(*cellClosure_it))); /* change if LandauIPReal != PetscScalar */
176:             PetscCall(DMPlexVecRestoreClosure(ctx->plex[grid], section[grid], locX2, ei, NULL, &coef));
177:             cellClosure_it += Nb * Nf[grid];
178:           }
179:           PetscCall(VecDestroy(&locX2));
180:         }
181:       }
182:       PetscCheck(cellClosure_it - cellClosure == cellClosure_sz * ctx->batch_sz, PETSC_COMM_SELF, PETSC_ERR_PLIB, "iteration wrong %" PetscCount_FMT " != cellClosure_sz = %" PetscInt_FMT, (PetscCount)(cellClosure_it - cellClosure),
183:                  cellClosure_sz * ctx->batch_sz);
184:       PetscCall(DMCompositeRestoreLocalAccessArray(pack, a_X, nDMs, NULL, locXArray));
185:       PetscCall(DMCompositeRestoreAccessArray(pack, a_X, nDMs, NULL, globXArray));
186:       PetscCall(PetscFree(locXArray));
187:       PetscCall(PetscFree(globXArray));
188:       xdata = NULL;
189:     } else {
190:       PetscMemType mtype;
191:       if (ctx->jacobian_field_major_order) { // get data in batch ordering
192:         PetscCall(VecScatterBegin(ctx->plex_batch, a_X, ctx->work_vec, INSERT_VALUES, SCATTER_FORWARD));
193:         PetscCall(VecScatterEnd(ctx->plex_batch, a_X, ctx->work_vec, INSERT_VALUES, SCATTER_FORWARD));
194:         PetscCall(VecGetArrayReadAndMemType(ctx->work_vec, &xdata, &mtype));
195:       } else {
196:         PetscCall(VecGetArrayReadAndMemType(a_X, &xdata, &mtype));
197:       }
198:       PetscCheck(mtype == PETSC_MEMTYPE_HOST || ctx->deviceType != LANDAU_CPU, ctx->comm, PETSC_ERR_ARG_WRONG, "CPU run with device data: use -mat_type aij");
199:       cellClosure = NULL;
200:     }
201:     PetscCall(PetscLogEventEnd(ctx->events[1], 0, 0, 0, 0));
202:   } else xdata = cellClosure = NULL;

204:   /* do it */
205:   if (ctx->deviceType == LANDAU_KOKKOS) {
206: #if defined(PETSC_HAVE_KOKKOS)
207:     PetscCall(LandauKokkosJacobian(ctx->plex, Nq, Nb, ctx->batch_sz, ctx->num_grids, numCells, Eq_m, cellClosure, xdata, &ctx->SData_d, shift, ctx->events, ctx->mat_offset, ctx->species_offset, subJ, JacP));
208: #else
209:     SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type %s not built", "kokkos");
210: #endif
211:   } else {               /* CPU version */
212:     PetscTabulation *Tf; // used for CPU and print info. Same on all grids and all species
213:     PetscInt         ip_offset[LANDAU_MAX_GRIDS + 1], ipf_offset[LANDAU_MAX_GRIDS + 1], elem_offset[LANDAU_MAX_GRIDS + 1], IPf_sz_glb, IPf_sz_tot, num_grids = ctx->num_grids, Nf[LANDAU_MAX_GRIDS];
214:     PetscReal       *ff, *dudx, *dudy, *dudz, *invJ_a = (PetscReal *)ctx->SData_d.invJ, *xx = (PetscReal *)ctx->SData_d.x, *yy = (PetscReal *)ctx->SData_d.y, *zz = (PetscReal *)ctx->SData_d.z, *ww = (PetscReal *)ctx->SData_d.w;
215:     PetscReal       *nu_alpha = (PetscReal *)ctx->SData_d.alpha, *nu_beta = (PetscReal *)ctx->SData_d.beta, *invMass = (PetscReal *)ctx->SData_d.invMass;
216:     PetscReal(*lambdas)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS] = (PetscReal(*)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS])ctx->SData_d.lambdas;
217:     PetscSection section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
218:     PetscScalar *coo_vals = NULL;
219:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
220:       PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
221:       PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
222:       PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
223:     }
224:     /* count IPf size, etc */
225:     PetscCall(PetscDSGetTabulation(prob, &Tf)); // Bf, &Df same for all grids
226:     const PetscReal *const BB = Tf[0]->T[0], *const DD = Tf[0]->T[1];
227:     ip_offset[0] = ipf_offset[0] = elem_offset[0] = 0;
228:     for (PetscInt grid = 0; grid < num_grids; grid++) {
229:       PetscInt nfloc        = ctx->species_offset[grid + 1] - ctx->species_offset[grid];
230:       elem_offset[grid + 1] = elem_offset[grid] + numCells[grid];
231:       ip_offset[grid + 1]   = ip_offset[grid] + numCells[grid] * Nq;
232:       ipf_offset[grid + 1]  = ipf_offset[grid] + Nq * nfloc * numCells[grid];
233:     }
234:     IPf_sz_glb = ipf_offset[num_grids];
235:     IPf_sz_tot = IPf_sz_glb * ctx->batch_sz;
236:     // prep COO
237:     PetscCall(PetscMalloc1(ctx->SData_d.coo_size, &coo_vals)); // allocate every time?
238:     if (shift == 0.0) {                                        /* compute dynamic data f and df and init data for Jacobian */
239: #if defined(PETSC_HAVE_THREADSAFETY)
240:       double starttime, endtime;
241:       starttime = MPI_Wtime();
242: #endif
243:       PetscCall(PetscLogEventBegin(ctx->events[8], 0, 0, 0, 0));
244:       PetscCall(PetscMalloc4(IPf_sz_tot, &ff, IPf_sz_tot, &dudx, IPf_sz_tot, &dudy, dim == 3 ? IPf_sz_tot : 0, &dudz));
245:       // F df/dx
246:       for (PetscInt tid = 0; tid < ctx->batch_sz * elem_offset[num_grids]; tid++) {                        // for each element
247:         const PetscInt b_Nelem = elem_offset[num_grids], b_elem_idx = tid % b_Nelem, b_id = tid / b_Nelem; // b_id == OMP thd_id in batch
248:         // find my grid:
249:         PetscInt grid = 0;
250:         while (b_elem_idx >= elem_offset[grid + 1]) grid++; // yuck search for grid
251:         {
252:           const PetscInt loc_nip = numCells[grid] * Nq, loc_Nf = ctx->species_offset[grid + 1] - ctx->species_offset[grid], loc_elem = b_elem_idx - elem_offset[grid];
253:           const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset); //b_id*b_N + ctx->mat_offset[grid];
254:           PetscScalar   *coef, coef_buff[LANDAU_MAX_SPECIES * LANDAU_MAX_NQND];
255:           PetscReal     *invJe = &invJ_a[(ip_offset[grid] + loc_elem * Nq) * dim * dim]; // ingJ is static data on batch 0
256:           PetscInt       b, f, q;
257:           if (cellClosure) {
258:             coef = &cellClosure[b_id * IPf_sz_glb + ipf_offset[grid] + loc_elem * Nb * loc_Nf]; // this is const
259:           } else {
260:             coef = coef_buff;
261:             for (f = 0; f < loc_Nf; ++f) {
262:               LandauIdx *const Idxs = &maps[grid].gIdx[loc_elem][f][0];
263:               for (b = 0; b < Nb; ++b) {
264:                 PetscInt idx = Idxs[b];
265:                 if (idx >= 0) {
266:                   coef[f * Nb + b] = xdata[idx + moffset];
267:                 } else {
268:                   idx              = -idx - 1;
269:                   coef[f * Nb + b] = 0;
270:                   for (q = 0; q < maps[grid].num_face; q++) {
271:                     PetscInt    id    = maps[grid].c_maps[idx][q].gid;
272:                     PetscScalar scale = maps[grid].c_maps[idx][q].scale;
273:                     coef[f * Nb + b] += scale * xdata[id + moffset];
274:                   }
275:                 }
276:               }
277:             }
278:           }
279:           /* get f and df */
280:           for (PetscInt qi = 0; qi < Nq; qi++) {
281:             const PetscReal *invJ = &invJe[qi * dim * dim];
282:             const PetscReal *Bq   = &BB[qi * Nb];
283:             const PetscReal *Dq   = &DD[qi * Nb * dim];
284:             PetscReal        u_x[LANDAU_DIM];
285:             /* get f & df */
286:             for (f = 0; f < loc_Nf; ++f) {
287:               const PetscInt idx = b_id * IPf_sz_glb + ipf_offset[grid] + f * loc_nip + loc_elem * Nq + qi;
288:               PetscInt       b, e;
289:               PetscReal      refSpaceDer[LANDAU_DIM];
290:               ff[idx] = 0.0;
291:               for (int d = 0; d < LANDAU_DIM; ++d) refSpaceDer[d] = 0.0;
292:               for (b = 0; b < Nb; ++b) {
293:                 const PetscInt cidx = b;
294:                 ff[idx] += Bq[cidx] * PetscRealPart(coef[f * Nb + cidx]);
295:                 for (int d = 0; d < dim; ++d) refSpaceDer[d] += Dq[cidx * dim + d] * PetscRealPart(coef[f * Nb + cidx]);
296:               }
297:               for (int d = 0; d < LANDAU_DIM; ++d) {
298:                 for (e = 0, u_x[d] = 0.0; e < LANDAU_DIM; ++e) u_x[d] += invJ[e * dim + d] * refSpaceDer[e];
299:               }
300:               dudx[idx] = u_x[0];
301:               dudy[idx] = u_x[1];
302: #if LANDAU_DIM == 3
303:               dudz[idx] = u_x[2];
304: #endif
305:             }
306:           } // q
307:         } // grid
308:       } // grid*batch
309:       PetscCall(PetscLogEventEnd(ctx->events[8], 0, 0, 0, 0));
310: #if defined(PETSC_HAVE_THREADSAFETY)
311:       endtime = MPI_Wtime();
312:       if (ctx->stage) ctx->times[LANDAU_F_DF] += (endtime - starttime);
313: #endif
314:     } // Jacobian setup
315:     // assemble Jacobian (or mass)
316:     for (PetscInt tid = 0; tid < ctx->batch_sz * elem_offset[num_grids]; tid++) { // for each element
317:       const PetscInt b_Nelem      = elem_offset[num_grids];
318:       const PetscInt glb_elem_idx = tid % b_Nelem, b_id = tid / b_Nelem;
319:       PetscInt       grid = 0;
320: #if defined(PETSC_HAVE_THREADSAFETY)
321:       double starttime, endtime;
322:       starttime = MPI_Wtime();
323: #endif
324:       while (glb_elem_idx >= elem_offset[grid + 1]) grid++;
325:       {
326:         const PetscInt   loc_Nf = ctx->species_offset[grid + 1] - ctx->species_offset[grid], loc_elem = glb_elem_idx - elem_offset[grid];
327:         const PetscInt   moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset), totDim = loc_Nf * Nq, elemMatSize = totDim * totDim;
328:         PetscScalar     *elemMat;
329:         const PetscReal *invJe = &invJ_a[(ip_offset[grid] + loc_elem * Nq) * dim * dim];
330:         PetscCall(PetscMalloc1(elemMatSize, &elemMat));
331:         PetscCall(PetscMemzero(elemMat, elemMatSize * sizeof(*elemMat)));
332:         if (shift == 0.0) { // Jacobian
333:           PetscCall(PetscLogEventBegin(ctx->events[4], 0, 0, 0, 0));
334:         } else { // mass
335:           PetscCall(PetscLogEventBegin(ctx->events[16], 0, 0, 0, 0));
336:         }
337:         for (PetscInt qj = 0; qj < Nq; ++qj) {
338:           const PetscInt jpidx_glb = ip_offset[grid] + qj + loc_elem * Nq;
339:           PetscReal      g0[LANDAU_MAX_SPECIES], g2[LANDAU_MAX_SPECIES][LANDAU_DIM], g3[LANDAU_MAX_SPECIES][LANDAU_DIM][LANDAU_DIM]; // could make a LANDAU_MAX_SPECIES_GRID ~ number of ions - 1
340:           PetscInt       d, d2, dp, d3, IPf_idx;
341:           if (shift == 0.0) { // Jacobian
342:             const PetscReal *const invJj = &invJe[qj * dim * dim];
343:             PetscReal              gg2[LANDAU_MAX_SPECIES][LANDAU_DIM], gg3[LANDAU_MAX_SPECIES][LANDAU_DIM][LANDAU_DIM], gg2_temp[LANDAU_DIM], gg3_temp[LANDAU_DIM][LANDAU_DIM];
344:             const PetscReal        vj[3] = {xx[jpidx_glb], yy[jpidx_glb], zz ? zz[jpidx_glb] : 0}, wj = ww[jpidx_glb];
345:             // create g2 & g3
346:             for (d = 0; d < LANDAU_DIM; d++) { // clear accumulation data D & K
347:               gg2_temp[d] = 0;
348:               for (d2 = 0; d2 < LANDAU_DIM; d2++) gg3_temp[d][d2] = 0;
349:             }
350:             /* inner beta reduction */
351:             IPf_idx = 0;
352:             for (PetscInt grid_r = 0, f_off = 0, ipidx = 0; grid_r < ctx->num_grids; grid_r++, f_off = ctx->species_offset[grid_r]) { // IPf_idx += nip_loc_r*Nfloc_r
353:               PetscInt nip_loc_r = numCells[grid_r] * Nq, Nfloc_r = Nf[grid_r];
354:               for (PetscInt ei_r = 0, loc_fdf_idx = 0; ei_r < numCells[grid_r]; ++ei_r) {
355:                 for (PetscInt qi = 0; qi < Nq; qi++, ipidx++, loc_fdf_idx++) {
356:                   const PetscReal wi = ww[ipidx], x = xx[ipidx], y = yy[ipidx];
357:                   PetscReal       temp1[3] = {0, 0, 0}, temp2 = 0;
358: #if LANDAU_DIM == 2
359:                   PetscReal Ud[2][2], Uk[2][2], mask = (PetscAbs(vj[0] - x) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[1] - y) < 100 * PETSC_SQRT_MACHINE_EPSILON) ? 0. : 1.;
360:                   LandauTensor2D(vj, x, y, Ud, Uk, mask);
361: #else
362:                   PetscReal U[3][3], z = zz[ipidx], mask = (PetscAbs(vj[0] - x) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[1] - y) < 100 * PETSC_SQRT_MACHINE_EPSILON && PetscAbs(vj[2] - z) < 100 * PETSC_SQRT_MACHINE_EPSILON) ? 0. : 1.;
363:                   if (ctx->use_relativistic_corrections) {
364:                     LandauTensor3DRelativistic(vj, x, y, z, U, mask, C_0(ctx->v_0));
365:                   } else {
366:                     LandauTensor3D(vj, x, y, z, U, mask);
367:                   }
368: #endif
369:                   for (int f = 0; f < Nfloc_r; ++f) {
370:                     const PetscInt idx = b_id * IPf_sz_glb + ipf_offset[grid_r] + f * nip_loc_r + ei_r * Nq + qi; // IPf_idx + f*nip_loc_r + loc_fdf_idx;
371:                     temp1[0] += dudx[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
372:                     temp1[1] += dudy[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
373: #if LANDAU_DIM == 3
374:                     temp1[2] += dudz[idx] * nu_beta[f + f_off] * invMass[f + f_off] * (*lambdas)[grid][grid_r];
375: #endif
376:                     temp2 += ff[idx] * nu_beta[f + f_off] * (*lambdas)[grid][grid_r];
377:                   }
378:                   temp1[0] *= wi;
379:                   temp1[1] *= wi;
380: #if LANDAU_DIM == 3
381:                   temp1[2] *= wi;
382: #endif
383:                   temp2 *= wi;
384: #if LANDAU_DIM == 2
385:                   for (d2 = 0; d2 < 2; d2++) {
386:                     for (d3 = 0; d3 < 2; ++d3) {
387:                       /* K = U * grad(f): g2=e: i,A */
388:                       gg2_temp[d2] += Uk[d2][d3] * temp1[d3];
389:                       /* D = -U * (I \kron (fx)): g3=f: i,j,A */
390:                       gg3_temp[d2][d3] += Ud[d2][d3] * temp2;
391:                     }
392:                   }
393: #else
394:                   for (d2 = 0; d2 < 3; ++d2) {
395:                     for (d3 = 0; d3 < 3; ++d3) {
396:                       /* K = U * grad(f): g2 = e: i,A */
397:                       gg2_temp[d2] += U[d2][d3] * temp1[d3];
398:                       /* D = -U * (I \kron (fx)): g3 = f: i,j,A */
399:                       gg3_temp[d2][d3] += U[d2][d3] * temp2;
400:                     }
401:                   }
402: #endif
403:                 } // qi
404:               } // ei_r
405:               IPf_idx += nip_loc_r * Nfloc_r;
406:             } /* grid_r - IPs */
407:             PetscCheck(IPf_idx == IPf_sz_glb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "IPf_idx != IPf_sz %" PetscInt_FMT " %" PetscInt_FMT, IPf_idx, IPf_sz_glb);
408:             // add alpha and put in gg2/3
409:             for (PetscInt fieldA = 0, f_off = ctx->species_offset[grid]; fieldA < loc_Nf; ++fieldA) {
410:               for (d2 = 0; d2 < LANDAU_DIM; d2++) {
411:                 gg2[fieldA][d2] = gg2_temp[d2] * nu_alpha[fieldA + f_off];
412:                 for (d3 = 0; d3 < LANDAU_DIM; d3++) gg3[fieldA][d2][d3] = -gg3_temp[d2][d3] * nu_alpha[fieldA + f_off] * invMass[fieldA + f_off];
413:               }
414:             }
415:             /* add electric field term once per IP */
416:             for (PetscInt fieldA = 0, f_off = ctx->species_offset[grid]; fieldA < loc_Nf; ++fieldA) gg2[fieldA][LANDAU_DIM - 1] += Eq_m[fieldA + f_off];
417:             /* Jacobian transform - g2, g3 */
418:             for (PetscInt fieldA = 0; fieldA < loc_Nf; ++fieldA) {
419:               for (d = 0; d < dim; ++d) {
420:                 g2[fieldA][d] = 0.0;
421:                 for (d2 = 0; d2 < dim; ++d2) {
422:                   g2[fieldA][d] += invJj[d * dim + d2] * gg2[fieldA][d2];
423:                   g3[fieldA][d][d2] = 0.0;
424:                   for (d3 = 0; d3 < dim; ++d3) {
425:                     for (dp = 0; dp < dim; ++dp) g3[fieldA][d][d2] += invJj[d * dim + d3] * gg3[fieldA][d3][dp] * invJj[d2 * dim + dp];
426:                   }
427:                   g3[fieldA][d][d2] *= wj;
428:                 }
429:                 g2[fieldA][d] *= wj;
430:               }
431:             }
432:           } else { // mass
433:             PetscReal wj = ww[jpidx_glb];
434:             /* Jacobian transform - g0 */
435:             for (PetscInt fieldA = 0; fieldA < loc_Nf; ++fieldA) {
436:               if (dim == 2) {
437:                 g0[fieldA] = wj * shift * 2. * PETSC_PI; // move this to below and remove g0
438:               } else {
439:                 g0[fieldA] = wj * shift; // move this to below and remove g0
440:               }
441:             }
442:           }
443:           /* FE matrix construction */
444:           {
445:             PetscInt         fieldA, d, f, d2, g;
446:             const PetscReal *BJq = &BB[qj * Nb], *DIq = &DD[qj * Nb * dim];
447:             /* assemble - on the diagonal (I,I) */
448:             for (fieldA = 0; fieldA < loc_Nf; fieldA++) {
449:               for (f = 0; f < Nb; f++) {
450:                 const PetscInt i = fieldA * Nb + f; /* Element matrix row */
451:                 for (g = 0; g < Nb; ++g) {
452:                   const PetscInt j    = fieldA * Nb + g; /* Element matrix column */
453:                   const PetscInt fOff = i * totDim + j;
454:                   if (shift == 0.0) {
455:                     for (d = 0; d < dim; ++d) {
456:                       elemMat[fOff] += DIq[f * dim + d] * g2[fieldA][d] * BJq[g];
457:                       for (d2 = 0; d2 < dim; ++d2) elemMat[fOff] += DIq[f * dim + d] * g3[fieldA][d][d2] * DIq[g * dim + d2];
458:                     }
459:                   } else { // mass
460:                     elemMat[fOff] += BJq[f] * g0[fieldA] * BJq[g];
461:                   }
462:                 }
463:               }
464:             }
465:           }
466:         } /* qj loop */
467:         if (shift == 0.0) { // Jacobian
468:           PetscCall(PetscLogEventEnd(ctx->events[4], 0, 0, 0, 0));
469:         } else {
470:           PetscCall(PetscLogEventEnd(ctx->events[16], 0, 0, 0, 0));
471:         }
472: #if defined(PETSC_HAVE_THREADSAFETY)
473:         endtime = MPI_Wtime();
474:         if (ctx->stage) ctx->times[LANDAU_KERNEL] += (endtime - starttime);
475: #endif
476:         /* assemble matrix */
477:         if (!container) {
478:           PetscInt cStart;
479:           PetscCall(PetscLogEventBegin(ctx->events[6], 0, 0, 0, 0));
480:           PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, NULL));
481:           PetscCall(DMPlexMatSetClosure(ctx->plex[grid], section[grid], globsection[grid], subJ[LAND_PACK_IDX(b_id, grid)], loc_elem + cStart, elemMat, ADD_VALUES));
482:           PetscCall(PetscLogEventEnd(ctx->events[6], 0, 0, 0, 0));
483:         } else { // GPU like assembly for debugging
484:           PetscInt    fieldA, q, f, g, d, nr, nc, rows0[LANDAU_MAX_Q_FACE] = {0}, cols0[LANDAU_MAX_Q_FACE] = {0}, rows[LANDAU_MAX_Q_FACE], cols[LANDAU_MAX_Q_FACE];
485:           PetscScalar vals[LANDAU_MAX_Q_FACE * LANDAU_MAX_Q_FACE] = {0}, row_scale[LANDAU_MAX_Q_FACE] = {0}, col_scale[LANDAU_MAX_Q_FACE] = {0};
486:           LandauIdx *coo_elem_offsets = (LandauIdx *)ctx->SData_d.coo_elem_offsets, *coo_elem_fullNb = (LandauIdx *)ctx->SData_d.coo_elem_fullNb, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = (LandauIdx(*)[LANDAU_MAX_NQND + 1]) ctx->SData_d.coo_elem_point_offsets;
487:           /* assemble - from the diagonal (I,I) in this format for DMPlexMatSetClosure */
488:           for (fieldA = 0; fieldA < loc_Nf; fieldA++) {
489:             LandauIdx *const Idxs = &maps[grid].gIdx[loc_elem][fieldA][0];
490:             for (f = 0; f < Nb; f++) {
491:               PetscInt idx = Idxs[f];
492:               if (idx >= 0) {
493:                 nr           = 1;
494:                 rows0[0]     = idx;
495:                 row_scale[0] = 1.;
496:               } else {
497:                 idx = -idx - 1;
498:                 for (q = 0, nr = 0; q < maps[grid].num_face; q++, nr++) {
499:                   if (maps[grid].c_maps[idx][q].gid < 0) break;
500:                   rows0[q]     = maps[grid].c_maps[idx][q].gid;
501:                   row_scale[q] = maps[grid].c_maps[idx][q].scale;
502:                 }
503:               }
504:               for (g = 0; g < Nb; ++g) {
505:                 idx = Idxs[g];
506:                 if (idx >= 0) {
507:                   nc           = 1;
508:                   cols0[0]     = idx;
509:                   col_scale[0] = 1.;
510:                 } else {
511:                   idx = -idx - 1;
512:                   nc  = maps[grid].num_face;
513:                   for (q = 0, nc = 0; q < maps[grid].num_face; q++, nc++) {
514:                     if (maps[grid].c_maps[idx][q].gid < 0) break;
515:                     cols0[q]     = maps[grid].c_maps[idx][q].gid;
516:                     col_scale[q] = maps[grid].c_maps[idx][q].scale;
517:                   }
518:                 }
519:                 const PetscInt    i   = fieldA * Nb + f; /* Element matrix row */
520:                 const PetscInt    j   = fieldA * Nb + g; /* Element matrix column */
521:                 const PetscScalar Aij = elemMat[i * totDim + j];
522:                 if (coo_vals) { // mirror (i,j) in CreateStaticGPUData
523:                   const int fullNb = coo_elem_fullNb[glb_elem_idx], fullNb2 = fullNb * fullNb;
524:                   const int idx0 = b_id * coo_elem_offsets[elem_offset[num_grids]] + coo_elem_offsets[glb_elem_idx] + fieldA * fullNb2 + fullNb * coo_elem_point_offsets[glb_elem_idx][f] + nr * coo_elem_point_offsets[glb_elem_idx][g];
525:                   for (int q = 0, idx2 = idx0; q < nr; q++) {
526:                     for (int d = 0; d < nc; d++, idx2++) coo_vals[idx2] = row_scale[q] * col_scale[d] * Aij;
527:                   }
528:                 } else {
529:                   for (q = 0; q < nr; q++) rows[q] = rows0[q] + moffset;
530:                   for (d = 0; d < nc; d++) cols[d] = cols0[d] + moffset;
531:                   for (q = 0; q < nr; q++) {
532:                     for (d = 0; d < nc; d++) vals[q * nc + d] = row_scale[q] * col_scale[d] * Aij;
533:                   }
534:                   PetscCall(MatSetValues(JacP, nr, rows, nc, cols, vals, ADD_VALUES));
535:                 }
536:               }
537:             }
538:           }
539:         }
540:         if (loc_elem == -1) {
541:           PetscCall(PetscPrintf(ctx->comm, "CPU Element matrix\n"));
542:           for (int d = 0; d < totDim; ++d) {
543:             for (int f = 0; f < totDim; ++f) PetscCall(PetscPrintf(ctx->comm, " %12.5e", (double)PetscRealPart(elemMat[d * totDim + f])));
544:             PetscCall(PetscPrintf(ctx->comm, "\n"));
545:           }
546:           exit(12);
547:         }
548:         PetscCall(PetscFree(elemMat));
549:       } /* grid */
550:     } /* outer element & batch loop */
551:     if (shift == 0.0) { // mass
552:       PetscCall(PetscFree4(ff, dudx, dudy, dudz));
553:     }
554:     if (!container) {                                         // 'CPU' assembly move nest matrix to global JacP
555:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // OpenMP
556:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
557:           const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset); // b_id*b_N + ctx->mat_offset[grid];
558:           PetscInt           nloc, nzl, colbuf[1024], row;
559:           const PetscInt    *cols;
560:           const PetscScalar *vals;
561:           Mat                B = subJ[LAND_PACK_IDX(b_id, grid)];
562:           PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
563:           PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
564:           PetscCall(MatGetSize(B, &nloc, NULL));
565:           for (int i = 0; i < nloc; i++) {
566:             PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
567:             PetscCheck(nzl <= 1024, PetscObjectComm((PetscObject)B), PETSC_ERR_PLIB, "Row too big: %" PetscInt_FMT, nzl);
568:             for (int j = 0; j < nzl; j++) colbuf[j] = moffset + cols[j];
569:             row = moffset + i;
570:             PetscCall(MatSetValues(JacP, 1, &row, nzl, colbuf, vals, ADD_VALUES));
571:             PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
572:           }
573:           PetscCall(MatDestroy(&B));
574:         }
575:       }
576:     }
577:     if (coo_vals) {
578:       PetscCall(MatSetValuesCOO(JacP, coo_vals, ADD_VALUES));
579:       PetscCall(PetscFree(coo_vals));
580:     }
581:   } /* CPU version */
582:   PetscCall(MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY));
583:   PetscCall(MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY));
584:   /* clean up */
585:   if (cellClosure) PetscCall(PetscFree(cellClosure));
586:   if (xdata) PetscCall(VecRestoreArrayReadAndMemType(a_X, &xdata));
587:   PetscFunctionReturn(PETSC_SUCCESS);
588: }

590: static PetscErrorCode GeometryDMLandau(DM base, PetscInt point, PetscInt dim, const PetscReal abc[], PetscReal xyz[], void *a_ctx)
591: {
592:   PetscReal r = abc[0], z = abc[1];

594:   PetscFunctionBegin;
595:   xyz[0] = r;
596:   xyz[1] = z;
597:   if (dim == 3) xyz[2] = abc[2];
598:   PetscFunctionReturn(PETSC_SUCCESS);
599: }

601: /* create DMComposite of meshes for each species group */
602: static PetscErrorCode LandauDMCreateVMeshes(MPI_Comm comm_self, const PetscInt dim, const char prefix[], LandauCtx *ctx, DM pack)
603: {
604:   PetscFunctionBegin;
605:   { /* p4est, quads */
606:     /* Create plex mesh of Landau domain */
607:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
608:       PetscReal par_radius = ctx->radius_par[grid], perp_radius = ctx->radius_perp[grid];
609:       if (!ctx->sphere && !ctx->simplex) { // 2 or 3D (only 3D option)
610:         PetscReal      lo[] = {-perp_radius, -par_radius, -par_radius}, hi[] = {perp_radius, par_radius, par_radius};
611:         DMBoundaryType periodicity[3] = {DM_BOUNDARY_NONE, dim == 2 ? DM_BOUNDARY_NONE : DM_BOUNDARY_NONE, DM_BOUNDARY_NONE};
612:         if (dim == 2) lo[0] = 0;
613:         else {
614:           lo[1] = -perp_radius;
615:           hi[1] = perp_radius; // 3D y is a perp
616:         }
617:         PetscCall(DMPlexCreateBoxMesh(comm_self, dim, PETSC_FALSE, ctx->cells0, lo, hi, periodicity, PETSC_TRUE, &ctx->plex[grid])); // todo: make composite and create dm[grid] here
618:         PetscCall(DMLocalizeCoordinates(ctx->plex[grid]));                                                                           /* needed for periodic */
619:         if (dim == 3) PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "cube"));
620:         else PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "half-plane"));
621:       } else if (dim == 2) {
622:         size_t len;
623:         PetscCall(PetscStrlen(ctx->filename, &len));
624:         if (len) {
625:           Vec          coords;
626:           PetscScalar *x;
627:           PetscInt     N;
628:           char         str[] = "-dm_landau_view_file_0";
629:           str[21] += grid;
630:           PetscCall(DMPlexCreateFromFile(comm_self, ctx->filename, "plexland.c", PETSC_TRUE, &ctx->plex[grid]));
631:           PetscCall(DMPlexOrient(ctx->plex[grid]));
632:           PetscCall(DMGetCoordinatesLocal(ctx->plex[grid], &coords));
633:           PetscCall(VecGetSize(coords, &N));
634:           PetscCall(VecGetArray(coords, &x));
635:           /* scale by domain size */
636:           for (PetscInt i = 0; i < N; i += 2) {
637:             x[i + 0] *= ctx->radius_perp[grid];
638:             x[i + 1] *= ctx->radius_par[grid];
639:           }
640:           PetscCall(VecRestoreArray(coords, &x));
641:           PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], ctx->filename));
642:           PetscCall(PetscInfo(ctx->plex[grid], "%d) Read %s mesh file (%s)\n", (int)grid, ctx->filename, str));
643:           PetscCall(DMViewFromOptions(ctx->plex[grid], NULL, str));
644:         } else {
645:           PetscInt       numCells = ctx->simplex ? 12 : 6, cell_size = ctx->simplex ? 3 : 4, j;
646:           const PetscInt numVerts    = 11;
647:           PetscInt       cellsT[][4] = {
648:             {0,  1, 6, 5 },
649:             {1,  2, 7, 6 },
650:             {2,  3, 8, 7 },
651:             {3,  4, 9, 8 },
652:             {5,  6, 7, 10},
653:             {10, 7, 8, 9 }
654:           };
655:           PetscInt cellsS[][3] = {
656:             {0,  1, 6 },
657:             {1,  2, 6 },
658:             {6,  2, 7 },
659:             {7,  2, 8 },
660:             {8,  2, 3 },
661:             {8,  3, 4 },
662:             {0,  6, 5 },
663:             {5,  6, 7 },
664:             {5,  7, 10},
665:             {10, 7, 9 },
666:             {9,  7, 8 },
667:             {9,  8, 4 }
668:           };
669:           const PetscInt *pcell = (const PetscInt *)(ctx->simplex ? &cellsS[0][0] : &cellsT[0][0]);
670:           PetscReal       coords[11][2], *flatCoords = (PetscReal *)&coords[0][0];
671:           PetscReal       rad = ctx->radius[grid];
672:           for (j = 0; j < 5; j++) { // outside edge
673:             PetscReal z, r, theta = -PETSC_PI / 2 + (j % 5) * PETSC_PI / 4;
674:             r            = rad * PetscCosReal(theta);
675:             coords[j][0] = r;
676:             z            = rad * PetscSinReal(theta);
677:             coords[j][1] = z;
678:           }
679:           coords[j][0]   = 0;
680:           coords[j++][1] = -rad * ctx->sphere_inner_radius_90degree;
681:           coords[j][0]   = rad * ctx->sphere_inner_radius_45degree;
682:           coords[j++][1] = -rad * ctx->sphere_inner_radius_45degree;
683:           coords[j][0]   = rad * ctx->sphere_inner_radius_90degree;
684:           coords[j++][1] = 0;
685:           coords[j][0]   = rad * ctx->sphere_inner_radius_45degree;
686:           coords[j++][1] = rad * ctx->sphere_inner_radius_45degree;
687:           coords[j][0]   = 0;
688:           coords[j++][1] = rad * ctx->sphere_inner_radius_90degree;
689:           coords[j][0]   = 0;
690:           coords[j++][1] = 0;
691:           PetscCall(DMPlexCreateFromCellListPetsc(comm_self, 2, numCells, numVerts, cell_size, ctx->interpolate, pcell, 2, flatCoords, &ctx->plex[grid]));
692:           PetscCall(PetscObjectSetName((PetscObject)ctx->plex[grid], "semi-circle"));
693:           PetscCall(PetscInfo(ctx->plex[grid], "\t%" PetscInt_FMT ") Make circle %s mesh\n", grid, ctx->simplex ? "simplex" : "tensor"));
694:         }
695:       } else SETERRQ(ctx->comm, PETSC_ERR_PLIB, "Velocity space meshes does not support 3V cubed sphere or simplex");
696:       PetscCall(DMSetFromOptions(ctx->plex[grid]));
697:     } // grid loop
698:     PetscCall(PetscObjectSetOptionsPrefix((PetscObject)pack, prefix));
699:     { /* convert to p4est (or whatever), wait for discretization to create pack */
700:       char      convType[256];
701:       PetscBool flg;

703:       PetscOptionsBegin(ctx->comm, prefix, "Mesh conversion options", "DMPLEX");
704:       PetscCall(PetscOptionsFList("-dm_landau_type", "Convert DMPlex to another format (p4est)", "plexland.c", DMList, DMPLEX, convType, 256, &flg));
705:       PetscOptionsEnd();
706:       if (flg) {
707:         ctx->use_p4est = PETSC_TRUE; /* flag for Forest */
708:         for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
709:           DM dmforest;
710:           PetscCall(DMConvert(ctx->plex[grid], convType, &dmforest));
711:           if (dmforest) {
712:             PetscBool isForest;
713:             PetscCall(PetscObjectSetOptionsPrefix((PetscObject)dmforest, prefix));
714:             PetscCall(DMIsForest(dmforest, &isForest));
715:             if (isForest) {
716:               if (ctx->sphere) PetscCall(DMForestSetBaseCoordinateMapping(dmforest, GeometryDMLandau, ctx));
717:               PetscCall(DMDestroy(&ctx->plex[grid]));
718:               ctx->plex[grid] = dmforest; // Forest for adaptivity
719:             } else SETERRQ(ctx->comm, PETSC_ERR_PLIB, "Converted to non Forest?");
720:           } else SETERRQ(ctx->comm, PETSC_ERR_PLIB, "Convert failed?");
721:         }
722:       } else ctx->use_p4est = PETSC_FALSE; /* flag for Forest */
723:     }
724:   } /* non-file */
725:   PetscCall(DMSetDimension(pack, dim));
726:   PetscCall(PetscObjectSetName((PetscObject)pack, "Mesh"));
727:   PetscCall(DMSetApplicationContext(pack, ctx));
728:   PetscFunctionReturn(PETSC_SUCCESS);
729: }

731: static PetscErrorCode SetupDS(DM pack, PetscInt dim, PetscInt grid, LandauCtx *ctx)
732: {
733:   PetscInt     ii, i0;
734:   char         buf[256];
735:   PetscSection section;

737:   PetscFunctionBegin;
738:   for (ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
739:     if (ii == 0) PetscCall(PetscSNPrintf(buf, sizeof(buf), "e"));
740:     else PetscCall(PetscSNPrintf(buf, sizeof(buf), "i%" PetscInt_FMT, ii));
741:     /* Setup Discretization - FEM */
742:     PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, ctx->simplex, NULL, PETSC_DECIDE, &ctx->fe[ii]));
743:     PetscCall(PetscObjectSetName((PetscObject)ctx->fe[ii], buf));
744:     PetscCall(DMSetField(ctx->plex[grid], i0, NULL, (PetscObject)ctx->fe[ii]));
745:   }
746:   PetscCall(DMCreateDS(ctx->plex[grid]));
747:   PetscCall(DMGetSection(ctx->plex[grid], &section));
748:   for (PetscInt ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
749:     if (ii == 0) PetscCall(PetscSNPrintf(buf, sizeof(buf), "se"));
750:     else PetscCall(PetscSNPrintf(buf, sizeof(buf), "si%" PetscInt_FMT, ii));
751:     PetscCall(PetscSectionSetComponentName(section, i0, 0, buf));
752:   }
753:   PetscFunctionReturn(PETSC_SUCCESS);
754: }

756: /* Define a Maxwellian function for testing out the operator. */

758: /* Using cartesian velocity space coordinates, the particle */
759: /* density, [1/m^3], is defined according to */

761: /* $$ n=\int_{R^3} dv^3 \left(\frac{m}{2\pi T}\right)^{3/2}\exp [- mv^2/(2T)] $$ */

763: /* Using some constant, c, we normalize the velocity vector into a */
764: /* dimensionless variable according to v=c*x. Thus the density, $n$, becomes */

766: /* $$ n=\int_{R^3} dx^3 \left(\frac{mc^2}{2\pi T}\right)^{3/2}\exp [- mc^2/(2T)*x^2] $$ */

768: /* Defining $\theta=2T/mc^2$, we thus find that the probability density */
769: /* for finding the particle within the interval in a box dx^3 around x is */

771: /* f(x;\theta)=\left(\frac{1}{\pi\theta}\right)^{3/2} \exp [ -x^2/\theta ] */

773: typedef struct {
774:   PetscReal v_0;
775:   PetscReal kT_m;
776:   PetscReal n;
777:   PetscReal shift;
778: } MaxwellianCtx;

780: static PetscErrorCode maxwellian(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf_dummy, PetscScalar *u, void *actx)
781: {
782:   MaxwellianCtx *mctx = (MaxwellianCtx *)actx;
783:   PetscInt       i;
784:   PetscReal      v2 = 0, theta = 2 * mctx->kT_m / (mctx->v_0 * mctx->v_0), shift; /* theta = 2kT/mc^2 */

786:   PetscFunctionBegin;
787:   /* compute the exponents, v^2 */
788:   for (i = 0; i < dim; ++i) v2 += x[i] * x[i];
789:   /* evaluate the Maxwellian */
790:   if (mctx->shift < 0) shift = -mctx->shift;
791:   else {
792:     u[0]  = mctx->n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
793:     shift = mctx->shift;
794:   }
795:   if (shift != 0.) {
796:     v2 = 0;
797:     for (i = 0; i < dim - 1; ++i) v2 += x[i] * x[i];
798:     v2 += (x[dim - 1] - shift) * (x[dim - 1] - shift);
799:     /* evaluate the shifted Maxwellian */
800:     u[0] += mctx->n * PetscPowReal(PETSC_PI * theta, -1.5) * (PetscExpReal(-v2 / theta));
801:   }
802:   PetscFunctionReturn(PETSC_SUCCESS);
803: }

805: /*@
806:   DMPlexLandauAddMaxwellians - Add a Maxwellian distribution to a state

808:   Collective

810:   Input Parameters:
811: + dm      - The mesh (local)
812: . time    - Current time
813: . temps   - Temperatures of each species (global)
814: . ns      - Number density of each species (global)
815: . grid    - index into current grid - just used for offset into `temp` and `ns`
816: . b_id    - batch index
817: . n_batch - number of batches
818: - actx    - Landau context

820:   Output Parameter:
821: . X - The state (local to this grid)

823:   Level: beginner

825: .seealso: `DMPlexLandauCreateVelocitySpace()`
826:  @*/
827: PetscErrorCode DMPlexLandauAddMaxwellians(DM dm, Vec X, PetscReal time, PetscReal temps[], PetscReal ns[], PetscInt grid, PetscInt b_id, PetscInt n_batch, void *actx)
828: {
829:   LandauCtx *ctx = (LandauCtx *)actx;
830:   PetscErrorCode (*initu[LANDAU_MAX_SPECIES])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *);
831:   PetscInt       dim;
832:   MaxwellianCtx *mctxs[LANDAU_MAX_SPECIES], data[LANDAU_MAX_SPECIES];

834:   PetscFunctionBegin;
835:   PetscCall(DMGetDimension(dm, &dim));
836:   if (!ctx) PetscCall(DMGetApplicationContext(dm, &ctx));
837:   for (PetscInt ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
838:     mctxs[i0]      = &data[i0];
839:     data[i0].v_0   = ctx->v_0;                             // v_0 same for all grids
840:     data[i0].kT_m  = ctx->k * temps[ii] / ctx->masses[ii]; /* kT/m */
841:     data[i0].n     = ns[ii];
842:     initu[i0]      = maxwellian;
843:     data[i0].shift = 0;
844:   }
845:   data[0].shift = ctx->electronShift;
846:   /* need to make ADD_ALL_VALUES work - TODO */
847:   PetscCall(DMProjectFunction(dm, time, initu, (void **)mctxs, INSERT_ALL_VALUES, X));
848:   PetscFunctionReturn(PETSC_SUCCESS);
849: }

851: /*
852:  LandauSetInitialCondition - Adds Maxwellians with context

854:  Collective

856:  Input Parameters:
857:  .   dm - The mesh
858:  -   grid - index into current grid - just used for offset into temp and ns
859:  .   b_id - batch index
860:  -   n_batch - number of batches
861:  +   actx - Landau context with T and n

863:  Output Parameter:
864:  .   X  - The state

866:  Level: beginner

868: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauAddMaxwellians()`
869:  */
870: static PetscErrorCode LandauSetInitialCondition(DM dm, Vec X, PetscInt grid, PetscInt b_id, PetscInt n_batch, void *actx)
871: {
872:   LandauCtx *ctx = (LandauCtx *)actx;

874:   PetscFunctionBegin;
875:   if (!ctx) PetscCall(DMGetApplicationContext(dm, &ctx));
876:   PetscCall(VecZeroEntries(X));
877:   PetscCall(DMPlexLandauAddMaxwellians(dm, X, 0.0, ctx->thermal_temps, ctx->n, grid, b_id, n_batch, ctx));
878:   PetscFunctionReturn(PETSC_SUCCESS);
879: }

881: // adapt a level once. Forest in/out
882: #if defined(PETSC_USE_INFO)
883: static const char *s_refine_names[] = {"RE", "Z1", "Origin", "Z2", "Uniform"};
884: #endif
885: static PetscErrorCode adaptToleranceFEM(PetscFE fem, Vec sol, PetscInt type, PetscInt grid, LandauCtx *ctx, DM *newForest)
886: {
887:   DM              forest, plex, adaptedDM = NULL;
888:   PetscDS         prob;
889:   PetscBool       isForest;
890:   PetscQuadrature quad;
891:   PetscInt        Nq, Nb, *Nb2, cStart, cEnd, c, dim, qj, k;
892:   DMLabel         adaptLabel = NULL;

894:   PetscFunctionBegin;
895:   forest = ctx->plex[grid];
896:   PetscCall(DMCreateDS(forest));
897:   PetscCall(DMGetDS(forest, &prob));
898:   PetscCall(DMGetDimension(forest, &dim));
899:   PetscCall(DMIsForest(forest, &isForest));
900:   PetscCheck(isForest, ctx->comm, PETSC_ERR_ARG_WRONG, "! Forest");
901:   PetscCall(DMConvert(forest, DMPLEX, &plex));
902:   PetscCall(DMPlexGetHeightStratum(plex, 0, &cStart, &cEnd));
903:   PetscCall(DMLabelCreate(PETSC_COMM_SELF, "adapt", &adaptLabel));
904:   PetscCall(PetscFEGetQuadrature(fem, &quad));
905:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
906:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
907:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
908:   PetscCall(PetscDSGetDimensions(prob, &Nb2));
909:   PetscCheck(Nb2[0] == Nb, ctx->comm, PETSC_ERR_ARG_WRONG, " Nb = %" PetscInt_FMT " != Nb (%d)", Nb, (int)Nb2[0]);
910:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
911:   PetscCall(PetscInfo(sol, "%" PetscInt_FMT ") Refine phase: %s\n", grid, s_refine_names[type]));
912:   if (type == 4) {
913:     for (c = cStart; c < cEnd; c++) PetscCall(DMLabelSetValue(adaptLabel, c, DM_ADAPT_REFINE));
914:   } else if (type == 2) {
915:     PetscInt  rCellIdx[8], nr = 0, nrmax = (dim == 3) ? 8 : 2;
916:     PetscReal minRad = PETSC_INFINITY, r;
917:     for (c = cStart; c < cEnd; c++) {
918:       PetscReal tt, v0[LANDAU_MAX_NQND * 3], J[LANDAU_MAX_NQND * 9], invJ[LANDAU_MAX_NQND * 9], detJ[LANDAU_MAX_NQND];
919:       PetscCall(DMPlexComputeCellGeometryFEM(plex, c, quad, v0, J, invJ, detJ));
920:       (void)J;
921:       (void)invJ;
922:       for (qj = 0; qj < Nq; ++qj) {
923:         tt = PetscSqr(v0[dim * qj + 0]) + PetscSqr(v0[dim * qj + 1]) + PetscSqr((dim == 3) ? v0[dim * qj + 2] : 0);
924:         r  = PetscSqrtReal(tt);
925:         if (r < minRad - PETSC_SQRT_MACHINE_EPSILON * 10.) {
926:           minRad         = r;
927:           nr             = 0;
928:           rCellIdx[nr++] = c;
929:           PetscCall(PetscInfo(sol, "\t\t%" PetscInt_FMT ") Found first inner r=%e, cell %" PetscInt_FMT ", qp %" PetscInt_FMT "/%" PetscInt_FMT "\n", grid, (double)r, c, qj + 1, Nq));
930:         } else if ((r - minRad) < PETSC_SQRT_MACHINE_EPSILON * 100. && nr < nrmax) {
931:           for (k = 0; k < nr; k++)
932:             if (c == rCellIdx[k]) break;
933:           if (k == nr) {
934:             rCellIdx[nr++] = c;
935:             PetscCall(PetscInfo(sol, "\t\t\t%" PetscInt_FMT ") Found another inner r=%e, cell %" PetscInt_FMT ", qp %" PetscInt_FMT "/%" PetscInt_FMT ", d=%e\n", grid, (double)r, c, qj + 1, Nq, (double)(r - minRad)));
936:           }
937:         }
938:       }
939:     }
940:     for (k = 0; k < nr; k++) PetscCall(DMLabelSetValue(adaptLabel, rCellIdx[k], DM_ADAPT_REFINE));
941:     PetscCall(PetscInfo(sol, "\t\t\t%" PetscInt_FMT ") Refined %" PetscInt_FMT " origin cells %" PetscInt_FMT ",%" PetscInt_FMT " r=%g\n", grid, nr, rCellIdx[0], rCellIdx[1], (double)minRad));
942:   } else if (type == 0 || type == 1 || type == 3) { /* refine along r=0 axis */
943:     PetscScalar *coef = NULL;
944:     Vec          coords;
945:     PetscInt     csize, Nv, d, nz, nrefined = 0;
946:     DM           cdm;
947:     PetscSection cs;
948:     PetscCall(DMGetCoordinatesLocal(forest, &coords));
949:     PetscCall(DMGetCoordinateDM(forest, &cdm));
950:     PetscCall(DMGetLocalSection(cdm, &cs));
951:     for (c = cStart; c < cEnd; c++) {
952:       PetscInt doit = 0, outside = 0;
953:       PetscCall(DMPlexVecGetClosure(cdm, cs, coords, c, &csize, &coef));
954:       Nv = csize / dim;
955:       for (nz = d = 0; d < Nv; d++) {
956:         PetscReal z = PetscRealPart(coef[d * dim + (dim - 1)]), x = PetscSqr(PetscRealPart(coef[d * dim + 0])) + ((dim == 3) ? PetscSqr(PetscRealPart(coef[d * dim + 1])) : 0);
957:         x = PetscSqrtReal(x);
958:         if (type == 0) {
959:           if (ctx->re_radius > PETSC_SQRT_MACHINE_EPSILON && (z < -PETSC_MACHINE_EPSILON * 10. || z > ctx->re_radius + PETSC_MACHINE_EPSILON * 10.)) outside++; /* first pass don't refine bottom */
960:         } else if (type == 1 && (z > ctx->vperp0_radius1 || z < -ctx->vperp0_radius1)) {
961:           outside++; /* don't refine outside electron refine radius */
962:           PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") (debug) found %s cells\n", grid, s_refine_names[type]));
963:         } else if (type == 3 && (z > ctx->vperp0_radius2 || z < -ctx->vperp0_radius2)) {
964:           outside++; /* refine r=0 cells on refinement front */
965:           PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") (debug) found %s cells\n", grid, s_refine_names[type]));
966:         }
967:         if (x < PETSC_MACHINE_EPSILON * 10. && (type != 0 || ctx->re_radius > PETSC_SQRT_MACHINE_EPSILON)) nz++;
968:       }
969:       PetscCall(DMPlexVecRestoreClosure(cdm, cs, coords, c, &csize, &coef));
970:       if (doit || (outside < Nv && nz)) {
971:         PetscCall(DMLabelSetValue(adaptLabel, c, DM_ADAPT_REFINE));
972:         nrefined++;
973:       }
974:     }
975:     PetscCall(PetscInfo(sol, "\t%" PetscInt_FMT ") Refined %" PetscInt_FMT " cells\n", grid, nrefined));
976:   }
977:   PetscCall(DMDestroy(&plex));
978:   PetscCall(DMAdaptLabel(forest, adaptLabel, &adaptedDM));
979:   PetscCall(DMLabelDestroy(&adaptLabel));
980:   *newForest = adaptedDM;
981:   if (adaptedDM) {
982:     if (isForest) {
983:       PetscCall(DMForestSetAdaptivityForest(adaptedDM, NULL)); // ????
984:     }
985:     PetscCall(DMConvert(adaptedDM, DMPLEX, &plex));
986:     PetscCall(DMPlexGetHeightStratum(plex, 0, &cStart, &cEnd));
987:     PetscCall(PetscInfo(sol, "\t\t\t\t%" PetscInt_FMT ") %" PetscInt_FMT " cells, %" PetscInt_FMT " total quadrature points\n", grid, cEnd - cStart, Nq * (cEnd - cStart)));
988:     PetscCall(DMDestroy(&plex));
989:   } else *newForest = NULL;
990:   PetscFunctionReturn(PETSC_SUCCESS);
991: }

993: // forest goes in (ctx->plex[grid]), plex comes out
994: static PetscErrorCode adapt(PetscInt grid, LandauCtx *ctx, Vec *uu)
995: {
996:   PetscInt adaptIter;

998:   PetscFunctionBegin;
999:   PetscInt type, limits[5] = {(grid == 0) ? ctx->numRERefine : 0, (grid == 0) ? ctx->nZRefine1 : 0, ctx->numAMRRefine[grid], (grid == 0) ? ctx->nZRefine2 : 0, ctx->postAMRRefine[grid]};
1000:   for (type = 0; type < 5; type++) {
1001:     for (adaptIter = 0; adaptIter < limits[type]; adaptIter++) {
1002:       DM newForest = NULL;
1003:       PetscCall(adaptToleranceFEM(ctx->fe[0], *uu, type, grid, ctx, &newForest));
1004:       if (newForest) {
1005:         PetscCall(DMDestroy(&ctx->plex[grid]));
1006:         PetscCall(VecDestroy(uu));
1007:         PetscCall(DMCreateGlobalVector(newForest, uu));
1008:         PetscCall(PetscObjectSetName((PetscObject)*uu, "uAMR"));
1009:         PetscCall(LandauSetInitialCondition(newForest, *uu, grid, 0, 1, ctx));
1010:         ctx->plex[grid] = newForest;
1011:       } else {
1012:         PetscCall(PetscInfo(*uu, "No refinement\n"));
1013:       }
1014:     }
1015:   }
1016:   PetscFunctionReturn(PETSC_SUCCESS);
1017: }

1019: // make log(Lambdas) from NRL Plasma formulary
1020: static PetscErrorCode makeLambdas(LandauCtx *ctx)
1021: {
1022:   PetscFunctionBegin;
1023:   for (PetscInt gridi = 0; gridi < ctx->num_grids; gridi++) {
1024:     int       iii   = ctx->species_offset[gridi];
1025:     PetscReal Ti_ev = (ctx->thermal_temps[iii] / 1.1604525e7) * 1000; // convert (back) to eV
1026:     PetscReal ni    = ctx->n[iii] * ctx->n_0;
1027:     for (PetscInt gridj = gridi; gridj < ctx->num_grids; gridj++) {
1028:       PetscInt  jjj = ctx->species_offset[gridj];
1029:       PetscReal Zj  = ctx->charges[jjj] / 1.6022e-19;
1030:       if (gridi == 0) {
1031:         if (gridj == 0) { // lam_ee
1032:           ctx->lambdas[gridi][gridj] = 23.5 - PetscLogReal(PetscSqrtReal(ni) * PetscPowReal(Ti_ev, -1.25)) - PetscSqrtReal(1e-5 + PetscSqr(PetscLogReal(Ti_ev) - 2) / 16);
1033:         } else { // lam_ei == lam_ie
1034:           if (10 * Zj * Zj > Ti_ev) {
1035:             ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 23 - PetscLogReal(PetscSqrtReal(ni) * Zj * PetscPowReal(Ti_ev, -1.5));
1036:           } else {
1037:             ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 24 - PetscLogReal(PetscSqrtReal(ni) / Ti_ev);
1038:           }
1039:         }
1040:       } else { // lam_ii'
1041:         PetscReal mui = ctx->masses[iii] / 1.6720e-27, Zi = ctx->charges[iii] / 1.6022e-19;
1042:         PetscReal Tj_ev            = (ctx->thermal_temps[jjj] / 1.1604525e7) * 1000; // convert (back) to eV
1043:         PetscReal muj              = ctx->masses[jjj] / 1.6720e-27;
1044:         PetscReal nj               = ctx->n[jjj] * ctx->n_0;
1045:         ctx->lambdas[gridi][gridj] = ctx->lambdas[gridj][gridi] = 23 - PetscLogReal(Zi * Zj * (mui + muj) / (mui * Tj_ev + muj * Ti_ev) * PetscSqrtReal(ni * Zi * Zi / Ti_ev + nj * Zj * Zj / Tj_ev));
1046:       }
1047:     }
1048:   }
1049:   //PetscReal v0 = PetscSqrtReal(ctx->k * ctx->thermal_temps[iii] / ctx->masses[iii]); /* arbitrary units for non-dimensionalization: plasma formulary def */
1050:   PetscFunctionReturn(PETSC_SUCCESS);
1051: }

1053: static PetscErrorCode ProcessOptions(LandauCtx *ctx, const char prefix[])
1054: {
1055:   PetscBool flg, fileflg;
1056:   PetscInt  ii, nt, nm, nc, num_species_grid[LANDAU_MAX_GRIDS], non_dim_grid;
1057:   PetscReal lnLam = 10;
1058:   DM        dummy;

1060:   PetscFunctionBegin;
1061:   PetscCall(DMCreate(ctx->comm, &dummy));
1062:   /* get options - initialize context */
1063:   ctx->verbose        = 1; // should be 0 for silent compliance
1064:   ctx->batch_sz       = 1;
1065:   ctx->batch_view_idx = 0;
1066:   ctx->interpolate    = PETSC_TRUE;
1067:   ctx->gpu_assembly   = PETSC_TRUE;
1068:   ctx->norm_state     = 0;
1069:   ctx->electronShift  = 0;
1070:   ctx->M              = NULL;
1071:   ctx->J              = NULL;
1072:   /* geometry and grids */
1073:   ctx->sphere    = PETSC_FALSE;
1074:   ctx->use_p4est = PETSC_FALSE;
1075:   ctx->simplex   = PETSC_FALSE;
1076:   for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1077:     ctx->radius[grid]             = 5.; /* thermal radius (velocity) */
1078:     ctx->radius_perp[grid]        = 5.; /* thermal radius (velocity) */
1079:     ctx->radius_par[grid]         = 5.; /* thermal radius (velocity) */
1080:     ctx->numAMRRefine[grid]       = 0;
1081:     ctx->postAMRRefine[grid]      = 0;
1082:     ctx->species_offset[grid + 1] = 1; // one species default
1083:     num_species_grid[grid]        = 0;
1084:     ctx->plex[grid]               = NULL; /* cache as expensive to Convert */
1085:   }
1086:   ctx->species_offset[0] = 0;
1087:   ctx->re_radius         = 0.;
1088:   ctx->vperp0_radius1    = 0;
1089:   ctx->vperp0_radius2    = 0;
1090:   ctx->nZRefine1         = 0;
1091:   ctx->nZRefine2         = 0;
1092:   ctx->numRERefine       = 0;
1093:   num_species_grid[0]    = 1; // one species default
1094:   /* species - [0] electrons, [1] one ion species eg, duetarium, [2] heavy impurity ion, ... */
1095:   ctx->charges[0]       = -1;                       /* electron charge (MKS) */
1096:   ctx->masses[0]        = 1 / 1835.469965278441013; /* temporary value in proton mass */
1097:   ctx->n[0]             = 1;
1098:   ctx->v_0              = 1; /* thermal velocity, we could start with a scale != 1 */
1099:   ctx->thermal_temps[0] = 1;
1100:   /* constants, etc. */
1101:   ctx->epsilon0 = 8.8542e-12;     /* permittivity of free space (MKS) F/m */
1102:   ctx->k        = 1.38064852e-23; /* Boltzmann constant (MKS) J/K */
1103:   ctx->n_0      = 1.e20;          /* typical plasma n, but could set it to 1 */
1104:   ctx->Ez       = 0;
1105:   for (PetscInt grid = 0; grid < LANDAU_NUM_TIMERS; grid++) ctx->times[grid] = 0;
1106:   for (PetscInt ii = 0; ii < LANDAU_DIM; ii++) ctx->cells0[ii] = 2;
1107:   if (LANDAU_DIM == 2) ctx->cells0[0] = 1;
1108:   ctx->use_matrix_mass                = PETSC_FALSE;
1109:   ctx->use_relativistic_corrections   = PETSC_FALSE;
1110:   ctx->use_energy_tensor_trick        = PETSC_FALSE; /* Use Eero's trick for energy conservation v --> grad(v^2/2) */
1111:   ctx->SData_d.w                      = NULL;
1112:   ctx->SData_d.x                      = NULL;
1113:   ctx->SData_d.y                      = NULL;
1114:   ctx->SData_d.z                      = NULL;
1115:   ctx->SData_d.invJ                   = NULL;
1116:   ctx->jacobian_field_major_order     = PETSC_FALSE;
1117:   ctx->SData_d.coo_elem_offsets       = NULL;
1118:   ctx->SData_d.coo_elem_point_offsets = NULL;
1119:   ctx->SData_d.coo_elem_fullNb        = NULL;
1120:   ctx->SData_d.coo_size               = 0;
1121:   PetscOptionsBegin(ctx->comm, prefix, "Options for Fokker-Plank-Landau collision operator", "none");
1122: #if defined(PETSC_HAVE_KOKKOS)
1123:   ctx->deviceType = LANDAU_KOKKOS;
1124:   PetscCall(PetscStrncpy(ctx->filename, "kokkos", sizeof(ctx->filename)));
1125: #else
1126:   ctx->deviceType = LANDAU_CPU;
1127:   PetscCall(PetscStrncpy(ctx->filename, "cpu", sizeof(ctx->filename)));
1128: #endif
1129:   PetscCall(PetscOptionsString("-dm_landau_device_type", "Use kernels on 'cpu' 'kokkos'", "plexland.c", ctx->filename, ctx->filename, sizeof(ctx->filename), NULL));
1130:   PetscCall(PetscStrcmp("cpu", ctx->filename, &flg));
1131:   if (flg) {
1132:     ctx->deviceType = LANDAU_CPU;
1133:   } else {
1134:     PetscCall(PetscStrcmp("kokkos", ctx->filename, &flg));
1135:     if (flg) ctx->deviceType = LANDAU_KOKKOS;
1136:     else SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_device_type %s", ctx->filename);
1137:   }
1138:   ctx->filename[0] = '\0';
1139:   PetscCall(PetscOptionsString("-dm_landau_filename", "file to read mesh from", "plexland.c", ctx->filename, ctx->filename, sizeof(ctx->filename), &fileflg));
1140:   PetscCall(PetscOptionsReal("-dm_landau_electron_shift", "Shift in thermal velocity of electrons", "none", ctx->electronShift, &ctx->electronShift, NULL));
1141:   PetscCall(PetscOptionsInt("-dm_landau_verbose", "Level of verbosity output", "plexland.c", ctx->verbose, &ctx->verbose, NULL));
1142:   PetscCall(PetscOptionsInt("-dm_landau_batch_size", "Number of 'vertices' to batch", "ex2.c", ctx->batch_sz, &ctx->batch_sz, NULL));
1143:   PetscCheck(LANDAU_MAX_BATCH_SZ >= ctx->batch_sz, ctx->comm, PETSC_ERR_ARG_WRONG, "LANDAU_MAX_BATCH_SZ %" PetscInt_FMT " < ctx->batch_sz %" PetscInt_FMT, (PetscInt)LANDAU_MAX_BATCH_SZ, ctx->batch_sz);
1144:   PetscCall(PetscOptionsInt("-dm_landau_batch_view_idx", "Index of batch for diagnostics like plotting", "ex2.c", ctx->batch_view_idx, &ctx->batch_view_idx, NULL));
1145:   PetscCheck(ctx->batch_view_idx < ctx->batch_sz, ctx->comm, PETSC_ERR_ARG_WRONG, "-ctx->batch_view_idx %" PetscInt_FMT " > ctx->batch_sz %" PetscInt_FMT, ctx->batch_view_idx, ctx->batch_sz);
1146:   PetscCall(PetscOptionsReal("-dm_landau_Ez", "Initial parallel electric field in unites of Conner-Hastie critical field", "plexland.c", ctx->Ez, &ctx->Ez, NULL));
1147:   PetscCall(PetscOptionsReal("-dm_landau_n_0", "Normalization constant for number density", "plexland.c", ctx->n_0, &ctx->n_0, NULL));
1148:   PetscCall(PetscOptionsBool("-dm_landau_use_mataxpy_mass", "Use fast but slightly fragile MATAXPY to add mass term", "plexland.c", ctx->use_matrix_mass, &ctx->use_matrix_mass, NULL));
1149:   PetscCall(PetscOptionsBool("-dm_landau_use_relativistic_corrections", "Use relativistic corrections", "plexland.c", ctx->use_relativistic_corrections, &ctx->use_relativistic_corrections, NULL));
1150:   PetscCall(PetscOptionsBool("-dm_landau_simplex", "Use simplex elements", "plexland.c", ctx->simplex, &ctx->simplex, NULL));
1151:   if (LANDAU_DIM == 2 && ctx->use_relativistic_corrections) ctx->use_relativistic_corrections = PETSC_FALSE; // should warn
1152:   PetscCall(PetscOptionsBool("-dm_landau_use_energy_tensor_trick", "Use Eero's trick of using grad(v^2/2) instead of v as args to Landau tensor to conserve energy with relativistic corrections and Q1 elements", "plexland.c", ctx->use_energy_tensor_trick,
1153:                              &ctx->use_energy_tensor_trick, NULL));

1155:   /* get num species with temperature, set defaults */
1156:   for (ii = 1; ii < LANDAU_MAX_SPECIES; ii++) {
1157:     ctx->thermal_temps[ii] = 1;
1158:     ctx->charges[ii]       = 1;
1159:     ctx->masses[ii]        = 1;
1160:     ctx->n[ii]             = 1;
1161:   }
1162:   nt = LANDAU_MAX_SPECIES;
1163:   PetscCall(PetscOptionsRealArray("-dm_landau_thermal_temps", "Temperature of each species [e,i_0,i_1,...] in keV (must be set to set number of species)", "plexland.c", ctx->thermal_temps, &nt, &flg));
1164:   if (flg) {
1165:     PetscCall(PetscInfo(dummy, "num_species set to number of thermal temps provided (%" PetscInt_FMT ")\n", nt));
1166:     ctx->num_species = nt;
1167:   } else SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_thermal_temps ,t1,t2,.. must be provided to set the number of species");
1168:   for (ii = 0; ii < ctx->num_species; ii++) ctx->thermal_temps[ii] *= 1.1604525e7; /* convert to Kelvin */
1169:   nm = LANDAU_MAX_SPECIES - 1;
1170:   PetscCall(PetscOptionsRealArray("-dm_landau_ion_masses", "Mass of each species in units of proton mass [i_0=2,i_1=40...]", "plexland.c", &ctx->masses[1], &nm, &flg));
1171:   PetscCheck(!flg || nm == ctx->num_species - 1, ctx->comm, PETSC_ERR_ARG_WRONG, "num ion masses %" PetscInt_FMT " != num species %" PetscInt_FMT, nm, ctx->num_species - 1);
1172:   nm = LANDAU_MAX_SPECIES;
1173:   PetscCall(PetscOptionsRealArray("-dm_landau_n", "Number density of each species = n_s * n_0", "plexland.c", ctx->n, &nm, &flg));
1174:   PetscCheck(!flg || nm == ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "wrong num n: %" PetscInt_FMT " != num species %" PetscInt_FMT, nm, ctx->num_species);
1175:   for (ii = 0; ii < LANDAU_MAX_SPECIES; ii++) ctx->masses[ii] *= 1.6720e-27; /* scale by proton mass kg */
1176:   ctx->masses[0] = 9.10938356e-31;                                           /* electron mass kg (should be about right already) */
1177:   nc             = LANDAU_MAX_SPECIES - 1;
1178:   PetscCall(PetscOptionsRealArray("-dm_landau_ion_charges", "Charge of each species in units of proton charge [i_0=2,i_1=18,...]", "plexland.c", &ctx->charges[1], &nc, &flg));
1179:   if (flg) PetscCheck(nc == ctx->num_species - 1, ctx->comm, PETSC_ERR_ARG_WRONG, "num charges %" PetscInt_FMT " != num species %" PetscInt_FMT, nc, ctx->num_species - 1);
1180:   for (ii = 0; ii < LANDAU_MAX_SPECIES; ii++) ctx->charges[ii] *= 1.6022e-19; /* electron/proton charge (MKS) */
1181:   /* geometry and grids */
1182:   nt = LANDAU_MAX_GRIDS;
1183:   PetscCall(PetscOptionsIntArray("-dm_landau_num_species_grid", "Number of species on each grid: [ 1, ....] or [S, 0 ....] for single grid", "plexland.c", num_species_grid, &nt, &flg));
1184:   if (flg) {
1185:     ctx->num_grids = nt;
1186:     for (ii = nt = 0; ii < ctx->num_grids; ii++) nt += num_species_grid[ii];
1187:     PetscCheck(ctx->num_species == nt, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_num_species_grid: sum %" PetscInt_FMT " != num_species = %" PetscInt_FMT ". %" PetscInt_FMT " grids (check that number of grids <= LANDAU_MAX_GRIDS = %d)", nt, ctx->num_species,
1188:                ctx->num_grids, LANDAU_MAX_GRIDS);
1189:   } else {
1190:     if (ctx->num_species > LANDAU_MAX_GRIDS) {
1191:       num_species_grid[0] = 1;
1192:       num_species_grid[1] = ctx->num_species - 1;
1193:       ctx->num_grids      = 2;
1194:     } else {
1195:       ctx->num_grids = ctx->num_species;
1196:       for (ii = 0; ii < ctx->num_grids; ii++) num_species_grid[ii] = 1;
1197:     }
1198:   }
1199:   for (ctx->species_offset[0] = ii = 0; ii < ctx->num_grids; ii++) ctx->species_offset[ii + 1] = ctx->species_offset[ii] + num_species_grid[ii];
1200:   PetscCheck(ctx->species_offset[ctx->num_grids] == ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "ctx->species_offset[ctx->num_grids] %" PetscInt_FMT " != ctx->num_species = %" PetscInt_FMT " ???????????", ctx->species_offset[ctx->num_grids],
1201:              ctx->num_species);
1202:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1203:     int iii                  = ctx->species_offset[grid];                                          // normalize with first (arbitrary) species on grid
1204:     ctx->thermal_speed[grid] = PetscSqrtReal(ctx->k * ctx->thermal_temps[iii] / ctx->masses[iii]); /* arbitrary units for non-dimensionalization: plasma formulary def */
1205:   }
1206:   // get lambdas here because we need them for t_0 etc
1207:   PetscCall(PetscOptionsReal("-dm_landau_ln_lambda", "Universal cross section parameter. Default uses NRL formulas", "plexland.c", lnLam, &lnLam, &flg));
1208:   if (flg) {
1209:     for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1210:       for (PetscInt gridj = 0; gridj < LANDAU_MAX_GRIDS; gridj++) ctx->lambdas[gridj][grid] = lnLam; /* cross section ratio large - small angle collisions */
1211:     }
1212:   } else {
1213:     PetscCall(makeLambdas(ctx));
1214:   }
1215:   non_dim_grid = 0;
1216:   PetscCall(PetscOptionsInt("-dm_landau_normalization_grid", "Index of grid to use for setting v_0, m_0, t_0. (Not recommended)", "plexland.c", non_dim_grid, &non_dim_grid, &flg));
1217:   if (non_dim_grid != 0) PetscCall(PetscInfo(dummy, "Normalization grid set to %" PetscInt_FMT ", but non-default not well verified\n", non_dim_grid));
1218:   PetscCheck(non_dim_grid >= 0 && non_dim_grid < ctx->num_species, ctx->comm, PETSC_ERR_ARG_WRONG, "Normalization grid wrong: %" PetscInt_FMT, non_dim_grid);
1219:   ctx->v_0 = ctx->thermal_speed[non_dim_grid]; /* arbitrary units for non dimensionalization: global mean velocity in 1D of electrons */
1220:   ctx->m_0 = ctx->masses[non_dim_grid];        /* arbitrary reference mass, electrons */
1221:   ctx->t_0 = 8 * PETSC_PI * PetscSqr(ctx->epsilon0 * ctx->m_0 / PetscSqr(ctx->charges[non_dim_grid])) / ctx->lambdas[non_dim_grid][non_dim_grid] / ctx->n_0 * PetscPowReal(ctx->v_0, 3); /* note, this t_0 makes nu[non_dim_grid,non_dim_grid]=1 */
1222:   /* domain */
1223:   nt = LANDAU_MAX_GRIDS;
1224:   PetscCall(PetscOptionsRealArray("-dm_landau_domain_radius", "Phase space size in units of thermal velocity of grid", "plexland.c", ctx->radius, &nt, &flg));
1225:   if (flg) {
1226:     PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_radius: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1227:     while (nt--) ctx->radius_par[nt] = ctx->radius_perp[nt] = ctx->radius[nt];
1228:   } else {
1229:     nt = LANDAU_MAX_GRIDS;
1230:     PetscCall(PetscOptionsRealArray("-dm_landau_domain_max_par", "Parallel velocity domain size in units of thermal velocity of grid", "plexland.c", ctx->radius_par, &nt, &flg));
1231:     if (flg) PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_max_par: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1232:     PetscCall(PetscOptionsRealArray("-dm_landau_domain_max_perp", "Perpendicular velocity domain size in units of thermal velocity of grid", "plexland.c", ctx->radius_perp, &nt, &flg));
1233:     if (flg) PetscCheck(nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_domain_max_perp: given %" PetscInt_FMT " radius != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1234:   }
1235:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1236:     if (flg && ctx->radius[grid] <= 0) { /* negative is ratio of c - need to set par and perp with this -- todo */
1237:       if (ctx->radius[grid] == 0) ctx->radius[grid] = 0.75;
1238:       else ctx->radius[grid] = -ctx->radius[grid];
1239:       ctx->radius[grid] = ctx->radius[grid] * SPEED_OF_LIGHT / ctx->v_0; // use any species on grid to normalize (v_0 same for all on grid)
1240:       PetscCall(PetscInfo(dummy, "Change domain radius to %g for grid %" PetscInt_FMT "\n", (double)ctx->radius[grid], grid));
1241:     }
1242:     ctx->radius[grid] *= ctx->thermal_speed[grid] / ctx->v_0;      // scale domain by thermal radius relative to v_0
1243:     ctx->radius_perp[grid] *= ctx->thermal_speed[grid] / ctx->v_0; // scale domain by thermal radius relative to v_0
1244:     ctx->radius_par[grid] *= ctx->thermal_speed[grid] / ctx->v_0;  // scale domain by thermal radius relative to v_0
1245:   }
1246:   /* amr parameters */
1247:   if (!fileflg) {
1248:     nt = LANDAU_MAX_GRIDS;
1249:     PetscCall(PetscOptionsIntArray("-dm_landau_amr_levels_max", "Number of AMR levels of refinement around origin, after (RE) refinements along z", "plexland.c", ctx->numAMRRefine, &nt, &flg));
1250:     PetscCheck(!flg || nt >= ctx->num_grids, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_amr_levels_max: given %" PetscInt_FMT " != number grids %" PetscInt_FMT, nt, ctx->num_grids);
1251:     nt = LANDAU_MAX_GRIDS;
1252:     PetscCall(PetscOptionsIntArray("-dm_landau_amr_post_refine", "Number of levels to uniformly refine after AMR", "plexland.c", ctx->postAMRRefine, &nt, &flg));
1253:     for (ii = 1; ii < ctx->num_grids; ii++) ctx->postAMRRefine[ii] = ctx->postAMRRefine[0]; // all grids the same now
1254:     PetscCall(PetscOptionsInt("-dm_landau_amr_re_levels", "Number of levels to refine along v_perp=0, z>0", "plexland.c", ctx->numRERefine, &ctx->numRERefine, &flg));
1255:     PetscCall(PetscOptionsInt("-dm_landau_amr_z_refine_pre", "Number of levels to refine along v_perp=0 before origin refine", "plexland.c", ctx->nZRefine1, &ctx->nZRefine1, &flg));
1256:     PetscCall(PetscOptionsInt("-dm_landau_amr_z_refine_post", "Number of levels to refine along v_perp=0 after origin refine", "plexland.c", ctx->nZRefine2, &ctx->nZRefine2, &flg));
1257:     PetscCall(PetscOptionsReal("-dm_landau_re_radius", "velocity range to refine on positive (z>0) r=0 axis for runaways", "plexland.c", ctx->re_radius, &ctx->re_radius, &flg));
1258:     PetscCall(PetscOptionsReal("-dm_landau_z_radius_pre", "velocity range to refine r=0 axis (for electrons)", "plexland.c", ctx->vperp0_radius1, &ctx->vperp0_radius1, &flg));
1259:     PetscCall(PetscOptionsReal("-dm_landau_z_radius_post", "velocity range to refine r=0 axis (for electrons) after origin AMR", "plexland.c", ctx->vperp0_radius2, &ctx->vperp0_radius2, &flg));
1260:     /* spherical domain (not used) */
1261:     PetscCall(PetscOptionsBool("-dm_landau_sphere", "use sphere/semi-circle domain instead of rectangle", "plexland.c", ctx->sphere, &ctx->sphere, NULL));
1262:     if (ctx->sphere || ctx->simplex) {
1263:       ctx->sphere_inner_radius_90degree = 0.40;
1264:       ctx->sphere_inner_radius_45degree = 0.35;
1265:       PetscCall(PetscOptionsReal("-dm_landau_sphere_inner_radius_90degree_scale", "Scaling of radius for inner circle on 90 degree grid", "plexland.c", ctx->sphere_inner_radius_90degree, &ctx->sphere_inner_radius_90degree, NULL));
1266:       PetscCall(PetscOptionsReal("-dm_landau_sphere_inner_radius_45degree_scale", "Scaling of radius for inner circle on 45 degree grid", "plexland.c", ctx->sphere_inner_radius_45degree, &ctx->sphere_inner_radius_45degree, NULL));
1267:     } else {
1268:       nt = LANDAU_DIM;
1269:       PetscCall(PetscOptionsIntArray("-dm_landau_num_cells", "Number of cells in each dimension of base grid", "plexland.c", ctx->cells0, &nt, &flg));
1270:     }
1271:   }
1272:   /* processing options */
1273:   PetscCall(PetscOptionsBool("-dm_landau_gpu_assembly", "Assemble Jacobian on GPU", "plexland.c", ctx->gpu_assembly, &ctx->gpu_assembly, NULL));
1274:   PetscCall(PetscOptionsBool("-dm_landau_jacobian_field_major_order", "Reorder Jacobian for GPU assembly with field major, or block diagonal, ordering (DEPRECATED)", "plexland.c", ctx->jacobian_field_major_order, &ctx->jacobian_field_major_order, NULL));
1275:   if (ctx->jacobian_field_major_order) PetscCheck(ctx->gpu_assembly, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order requires -dm_landau_gpu_assembly");
1276:   PetscCheck(!ctx->jacobian_field_major_order, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order DEPRECATED");
1277:   PetscOptionsEnd();

1279:   for (ii = ctx->num_species; ii < LANDAU_MAX_SPECIES; ii++) ctx->masses[ii] = ctx->thermal_temps[ii] = ctx->charges[ii] = 0;
1280:   if (ctx->verbose != 0) {
1281:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "masses:        e=%10.3e; ions in proton mass units:   %10.3e %10.3e ...\n", (double)ctx->masses[0], (double)(ctx->masses[1] / 1.6720e-27), (double)(ctx->num_species > 2 ? ctx->masses[2] / 1.6720e-27 : 0)));
1282:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "charges:       e=%10.3e; charges in elementary units: %10.3e %10.3e\n", (double)ctx->charges[0], (double)(-ctx->charges[1] / ctx->charges[0]), (double)(ctx->num_species > 2 ? -ctx->charges[2] / ctx->charges[0] : 0)));
1283:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "n:             e: %10.3e                           i: %10.3e %10.3e\n", (double)ctx->n[0], (double)ctx->n[1], (double)(ctx->num_species > 2 ? ctx->n[2] : 0)));
1284:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "thermal T (K): e=%10.3e i=%10.3e %10.3e. Normalization grid %d: v_0=%10.3e (%10.3ec) n_0=%10.3e t_0=%10.3e %" PetscInt_FMT " batched, view batch %" PetscInt_FMT "\n", (double)ctx->thermal_temps[0],
1285:                           (double)ctx->thermal_temps[1], (double)((ctx->num_species > 2) ? ctx->thermal_temps[2] : 0), (int)non_dim_grid, (double)ctx->v_0, (double)(ctx->v_0 / SPEED_OF_LIGHT), (double)ctx->n_0, (double)ctx->t_0, ctx->batch_sz, ctx->batch_view_idx));
1286:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Domain radius (AMR levels) grid %d: par=%10.3e perp=%10.3e (%" PetscInt_FMT ") ", 0, (double)ctx->radius_par[0], (double)ctx->radius_perp[0], ctx->numAMRRefine[0]));
1287:     for (ii = 1; ii < ctx->num_grids; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, ", %" PetscInt_FMT ": par=%10.3e perp=%10.3e (%" PetscInt_FMT ") ", ii, (double)ctx->radius_par[ii], (double)ctx->radius_perp[ii], ctx->numAMRRefine[ii]));
1288:     if (ctx->use_relativistic_corrections) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nUse relativistic corrections\n"));
1289:     else PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1290:   }
1291:   PetscCall(DMDestroy(&dummy));
1292:   {
1293:     PetscMPIInt rank;
1294:     PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
1295:     ctx->stage = 0;
1296:     PetscCall(PetscLogEventRegister("Landau Create", DM_CLASSID, &ctx->events[13]));   /* 13 */
1297:     PetscCall(PetscLogEventRegister(" GPU ass. setup", DM_CLASSID, &ctx->events[2]));  /* 2 */
1298:     PetscCall(PetscLogEventRegister(" Build matrix", DM_CLASSID, &ctx->events[12]));   /* 12 */
1299:     PetscCall(PetscLogEventRegister(" Assembly maps", DM_CLASSID, &ctx->events[15]));  /* 15 */
1300:     PetscCall(PetscLogEventRegister("Landau Mass mat", DM_CLASSID, &ctx->events[14])); /* 14 */
1301:     PetscCall(PetscLogEventRegister("Landau Operator", DM_CLASSID, &ctx->events[11])); /* 11 */
1302:     PetscCall(PetscLogEventRegister("Landau Jacobian", DM_CLASSID, &ctx->events[0]));  /* 0 */
1303:     PetscCall(PetscLogEventRegister("Landau Mass", DM_CLASSID, &ctx->events[9]));      /* 9 */
1304:     PetscCall(PetscLogEventRegister(" Preamble", DM_CLASSID, &ctx->events[10]));       /* 10 */
1305:     PetscCall(PetscLogEventRegister(" static IP Data", DM_CLASSID, &ctx->events[7]));  /* 7 */
1306:     PetscCall(PetscLogEventRegister(" dynamic IP-Jac", DM_CLASSID, &ctx->events[1]));  /* 1 */
1307:     PetscCall(PetscLogEventRegister(" Kernel-init", DM_CLASSID, &ctx->events[3]));     /* 3 */
1308:     PetscCall(PetscLogEventRegister(" Jac-f-df (GPU)", DM_CLASSID, &ctx->events[8]));  /* 8 */
1309:     PetscCall(PetscLogEventRegister(" J Kernel (GPU)", DM_CLASSID, &ctx->events[4]));  /* 4 */
1310:     PetscCall(PetscLogEventRegister(" M Kernel (GPU)", DM_CLASSID, &ctx->events[16])); /* 16 */
1311:     PetscCall(PetscLogEventRegister(" Copy to CPU", DM_CLASSID, &ctx->events[5]));     /* 5 */
1312:     PetscCall(PetscLogEventRegister(" CPU assemble", DM_CLASSID, &ctx->events[6]));    /* 6 */

1314:     if (rank) { /* turn off output stuff for duplicate runs - do we need to add the prefix to all this? */
1315:       PetscCall(PetscOptionsClearValue(NULL, "-snes_converged_reason"));
1316:       PetscCall(PetscOptionsClearValue(NULL, "-ksp_converged_reason"));
1317:       PetscCall(PetscOptionsClearValue(NULL, "-snes_monitor"));
1318:       PetscCall(PetscOptionsClearValue(NULL, "-ksp_monitor"));
1319:       PetscCall(PetscOptionsClearValue(NULL, "-ts_monitor"));
1320:       PetscCall(PetscOptionsClearValue(NULL, "-ts_view"));
1321:       PetscCall(PetscOptionsClearValue(NULL, "-ts_adapt_monitor"));
1322:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_amr_dm_view"));
1323:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_amr_vec_view"));
1324:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mass_dm_view"));
1325:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mass_view"));
1326:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_jacobian_view"));
1327:       PetscCall(PetscOptionsClearValue(NULL, "-dm_landau_mat_view"));
1328:       PetscCall(PetscOptionsClearValue(NULL, "-pc_bjkokkos_ksp_converged_reason"));
1329:       PetscCall(PetscOptionsClearValue(NULL, "-pc_bjkokkos_ksp_monitor"));
1330:       PetscCall(PetscOptionsClearValue(NULL, "-"));
1331:       PetscCall(PetscOptionsClearValue(NULL, "-info"));
1332:     }
1333:   }
1334:   PetscFunctionReturn(PETSC_SUCCESS);
1335: }

1337: static PetscErrorCode CreateStaticData(PetscInt dim, IS grid_batch_is_inv[], LandauCtx *ctx)
1338: {
1339:   PetscSection     section[LANDAU_MAX_GRIDS], globsection[LANDAU_MAX_GRIDS];
1340:   PetscQuadrature  quad;
1341:   const PetscReal *quadWeights;
1342:   PetscReal        invMass[LANDAU_MAX_SPECIES], nu_alpha[LANDAU_MAX_SPECIES], nu_beta[LANDAU_MAX_SPECIES];
1343:   PetscInt         numCells[LANDAU_MAX_GRIDS], Nq, Nb, Nf[LANDAU_MAX_GRIDS], ncellsTot = 0, MAP_BF_SIZE = 64 * LANDAU_DIM * LANDAU_DIM * LANDAU_MAX_Q_FACE * LANDAU_MAX_SPECIES;
1344:   PetscTabulation *Tf;
1345:   PetscDS          prob;

1347:   PetscFunctionBegin;
1348:   PetscCall(PetscFEGetDimension(ctx->fe[0], &Nb));
1349:   PetscCheck(Nb <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nb = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nb, LANDAU_MAX_NQND);
1350:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1351:     for (PetscInt ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++) {
1352:       invMass[ii]  = ctx->m_0 / ctx->masses[ii];
1353:       nu_alpha[ii] = PetscSqr(ctx->charges[ii] / ctx->m_0) * ctx->m_0 / ctx->masses[ii];
1354:       nu_beta[ii]  = PetscSqr(ctx->charges[ii] / ctx->epsilon0) / (8 * PETSC_PI) * ctx->t_0 * ctx->n_0 / PetscPowReal(ctx->v_0, 3);
1355:     }
1356:   }
1357:   if (ctx->verbose == 4) {
1358:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "nu_alpha: "));
1359:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1360:       int iii = ctx->species_offset[grid];
1361:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %e", (double)nu_alpha[ii]));
1362:     }
1363:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nnu_beta: "));
1364:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1365:       int iii = ctx->species_offset[grid];
1366:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %e", (double)nu_beta[ii]));
1367:     }
1368:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\nnu_alpha[i]*nu_beta[j]*lambda[i][j]:\n"));
1369:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1370:       int iii = ctx->species_offset[grid];
1371:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) {
1372:         for (PetscInt gridj = 0; gridj < ctx->num_grids; gridj++) {
1373:           int jjj = ctx->species_offset[gridj];
1374:           for (PetscInt jj = jjj; jj < ctx->species_offset[gridj + 1]; jj++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %14.9e", (double)(nu_alpha[ii] * nu_beta[jj] * ctx->lambdas[grid][gridj])));
1375:         }
1376:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1377:       }
1378:     }
1379:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "lambda[i][j]:\n"));
1380:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1381:       int iii = ctx->species_offset[grid];
1382:       for (PetscInt ii = iii; ii < ctx->species_offset[grid + 1]; ii++) {
1383:         for (PetscInt gridj = 0; gridj < ctx->num_grids; gridj++) {
1384:           int jjj = ctx->species_offset[gridj];
1385:           for (PetscInt jj = jjj; jj < ctx->species_offset[gridj + 1]; jj++) PetscCall(PetscPrintf(PETSC_COMM_WORLD, " %14.9e", (double)ctx->lambdas[grid][gridj]));
1386:         }
1387:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
1388:       }
1389:     }
1390:   }
1391:   PetscCall(DMGetDS(ctx->plex[0], &prob));    // same DS for all grids
1392:   PetscCall(PetscDSGetTabulation(prob, &Tf)); // Bf, &Df same for all grids
1393:   /* DS, Tab and quad is same on all grids */
1394:   PetscCheck(ctx->plex[0], ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
1395:   PetscCall(PetscFEGetQuadrature(ctx->fe[0], &quad));
1396:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, &quadWeights));
1397:   PetscCheck(Nq <= LANDAU_MAX_NQND, ctx->comm, PETSC_ERR_ARG_WRONG, "Order too high. Nq = %" PetscInt_FMT " > LANDAU_MAX_NQND (%d)", Nq, LANDAU_MAX_NQND);
1398:   /* setup each grid */
1399:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1400:     PetscInt cStart, cEnd;
1401:     PetscCheck(ctx->plex[grid] != NULL, ctx->comm, PETSC_ERR_ARG_WRONG, "Plex not created");
1402:     PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1403:     numCells[grid] = cEnd - cStart; // grids can have different topology
1404:     PetscCall(DMGetLocalSection(ctx->plex[grid], &section[grid]));
1405:     PetscCall(DMGetGlobalSection(ctx->plex[grid], &globsection[grid]));
1406:     PetscCall(PetscSectionGetNumFields(section[grid], &Nf[grid]));
1407:     ncellsTot += numCells[grid];
1408:   }
1409:   /* create GPU assembly data */
1410:   if (ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
1411:     PetscContainer container;
1412:     PetscScalar   *elemMatrix, *elMat;
1413:     pointInterpolationP4est(*pointMaps)[LANDAU_MAX_Q_FACE];
1414:     P4estVertexMaps *maps;
1415:     const PetscInt  *plex_batch = NULL, elMatSz = Nb * Nb * ctx->num_species * ctx->num_species;
1416:     LandauIdx       *coo_elem_offsets = NULL, *coo_elem_fullNb = NULL, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = NULL;
1417:     /* create GPU assembly data */
1418:     PetscCall(PetscInfo(ctx->plex[0], "Make GPU maps %d\n", 1));
1419:     PetscCall(PetscLogEventBegin(ctx->events[2], 0, 0, 0, 0));
1420:     PetscCall(PetscMalloc(sizeof(*maps) * ctx->num_grids, &maps));
1421:     PetscCall(PetscMalloc(sizeof(*pointMaps) * MAP_BF_SIZE, &pointMaps));
1422:     PetscCall(PetscMalloc(sizeof(*elemMatrix) * elMatSz, &elemMatrix));

1424:     {                                                                                                                             // setup COO assembly -- put COO metadata directly in ctx->SData_d
1425:       PetscCall(PetscMalloc3(ncellsTot + 1, &coo_elem_offsets, ncellsTot, &coo_elem_fullNb, ncellsTot, &coo_elem_point_offsets)); // array of integer pointers
1426:       coo_elem_offsets[0] = 0;                                                                                                    // finish later
1427:       PetscCall(PetscInfo(ctx->plex[0], "COO initialization, %" PetscInt_FMT " cells\n", ncellsTot));
1428:       ctx->SData_d.coo_n_cellsTot         = ncellsTot;
1429:       ctx->SData_d.coo_elem_offsets       = (void *)coo_elem_offsets;
1430:       ctx->SData_d.coo_elem_fullNb        = (void *)coo_elem_fullNb;
1431:       ctx->SData_d.coo_elem_point_offsets = (void *)coo_elem_point_offsets;
1432:     }

1434:     ctx->SData_d.coo_max_fullnb = 0;
1435:     for (PetscInt grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1436:       PetscInt cStart, cEnd, Nfloc = Nf[grid], totDim = Nfloc * Nb;
1437:       if (grid_batch_is_inv[grid]) PetscCall(ISGetIndices(grid_batch_is_inv[grid], &plex_batch));
1438:       PetscCheck(!plex_batch, ctx->comm, PETSC_ERR_ARG_WRONG, "-dm_landau_jacobian_field_major_order DEPRECATED");
1439:       PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1440:       // make maps
1441:       maps[grid].d_self       = NULL;
1442:       maps[grid].num_elements = numCells[grid];
1443:       maps[grid].num_face     = (PetscInt)(pow(Nq, 1. / ((double)dim)) + .001);                 // Q
1444:       maps[grid].num_face     = (PetscInt)(pow(maps[grid].num_face, (double)(dim - 1)) + .001); // Q^2
1445:       maps[grid].num_reduced  = 0;
1446:       maps[grid].deviceType   = ctx->deviceType;
1447:       maps[grid].numgrids     = ctx->num_grids;
1448:       // count reduced and get
1449:       PetscCall(PetscMalloc(maps[grid].num_elements * sizeof(*maps[grid].gIdx), &maps[grid].gIdx));
1450:       for (int ej = cStart, eidx = 0; ej < cEnd; ++ej, ++eidx, glb_elem_idx++) {
1451:         if (coo_elem_offsets) coo_elem_offsets[glb_elem_idx + 1] = coo_elem_offsets[glb_elem_idx]; // start with last one, then add
1452:         for (int fieldA = 0; fieldA < Nf[grid]; fieldA++) {
1453:           int fullNb = 0;
1454:           for (int q = 0; q < Nb; ++q) {
1455:             PetscInt     numindices, *indices;
1456:             PetscScalar *valuesOrig = elMat = elemMatrix;
1457:             PetscCall(PetscArrayzero(elMat, totDim * totDim));
1458:             elMat[(fieldA * Nb + q) * totDim + fieldA * Nb + q] = 1;
1459:             PetscCall(DMPlexGetClosureIndices(ctx->plex[grid], section[grid], globsection[grid], ej, PETSC_TRUE, &numindices, &indices, NULL, (PetscScalar **)&elMat));
1460:             if (ctx->simplex) {
1461:               PetscCheck(numindices == Nb, ctx->comm, PETSC_ERR_ARG_WRONG, "numindices != Nb numindices=%d Nb=%d", (int)numindices, (int)Nb);
1462:               for (int q = 0; q < numindices; ++q) { maps[grid].gIdx[eidx][fieldA][q] = (LandauIdx)indices[q]; }
1463:               fullNb++;
1464:             } else {
1465:               for (PetscInt f = 0; f < numindices; ++f) { // look for a non-zero on the diagonal (is this too complicated for simplices?)
1466:                 if (PetscAbs(PetscRealPart(elMat[f * numindices + f])) > PETSC_MACHINE_EPSILON) {
1467:                   // found it
1468:                   if (PetscAbs(PetscRealPart(elMat[f * numindices + f] - 1.)) < PETSC_MACHINE_EPSILON) { // normal vertex 1.0
1469:                     if (plex_batch) {
1470:                       maps[grid].gIdx[eidx][fieldA][q] = (LandauIdx)plex_batch[indices[f]];
1471:                     } else {
1472:                       maps[grid].gIdx[eidx][fieldA][q] = (LandauIdx)indices[f];
1473:                     }
1474:                     fullNb++;
1475:                   } else { //found a constraint
1476:                     int            jj                = 0;
1477:                     PetscReal      sum               = 0;
1478:                     const PetscInt ff                = f;
1479:                     maps[grid].gIdx[eidx][fieldA][q] = -maps[grid].num_reduced - 1; // store (-)index: id = -(idx+1): idx = -id - 1
1480:                     PetscCheck(!ctx->simplex, ctx->comm, PETSC_ERR_ARG_WRONG, "No constraints with simplex");
1481:                     do {                                                                                              // constraints are continuous in Plex - exploit that here
1482:                       int ii;                                                                                         // get 'scale'
1483:                       for (ii = 0, pointMaps[maps[grid].num_reduced][jj].scale = 0; ii < maps[grid].num_face; ii++) { // sum row of outer product to recover vector value
1484:                         if (ff + ii < numindices) {                                                                   // 3D has Q and Q^2 interps so might run off end. We could test that elMat[f*numindices + ff + ii] > 0, and break if not
1485:                           pointMaps[maps[grid].num_reduced][jj].scale += PetscRealPart(elMat[f * numindices + ff + ii]);
1486:                         }
1487:                       }
1488:                       sum += pointMaps[maps[grid].num_reduced][jj].scale; // diagnostic
1489:                       // get 'gid'
1490:                       if (pointMaps[maps[grid].num_reduced][jj].scale == 0) pointMaps[maps[grid].num_reduced][jj].gid = -1; // 3D has Q and Q^2 interps
1491:                       else {
1492:                         if (plex_batch) {
1493:                           pointMaps[maps[grid].num_reduced][jj].gid = plex_batch[indices[f]];
1494:                         } else {
1495:                           pointMaps[maps[grid].num_reduced][jj].gid = indices[f];
1496:                         }
1497:                         fullNb++;
1498:                       }
1499:                     } while (++jj < maps[grid].num_face && ++f < numindices); // jj is incremented if we hit the end
1500:                     while (jj < maps[grid].num_face) {
1501:                       pointMaps[maps[grid].num_reduced][jj].scale = 0;
1502:                       pointMaps[maps[grid].num_reduced][jj].gid   = -1;
1503:                       jj++;
1504:                     }
1505:                     if (PetscAbs(sum - 1.0) > 10 * PETSC_MACHINE_EPSILON) { // debug
1506:                       int       d, f;
1507:                       PetscReal tmp = 0;
1508:                       PetscCall(PetscPrintf(PETSC_COMM_SELF, "\t\t%d.%d.%d) ERROR total I = %22.16e (LANDAU_MAX_Q_FACE=%d, #face=%d)\n", eidx, q, fieldA, (double)sum, LANDAU_MAX_Q_FACE, maps[grid].num_face));
1509:                       for (d = 0, tmp = 0; d < numindices; ++d) {
1510:                         if (tmp != 0 && PetscAbs(tmp - 1.0) > 10 * PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3d) %3" PetscInt_FMT ": ", d, indices[d]));
1511:                         for (f = 0; f < numindices; ++f) tmp += PetscRealPart(elMat[d * numindices + f]);
1512:                         if (tmp != 0) PetscCall(PetscPrintf(ctx->comm, " | %22.16e\n", (double)tmp));
1513:                       }
1514:                     }
1515:                     maps[grid].num_reduced++;
1516:                     PetscCheck(maps[grid].num_reduced < MAP_BF_SIZE, PETSC_COMM_SELF, PETSC_ERR_PLIB, "maps[grid].num_reduced %d > %" PetscInt_FMT, maps[grid].num_reduced, MAP_BF_SIZE);
1517:                   }
1518:                   break;
1519:                 }
1520:               }
1521:             } // !simplex
1522:             // cleanup
1523:             PetscCall(DMPlexRestoreClosureIndices(ctx->plex[grid], section[grid], globsection[grid], ej, PETSC_TRUE, &numindices, &indices, NULL, (PetscScalar **)&elMat));
1524:             if (elMat != valuesOrig) PetscCall(DMRestoreWorkArray(ctx->plex[grid], numindices * numindices, MPIU_SCALAR, &elMat));
1525:           }
1526:           {                                                        // setup COO assembly
1527:             coo_elem_offsets[glb_elem_idx + 1] += fullNb * fullNb; // one species block, adds a block for each species, on this element in this grid
1528:             if (fieldA == 0) {                                     // cache full Nb for this element, on this grid per species
1529:               coo_elem_fullNb[glb_elem_idx] = fullNb;
1530:               if (fullNb > ctx->SData_d.coo_max_fullnb) ctx->SData_d.coo_max_fullnb = fullNb;
1531:             } else PetscCheck(coo_elem_fullNb[glb_elem_idx] == fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "full element size change with species %d %d", coo_elem_fullNb[glb_elem_idx], fullNb);
1532:           }
1533:         } // field
1534:       } // cell
1535:       // allocate and copy point data maps[grid].gIdx[eidx][field][q]
1536:       PetscCall(PetscMalloc(maps[grid].num_reduced * sizeof(*maps[grid].c_maps), &maps[grid].c_maps));
1537:       for (int ej = 0; ej < maps[grid].num_reduced; ++ej) {
1538:         for (int q = 0; q < maps[grid].num_face; ++q) {
1539:           maps[grid].c_maps[ej][q].scale = pointMaps[ej][q].scale;
1540:           maps[grid].c_maps[ej][q].gid   = pointMaps[ej][q].gid;
1541:         }
1542:       }
1543: #if defined(PETSC_HAVE_KOKKOS)
1544:       if (ctx->deviceType == LANDAU_KOKKOS) {
1545:         PetscCall(LandauKokkosCreateMatMaps(maps, pointMaps, Nf, grid)); // implies Kokkos does
1546:       }
1547: #endif
1548:       if (plex_batch) {
1549:         PetscCall(ISRestoreIndices(grid_batch_is_inv[grid], &plex_batch));
1550:         PetscCall(ISDestroy(&grid_batch_is_inv[grid])); // we are done with this
1551:       }
1552:     } /* grids */
1553:     // finish COO
1554:     { // setup COO assembly
1555:       PetscInt *oor, *ooc;
1556:       ctx->SData_d.coo_size = coo_elem_offsets[ncellsTot] * ctx->batch_sz;
1557:       PetscCall(PetscMalloc2(ctx->SData_d.coo_size, &oor, ctx->SData_d.coo_size, &ooc));
1558:       for (int i = 0; i < ctx->SData_d.coo_size; i++) oor[i] = ooc[i] = -1;
1559:       // get
1560:       for (int grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1561:         for (int ej = 0; ej < numCells[grid]; ++ej, glb_elem_idx++) {
1562:           const int              fullNb           = coo_elem_fullNb[glb_elem_idx];
1563:           const LandauIdx *const Idxs             = &maps[grid].gIdx[ej][0][0]; // just use field-0 maps, They should be the same but this is just for COO storage
1564:           coo_elem_point_offsets[glb_elem_idx][0] = 0;
1565:           for (int f = 0, cnt2 = 0; f < Nb; f++) {
1566:             int idx                                     = Idxs[f];
1567:             coo_elem_point_offsets[glb_elem_idx][f + 1] = coo_elem_point_offsets[glb_elem_idx][f]; // start at last
1568:             if (idx >= 0) {
1569:               cnt2++;
1570:               coo_elem_point_offsets[glb_elem_idx][f + 1]++; // inc
1571:             } else {
1572:               idx = -idx - 1;
1573:               for (int q = 0; q < maps[grid].num_face; q++) {
1574:                 if (maps[grid].c_maps[idx][q].gid < 0) break;
1575:                 cnt2++;
1576:                 coo_elem_point_offsets[glb_elem_idx][f + 1]++; // inc
1577:               }
1578:             }
1579:             PetscCheck(cnt2 <= fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "wrong count %d < %d", fullNb, cnt2);
1580:           }
1581:           PetscCheck(coo_elem_point_offsets[glb_elem_idx][Nb] == fullNb, PETSC_COMM_SELF, PETSC_ERR_PLIB, "coo_elem_point_offsets size %d != fullNb=%d", coo_elem_point_offsets[glb_elem_idx][Nb], fullNb);
1582:         }
1583:       }
1584:       // set
1585:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
1586:         for (int grid = 0, glb_elem_idx = 0; grid < ctx->num_grids; grid++) {
1587:           const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
1588:           for (int ej = 0; ej < numCells[grid]; ++ej, glb_elem_idx++) {
1589:             const int fullNb = coo_elem_fullNb[glb_elem_idx], fullNb2 = fullNb * fullNb;
1590:             // set (i,j)
1591:             for (int fieldA = 0; fieldA < Nf[grid]; fieldA++) {
1592:               const LandauIdx *const Idxs = &maps[grid].gIdx[ej][fieldA][0];
1593:               int                    rows[LANDAU_MAX_Q_FACE], cols[LANDAU_MAX_Q_FACE];
1594:               for (int f = 0; f < Nb; ++f) {
1595:                 const int nr = coo_elem_point_offsets[glb_elem_idx][f + 1] - coo_elem_point_offsets[glb_elem_idx][f];
1596:                 if (nr == 1) rows[0] = Idxs[f];
1597:                 else {
1598:                   const int idx = -Idxs[f] - 1;
1599:                   for (int q = 0; q < nr; q++) rows[q] = maps[grid].c_maps[idx][q].gid;
1600:                 }
1601:                 for (int g = 0; g < Nb; ++g) {
1602:                   const int nc = coo_elem_point_offsets[glb_elem_idx][g + 1] - coo_elem_point_offsets[glb_elem_idx][g];
1603:                   if (nc == 1) cols[0] = Idxs[g];
1604:                   else {
1605:                     const int idx = -Idxs[g] - 1;
1606:                     for (int q = 0; q < nc; q++) cols[q] = maps[grid].c_maps[idx][q].gid;
1607:                   }
1608:                   const int idx0 = b_id * coo_elem_offsets[ncellsTot] + coo_elem_offsets[glb_elem_idx] + fieldA * fullNb2 + fullNb * coo_elem_point_offsets[glb_elem_idx][f] + nr * coo_elem_point_offsets[glb_elem_idx][g];
1609:                   for (int q = 0, idx = idx0; q < nr; q++) {
1610:                     for (int d = 0; d < nc; d++, idx++) {
1611:                       oor[idx] = rows[q] + moffset;
1612:                       ooc[idx] = cols[d] + moffset;
1613:                     }
1614:                   }
1615:                 }
1616:               }
1617:             }
1618:           } // cell
1619:         } // grid
1620:       } // batch
1621:       PetscCall(MatSetPreallocationCOO(ctx->J, ctx->SData_d.coo_size, oor, ooc));
1622:       PetscCall(PetscFree2(oor, ooc));
1623:     }
1624:     PetscCall(PetscFree(pointMaps));
1625:     PetscCall(PetscFree(elemMatrix));
1626:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
1627:     PetscCall(PetscContainerSetPointer(container, (void *)maps));
1628:     PetscCall(PetscContainerSetUserDestroy(container, LandauGPUMapsDestroy));
1629:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "assembly_maps", (PetscObject)container));
1630:     PetscCall(PetscContainerDestroy(&container));
1631:     PetscCall(PetscLogEventEnd(ctx->events[2], 0, 0, 0, 0));
1632:   } // end GPU assembly
1633:   { /* create static point data, Jacobian called first, only one vertex copy */
1634:     PetscReal *invJe, *ww, *xx, *yy, *zz = NULL, *invJ_a;
1635:     PetscInt   outer_ipidx, outer_ej, grid, nip_glb = 0;
1636:     PetscFE    fe;
1637:     PetscCall(PetscLogEventBegin(ctx->events[7], 0, 0, 0, 0));
1638:     PetscCall(PetscInfo(ctx->plex[0], "Initialize static data\n"));
1639:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) nip_glb += Nq * numCells[grid];
1640:     /* collect f data, first time is for Jacobian, but make mass now */
1641:     if (ctx->verbose != 0) {
1642:       PetscInt ncells = 0, N;
1643:       PetscCall(MatGetSize(ctx->J, &N, NULL));
1644:       for (PetscInt grid = 0; grid < ctx->num_grids; grid++) ncells += numCells[grid];
1645:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%d) %s %" PetscInt_FMT " IPs, %" PetscInt_FMT " cells total, Nb=%" PetscInt_FMT ", Nq=%" PetscInt_FMT ", dim=%" PetscInt_FMT ", Tab: Nb=%" PetscInt_FMT " Nf=%" PetscInt_FMT " Np=%" PetscInt_FMT " cdim=%" PetscInt_FMT " N=%" PetscInt_FMT "\n", 0, "FormLandau", nip_glb, ncells, Nb, Nq, dim, Nb,
1646:                             ctx->num_species, Nb, dim, N));
1647:     }
1648:     PetscCall(PetscMalloc4(nip_glb, &ww, nip_glb, &xx, nip_glb, &yy, nip_glb * dim * dim, &invJ_a));
1649:     if (dim == 3) PetscCall(PetscMalloc1(nip_glb, &zz));
1650:     if (ctx->use_energy_tensor_trick) {
1651:       PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, ctx->simplex, NULL, PETSC_DECIDE, &fe));
1652:       PetscCall(PetscObjectSetName((PetscObject)fe, "energy"));
1653:     }
1654:     /* init each grids static data - no batch */
1655:     for (grid = 0, outer_ipidx = 0, outer_ej = 0; grid < ctx->num_grids; grid++) { // OpenMP (once)
1656:       Vec          v2_2 = NULL;                                                    // projected function: v^2/2 for non-relativistic, gamma... for relativistic
1657:       PetscSection e_section;
1658:       DM           dmEnergy;
1659:       PetscInt     cStart, cEnd, ej;

1661:       PetscCall(DMPlexGetHeightStratum(ctx->plex[grid], 0, &cStart, &cEnd));
1662:       // prep energy trick, get v^2 / 2 vector
1663:       if (ctx->use_energy_tensor_trick) {
1664:         PetscErrorCode (*energyf[1])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *) = {ctx->use_relativistic_corrections ? gamma_m1_f : energy_f};
1665:         Vec        glob_v2;
1666:         PetscReal *c2_0[1], data[1] = {PetscSqr(C_0(ctx->v_0))};

1668:         PetscCall(DMClone(ctx->plex[grid], &dmEnergy));
1669:         PetscCall(PetscObjectSetName((PetscObject)dmEnergy, "energy"));
1670:         PetscCall(DMSetField(dmEnergy, 0, NULL, (PetscObject)fe));
1671:         PetscCall(DMCreateDS(dmEnergy));
1672:         PetscCall(DMGetSection(dmEnergy, &e_section));
1673:         PetscCall(DMGetGlobalVector(dmEnergy, &glob_v2));
1674:         PetscCall(PetscObjectSetName((PetscObject)glob_v2, "trick"));
1675:         c2_0[0] = &data[0];
1676:         PetscCall(DMProjectFunction(dmEnergy, 0., energyf, (void **)c2_0, INSERT_ALL_VALUES, glob_v2));
1677:         PetscCall(DMGetLocalVector(dmEnergy, &v2_2));
1678:         PetscCall(VecZeroEntries(v2_2)); /* zero BCs so don't set */
1679:         PetscCall(DMGlobalToLocalBegin(dmEnergy, glob_v2, INSERT_VALUES, v2_2));
1680:         PetscCall(DMGlobalToLocalEnd(dmEnergy, glob_v2, INSERT_VALUES, v2_2));
1681:         PetscCall(DMViewFromOptions(dmEnergy, NULL, "-energy_dm_view"));
1682:         PetscCall(VecViewFromOptions(glob_v2, NULL, "-energy_vec_view"));
1683:         PetscCall(DMRestoreGlobalVector(dmEnergy, &glob_v2));
1684:       }
1685:       /* append part of the IP data for each grid */
1686:       for (ej = 0; ej < numCells[grid]; ++ej, ++outer_ej) {
1687:         PetscScalar *coefs = NULL;
1688:         PetscReal    vj[LANDAU_MAX_NQND * LANDAU_DIM], detJj[LANDAU_MAX_NQND], Jdummy[LANDAU_MAX_NQND * LANDAU_DIM * LANDAU_DIM], c0 = C_0(ctx->v_0), c02 = PetscSqr(c0);
1689:         invJe = invJ_a + outer_ej * Nq * dim * dim;
1690:         PetscCall(DMPlexComputeCellGeometryFEM(ctx->plex[grid], ej + cStart, quad, vj, Jdummy, invJe, detJj));
1691:         if (ctx->use_energy_tensor_trick) PetscCall(DMPlexVecGetClosure(dmEnergy, e_section, v2_2, ej + cStart, NULL, &coefs));
1692:         /* create static point data */
1693:         for (PetscInt qj = 0; qj < Nq; qj++, outer_ipidx++) {
1694:           const PetscInt   gidx = outer_ipidx;
1695:           const PetscReal *invJ = &invJe[qj * dim * dim];
1696:           ww[gidx]              = detJj[qj] * quadWeights[qj];
1697:           if (dim == 2) ww[gidx] *= vj[qj * dim + 0]; /* cylindrical coordinate, w/o 2pi */
1698:           // get xx, yy, zz
1699:           if (ctx->use_energy_tensor_trick) {
1700:             double                 refSpaceDer[3], eGradPhi[3];
1701:             const PetscReal *const DD = Tf[0]->T[1];
1702:             const PetscReal       *Dq = &DD[qj * Nb * dim];
1703:             for (int d = 0; d < 3; ++d) refSpaceDer[d] = eGradPhi[d] = 0.0;
1704:             for (int b = 0; b < Nb; ++b) {
1705:               for (int d = 0; d < dim; ++d) refSpaceDer[d] += Dq[b * dim + d] * PetscRealPart(coefs[b]);
1706:             }
1707:             xx[gidx] = 1e10;
1708:             if (ctx->use_relativistic_corrections) {
1709:               double dg2_c2 = 0;
1710:               //for (int d = 0; d < dim; ++d) refSpaceDer[d] *= c02;
1711:               for (int d = 0; d < dim; ++d) dg2_c2 += PetscSqr(refSpaceDer[d]);
1712:               dg2_c2 *= (double)c02;
1713:               if (dg2_c2 >= .999) {
1714:                 xx[gidx] = vj[qj * dim + 0]; /* coordinate */
1715:                 yy[gidx] = vj[qj * dim + 1];
1716:                 if (dim == 3) zz[gidx] = vj[qj * dim + 2];
1717:                 PetscCall(PetscPrintf(ctx->comm, "Error: %12.5e %" PetscInt_FMT ".%" PetscInt_FMT ") dg2/c02 = %12.5e x= %12.5e %12.5e %12.5e\n", (double)PetscSqrtReal(xx[gidx] * xx[gidx] + yy[gidx] * yy[gidx] + zz[gidx] * zz[gidx]), ej, qj, dg2_c2, (double)xx[gidx], (double)yy[gidx], (double)zz[gidx]));
1718:               } else {
1719:                 PetscReal fact = c02 / PetscSqrtReal(1. - dg2_c2);
1720:                 for (int d = 0; d < dim; ++d) refSpaceDer[d] *= fact;
1721:                 // could test with other point u' that (grad - grad') * U (refSpaceDer, refSpaceDer') == 0
1722:               }
1723:             }
1724:             if (xx[gidx] == 1e10) {
1725:               for (int d = 0; d < dim; ++d) {
1726:                 for (int e = 0; e < dim; ++e) eGradPhi[d] += invJ[e * dim + d] * refSpaceDer[e];
1727:               }
1728:               xx[gidx] = eGradPhi[0];
1729:               yy[gidx] = eGradPhi[1];
1730:               if (dim == 3) zz[gidx] = eGradPhi[2];
1731:             }
1732:           } else {
1733:             xx[gidx] = vj[qj * dim + 0]; /* coordinate */
1734:             yy[gidx] = vj[qj * dim + 1];
1735:             if (dim == 3) zz[gidx] = vj[qj * dim + 2];
1736:           }
1737:         } /* q */
1738:         if (ctx->use_energy_tensor_trick) PetscCall(DMPlexVecRestoreClosure(dmEnergy, e_section, v2_2, ej + cStart, NULL, &coefs));
1739:       } /* ej */
1740:       if (ctx->use_energy_tensor_trick) {
1741:         PetscCall(DMRestoreLocalVector(dmEnergy, &v2_2));
1742:         PetscCall(DMDestroy(&dmEnergy));
1743:       }
1744:     } /* grid */
1745:     if (ctx->use_energy_tensor_trick) PetscCall(PetscFEDestroy(&fe));
1746:     /* cache static data */
1747:     if (ctx->deviceType == LANDAU_KOKKOS) {
1748: #if defined(PETSC_HAVE_KOKKOS)
1749:       PetscCall(LandauKokkosStaticDataSet(ctx->plex[0], Nq, Nb, ctx->batch_sz, ctx->num_grids, numCells, ctx->species_offset, ctx->mat_offset, nu_alpha, nu_beta, invMass, (PetscReal *)ctx->lambdas, invJ_a, xx, yy, zz, ww, &ctx->SData_d));
1750: #else
1751:       SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type kokkos not built");
1752: #endif
1753:       /* free */
1754:       PetscCall(PetscFree4(ww, xx, yy, invJ_a));
1755:       if (dim == 3) PetscCall(PetscFree(zz));
1756:     } else {                                                                                                                                                                   /* CPU version, just copy in, only use part */
1757:       PetscReal *nu_alpha_p = (PetscReal *)ctx->SData_d.alpha, *nu_beta_p = (PetscReal *)ctx->SData_d.beta, *invMass_p = (PetscReal *)ctx->SData_d.invMass, *lambdas_p = NULL; // why set these ?
1758:       ctx->SData_d.w    = (void *)ww;
1759:       ctx->SData_d.x    = (void *)xx;
1760:       ctx->SData_d.y    = (void *)yy;
1761:       ctx->SData_d.z    = (void *)zz;
1762:       ctx->SData_d.invJ = (void *)invJ_a;
1763:       PetscCall(PetscMalloc4(ctx->num_species, &nu_alpha_p, ctx->num_species, &nu_beta_p, ctx->num_species, &invMass_p, LANDAU_MAX_GRIDS * LANDAU_MAX_GRIDS, &lambdas_p));
1764:       for (PetscInt ii = 0; ii < ctx->num_species; ii++) {
1765:         nu_alpha_p[ii] = nu_alpha[ii];
1766:         nu_beta_p[ii]  = nu_beta[ii];
1767:         invMass_p[ii]  = invMass[ii];
1768:       }
1769:       ctx->SData_d.alpha   = (void *)nu_alpha_p;
1770:       ctx->SData_d.beta    = (void *)nu_beta_p;
1771:       ctx->SData_d.invMass = (void *)invMass_p;
1772:       ctx->SData_d.lambdas = (void *)lambdas_p;
1773:       for (PetscInt grid = 0; grid < LANDAU_MAX_GRIDS; grid++) {
1774:         PetscReal(*lambdas)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS] = (PetscReal(*)[LANDAU_MAX_GRIDS][LANDAU_MAX_GRIDS])ctx->SData_d.lambdas;
1775:         for (PetscInt gridj = 0; gridj < LANDAU_MAX_GRIDS; gridj++) { (*lambdas)[grid][gridj] = ctx->lambdas[grid][gridj]; }
1776:       }
1777:     }
1778:     PetscCall(PetscLogEventEnd(ctx->events[7], 0, 0, 0, 0));
1779:   } // initialize
1780:   PetscFunctionReturn(PETSC_SUCCESS);
1781: }

1783: /* < v, u > */
1784: static void g0_1(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1785: {
1786:   g0[0] = 1.;
1787: }

1789: /* < v, u > */
1790: static void g0_fake(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1791: {
1792:   static double ttt = 1e-12;
1793:   g0[0]             = ttt++;
1794: }

1796: /* < v, u > */
1797: static void g0_r(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
1798: {
1799:   g0[0] = 2. * PETSC_PI * x[0];
1800: }

1802: static PetscErrorCode MatrixNfDestroy(void *ptr)
1803: {
1804:   PetscInt *nf = (PetscInt *)ptr;

1806:   PetscFunctionBegin;
1807:   PetscCall(PetscFree(nf));
1808:   PetscFunctionReturn(PETSC_SUCCESS);
1809: }

1811: /*
1812:  LandauCreateJacobianMatrix - creates ctx->J with without real data. Hard to keep sparse.
1813:   - Like DMPlexLandauCreateMassMatrix. Should remove one and combine
1814:   - has old support for field major ordering
1815:  */
1816: static PetscErrorCode LandauCreateJacobianMatrix(MPI_Comm comm, Vec X, IS grid_batch_is_inv[LANDAU_MAX_GRIDS], LandauCtx *ctx)
1817: {
1818:   PetscInt *idxs = NULL;
1819:   Mat       subM[LANDAU_MAX_GRIDS];

1821:   PetscFunctionBegin;
1822:   if (!ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
1823:     PetscFunctionReturn(PETSC_SUCCESS);
1824:   }
1825:   // get the RCM for this grid to separate out species into blocks -- create 'idxs' & 'ctx->batch_is' -- not used
1826:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) PetscCall(PetscMalloc1(ctx->mat_offset[ctx->num_grids] * ctx->batch_sz, &idxs));
1827:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1828:     const PetscInt *values, n = ctx->mat_offset[grid + 1] - ctx->mat_offset[grid];
1829:     Mat             gMat;
1830:     DM              massDM;
1831:     PetscDS         prob;
1832:     Vec             tvec;
1833:     // get "mass" matrix for reordering
1834:     PetscCall(DMClone(ctx->plex[grid], &massDM));
1835:     PetscCall(DMCopyFields(ctx->plex[grid], massDM));
1836:     PetscCall(DMCreateDS(massDM));
1837:     PetscCall(DMGetDS(massDM, &prob));
1838:     for (int ix = 0, ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++, ix++) PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_fake, NULL, NULL, NULL));
1839:     PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only")); // this trick is need to both sparsify the matrix and avoid runtime error
1840:     PetscCall(DMCreateMatrix(massDM, &gMat));
1841:     PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
1842:     PetscCall(MatSetOption(gMat, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
1843:     PetscCall(MatSetOption(gMat, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
1844:     PetscCall(DMCreateLocalVector(ctx->plex[grid], &tvec));
1845:     PetscCall(DMPlexSNESComputeJacobianFEM(massDM, tvec, gMat, gMat, ctx));
1846:     PetscCall(MatViewFromOptions(gMat, NULL, "-dm_landau_reorder_mat_view"));
1847:     PetscCall(DMDestroy(&massDM));
1848:     PetscCall(VecDestroy(&tvec));
1849:     subM[grid] = gMat;
1850:     if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
1851:       MatOrderingType rtype = MATORDERINGRCM;
1852:       IS              isrow, isicol;
1853:       PetscCall(MatGetOrdering(gMat, rtype, &isrow, &isicol));
1854:       PetscCall(ISInvertPermutation(isrow, PETSC_DECIDE, &grid_batch_is_inv[grid]));
1855:       PetscCall(ISGetIndices(isrow, &values));
1856:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
1857: #if !defined(LANDAU_SPECIES_MAJOR)
1858:         PetscInt N = ctx->mat_offset[ctx->num_grids], n0 = ctx->mat_offset[grid] + b_id * N;
1859:         for (int ii = 0; ii < n; ++ii) idxs[n0 + ii] = values[ii] + n0;
1860: #else
1861:         PetscInt n0 = ctx->mat_offset[grid] * ctx->batch_sz + b_id * n;
1862:         for (int ii = 0; ii < n; ++ii) idxs[n0 + ii] = values[ii] + n0;
1863: #endif
1864:       }
1865:       PetscCall(ISRestoreIndices(isrow, &values));
1866:       PetscCall(ISDestroy(&isrow));
1867:       PetscCall(ISDestroy(&isicol));
1868:     }
1869:   }
1870:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) PetscCall(ISCreateGeneral(comm, ctx->mat_offset[ctx->num_grids] * ctx->batch_sz, idxs, PETSC_OWN_POINTER, &ctx->batch_is));
1871:   // get a block matrix
1872:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1873:     Mat      B = subM[grid];
1874:     PetscInt nloc, nzl, *colbuf, row, COL_BF_SIZE = 1024;
1875:     PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
1876:     PetscCall(MatGetSize(B, &nloc, NULL));
1877:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
1878:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
1879:       const PetscInt    *cols;
1880:       const PetscScalar *vals;
1881:       for (int i = 0; i < nloc; i++) {
1882:         PetscCall(MatGetRow(B, i, &nzl, NULL, NULL));
1883:         if (nzl > COL_BF_SIZE) {
1884:           PetscCall(PetscFree(colbuf));
1885:           PetscCall(PetscInfo(ctx->plex[grid], "Realloc buffer %" PetscInt_FMT " to %" PetscInt_FMT " (row size %" PetscInt_FMT ") \n", COL_BF_SIZE, 2 * COL_BF_SIZE, nzl));
1886:           COL_BF_SIZE = nzl;
1887:           PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
1888:         }
1889:         PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
1890:         for (int j = 0; j < nzl; j++) colbuf[j] = cols[j] + moffset;
1891:         row = i + moffset;
1892:         PetscCall(MatSetValues(ctx->J, 1, &row, nzl, colbuf, vals, INSERT_VALUES));
1893:         PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
1894:       }
1895:     }
1896:     PetscCall(PetscFree(colbuf));
1897:   }
1898:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(MatDestroy(&subM[grid]));
1899:   PetscCall(MatAssemblyBegin(ctx->J, MAT_FINAL_ASSEMBLY));
1900:   PetscCall(MatAssemblyEnd(ctx->J, MAT_FINAL_ASSEMBLY));

1902:   // debug
1903:   PetscCall(MatViewFromOptions(ctx->J, NULL, "-dm_landau_mat_view"));
1904:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
1905:     Mat mat_block_order;
1906:     PetscCall(MatCreateSubMatrix(ctx->J, ctx->batch_is, ctx->batch_is, MAT_INITIAL_MATRIX, &mat_block_order)); // use MatPermute
1907:     PetscCall(MatViewFromOptions(mat_block_order, NULL, "-dm_landau_mat_view"));
1908:     PetscCall(MatDestroy(&mat_block_order));
1909:     PetscCall(VecScatterCreate(X, ctx->batch_is, X, NULL, &ctx->plex_batch));
1910:     PetscCall(VecDuplicate(X, &ctx->work_vec));
1911:   }
1912:   PetscFunctionReturn(PETSC_SUCCESS);
1913: }

1915: PetscErrorCode DMPlexLandauCreateMassMatrix(DM pack, Mat *Amat);
1916: /*@C
1917:   DMPlexLandauCreateVelocitySpace - Create a `DMPLEX` velocity space mesh

1919:   Collective

1921:   Input Parameters:
1922: + comm   - The MPI communicator
1923: . dim    - velocity space dimension (2 for axisymmetric, 3 for full 3X + 3V solver)
1924: - prefix - prefix for options (not tested)

1926:   Output Parameters:
1927: + pack - The `DM` object representing the mesh
1928: . X    - A vector (user destroys)
1929: - J    - Optional matrix (object destroys)

1931:   Level: beginner

1933: .seealso: `DMPlexCreate()`, `DMPlexLandauDestroyVelocitySpace()`
1934:  @*/
1935: PetscErrorCode DMPlexLandauCreateVelocitySpace(MPI_Comm comm, PetscInt dim, const char prefix[], Vec *X, Mat *J, DM *pack)
1936: {
1937:   LandauCtx *ctx;
1938:   Vec        Xsub[LANDAU_MAX_GRIDS];
1939:   IS         grid_batch_is_inv[LANDAU_MAX_GRIDS];

1941:   PetscFunctionBegin;
1942:   PetscCheck(dim == 2 || dim == 3, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Only 2D and 3D supported");
1943:   PetscCheck(LANDAU_DIM == dim, PETSC_COMM_SELF, PETSC_ERR_PLIB, "dim %" PetscInt_FMT " != LANDAU_DIM %d", dim, LANDAU_DIM);
1944:   PetscCall(PetscNew(&ctx));
1945:   ctx->comm = comm; /* used for diagnostics and global errors */
1946:   /* process options */
1947:   PetscCall(ProcessOptions(ctx, prefix));
1948:   if (dim == 2) ctx->use_relativistic_corrections = PETSC_FALSE;
1949:   /* Create Mesh */
1950:   PetscCall(DMCompositeCreate(PETSC_COMM_SELF, pack));
1951:   PetscCall(PetscLogEventBegin(ctx->events[13], 0, 0, 0, 0));
1952:   PetscCall(PetscLogEventBegin(ctx->events[15], 0, 0, 0, 0));
1953:   PetscCall(LandauDMCreateVMeshes(PETSC_COMM_SELF, dim, prefix, ctx, *pack)); // creates grids (Forest of AMR)
1954:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1955:     /* create FEM */
1956:     PetscCall(SetupDS(ctx->plex[grid], dim, grid, ctx));
1957:     /* set initial state */
1958:     PetscCall(DMCreateGlobalVector(ctx->plex[grid], &Xsub[grid]));
1959:     PetscCall(PetscObjectSetName((PetscObject)Xsub[grid], "u_orig"));
1960:     /* initial static refinement, no solve */
1961:     PetscCall(LandauSetInitialCondition(ctx->plex[grid], Xsub[grid], grid, 0, 1, ctx));
1962:     /* forest refinement - forest goes in (if forest), plex comes out */
1963:     if (ctx->use_p4est) {
1964:       DM plex;
1965:       PetscCall(adapt(grid, ctx, &Xsub[grid]));                                      // forest goes in, plex comes out
1966:       PetscCall(DMViewFromOptions(ctx->plex[grid], NULL, "-dm_landau_amr_dm_view")); // need to differentiate - todo
1967:       PetscCall(VecViewFromOptions(Xsub[grid], NULL, "-dm_landau_amr_vec_view"));
1968:       // convert to plex, all done with this level
1969:       PetscCall(DMConvert(ctx->plex[grid], DMPLEX, &plex));
1970:       PetscCall(DMDestroy(&ctx->plex[grid]));
1971:       ctx->plex[grid] = plex;
1972:     }
1973: #if !defined(LANDAU_SPECIES_MAJOR)
1974:     PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
1975: #else
1976:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
1977:       PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
1978:     }
1979: #endif
1980:     PetscCall(DMSetApplicationContext(ctx->plex[grid], ctx));
1981:   }
1982: #if !defined(LANDAU_SPECIES_MAJOR)
1983:   // stack the batched DMs, could do it all here!!! b_id=0
1984:   for (PetscInt b_id = 1; b_id < ctx->batch_sz; b_id++) {
1985:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCompositeAddDM(*pack, ctx->plex[grid]));
1986:   }
1987: #endif
1988:   // create ctx->mat_offset
1989:   ctx->mat_offset[0] = 0;
1990:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
1991:     PetscInt n;
1992:     PetscCall(VecGetLocalSize(Xsub[grid], &n));
1993:     ctx->mat_offset[grid + 1] = ctx->mat_offset[grid] + n;
1994:   }
1995:   // creat DM & Jac
1996:   PetscCall(DMSetApplicationContext(*pack, ctx));
1997:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only"));
1998:   PetscCall(DMCreateMatrix(*pack, &ctx->J));
1999:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
2000:   PetscCall(MatSetOption(ctx->J, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
2001:   PetscCall(MatSetOption(ctx->J, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2002:   PetscCall(PetscObjectSetName((PetscObject)ctx->J, "Jac"));
2003:   // construct initial conditions in X
2004:   PetscCall(DMCreateGlobalVector(*pack, X));
2005:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2006:     PetscInt n;
2007:     PetscCall(VecGetLocalSize(Xsub[grid], &n));
2008:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2009:       PetscScalar const *values;
2010:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2011:       PetscCall(LandauSetInitialCondition(ctx->plex[grid], Xsub[grid], grid, b_id, ctx->batch_sz, ctx));
2012:       PetscCall(VecGetArrayRead(Xsub[grid], &values)); // Drop whole grid in Plex ordering
2013:       for (int i = 0, idx = moffset; i < n; i++, idx++) PetscCall(VecSetValue(*X, idx, values[i], INSERT_VALUES));
2014:       PetscCall(VecRestoreArrayRead(Xsub[grid], &values));
2015:     }
2016:   }
2017:   // cleanup
2018:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(VecDestroy(&Xsub[grid]));
2019:   /* check for correct matrix type */
2020:   if (ctx->gpu_assembly) { /* we need GPU object with GPU assembly */
2021:     PetscBool flg;
2022:     if (ctx->deviceType == LANDAU_KOKKOS) {
2023:       PetscCall(PetscObjectTypeCompareAny((PetscObject)ctx->J, &flg, MATSEQAIJKOKKOS, MATMPIAIJKOKKOS, MATAIJKOKKOS, ""));
2024: #if defined(PETSC_HAVE_KOKKOS)
2025:       PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "must use '-dm_mat_type aijkokkos -dm_vec_type kokkos' for GPU assembly and Kokkos or use '-dm_landau_device_type cpu'");
2026: #else
2027:       PetscCheck(flg, ctx->comm, PETSC_ERR_ARG_WRONG, "must configure with '--download-kokkos-kernels' for GPU assembly and Kokkos or use '-dm_landau_device_type cpu'");
2028: #endif
2029:     }
2030:   }
2031:   PetscCall(PetscLogEventEnd(ctx->events[15], 0, 0, 0, 0));

2033:   // create field major ordering
2034:   ctx->work_vec   = NULL;
2035:   ctx->plex_batch = NULL;
2036:   ctx->batch_is   = NULL;
2037:   for (int i = 0; i < LANDAU_MAX_GRIDS; i++) grid_batch_is_inv[i] = NULL;
2038:   PetscCall(PetscLogEventBegin(ctx->events[12], 0, 0, 0, 0));
2039:   PetscCall(LandauCreateJacobianMatrix(comm, *X, grid_batch_is_inv, ctx));
2040:   PetscCall(PetscLogEventEnd(ctx->events[12], 0, 0, 0, 0));

2042:   // create AMR GPU assembly maps and static GPU data
2043:   PetscCall(CreateStaticData(dim, grid_batch_is_inv, ctx));

2045:   PetscCall(PetscLogEventEnd(ctx->events[13], 0, 0, 0, 0));

2047:   // create mass matrix
2048:   PetscCall(DMPlexLandauCreateMassMatrix(*pack, NULL));

2050:   if (J) *J = ctx->J;

2052:   if (ctx->gpu_assembly && ctx->jacobian_field_major_order) {
2053:     PetscContainer container;
2054:     // cache ctx for KSP with batch/field major Jacobian ordering -ksp_type gmres/etc -dm_landau_jacobian_field_major_order
2055:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2056:     PetscCall(PetscContainerSetPointer(container, (void *)ctx));
2057:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "LandauCtx", (PetscObject)container));
2058:     PetscCall(PetscContainerDestroy(&container));
2059:     // batch solvers need to map -- can batch solvers work
2060:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2061:     PetscCall(PetscContainerSetPointer(container, (void *)ctx->plex_batch));
2062:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "plex_batch_is", (PetscObject)container));
2063:     PetscCall(PetscContainerDestroy(&container));
2064:   }
2065:   // for batch solvers
2066:   {
2067:     PetscContainer container;
2068:     PetscInt      *pNf;
2069:     PetscCall(PetscContainerCreate(PETSC_COMM_SELF, &container));
2070:     PetscCall(PetscMalloc1(sizeof(*pNf), &pNf));
2071:     *pNf = ctx->batch_sz;
2072:     PetscCall(PetscContainerSetPointer(container, (void *)pNf));
2073:     PetscCall(PetscContainerSetUserDestroy(container, MatrixNfDestroy));
2074:     PetscCall(PetscObjectCompose((PetscObject)ctx->J, "batch size", (PetscObject)container));
2075:     PetscCall(PetscContainerDestroy(&container));
2076:   }
2077:   PetscFunctionReturn(PETSC_SUCCESS);
2078: }

2080: /*@C
2081:   DMPlexLandauAccess - Access to the distribution function with user callback

2083:   Collective

2085:   Input Parameters:
2086: + pack     - the `DMCOMPOSITE`
2087: . func     - call back function
2088: - user_ctx - user context

2090:   Input/Output Parameter:
2091: . X - Vector to data to

2093:   Level: advanced

2095: .seealso: `DMPlexLandauCreateVelocitySpace()`
2096:  @*/
2097: PetscErrorCode DMPlexLandauAccess(DM pack, Vec X, PetscErrorCode (*func)(DM, Vec, PetscInt, PetscInt, PetscInt, void *), void *user_ctx)
2098: {
2099:   LandauCtx *ctx;

2101:   PetscFunctionBegin;
2102:   PetscCall(DMGetApplicationContext(pack, &ctx)); // uses ctx->num_grids; ctx->plex[grid]; ctx->batch_sz; ctx->mat_offset
2103:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2104:     PetscInt dim, n;
2105:     PetscCall(DMGetDimension(pack, &dim));
2106:     for (PetscInt sp = ctx->species_offset[grid], i0 = 0; sp < ctx->species_offset[grid + 1]; sp++, i0++) {
2107:       Vec      vec;
2108:       PetscInt vf[1] = {i0};
2109:       IS       vis;
2110:       DM       vdm;
2111:       PetscCall(DMCreateSubDM(ctx->plex[grid], 1, vf, &vis, &vdm));
2112:       PetscCall(DMSetApplicationContext(vdm, ctx)); // the user might want this
2113:       PetscCall(DMCreateGlobalVector(vdm, &vec));
2114:       PetscCall(VecGetSize(vec, &n));
2115:       for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2116:         const PetscInt moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2117:         PetscCall(VecZeroEntries(vec));
2118:         /* Add your data with 'dm' for species 'sp' to 'vec' */
2119:         PetscCall(func(vdm, vec, i0, grid, b_id, user_ctx));
2120:         /* add to global */
2121:         PetscScalar const *values;
2122:         const PetscInt    *offsets;
2123:         PetscCall(VecGetArrayRead(vec, &values));
2124:         PetscCall(ISGetIndices(vis, &offsets));
2125:         for (int i = 0; i < n; i++) PetscCall(VecSetValue(X, moffset + offsets[i], values[i], ADD_VALUES));
2126:         PetscCall(VecRestoreArrayRead(vec, &values));
2127:         PetscCall(ISRestoreIndices(vis, &offsets));
2128:       } // batch
2129:       PetscCall(VecDestroy(&vec));
2130:       PetscCall(ISDestroy(&vis));
2131:       PetscCall(DMDestroy(&vdm));
2132:     }
2133:   } // grid
2134:   PetscFunctionReturn(PETSC_SUCCESS);
2135: }

2137: /*@
2138:   DMPlexLandauDestroyVelocitySpace - Destroy a `DMPLEX` velocity space mesh

2140:   Collective

2142:   Input/Output Parameters:
2143: . dm - the `DM` to destroy

2145:   Level: beginner

2147: .seealso: `DMPlexLandauCreateVelocitySpace()`
2148:  @*/
2149: PetscErrorCode DMPlexLandauDestroyVelocitySpace(DM *dm)
2150: {
2151:   LandauCtx *ctx;

2153:   PetscFunctionBegin;
2154:   PetscCall(DMGetApplicationContext(*dm, &ctx));
2155:   PetscCall(MatDestroy(&ctx->M));
2156:   PetscCall(MatDestroy(&ctx->J));
2157:   for (PetscInt ii = 0; ii < ctx->num_species; ii++) PetscCall(PetscFEDestroy(&ctx->fe[ii]));
2158:   PetscCall(ISDestroy(&ctx->batch_is));
2159:   PetscCall(VecDestroy(&ctx->work_vec));
2160:   PetscCall(VecScatterDestroy(&ctx->plex_batch));
2161:   if (ctx->deviceType == LANDAU_KOKKOS) {
2162: #if defined(PETSC_HAVE_KOKKOS)
2163:     PetscCall(LandauKokkosStaticDataClear(&ctx->SData_d));
2164: #else
2165:     SETERRQ(ctx->comm, PETSC_ERR_ARG_WRONG, "-landau_device_type %s not built", "kokkos");
2166: #endif
2167:   } else {
2168:     if (ctx->SData_d.x) { /* in a CPU run */
2169:       PetscReal *invJ = (PetscReal *)ctx->SData_d.invJ, *xx = (PetscReal *)ctx->SData_d.x, *yy = (PetscReal *)ctx->SData_d.y, *zz = (PetscReal *)ctx->SData_d.z, *ww = (PetscReal *)ctx->SData_d.w;
2170:       LandauIdx *coo_elem_offsets = (LandauIdx *)ctx->SData_d.coo_elem_offsets, *coo_elem_fullNb = (LandauIdx *)ctx->SData_d.coo_elem_fullNb, (*coo_elem_point_offsets)[LANDAU_MAX_NQND + 1] = (LandauIdx(*)[LANDAU_MAX_NQND + 1]) ctx->SData_d.coo_elem_point_offsets;
2171:       PetscCall(PetscFree4(ww, xx, yy, invJ));
2172:       if (zz) PetscCall(PetscFree(zz));
2173:       if (coo_elem_offsets) {
2174:         PetscCall(PetscFree3(coo_elem_offsets, coo_elem_fullNb, coo_elem_point_offsets)); // could be NULL
2175:       }
2176:       PetscCall(PetscFree4(ctx->SData_d.alpha, ctx->SData_d.beta, ctx->SData_d.invMass, ctx->SData_d.lambdas));
2177:     }
2178:   }

2180:   if (ctx->times[LANDAU_MATRIX_TOTAL] > 0) { // OMP timings
2181:     PetscCall(PetscPrintf(ctx->comm, "TSStep               N  1.0 %10.3e\n", ctx->times[LANDAU_EX2_TSSOLVE]));
2182:     PetscCall(PetscPrintf(ctx->comm, "2:           Solve:  %10.3e with %" PetscInt_FMT " threads\n", ctx->times[LANDAU_EX2_TSSOLVE] - ctx->times[LANDAU_MATRIX_TOTAL], ctx->batch_sz));
2183:     PetscCall(PetscPrintf(ctx->comm, "3:          Landau:  %10.3e\n", ctx->times[LANDAU_MATRIX_TOTAL]));
2184:     PetscCall(PetscPrintf(ctx->comm, "Landau Jacobian       %" PetscInt_FMT " 1.0 %10.3e\n", (PetscInt)ctx->times[LANDAU_JACOBIAN_COUNT], ctx->times[LANDAU_JACOBIAN]));
2185:     PetscCall(PetscPrintf(ctx->comm, "Landau Operator       N 1.0  %10.3e\n", ctx->times[LANDAU_OPERATOR]));
2186:     PetscCall(PetscPrintf(ctx->comm, "Landau Mass           N 1.0  %10.3e\n", ctx->times[LANDAU_MASS]));
2187:     PetscCall(PetscPrintf(ctx->comm, " Jac-f-df (GPU)       N 1.0  %10.3e\n", ctx->times[LANDAU_F_DF]));
2188:     PetscCall(PetscPrintf(ctx->comm, " Kernel (GPU)         N 1.0  %10.3e\n", ctx->times[LANDAU_KERNEL]));
2189:     PetscCall(PetscPrintf(ctx->comm, "MatLUFactorNum        X 1.0 %10.3e\n", ctx->times[KSP_FACTOR]));
2190:     PetscCall(PetscPrintf(ctx->comm, "MatSolve              X 1.0 %10.3e\n", ctx->times[KSP_SOLVE]));
2191:   }
2192:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMDestroy(&ctx->plex[grid]));
2193:   PetscCall(PetscFree(ctx));
2194:   PetscCall(DMDestroy(dm));
2195:   PetscFunctionReturn(PETSC_SUCCESS);
2196: }

2198: /* < v, ru > */
2199: static void f0_s_den(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2200: {
2201:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2202:   f0[0]       = u[ii];
2203: }

2205: /* < v, ru > */
2206: static void f0_s_mom(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2207: {
2208:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]), jj = (PetscInt)PetscRealPart(constants[1]);
2209:   f0[0] = x[jj] * u[ii]; /* x momentum */
2210: }

2212: static void f0_s_v2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2213: {
2214:   PetscInt i, ii = (PetscInt)PetscRealPart(constants[0]);
2215:   double   tmp1 = 0.;
2216:   for (i = 0; i < dim; ++i) tmp1 += x[i] * x[i];
2217:   f0[0] = tmp1 * u[ii];
2218: }

2220: static PetscErrorCode gamma_n_f(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *actx)
2221: {
2222:   const PetscReal *c2_0_arr = ((PetscReal *)actx);
2223:   const PetscReal  c02      = c2_0_arr[0];

2225:   PetscFunctionBegin;
2226:   for (int s = 0; s < Nf; s++) {
2227:     PetscReal tmp1 = 0.;
2228:     for (int i = 0; i < dim; ++i) tmp1 += x[i] * x[i];
2229: #if defined(PETSC_USE_DEBUG)
2230:     u[s] = PetscSqrtReal(1. + tmp1 / c02); //  u[0] = PetscSqrtReal(1. + xx);
2231: #else
2232:     {
2233:       PetscReal xx = tmp1 / c02;
2234:       u[s]         = xx / (PetscSqrtReal(1. + xx) + 1.); // better conditioned = xx/(PetscSqrtReal(1. + xx) + 1.)
2235:     }
2236: #endif
2237:   }
2238:   PetscFunctionReturn(PETSC_SUCCESS);
2239: }

2241: /* < v, ru > */
2242: static void f0_s_rden(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2243: {
2244:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2245:   f0[0]       = 2. * PETSC_PI * x[0] * u[ii];
2246: }

2248: /* < v, ru > */
2249: static void f0_s_rmom(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2250: {
2251:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2252:   f0[0]       = 2. * PETSC_PI * x[0] * x[1] * u[ii];
2253: }

2255: static void f0_s_rv2(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *f0)
2256: {
2257:   PetscInt ii = (PetscInt)PetscRealPart(constants[0]);
2258:   f0[0]       = 2. * PETSC_PI * x[0] * (x[0] * x[0] + x[1] * x[1]) * u[ii];
2259: }

2261: /*@
2262:   DMPlexLandauPrintNorms - collects moments and prints them

2264:   Collective

2266:   Input Parameters:
2267: + X     - the state
2268: - stepi - current step to print

2270:   Level: beginner

2272: .seealso: `DMPlexLandauCreateVelocitySpace()`
2273:  @*/
2274: PetscErrorCode DMPlexLandauPrintNorms(Vec X, PetscInt stepi)
2275: {
2276:   LandauCtx  *ctx;
2277:   PetscDS     prob;
2278:   DM          pack;
2279:   PetscInt    cStart, cEnd, dim, ii, i0, nDMs;
2280:   PetscScalar xmomentumtot = 0, ymomentumtot = 0, zmomentumtot = 0, energytot = 0, densitytot = 0, tt[LANDAU_MAX_SPECIES];
2281:   PetscScalar xmomentum[LANDAU_MAX_SPECIES], ymomentum[LANDAU_MAX_SPECIES], zmomentum[LANDAU_MAX_SPECIES], energy[LANDAU_MAX_SPECIES], density[LANDAU_MAX_SPECIES];
2282:   Vec        *globXArray;

2284:   PetscFunctionBegin;
2285:   PetscCall(VecGetDM(X, &pack));
2286:   PetscCheck(pack, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Vector has no DM");
2287:   PetscCall(DMGetDimension(pack, &dim));
2288:   PetscCheck(dim == 2 || dim == 3, PETSC_COMM_SELF, PETSC_ERR_PLIB, "dim %" PetscInt_FMT " not in [2,3]", dim);
2289:   PetscCall(DMGetApplicationContext(pack, &ctx));
2290:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2291:   /* print momentum and energy */
2292:   PetscCall(DMCompositeGetNumberDM(pack, &nDMs));
2293:   PetscCheck(nDMs == ctx->num_grids * ctx->batch_sz, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "#DM wrong %" PetscInt_FMT " %" PetscInt_FMT, nDMs, ctx->num_grids * ctx->batch_sz);
2294:   PetscCall(PetscMalloc(sizeof(*globXArray) * nDMs, &globXArray));
2295:   PetscCall(DMCompositeGetAccessArray(pack, X, nDMs, NULL, globXArray));
2296:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2297:     Vec Xloc = globXArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)];
2298:     PetscCall(DMGetDS(ctx->plex[grid], &prob));
2299:     for (ii = ctx->species_offset[grid], i0 = 0; ii < ctx->species_offset[grid + 1]; ii++, i0++) {
2300:       PetscScalar user[2] = {(PetscScalar)i0, (PetscScalar)ctx->charges[ii]};
2301:       PetscCall(PetscDSSetConstants(prob, 2, user));
2302:       if (dim == 2) { /* 2/3X + 3V (cylindrical coordinates) */
2303:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rden));
2304:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2305:         density[ii] = tt[0] * ctx->n_0 * ctx->charges[ii];
2306:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rmom));
2307:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2308:         zmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2309:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_rv2));
2310:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2311:         energy[ii] = tt[0] * 0.5 * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ii];
2312:         zmomentumtot += zmomentum[ii];
2313:         energytot += energy[ii];
2314:         densitytot += density[ii];
2315:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3" PetscInt_FMT ") species-%" PetscInt_FMT ": charge density= %20.13e z-momentum= %20.13e energy= %20.13e", stepi, ii, (double)PetscRealPart(density[ii]), (double)PetscRealPart(zmomentum[ii]), (double)PetscRealPart(energy[ii])));
2316:       } else { /* 2/3Xloc + 3V */
2317:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_den));
2318:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2319:         density[ii] = tt[0] * ctx->n_0 * ctx->charges[ii];
2320:         PetscCall(PetscDSSetObjective(prob, 0, &f0_s_mom));
2321:         user[1] = 0;
2322:         PetscCall(PetscDSSetConstants(prob, 2, user));
2323:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2324:         xmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2325:         user[1]       = 1;
2326:         PetscCall(PetscDSSetConstants(prob, 2, user));
2327:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2328:         ymomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2329:         user[1]       = 2;
2330:         PetscCall(PetscDSSetConstants(prob, 2, user));
2331:         PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2332:         zmomentum[ii] = tt[0] * ctx->n_0 * ctx->v_0 * ctx->masses[ii];
2333:         if (ctx->use_relativistic_corrections) {
2334:           /* gamma * M * f */
2335:           if (ii == 0 && grid == 0) { // do all at once
2336:             Vec Mf, globGamma, *globMfArray, *globGammaArray;
2337:             PetscErrorCode (*gammaf[1])(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar[], void *) = {gamma_n_f};
2338:             PetscReal *c2_0[1], data[1];

2340:             PetscCall(VecDuplicate(X, &globGamma));
2341:             PetscCall(VecDuplicate(X, &Mf));
2342:             PetscCall(PetscMalloc(sizeof(*globMfArray) * nDMs, &globMfArray));
2343:             PetscCall(PetscMalloc(sizeof(*globMfArray) * nDMs, &globGammaArray));
2344:             /* M * f */
2345:             PetscCall(MatMult(ctx->M, X, Mf));
2346:             /* gamma */
2347:             PetscCall(DMCompositeGetAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2348:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // yes a grid loop in a grid loop to print nice, need to fix for batching
2349:               Vec v1  = globGammaArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)];
2350:               data[0] = PetscSqr(C_0(ctx->v_0));
2351:               c2_0[0] = &data[0];
2352:               PetscCall(DMProjectFunction(ctx->plex[grid], 0., gammaf, (void **)c2_0, INSERT_ALL_VALUES, v1));
2353:             }
2354:             PetscCall(DMCompositeRestoreAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2355:             /* gamma * Mf */
2356:             PetscCall(DMCompositeGetAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2357:             PetscCall(DMCompositeGetAccessArray(pack, Mf, nDMs, NULL, globMfArray));
2358:             for (PetscInt grid = 0; grid < ctx->num_grids; grid++) { // yes a grid loop in a grid loop to print nice
2359:               PetscInt Nf    = ctx->species_offset[grid + 1] - ctx->species_offset[grid], N, bs;
2360:               Vec      Mfsub = globMfArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)], Gsub = globGammaArray[LAND_PACK_IDX(ctx->batch_view_idx, grid)], v1, v2;
2361:               // get each component
2362:               PetscCall(VecGetSize(Mfsub, &N));
2363:               PetscCall(VecCreate(ctx->comm, &v1));
2364:               PetscCall(VecSetSizes(v1, PETSC_DECIDE, N / Nf));
2365:               PetscCall(VecCreate(ctx->comm, &v2));
2366:               PetscCall(VecSetSizes(v2, PETSC_DECIDE, N / Nf));
2367:               PetscCall(VecSetFromOptions(v1)); // ???
2368:               PetscCall(VecSetFromOptions(v2));
2369:               // get each component
2370:               PetscCall(VecGetBlockSize(Gsub, &bs));
2371:               PetscCheck(bs == Nf, PETSC_COMM_SELF, PETSC_ERR_PLIB, "bs %" PetscInt_FMT " != num_species %" PetscInt_FMT " in Gsub", bs, Nf);
2372:               PetscCall(VecGetBlockSize(Mfsub, &bs));
2373:               PetscCheck(bs == Nf, PETSC_COMM_SELF, PETSC_ERR_PLIB, "bs %" PetscInt_FMT " != num_species %" PetscInt_FMT, bs, Nf);
2374:               for (int i = 0, ix = ctx->species_offset[grid]; i < Nf; i++, ix++) {
2375:                 PetscScalar val;
2376:                 PetscCall(VecStrideGather(Gsub, i, v1, INSERT_VALUES)); // this is not right -- TODO
2377:                 PetscCall(VecStrideGather(Mfsub, i, v2, INSERT_VALUES));
2378:                 PetscCall(VecDot(v1, v2, &val));
2379:                 energy[ix] = PetscRealPart(val) * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ix];
2380:               }
2381:               PetscCall(VecDestroy(&v1));
2382:               PetscCall(VecDestroy(&v2));
2383:             } /* grids */
2384:             PetscCall(DMCompositeRestoreAccessArray(pack, globGamma, nDMs, NULL, globGammaArray));
2385:             PetscCall(DMCompositeRestoreAccessArray(pack, Mf, nDMs, NULL, globMfArray));
2386:             PetscCall(PetscFree(globGammaArray));
2387:             PetscCall(PetscFree(globMfArray));
2388:             PetscCall(VecDestroy(&globGamma));
2389:             PetscCall(VecDestroy(&Mf));
2390:           }
2391:         } else {
2392:           PetscCall(PetscDSSetObjective(prob, 0, &f0_s_v2));
2393:           PetscCall(DMPlexComputeIntegralFEM(ctx->plex[grid], Xloc, tt, ctx));
2394:           energy[ii] = 0.5 * tt[0] * ctx->n_0 * ctx->v_0 * ctx->v_0 * ctx->masses[ii];
2395:         }
2396:         PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%3" PetscInt_FMT ") species %" PetscInt_FMT ": density=%20.13e, x-momentum=%20.13e, y-momentum=%20.13e, z-momentum=%20.13e, energy=%21.13e", stepi, ii, (double)PetscRealPart(density[ii]), (double)PetscRealPart(xmomentum[ii]), (double)PetscRealPart(ymomentum[ii]), (double)PetscRealPart(zmomentum[ii]), (double)PetscRealPart(energy[ii])));
2397:         xmomentumtot += xmomentum[ii];
2398:         ymomentumtot += ymomentum[ii];
2399:         zmomentumtot += zmomentum[ii];
2400:         energytot += energy[ii];
2401:         densitytot += density[ii];
2402:       }
2403:       if (ctx->num_species > 1) PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
2404:     }
2405:   }
2406:   PetscCall(DMCompositeRestoreAccessArray(pack, X, nDMs, NULL, globXArray));
2407:   PetscCall(PetscFree(globXArray));
2408:   /* totals */
2409:   PetscCall(DMPlexGetHeightStratum(ctx->plex[0], 0, &cStart, &cEnd));
2410:   if (ctx->num_species > 1) {
2411:     if (dim == 2) {
2412:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\t%3" PetscInt_FMT ") Total: charge density=%21.13e, momentum=%21.13e, energy=%21.13e (m_i[0]/m_e = %g, %" PetscInt_FMT " cells on electron grid)", stepi, (double)PetscRealPart(densitytot), (double)PetscRealPart(zmomentumtot), (double)PetscRealPart(energytot),
2413:                             (double)(ctx->masses[1] / ctx->masses[0]), cEnd - cStart));
2414:     } else {
2415:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\t%3" PetscInt_FMT ") Total: charge density=%21.13e, x-momentum=%21.13e, y-momentum=%21.13e, z-momentum=%21.13e, energy=%21.13e (m_i[0]/m_e = %g, %" PetscInt_FMT " cells)", stepi, (double)PetscRealPart(densitytot), (double)PetscRealPart(xmomentumtot), (double)PetscRealPart(ymomentumtot), (double)PetscRealPart(zmomentumtot), (double)PetscRealPart(energytot),
2416:                             (double)(ctx->masses[1] / ctx->masses[0]), cEnd - cStart));
2417:     }
2418:   } else PetscCall(PetscPrintf(PETSC_COMM_WORLD, " -- %" PetscInt_FMT " cells", cEnd - cStart));
2419:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n"));
2420:   PetscFunctionReturn(PETSC_SUCCESS);
2421: }

2423: /*@
2424:   DMPlexLandauCreateMassMatrix - Create mass matrix for Landau in Plex space (not field major order of Jacobian)
2425:   - puts mass matrix into ctx->M

2427:   Collective

2429:   Input Parameter:
2430: . pack - the `DM` object. Puts matrix in Landau context M field

2432:   Output Parameter:
2433: . Amat - The mass matrix (optional), mass matrix is added to the `DM` context

2435:   Level: beginner

2437: .seealso: `DMPlexLandauCreateVelocitySpace()`
2438:  @*/
2439: PetscErrorCode DMPlexLandauCreateMassMatrix(DM pack, Mat *Amat)
2440: {
2441:   DM         mass_pack, massDM[LANDAU_MAX_GRIDS];
2442:   PetscDS    prob;
2443:   PetscInt   ii, dim, N1 = 1, N2;
2444:   LandauCtx *ctx;
2445:   Mat        packM, subM[LANDAU_MAX_GRIDS];

2447:   PetscFunctionBegin;
2449:   if (Amat) PetscAssertPointer(Amat, 2);
2450:   PetscCall(DMGetApplicationContext(pack, &ctx));
2451:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2452:   PetscCall(PetscLogEventBegin(ctx->events[14], 0, 0, 0, 0));
2453:   PetscCall(DMGetDimension(pack, &dim));
2454:   PetscCall(DMCompositeCreate(PetscObjectComm((PetscObject)pack), &mass_pack));
2455:   /* create pack mass matrix */
2456:   for (PetscInt grid = 0, ix = 0; grid < ctx->num_grids; grid++) {
2457:     PetscCall(DMClone(ctx->plex[grid], &massDM[grid]));
2458:     PetscCall(DMCopyFields(ctx->plex[grid], massDM[grid]));
2459:     PetscCall(DMCreateDS(massDM[grid]));
2460:     PetscCall(DMGetDS(massDM[grid], &prob));
2461:     for (ix = 0, ii = ctx->species_offset[grid]; ii < ctx->species_offset[grid + 1]; ii++, ix++) {
2462:       if (dim == 3) PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_1, NULL, NULL, NULL));
2463:       else PetscCall(PetscDSSetJacobian(prob, ix, ix, g0_r, NULL, NULL, NULL));
2464:     }
2465: #if !defined(LANDAU_SPECIES_MAJOR)
2466:     PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2467: #else
2468:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) { // add batch size DMs for this species grid
2469:       PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2470:     }
2471: #endif
2472:     PetscCall(DMCreateMatrix(massDM[grid], &subM[grid]));
2473:   }
2474: #if !defined(LANDAU_SPECIES_MAJOR)
2475:   // stack the batched DMs
2476:   for (PetscInt b_id = 1; b_id < ctx->batch_sz; b_id++) {
2477:     for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(DMCompositeAddDM(mass_pack, massDM[grid]));
2478:   }
2479: #endif
2480:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only"));
2481:   PetscCall(DMCreateMatrix(mass_pack, &packM));
2482:   PetscCall(PetscOptionsInsertString(NULL, "-dm_preallocate_only false"));
2483:   PetscCall(MatSetOption(packM, MAT_STRUCTURALLY_SYMMETRIC, PETSC_TRUE));
2484:   PetscCall(MatSetOption(packM, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE));
2485:   PetscCall(DMDestroy(&mass_pack));
2486:   /* make mass matrix for each block */
2487:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2488:     Vec locX;
2489:     DM  plex = massDM[grid];
2490:     PetscCall(DMGetLocalVector(plex, &locX));
2491:     /* Mass matrix is independent of the input, so no need to fill locX */
2492:     PetscCall(DMPlexSNESComputeJacobianFEM(plex, locX, subM[grid], subM[grid], ctx));
2493:     PetscCall(DMRestoreLocalVector(plex, &locX));
2494:     PetscCall(DMDestroy(&massDM[grid]));
2495:   }
2496:   PetscCall(MatGetSize(ctx->J, &N1, NULL));
2497:   PetscCall(MatGetSize(packM, &N2, NULL));
2498:   PetscCheck(N1 == N2, PetscObjectComm((PetscObject)pack), PETSC_ERR_PLIB, "Incorrect matrix sizes: |Jacobian| = %" PetscInt_FMT ", |Mass|=%" PetscInt_FMT, N1, N2);
2499:   /* assemble block diagonals */
2500:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) {
2501:     Mat      B = subM[grid];
2502:     PetscInt nloc, nzl, *colbuf, COL_BF_SIZE = 1024, row;
2503:     PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
2504:     PetscCall(MatGetSize(B, &nloc, NULL));
2505:     for (PetscInt b_id = 0; b_id < ctx->batch_sz; b_id++) {
2506:       const PetscInt     moffset = LAND_MOFFSET(b_id, grid, ctx->batch_sz, ctx->num_grids, ctx->mat_offset);
2507:       const PetscInt    *cols;
2508:       const PetscScalar *vals;
2509:       for (int i = 0; i < nloc; i++) {
2510:         PetscCall(MatGetRow(B, i, &nzl, NULL, NULL));
2511:         if (nzl > COL_BF_SIZE) {
2512:           PetscCall(PetscFree(colbuf));
2513:           PetscCall(PetscInfo(pack, "Realloc buffer %" PetscInt_FMT " to %" PetscInt_FMT " (row size %" PetscInt_FMT ") \n", COL_BF_SIZE, 2 * COL_BF_SIZE, nzl));
2514:           COL_BF_SIZE = nzl;
2515:           PetscCall(PetscMalloc(sizeof(*colbuf) * COL_BF_SIZE, &colbuf));
2516:         }
2517:         PetscCall(MatGetRow(B, i, &nzl, &cols, &vals));
2518:         for (int j = 0; j < nzl; j++) colbuf[j] = cols[j] + moffset;
2519:         row = i + moffset;
2520:         PetscCall(MatSetValues(packM, 1, &row, nzl, colbuf, vals, INSERT_VALUES));
2521:         PetscCall(MatRestoreRow(B, i, &nzl, &cols, &vals));
2522:       }
2523:     }
2524:     PetscCall(PetscFree(colbuf));
2525:   }
2526:   // cleanup
2527:   for (PetscInt grid = 0; grid < ctx->num_grids; grid++) PetscCall(MatDestroy(&subM[grid]));
2528:   PetscCall(MatAssemblyBegin(packM, MAT_FINAL_ASSEMBLY));
2529:   PetscCall(MatAssemblyEnd(packM, MAT_FINAL_ASSEMBLY));
2530:   PetscCall(PetscObjectSetName((PetscObject)packM, "mass"));
2531:   PetscCall(MatViewFromOptions(packM, NULL, "-dm_landau_mass_view"));
2532:   ctx->M = packM;
2533:   if (Amat) *Amat = packM;
2534:   PetscCall(PetscLogEventEnd(ctx->events[14], 0, 0, 0, 0));
2535:   PetscFunctionReturn(PETSC_SUCCESS);
2536: }

2538: /*@
2539:   DMPlexLandauIFunction - `TS` residual calculation, confusingly this computes the Jacobian w/o mass

2541:   Collective

2543:   Input Parameters:
2544: + ts         - The time stepping context
2545: . time_dummy - current time (not used)
2546: . X          - Current state
2547: . X_t        - Time derivative of current state
2548: - actx       - Landau context

2550:   Output Parameter:
2551: . F - The residual

2553:   Level: beginner

2555: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauIJacobian()`
2556:  @*/
2557: PetscErrorCode DMPlexLandauIFunction(TS ts, PetscReal time_dummy, Vec X, Vec X_t, Vec F, void *actx)
2558: {
2559:   LandauCtx *ctx = (LandauCtx *)actx;
2560:   PetscInt   dim;
2561:   DM         pack;
2562: #if defined(PETSC_HAVE_THREADSAFETY)
2563:   double starttime, endtime;
2564: #endif
2565:   PetscObjectState state;

2567:   PetscFunctionBegin;
2568:   PetscCall(TSGetDM(ts, &pack));
2569:   PetscCall(DMGetApplicationContext(pack, &ctx));
2570:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2571:   if (ctx->stage) PetscCall(PetscLogStagePush(ctx->stage));
2572:   PetscCall(PetscLogEventBegin(ctx->events[11], 0, 0, 0, 0));
2573:   PetscCall(PetscLogEventBegin(ctx->events[0], 0, 0, 0, 0));
2574: #if defined(PETSC_HAVE_THREADSAFETY)
2575:   starttime = MPI_Wtime();
2576: #endif
2577:   PetscCall(DMGetDimension(pack, &dim));
2578:   PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2579:   if (state != ctx->norm_state) {
2580:     PetscCall(MatZeroEntries(ctx->J));
2581:     PetscCall(LandauFormJacobian_Internal(X, ctx->J, dim, 0.0, (void *)ctx));
2582:     PetscCall(MatViewFromOptions(ctx->J, NULL, "-dm_landau_jacobian_view"));
2583:     PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2584:     ctx->norm_state = state;
2585:   } else {
2586:     PetscCall(PetscInfo(ts, "WARNING Skip forming Jacobian, has not changed %" PetscInt64_FMT "\n", state));
2587:   }
2588:   /* mat vec for op */
2589:   PetscCall(MatMult(ctx->J, X, F)); /* C*f */
2590:   /* add time term */
2591:   if (X_t) PetscCall(MatMultAdd(ctx->M, X_t, F, F));
2592: #if defined(PETSC_HAVE_THREADSAFETY)
2593:   if (ctx->stage) {
2594:     endtime = MPI_Wtime();
2595:     ctx->times[LANDAU_OPERATOR] += (endtime - starttime);
2596:     ctx->times[LANDAU_JACOBIAN] += (endtime - starttime);
2597:     ctx->times[LANDAU_MATRIX_TOTAL] += (endtime - starttime);
2598:     ctx->times[LANDAU_JACOBIAN_COUNT] += 1;
2599:   }
2600: #endif
2601:   PetscCall(PetscLogEventEnd(ctx->events[0], 0, 0, 0, 0));
2602:   PetscCall(PetscLogEventEnd(ctx->events[11], 0, 0, 0, 0));
2603:   if (ctx->stage) PetscCall(PetscLogStagePop());
2604:   PetscFunctionReturn(PETSC_SUCCESS);
2605: }

2607: /*@
2608:   DMPlexLandauIJacobian - `TS` Jacobian construction, confusingly this adds mass

2610:   Collective

2612:   Input Parameters:
2613: + ts         - The time stepping context
2614: . time_dummy - current time (not used)
2615: . X          - Current state
2616: . U_tdummy   - Time derivative of current state (not used)
2617: . shift      - shift for du/dt term
2618: - actx       - Landau context

2620:   Output Parameters:
2621: + Amat - Jacobian
2622: - Pmat - same as Amat

2624:   Level: beginner

2626: .seealso: `DMPlexLandauCreateVelocitySpace()`, `DMPlexLandauIFunction()`
2627:  @*/
2628: PetscErrorCode DMPlexLandauIJacobian(TS ts, PetscReal time_dummy, Vec X, Vec U_tdummy, PetscReal shift, Mat Amat, Mat Pmat, void *actx)
2629: {
2630:   LandauCtx *ctx = NULL;
2631:   PetscInt   dim;
2632:   DM         pack;
2633: #if defined(PETSC_HAVE_THREADSAFETY)
2634:   double starttime, endtime;
2635: #endif
2636:   PetscObjectState state;

2638:   PetscFunctionBegin;
2639:   PetscCall(TSGetDM(ts, &pack));
2640:   PetscCall(DMGetApplicationContext(pack, &ctx));
2641:   PetscCheck(ctx, PETSC_COMM_SELF, PETSC_ERR_PLIB, "no context");
2642:   PetscCheck(Amat == Pmat && Amat == ctx->J, ctx->comm, PETSC_ERR_PLIB, "Amat!=Pmat || Amat!=ctx->J");
2643:   PetscCall(DMGetDimension(pack, &dim));
2644:   /* get collision Jacobian into A */
2645:   if (ctx->stage) PetscCall(PetscLogStagePush(ctx->stage));
2646:   PetscCall(PetscLogEventBegin(ctx->events[11], 0, 0, 0, 0));
2647:   PetscCall(PetscLogEventBegin(ctx->events[9], 0, 0, 0, 0));
2648: #if defined(PETSC_HAVE_THREADSAFETY)
2649:   starttime = MPI_Wtime();
2650: #endif
2651:   PetscCheck(shift != 0.0, ctx->comm, PETSC_ERR_PLIB, "zero shift");
2652:   PetscCall(PetscObjectStateGet((PetscObject)ctx->J, &state));
2653:   PetscCheck(state == ctx->norm_state, ctx->comm, PETSC_ERR_PLIB, "wrong state, %" PetscInt64_FMT " %" PetscInt64_FMT, ctx->norm_state, state);
2654:   if (!ctx->use_matrix_mass) {
2655:     PetscCall(LandauFormJacobian_Internal(X, ctx->J, dim, shift, (void *)ctx));
2656:   } else { /* add mass */
2657:     PetscCall(MatAXPY(Pmat, shift, ctx->M, SAME_NONZERO_PATTERN));
2658:   }
2659: #if defined(PETSC_HAVE_THREADSAFETY)
2660:   if (ctx->stage) {
2661:     endtime = MPI_Wtime();
2662:     ctx->times[LANDAU_OPERATOR] += (endtime - starttime);
2663:     ctx->times[LANDAU_MASS] += (endtime - starttime);
2664:     ctx->times[LANDAU_MATRIX_TOTAL] += (endtime - starttime);
2665:   }
2666: #endif
2667:   PetscCall(PetscLogEventEnd(ctx->events[9], 0, 0, 0, 0));
2668:   PetscCall(PetscLogEventEnd(ctx->events[11], 0, 0, 0, 0));
2669:   if (ctx->stage) PetscCall(PetscLogStagePop());
2670:   PetscFunctionReturn(PETSC_SUCCESS);
2671: }