Actual source code: dense.c

  1: /*
  2:      Defines the basic matrix operations for sequential dense.
  3:      Portions of this code are under:
  4:      Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  5: */

  7: #include <../src/mat/impls/dense/seq/dense.h>
  8: #include <../src/mat/impls/dense/mpi/mpidense.h>
  9: #include <petscblaslapack.h>
 10: #include <../src/mat/impls/aij/seq/aij.h>

 12: PetscErrorCode MatSeqDenseSymmetrize_Private(Mat A, PetscBool hermitian)
 13: {
 14:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 15:   PetscInt      j, k, n = A->rmap->n;
 16:   PetscScalar  *v;

 18:   PetscFunctionBegin;
 19:   PetscCheck(A->rmap->n == A->cmap->n, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Cannot symmetrize a rectangular matrix");
 20:   PetscCall(MatDenseGetArray(A, &v));
 21:   if (!hermitian) {
 22:     for (k = 0; k < n; k++) {
 23:       for (j = k; j < n; j++) v[j * mat->lda + k] = v[k * mat->lda + j];
 24:     }
 25:   } else {
 26:     for (k = 0; k < n; k++) {
 27:       for (j = k; j < n; j++) v[j * mat->lda + k] = PetscConj(v[k * mat->lda + j]);
 28:     }
 29:   }
 30:   PetscCall(MatDenseRestoreArray(A, &v));
 31:   PetscFunctionReturn(PETSC_SUCCESS);
 32: }

 34: PetscErrorCode MatSeqDenseInvertFactors_Private(Mat A)
 35: {
 36:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
 37:   PetscBLASInt  info, n;

 39:   PetscFunctionBegin;
 40:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
 41:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
 42:   if (A->factortype == MAT_FACTOR_LU) {
 43:     PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 44:     if (!mat->fwork) {
 45:       mat->lfwork = n;
 46:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
 47:     }
 48:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 49:     PetscCallBLAS("LAPACKgetri", LAPACKgetri_(&n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
 50:     PetscCall(PetscFPTrapPop());
 51:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 52:   } else if (A->factortype == MAT_FACTOR_CHOLESKY) {
 53:     if (A->spd == PETSC_BOOL3_TRUE) {
 54:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 55:       PetscCallBLAS("LAPACKpotri", LAPACKpotri_("L", &n, mat->v, &mat->lda, &info));
 56:       PetscCall(PetscFPTrapPop());
 57:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 58: #if defined(PETSC_USE_COMPLEX)
 59:     } else if (A->hermitian == PETSC_BOOL3_TRUE) {
 60:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 61:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 62:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 63:       PetscCallBLAS("LAPACKhetri", LAPACKhetri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 64:       PetscCall(PetscFPTrapPop());
 65:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_TRUE));
 66: #endif
 67:     } else { /* symmetric case */
 68:       PetscCheck(mat->pivots, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Pivots not present");
 69:       PetscCheck(mat->fwork, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Fwork not present");
 70:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
 71:       PetscCallBLAS("LAPACKsytri", LAPACKsytri_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &info));
 72:       PetscCall(PetscFPTrapPop());
 73:       PetscCall(MatSeqDenseSymmetrize_Private(A, PETSC_FALSE));
 74:     }
 75:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad Inversion: zero pivot in row %" PetscInt_FMT, (PetscInt)info - 1);
 76:     PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
 77:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Matrix must be factored to solve");

 79:   A->ops->solve             = NULL;
 80:   A->ops->matsolve          = NULL;
 81:   A->ops->solvetranspose    = NULL;
 82:   A->ops->matsolvetranspose = NULL;
 83:   A->ops->solveadd          = NULL;
 84:   A->ops->solvetransposeadd = NULL;
 85:   A->factortype             = MAT_FACTOR_NONE;
 86:   PetscCall(PetscFree(A->solvertype));
 87:   PetscFunctionReturn(PETSC_SUCCESS);
 88: }

 90: static PetscErrorCode MatZeroRowsColumns_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
 91: {
 92:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
 93:   PetscInt           m = l->lda, n = A->cmap->n, r = A->rmap->n, i, j;
 94:   PetscScalar       *slot, *bb, *v;
 95:   const PetscScalar *xx;

 97:   PetscFunctionBegin;
 98:   if (PetscDefined(USE_DEBUG)) {
 99:     for (i = 0; i < N; i++) {
100:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
101:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
102:       PetscCheck(rows[i] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Col %" PetscInt_FMT " requested to be zeroed greater than or equal number of cols %" PetscInt_FMT, rows[i], A->cmap->n);
103:     }
104:   }
105:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

107:   /* fix right hand side if needed */
108:   if (x && b) {
109:     Vec xt;

111:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
112:     PetscCall(VecDuplicate(x, &xt));
113:     PetscCall(VecCopy(x, xt));
114:     PetscCall(VecScale(xt, -1.0));
115:     PetscCall(MatMultAdd(A, xt, b, b));
116:     PetscCall(VecDestroy(&xt));
117:     PetscCall(VecGetArrayRead(x, &xx));
118:     PetscCall(VecGetArray(b, &bb));
119:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
120:     PetscCall(VecRestoreArrayRead(x, &xx));
121:     PetscCall(VecRestoreArray(b, &bb));
122:   }

124:   PetscCall(MatDenseGetArray(A, &v));
125:   for (i = 0; i < N; i++) {
126:     slot = v + rows[i] * m;
127:     PetscCall(PetscArrayzero(slot, r));
128:   }
129:   for (i = 0; i < N; i++) {
130:     slot = v + rows[i];
131:     for (j = 0; j < n; j++) {
132:       *slot = 0.0;
133:       slot += m;
134:     }
135:   }
136:   if (diag != 0.0) {
137:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
138:     for (i = 0; i < N; i++) {
139:       slot  = v + (m + 1) * rows[i];
140:       *slot = diag;
141:     }
142:   }
143:   PetscCall(MatDenseRestoreArray(A, &v));
144:   PetscFunctionReturn(PETSC_SUCCESS);
145: }

147: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqDense(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
148: {
149:   Mat              B = NULL;
150:   Mat_SeqAIJ      *a = (Mat_SeqAIJ *)A->data;
151:   Mat_SeqDense    *b;
152:   PetscInt        *ai = a->i, *aj = a->j, m = A->rmap->N, n = A->cmap->N, i;
153:   const MatScalar *av;
154:   PetscBool        isseqdense;

156:   PetscFunctionBegin;
157:   if (reuse == MAT_REUSE_MATRIX) {
158:     PetscCall(PetscObjectTypeCompare((PetscObject)*newmat, MATSEQDENSE, &isseqdense));
159:     PetscCheck(isseqdense, PetscObjectComm((PetscObject)*newmat), PETSC_ERR_USER, "Cannot reuse matrix of type %s", ((PetscObject)(*newmat))->type_name);
160:   }
161:   if (reuse != MAT_REUSE_MATRIX) {
162:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
163:     PetscCall(MatSetSizes(B, m, n, m, n));
164:     PetscCall(MatSetType(B, MATSEQDENSE));
165:     PetscCall(MatSeqDenseSetPreallocation(B, NULL));
166:     b = (Mat_SeqDense *)(B->data);
167:   } else {
168:     b = (Mat_SeqDense *)((*newmat)->data);
169:     for (i = 0; i < n; i++) PetscCall(PetscArrayzero(b->v + i * b->lda, m));
170:   }
171:   PetscCall(MatSeqAIJGetArrayRead(A, &av));
172:   for (i = 0; i < m; i++) {
173:     PetscInt j;
174:     for (j = 0; j < ai[1] - ai[0]; j++) {
175:       b->v[*aj * b->lda + i] = *av;
176:       aj++;
177:       av++;
178:     }
179:     ai++;
180:   }
181:   PetscCall(MatSeqAIJRestoreArrayRead(A, &av));

183:   if (reuse == MAT_INPLACE_MATRIX) {
184:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
185:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
186:     PetscCall(MatHeaderReplace(A, &B));
187:   } else {
188:     if (B) *newmat = B;
189:     PetscCall(MatAssemblyBegin(*newmat, MAT_FINAL_ASSEMBLY));
190:     PetscCall(MatAssemblyEnd(*newmat, MAT_FINAL_ASSEMBLY));
191:   }
192:   PetscFunctionReturn(PETSC_SUCCESS);
193: }

195: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_SeqAIJ(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
196: {
197:   Mat           B = NULL;
198:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
199:   PetscInt      i, j;
200:   PetscInt     *rows, *nnz;
201:   MatScalar    *aa = a->v, *vals;

203:   PetscFunctionBegin;
204:   PetscCall(PetscCalloc3(A->rmap->n, &rows, A->rmap->n, &nnz, A->rmap->n, &vals));
205:   if (reuse != MAT_REUSE_MATRIX) {
206:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
207:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
208:     PetscCall(MatSetType(B, MATSEQAIJ));
209:     for (j = 0; j < A->cmap->n; j++) {
210:       for (i = 0; i < A->rmap->n; i++)
211:         if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) ++nnz[i];
212:       aa += a->lda;
213:     }
214:     PetscCall(MatSeqAIJSetPreallocation(B, PETSC_DETERMINE, nnz));
215:   } else B = *newmat;
216:   aa = a->v;
217:   for (j = 0; j < A->cmap->n; j++) {
218:     PetscInt numRows = 0;
219:     for (i = 0; i < A->rmap->n; i++)
220:       if (aa[i] != 0.0 || (i == j && A->cmap->n == A->rmap->n)) {
221:         rows[numRows]   = i;
222:         vals[numRows++] = aa[i];
223:       }
224:     PetscCall(MatSetValues(B, numRows, rows, 1, &j, vals, INSERT_VALUES));
225:     aa += a->lda;
226:   }
227:   PetscCall(PetscFree3(rows, nnz, vals));
228:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
229:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

231:   if (reuse == MAT_INPLACE_MATRIX) {
232:     PetscCall(MatHeaderReplace(A, &B));
233:   } else if (reuse != MAT_REUSE_MATRIX) *newmat = B;
234:   PetscFunctionReturn(PETSC_SUCCESS);
235: }

237: PetscErrorCode MatAXPY_SeqDense(Mat Y, PetscScalar alpha, Mat X, MatStructure str)
238: {
239:   Mat_SeqDense      *x = (Mat_SeqDense *)X->data, *y = (Mat_SeqDense *)Y->data;
240:   const PetscScalar *xv;
241:   PetscScalar       *yv;
242:   PetscBLASInt       N, m, ldax = 0, lday = 0, one = 1;

244:   PetscFunctionBegin;
245:   PetscCall(MatDenseGetArrayRead(X, &xv));
246:   PetscCall(MatDenseGetArray(Y, &yv));
247:   PetscCall(PetscBLASIntCast(X->rmap->n * X->cmap->n, &N));
248:   PetscCall(PetscBLASIntCast(X->rmap->n, &m));
249:   PetscCall(PetscBLASIntCast(x->lda, &ldax));
250:   PetscCall(PetscBLASIntCast(y->lda, &lday));
251:   if (ldax > m || lday > m) {
252:     PetscInt j;

254:     for (j = 0; j < X->cmap->n; j++) PetscCallBLAS("BLASaxpy", BLASaxpy_(&m, &alpha, xv + j * ldax, &one, yv + j * lday, &one));
255:   } else {
256:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&N, &alpha, xv, &one, yv, &one));
257:   }
258:   PetscCall(MatDenseRestoreArrayRead(X, &xv));
259:   PetscCall(MatDenseRestoreArray(Y, &yv));
260:   PetscCall(PetscLogFlops(PetscMax(2.0 * N - 1, 0)));
261:   PetscFunctionReturn(PETSC_SUCCESS);
262: }

264: static PetscErrorCode MatGetInfo_SeqDense(Mat A, MatInfoType flag, MatInfo *info)
265: {
266:   PetscLogDouble N = A->rmap->n * A->cmap->n;

268:   PetscFunctionBegin;
269:   info->block_size        = 1.0;
270:   info->nz_allocated      = N;
271:   info->nz_used           = N;
272:   info->nz_unneeded       = 0;
273:   info->assemblies        = A->num_ass;
274:   info->mallocs           = 0;
275:   info->memory            = 0; /* REVIEW ME */
276:   info->fill_ratio_given  = 0;
277:   info->fill_ratio_needed = 0;
278:   info->factor_mallocs    = 0;
279:   PetscFunctionReturn(PETSC_SUCCESS);
280: }

282: PetscErrorCode MatScale_SeqDense(Mat A, PetscScalar alpha)
283: {
284:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
285:   PetscScalar  *v;
286:   PetscBLASInt  one = 1, j, nz, lda = 0;

288:   PetscFunctionBegin;
289:   PetscCall(MatDenseGetArray(A, &v));
290:   PetscCall(PetscBLASIntCast(a->lda, &lda));
291:   if (lda > A->rmap->n) {
292:     PetscCall(PetscBLASIntCast(A->rmap->n, &nz));
293:     for (j = 0; j < A->cmap->n; j++) PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v + j * lda, &one));
294:   } else {
295:     PetscCall(PetscBLASIntCast(A->rmap->n * A->cmap->n, &nz));
296:     PetscCallBLAS("BLASscal", BLASscal_(&nz, &alpha, v, &one));
297:   }
298:   PetscCall(PetscLogFlops(A->rmap->n * A->cmap->n));
299:   PetscCall(MatDenseRestoreArray(A, &v));
300:   PetscFunctionReturn(PETSC_SUCCESS);
301: }

303: PetscErrorCode MatShift_SeqDense(Mat A, PetscScalar alpha)
304: {
305:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
306:   PetscScalar  *v;
307:   PetscInt      j, k;

309:   PetscFunctionBegin;
310:   PetscCall(MatDenseGetArray(A, &v));
311:   k = PetscMin(A->rmap->n, A->cmap->n);
312:   for (j = 0; j < k; j++) v[j + j * a->lda] += alpha;
313:   PetscCall(PetscLogFlops(k));
314:   PetscCall(MatDenseRestoreArray(A, &v));
315:   PetscFunctionReturn(PETSC_SUCCESS);
316: }

318: static PetscErrorCode MatIsHermitian_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
319: {
320:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
321:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
322:   const PetscScalar *v;

324:   PetscFunctionBegin;
325:   *fl = PETSC_FALSE;
326:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
327:   PetscCall(MatDenseGetArrayRead(A, &v));
328:   for (i = 0; i < m; i++) {
329:     for (j = i; j < m; j++) {
330:       if (PetscAbsScalar(v[i + j * N] - PetscConj(v[j + i * N])) > rtol) goto restore;
331:     }
332:   }
333:   *fl = PETSC_TRUE;
334: restore:
335:   PetscCall(MatDenseRestoreArrayRead(A, &v));
336:   PetscFunctionReturn(PETSC_SUCCESS);
337: }

339: static PetscErrorCode MatIsSymmetric_SeqDense(Mat A, PetscReal rtol, PetscBool *fl)
340: {
341:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
342:   PetscInt           i, j, m = A->rmap->n, N = a->lda;
343:   const PetscScalar *v;

345:   PetscFunctionBegin;
346:   *fl = PETSC_FALSE;
347:   if (A->rmap->n != A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
348:   PetscCall(MatDenseGetArrayRead(A, &v));
349:   for (i = 0; i < m; i++) {
350:     for (j = i; j < m; j++) {
351:       if (PetscAbsScalar(v[i + j * N] - v[j + i * N]) > rtol) goto restore;
352:     }
353:   }
354:   *fl = PETSC_TRUE;
355: restore:
356:   PetscCall(MatDenseRestoreArrayRead(A, &v));
357:   PetscFunctionReturn(PETSC_SUCCESS);
358: }

360: PetscErrorCode MatDuplicateNoCreate_SeqDense(Mat newi, Mat A, MatDuplicateOption cpvalues)
361: {
362:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
363:   PetscInt      lda = (PetscInt)mat->lda, j, m, nlda = lda;
364:   PetscBool     isdensecpu;

366:   PetscFunctionBegin;
367:   PetscCall(PetscLayoutReference(A->rmap, &newi->rmap));
368:   PetscCall(PetscLayoutReference(A->cmap, &newi->cmap));
369:   if (cpvalues == MAT_SHARE_NONZERO_PATTERN) { /* propagate LDA */
370:     PetscCall(MatDenseSetLDA(newi, lda));
371:   }
372:   PetscCall(PetscObjectTypeCompare((PetscObject)newi, MATSEQDENSE, &isdensecpu));
373:   if (isdensecpu) PetscCall(MatSeqDenseSetPreallocation(newi, NULL));
374:   if (cpvalues == MAT_COPY_VALUES) {
375:     const PetscScalar *av;
376:     PetscScalar       *v;

378:     PetscCall(MatDenseGetArrayRead(A, &av));
379:     PetscCall(MatDenseGetArrayWrite(newi, &v));
380:     PetscCall(MatDenseGetLDA(newi, &nlda));
381:     m = A->rmap->n;
382:     if (lda > m || nlda > m) {
383:       for (j = 0; j < A->cmap->n; j++) PetscCall(PetscArraycpy(v + j * nlda, av + j * lda, m));
384:     } else {
385:       PetscCall(PetscArraycpy(v, av, A->rmap->n * A->cmap->n));
386:     }
387:     PetscCall(MatDenseRestoreArrayWrite(newi, &v));
388:     PetscCall(MatDenseRestoreArrayRead(A, &av));
389:   }
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }

393: PetscErrorCode MatDuplicate_SeqDense(Mat A, MatDuplicateOption cpvalues, Mat *newmat)
394: {
395:   PetscFunctionBegin;
396:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), newmat));
397:   PetscCall(MatSetSizes(*newmat, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
398:   PetscCall(MatSetType(*newmat, ((PetscObject)A)->type_name));
399:   PetscCall(MatDuplicateNoCreate_SeqDense(*newmat, A, cpvalues));
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: static PetscErrorCode MatSolve_SeqDense_Internal_LU(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
404: {
405:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
406:   PetscBLASInt  info;

408:   PetscFunctionBegin;
409:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
410:   PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_(T ? "T" : "N", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
411:   PetscCall(PetscFPTrapPop());
412:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "GETRS - Bad solve %d", (int)info);
413:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
414:   PetscFunctionReturn(PETSC_SUCCESS);
415: }

417: static PetscErrorCode MatConjugate_SeqDense(Mat);

419: static PetscErrorCode MatSolve_SeqDense_Internal_Cholesky(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k, PetscBool T)
420: {
421:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
422:   PetscBLASInt  info;

424:   PetscFunctionBegin;
425:   if (A->spd == PETSC_BOOL3_TRUE) {
426:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
427:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
428:     PetscCallBLAS("LAPACKpotrs", LAPACKpotrs_("L", &m, &nrhs, mat->v, &mat->lda, x, &m, &info));
429:     PetscCall(PetscFPTrapPop());
430:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "POTRS Bad solve %d", (int)info);
431:     if (PetscDefined(USE_COMPLEX) && T) PetscCall(MatConjugate_SeqDense(A));
432: #if defined(PETSC_USE_COMPLEX)
433:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
434:     if (T) PetscCall(MatConjugate_SeqDense(A));
435:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
436:     PetscCallBLAS("LAPACKhetrs", LAPACKhetrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
437:     PetscCall(PetscFPTrapPop());
438:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "HETRS Bad solve %d", (int)info);
439:     if (T) PetscCall(MatConjugate_SeqDense(A));
440: #endif
441:   } else { /* symmetric case */
442:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
443:     PetscCallBLAS("LAPACKsytrs", LAPACKsytrs_("L", &m, &nrhs, mat->v, &mat->lda, mat->pivots, x, &m, &info));
444:     PetscCall(PetscFPTrapPop());
445:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "SYTRS Bad solve %d", (int)info);
446:   }
447:   PetscCall(PetscLogFlops(nrhs * (2.0 * m * m - m)));
448:   PetscFunctionReturn(PETSC_SUCCESS);
449: }

451: static PetscErrorCode MatSolve_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
452: {
453:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
454:   PetscBLASInt  info;
455:   char          trans;

457:   PetscFunctionBegin;
458:   if (PetscDefined(USE_COMPLEX)) {
459:     trans = 'C';
460:   } else {
461:     trans = 'T';
462:   }
463:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
464:   { /* lwork depends on the number of right-hand sides */
465:     PetscBLASInt nlfwork, lfwork = -1;
466:     PetscScalar  fwork;

468:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
469:     nlfwork = (PetscBLASInt)PetscRealPart(fwork);
470:     if (nlfwork > mat->lfwork) {
471:       mat->lfwork = nlfwork;
472:       PetscCall(PetscFree(mat->fwork));
473:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
474:     }
475:   }
476:   PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", &trans, &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
477:   PetscCall(PetscFPTrapPop());
478:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %d", (int)info);
479:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
480:   PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "N", "N", &mat->rank, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
481:   PetscCall(PetscFPTrapPop());
482:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %d", (int)info);
483:   for (PetscInt j = 0; j < nrhs; j++) {
484:     for (PetscInt i = mat->rank; i < k; i++) x[j * ldx + i] = 0.;
485:   }
486:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: static PetscErrorCode MatSolveTranspose_SeqDense_Internal_QR(Mat A, PetscScalar *x, PetscBLASInt ldx, PetscBLASInt m, PetscBLASInt nrhs, PetscBLASInt k)
491: {
492:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
493:   PetscBLASInt  info;

495:   PetscFunctionBegin;
496:   if (A->rmap->n == A->cmap->n && mat->rank == A->rmap->n) {
497:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
498:     PetscCallBLAS("LAPACKtrtrs", LAPACKtrtrs_("U", "T", "N", &m, &nrhs, mat->v, &mat->lda, x, &ldx, &info));
499:     PetscCall(PetscFPTrapPop());
500:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "TRTRS - Bad triangular solve %d", (int)info);
501:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
502:     { /* lwork depends on the number of right-hand sides */
503:       PetscBLASInt nlfwork, lfwork = -1;
504:       PetscScalar  fwork;

506:       PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, &fwork, &lfwork, &info));
507:       nlfwork = (PetscBLASInt)PetscRealPart(fwork);
508:       if (nlfwork > mat->lfwork) {
509:         mat->lfwork = nlfwork;
510:         PetscCall(PetscFree(mat->fwork));
511:         PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
512:       }
513:     }
514:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
515:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("L", "N", &m, &nrhs, &mat->rank, mat->v, &mat->lda, mat->tau, x, &ldx, mat->fwork, &mat->lfwork, &info));
516:     PetscCall(PetscFPTrapPop());
517:     PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "ORMQR - Bad orthogonal transform %d", (int)info);
518:     if (PetscDefined(USE_COMPLEX)) PetscCall(MatConjugate_SeqDense(A));
519:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "QR factored matrix cannot be used for transpose solve");
520:   PetscCall(PetscLogFlops(nrhs * (4.0 * m * mat->rank - PetscSqr(mat->rank))));
521:   PetscFunctionReturn(PETSC_SUCCESS);
522: }

524: static PetscErrorCode MatSolve_SeqDense_SetUp(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
525: {
526:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
527:   PetscScalar  *y;
528:   PetscBLASInt  m = 0, k = 0;

530:   PetscFunctionBegin;
531:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
532:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
533:   if (k < m) {
534:     PetscCall(VecCopy(xx, mat->qrrhs));
535:     PetscCall(VecGetArray(mat->qrrhs, &y));
536:   } else {
537:     PetscCall(VecCopy(xx, yy));
538:     PetscCall(VecGetArray(yy, &y));
539:   }
540:   *_y = y;
541:   *_k = k;
542:   *_m = m;
543:   PetscFunctionReturn(PETSC_SUCCESS);
544: }

546: static PetscErrorCode MatSolve_SeqDense_TearDown(Mat A, Vec xx, Vec yy, PetscScalar **_y, PetscBLASInt *_m, PetscBLASInt *_k)
547: {
548:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
549:   PetscScalar  *y   = NULL;
550:   PetscBLASInt  m, k;

552:   PetscFunctionBegin;
553:   y   = *_y;
554:   *_y = NULL;
555:   k   = *_k;
556:   m   = *_m;
557:   if (k < m) {
558:     PetscScalar *yv;
559:     PetscCall(VecGetArray(yy, &yv));
560:     PetscCall(PetscArraycpy(yv, y, k));
561:     PetscCall(VecRestoreArray(yy, &yv));
562:     PetscCall(VecRestoreArray(mat->qrrhs, &y));
563:   } else {
564:     PetscCall(VecRestoreArray(yy, &y));
565:   }
566:   PetscFunctionReturn(PETSC_SUCCESS);
567: }

569: static PetscErrorCode MatSolve_SeqDense_LU(Mat A, Vec xx, Vec yy)
570: {
571:   PetscScalar *y = NULL;
572:   PetscBLASInt m = 0, k = 0;

574:   PetscFunctionBegin;
575:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
576:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_FALSE));
577:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
578:   PetscFunctionReturn(PETSC_SUCCESS);
579: }

581: static PetscErrorCode MatSolveTranspose_SeqDense_LU(Mat A, Vec xx, Vec yy)
582: {
583:   PetscScalar *y = NULL;
584:   PetscBLASInt m = 0, k = 0;

586:   PetscFunctionBegin;
587:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
588:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, m, m, 1, k, PETSC_TRUE));
589:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: static PetscErrorCode MatSolve_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
594: {
595:   PetscScalar *y = NULL;
596:   PetscBLASInt m = 0, k = 0;

598:   PetscFunctionBegin;
599:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
600:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_FALSE));
601:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
602:   PetscFunctionReturn(PETSC_SUCCESS);
603: }

605: static PetscErrorCode MatSolveTranspose_SeqDense_Cholesky(Mat A, Vec xx, Vec yy)
606: {
607:   PetscScalar *y = NULL;
608:   PetscBLASInt m = 0, k = 0;

610:   PetscFunctionBegin;
611:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
612:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, m, m, 1, k, PETSC_TRUE));
613:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
614:   PetscFunctionReturn(PETSC_SUCCESS);
615: }

617: static PetscErrorCode MatSolve_SeqDense_QR(Mat A, Vec xx, Vec yy)
618: {
619:   PetscScalar *y = NULL;
620:   PetscBLASInt m = 0, k = 0;

622:   PetscFunctionBegin;
623:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
624:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
625:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
626:   PetscFunctionReturn(PETSC_SUCCESS);
627: }

629: static PetscErrorCode MatSolveTranspose_SeqDense_QR(Mat A, Vec xx, Vec yy)
630: {
631:   PetscScalar *y = NULL;
632:   PetscBLASInt m = 0, k = 0;

634:   PetscFunctionBegin;
635:   PetscCall(MatSolve_SeqDense_SetUp(A, xx, yy, &y, &m, &k));
636:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, PetscMax(m, k), m, 1, k));
637:   PetscCall(MatSolve_SeqDense_TearDown(A, xx, yy, &y, &m, &k));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }

641: static PetscErrorCode MatMatSolve_SeqDense_SetUp(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
642: {
643:   const PetscScalar *b;
644:   PetscScalar       *y;
645:   PetscInt           n, _ldb, _ldx;
646:   PetscBLASInt       nrhs = 0, m = 0, k = 0, ldb = 0, ldx = 0, ldy = 0;

648:   PetscFunctionBegin;
649:   *_ldy  = 0;
650:   *_m    = 0;
651:   *_nrhs = 0;
652:   *_k    = 0;
653:   *_y    = NULL;
654:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
655:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
656:   PetscCall(MatGetSize(B, NULL, &n));
657:   PetscCall(PetscBLASIntCast(n, &nrhs));
658:   PetscCall(MatDenseGetLDA(B, &_ldb));
659:   PetscCall(PetscBLASIntCast(_ldb, &ldb));
660:   PetscCall(MatDenseGetLDA(X, &_ldx));
661:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
662:   if (ldx < m) {
663:     PetscCall(MatDenseGetArrayRead(B, &b));
664:     PetscCall(PetscMalloc1(nrhs * m, &y));
665:     if (ldb == m) {
666:       PetscCall(PetscArraycpy(y, b, ldb * nrhs));
667:     } else {
668:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * m], &b[j * ldb], m));
669:     }
670:     ldy = m;
671:     PetscCall(MatDenseRestoreArrayRead(B, &b));
672:   } else {
673:     if (ldb == ldx) {
674:       PetscCall(MatCopy(B, X, SAME_NONZERO_PATTERN));
675:       PetscCall(MatDenseGetArray(X, &y));
676:     } else {
677:       PetscCall(MatDenseGetArray(X, &y));
678:       PetscCall(MatDenseGetArrayRead(B, &b));
679:       for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&y[j * ldx], &b[j * ldb], m));
680:       PetscCall(MatDenseRestoreArrayRead(B, &b));
681:     }
682:     ldy = ldx;
683:   }
684:   *_y    = y;
685:   *_ldy  = ldy;
686:   *_k    = k;
687:   *_m    = m;
688:   *_nrhs = nrhs;
689:   PetscFunctionReturn(PETSC_SUCCESS);
690: }

692: static PetscErrorCode MatMatSolve_SeqDense_TearDown(Mat A, Mat B, Mat X, PetscScalar **_y, PetscBLASInt *_ldy, PetscBLASInt *_m, PetscBLASInt *_nrhs, PetscBLASInt *_k)
693: {
694:   PetscScalar *y;
695:   PetscInt     _ldx;
696:   PetscBLASInt k, ldy, nrhs, ldx = 0;

698:   PetscFunctionBegin;
699:   y    = *_y;
700:   *_y  = NULL;
701:   k    = *_k;
702:   ldy  = *_ldy;
703:   nrhs = *_nrhs;
704:   PetscCall(MatDenseGetLDA(X, &_ldx));
705:   PetscCall(PetscBLASIntCast(_ldx, &ldx));
706:   if (ldx != ldy) {
707:     PetscScalar *xv;
708:     PetscCall(MatDenseGetArray(X, &xv));
709:     for (PetscInt j = 0; j < nrhs; j++) PetscCall(PetscArraycpy(&xv[j * ldx], &y[j * ldy], k));
710:     PetscCall(MatDenseRestoreArray(X, &xv));
711:     PetscCall(PetscFree(y));
712:   } else {
713:     PetscCall(MatDenseRestoreArray(X, &y));
714:   }
715:   PetscFunctionReturn(PETSC_SUCCESS);
716: }

718: static PetscErrorCode MatMatSolve_SeqDense_LU(Mat A, Mat B, Mat X)
719: {
720:   PetscScalar *y;
721:   PetscBLASInt m, k, ldy, nrhs;

723:   PetscFunctionBegin;
724:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
725:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_FALSE));
726:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
727:   PetscFunctionReturn(PETSC_SUCCESS);
728: }

730: static PetscErrorCode MatMatSolveTranspose_SeqDense_LU(Mat A, Mat B, Mat X)
731: {
732:   PetscScalar *y;
733:   PetscBLASInt m, k, ldy, nrhs;

735:   PetscFunctionBegin;
736:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
737:   PetscCall(MatSolve_SeqDense_Internal_LU(A, y, ldy, m, nrhs, k, PETSC_TRUE));
738:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
739:   PetscFunctionReturn(PETSC_SUCCESS);
740: }

742: static PetscErrorCode MatMatSolve_SeqDense_Cholesky(Mat A, Mat B, Mat X)
743: {
744:   PetscScalar *y;
745:   PetscBLASInt m, k, ldy, nrhs;

747:   PetscFunctionBegin;
748:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
749:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_FALSE));
750:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
751:   PetscFunctionReturn(PETSC_SUCCESS);
752: }

754: static PetscErrorCode MatMatSolveTranspose_SeqDense_Cholesky(Mat A, Mat B, Mat X)
755: {
756:   PetscScalar *y;
757:   PetscBLASInt m, k, ldy, nrhs;

759:   PetscFunctionBegin;
760:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
761:   PetscCall(MatSolve_SeqDense_Internal_Cholesky(A, y, ldy, m, nrhs, k, PETSC_TRUE));
762:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
763:   PetscFunctionReturn(PETSC_SUCCESS);
764: }

766: static PetscErrorCode MatMatSolve_SeqDense_QR(Mat A, Mat B, Mat X)
767: {
768:   PetscScalar *y;
769:   PetscBLASInt m, k, ldy, nrhs;

771:   PetscFunctionBegin;
772:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
773:   PetscCall(MatSolve_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
774:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
775:   PetscFunctionReturn(PETSC_SUCCESS);
776: }

778: static PetscErrorCode MatMatSolveTranspose_SeqDense_QR(Mat A, Mat B, Mat X)
779: {
780:   PetscScalar *y;
781:   PetscBLASInt m, k, ldy, nrhs;

783:   PetscFunctionBegin;
784:   PetscCall(MatMatSolve_SeqDense_SetUp(A, B, X, &y, &ldy, &m, &nrhs, &k));
785:   PetscCall(MatSolveTranspose_SeqDense_Internal_QR(A, y, ldy, m, nrhs, k));
786:   PetscCall(MatMatSolve_SeqDense_TearDown(A, B, X, &y, &ldy, &m, &nrhs, &k));
787:   PetscFunctionReturn(PETSC_SUCCESS);
788: }

790: /* COMMENT: I have chosen to hide row permutation in the pivots,
791:    rather than put it in the Mat->row slot.*/
792: PetscErrorCode MatLUFactor_SeqDense(Mat A, IS row, IS col, const MatFactorInfo *minfo)
793: {
794:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
795:   PetscBLASInt  n, m, info;

797:   PetscFunctionBegin;
798:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
799:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
800:   if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
801:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
802:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
803:   PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&m, &n, mat->v, &mat->lda, mat->pivots, &info));
804:   PetscCall(PetscFPTrapPop());

806:   PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to LU factorization %d", (int)info);
807:   PetscCheck(info <= 0, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Bad LU factorization %d", (int)info);

809:   A->ops->solve             = MatSolve_SeqDense_LU;
810:   A->ops->matsolve          = MatMatSolve_SeqDense_LU;
811:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_LU;
812:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_LU;
813:   A->factortype             = MAT_FACTOR_LU;

815:   PetscCall(PetscFree(A->solvertype));
816:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

818:   PetscCall(PetscLogFlops((2.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3));
819:   PetscFunctionReturn(PETSC_SUCCESS);
820: }

822: static PetscErrorCode MatLUFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
823: {
824:   MatFactorInfo info;

826:   PetscFunctionBegin;
827:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
828:   PetscUseTypeMethod(fact, lufactor, NULL, NULL, &info);
829:   PetscFunctionReturn(PETSC_SUCCESS);
830: }

832: PetscErrorCode MatLUFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, IS col, const MatFactorInfo *info)
833: {
834:   PetscFunctionBegin;
835:   fact->preallocated         = PETSC_TRUE;
836:   fact->assembled            = PETSC_TRUE;
837:   fact->ops->lufactornumeric = MatLUFactorNumeric_SeqDense;
838:   PetscFunctionReturn(PETSC_SUCCESS);
839: }

841: /* Cholesky as L*L^T or L*D*L^T and the symmetric/hermitian complex variants */
842: PetscErrorCode MatCholeskyFactor_SeqDense(Mat A, IS perm, const MatFactorInfo *factinfo)
843: {
844:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
845:   PetscBLASInt  info, n;

847:   PetscFunctionBegin;
848:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
849:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
850:   if (A->spd == PETSC_BOOL3_TRUE) {
851:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
852:     PetscCallBLAS("LAPACKpotrf", LAPACKpotrf_("L", &n, mat->v, &mat->lda, &info));
853:     PetscCall(PetscFPTrapPop());
854: #if defined(PETSC_USE_COMPLEX)
855:   } else if (A->hermitian == PETSC_BOOL3_TRUE) {
856:     if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
857:     if (!mat->fwork) {
858:       PetscScalar dummy;

860:       mat->lfwork = -1;
861:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
862:       PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
863:       PetscCall(PetscFPTrapPop());
864:       mat->lfwork = (PetscInt)PetscRealPart(dummy);
865:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
866:     }
867:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
868:     PetscCallBLAS("LAPACKhetrf", LAPACKhetrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
869:     PetscCall(PetscFPTrapPop());
870: #endif
871:   } else { /* symmetric case */
872:     if (!mat->pivots) { PetscCall(PetscMalloc1(A->rmap->n, &mat->pivots)); }
873:     if (!mat->fwork) {
874:       PetscScalar dummy;

876:       mat->lfwork = -1;
877:       PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
878:       PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, &dummy, &mat->lfwork, &info));
879:       PetscCall(PetscFPTrapPop());
880:       mat->lfwork = (PetscInt)PetscRealPart(dummy);
881:       PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
882:     }
883:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
884:     PetscCallBLAS("LAPACKsytrf", LAPACKsytrf_("L", &n, mat->v, &mat->lda, mat->pivots, mat->fwork, &mat->lfwork, &info));
885:     PetscCall(PetscFPTrapPop());
886:   }
887:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_MAT_CH_ZRPVT, "Bad factorization: zero pivot in row %" PetscInt_FMT, (PetscInt)info - 1);

889:   A->ops->solve             = MatSolve_SeqDense_Cholesky;
890:   A->ops->matsolve          = MatMatSolve_SeqDense_Cholesky;
891:   A->ops->solvetranspose    = MatSolveTranspose_SeqDense_Cholesky;
892:   A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_Cholesky;
893:   A->factortype             = MAT_FACTOR_CHOLESKY;

895:   PetscCall(PetscFree(A->solvertype));
896:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

898:   PetscCall(PetscLogFlops((1.0 * A->cmap->n * A->cmap->n * A->cmap->n) / 3.0));
899:   PetscFunctionReturn(PETSC_SUCCESS);
900: }

902: static PetscErrorCode MatCholeskyFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
903: {
904:   MatFactorInfo info;

906:   PetscFunctionBegin;
907:   info.fill = 1.0;

909:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
910:   PetscUseTypeMethod(fact, choleskyfactor, NULL, &info);
911:   PetscFunctionReturn(PETSC_SUCCESS);
912: }

914: PetscErrorCode MatCholeskyFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
915: {
916:   PetscFunctionBegin;
917:   fact->assembled                  = PETSC_TRUE;
918:   fact->preallocated               = PETSC_TRUE;
919:   fact->ops->choleskyfactornumeric = MatCholeskyFactorNumeric_SeqDense;
920:   PetscFunctionReturn(PETSC_SUCCESS);
921: }

923: PetscErrorCode MatQRFactor_SeqDense(Mat A, IS col, const MatFactorInfo *minfo)
924: {
925:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
926:   PetscBLASInt  n, m, info, min, max;

928:   PetscFunctionBegin;
929:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
930:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
931:   max = PetscMax(m, n);
932:   min = PetscMin(m, n);
933:   if (!mat->tau) { PetscCall(PetscMalloc1(min, &mat->tau)); }
934:   if (!mat->pivots) { PetscCall(PetscMalloc1(n, &mat->pivots)); }
935:   if (!mat->qrrhs) PetscCall(MatCreateVecs(A, NULL, &(mat->qrrhs)));
936:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
937:   if (!mat->fwork) {
938:     PetscScalar dummy;

940:     mat->lfwork = -1;
941:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
942:     PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, &dummy, &mat->lfwork, &info));
943:     PetscCall(PetscFPTrapPop());
944:     mat->lfwork = (PetscInt)PetscRealPart(dummy);
945:     PetscCall(PetscMalloc1(mat->lfwork, &mat->fwork));
946:   }
947:   PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
948:   PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&m, &n, mat->v, &mat->lda, mat->tau, mat->fwork, &mat->lfwork, &info));
949:   PetscCall(PetscFPTrapPop());
950:   PetscCheck(!info, PETSC_COMM_SELF, PETSC_ERR_LIB, "Bad argument to QR factorization %d", (int)info);
951:   // TODO: try to estimate rank or test for and use geqp3 for rank revealing QR.  For now just say rank is min of m and n
952:   mat->rank = min;

954:   A->ops->solve    = MatSolve_SeqDense_QR;
955:   A->ops->matsolve = MatMatSolve_SeqDense_QR;
956:   A->factortype    = MAT_FACTOR_QR;
957:   if (m == n) {
958:     A->ops->solvetranspose    = MatSolveTranspose_SeqDense_QR;
959:     A->ops->matsolvetranspose = MatMatSolveTranspose_SeqDense_QR;
960:   }

962:   PetscCall(PetscFree(A->solvertype));
963:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &A->solvertype));

965:   PetscCall(PetscLogFlops(2.0 * min * min * (max - min / 3.0)));
966:   PetscFunctionReturn(PETSC_SUCCESS);
967: }

969: static PetscErrorCode MatQRFactorNumeric_SeqDense(Mat fact, Mat A, const MatFactorInfo *info_dummy)
970: {
971:   MatFactorInfo info;

973:   PetscFunctionBegin;
974:   info.fill = 1.0;

976:   PetscCall(MatDuplicateNoCreate_SeqDense(fact, A, MAT_COPY_VALUES));
977:   PetscUseMethod(fact, "MatQRFactor_C", (Mat, IS, const MatFactorInfo *), (fact, NULL, &info));
978:   PetscFunctionReturn(PETSC_SUCCESS);
979: }

981: PetscErrorCode MatQRFactorSymbolic_SeqDense(Mat fact, Mat A, IS row, const MatFactorInfo *info)
982: {
983:   PetscFunctionBegin;
984:   fact->assembled    = PETSC_TRUE;
985:   fact->preallocated = PETSC_TRUE;
986:   PetscCall(PetscObjectComposeFunction((PetscObject)fact, "MatQRFactorNumeric_C", MatQRFactorNumeric_SeqDense));
987:   PetscFunctionReturn(PETSC_SUCCESS);
988: }

990: /* uses LAPACK */
991: PETSC_INTERN PetscErrorCode MatGetFactor_seqdense_petsc(Mat A, MatFactorType ftype, Mat *fact)
992: {
993:   PetscFunctionBegin;
994:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), fact));
995:   PetscCall(MatSetSizes(*fact, A->rmap->n, A->cmap->n, A->rmap->n, A->cmap->n));
996:   PetscCall(MatSetType(*fact, MATDENSE));
997:   (*fact)->trivialsymbolic = PETSC_TRUE;
998:   if (ftype == MAT_FACTOR_LU || ftype == MAT_FACTOR_ILU) {
999:     (*fact)->ops->lufactorsymbolic  = MatLUFactorSymbolic_SeqDense;
1000:     (*fact)->ops->ilufactorsymbolic = MatLUFactorSymbolic_SeqDense;
1001:   } else if (ftype == MAT_FACTOR_CHOLESKY || ftype == MAT_FACTOR_ICC) {
1002:     (*fact)->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_SeqDense;
1003:   } else if (ftype == MAT_FACTOR_QR) {
1004:     PetscCall(PetscObjectComposeFunction((PetscObject)(*fact), "MatQRFactorSymbolic_C", MatQRFactorSymbolic_SeqDense));
1005:   }
1006:   (*fact)->factortype = ftype;

1008:   PetscCall(PetscFree((*fact)->solvertype));
1009:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*fact)->solvertype));
1010:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_LU]));
1011:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ILU]));
1012:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_CHOLESKY]));
1013:   PetscCall(PetscStrallocpy(MATORDERINGEXTERNAL, (char **)&(*fact)->preferredordering[MAT_FACTOR_ICC]));
1014:   PetscFunctionReturn(PETSC_SUCCESS);
1015: }

1017: static PetscErrorCode MatSOR_SeqDense(Mat A, Vec bb, PetscReal omega, MatSORType flag, PetscReal shift, PetscInt its, PetscInt lits, Vec xx)
1018: {
1019:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1020:   PetscScalar       *x, *v = mat->v, zero = 0.0, xt;
1021:   const PetscScalar *b;
1022:   PetscInt           m = A->rmap->n, i;
1023:   PetscBLASInt       o = 1, bm = 0;

1025:   PetscFunctionBegin;
1026: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1027:   PetscCheck(A->offloadmask != PETSC_OFFLOAD_GPU, PETSC_COMM_SELF, PETSC_ERR_SUP, "Not implemented");
1028: #endif
1029:   if (shift == -1) shift = 0.0; /* negative shift indicates do not error on zero diagonal; this code never zeros on zero diagonal */
1030:   PetscCall(PetscBLASIntCast(m, &bm));
1031:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1032:     /* this is a hack fix, should have another version without the second BLASdotu */
1033:     PetscCall(VecSet(xx, zero));
1034:   }
1035:   PetscCall(VecGetArray(xx, &x));
1036:   PetscCall(VecGetArrayRead(bb, &b));
1037:   its = its * lits;
1038:   PetscCheck(its > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Relaxation requires global its %" PetscInt_FMT " and local its %" PetscInt_FMT " both positive", its, lits);
1039:   while (its--) {
1040:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1041:       for (i = 0; i < m; i++) {
1042:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1043:         x[i] = (1. - omega) * x[i] + omega * (xt + v[i + i * m] * x[i]) / (v[i + i * m] + shift);
1044:       }
1045:     }
1046:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1047:       for (i = m - 1; i >= 0; i--) {
1048:         PetscCallBLAS("BLASdotu", xt = b[i] - BLASdotu_(&bm, v + i, &bm, x, &o));
1049:         x[i] = (1. - omega) * x[i] + omega * (xt + v[i + i * m] * x[i]) / (v[i + i * m] + shift);
1050:       }
1051:     }
1052:   }
1053:   PetscCall(VecRestoreArrayRead(bb, &b));
1054:   PetscCall(VecRestoreArray(xx, &x));
1055:   PetscFunctionReturn(PETSC_SUCCESS);
1056: }

1058: PetscErrorCode MatMultTranspose_SeqDense(Mat A, Vec xx, Vec yy)
1059: {
1060:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1061:   const PetscScalar *v   = mat->v, *x;
1062:   PetscScalar       *y;
1063:   PetscBLASInt       m, n, _One = 1;
1064:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

1066:   PetscFunctionBegin;
1067:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1068:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
1069:   PetscCall(VecGetArrayRead(xx, &x));
1070:   PetscCall(VecGetArrayWrite(yy, &y));
1071:   if (!A->rmap->n || !A->cmap->n) {
1072:     PetscBLASInt i;
1073:     for (i = 0; i < n; i++) y[i] = 0.0;
1074:   } else {
1075:     PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v, &mat->lda, x, &_One, &_DZero, y, &_One));
1076:     PetscCall(PetscLogFlops(2.0 * A->rmap->n * A->cmap->n - A->cmap->n));
1077:   }
1078:   PetscCall(VecRestoreArrayRead(xx, &x));
1079:   PetscCall(VecRestoreArrayWrite(yy, &y));
1080:   PetscFunctionReturn(PETSC_SUCCESS);
1081: }

1083: PetscErrorCode MatMult_SeqDense(Mat A, Vec xx, Vec yy)
1084: {
1085:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1086:   PetscScalar       *y, _DOne = 1.0, _DZero = 0.0;
1087:   PetscBLASInt       m, n, _One             = 1;
1088:   const PetscScalar *v = mat->v, *x;

1090:   PetscFunctionBegin;
1091:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1092:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
1093:   PetscCall(VecGetArrayRead(xx, &x));
1094:   PetscCall(VecGetArrayWrite(yy, &y));
1095:   if (!A->rmap->n || !A->cmap->n) {
1096:     PetscBLASInt i;
1097:     for (i = 0; i < m; i++) y[i] = 0.0;
1098:   } else {
1099:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v, &(mat->lda), x, &_One, &_DZero, y, &_One));
1100:     PetscCall(PetscLogFlops(2.0 * A->rmap->n * A->cmap->n - A->rmap->n));
1101:   }
1102:   PetscCall(VecRestoreArrayRead(xx, &x));
1103:   PetscCall(VecRestoreArrayWrite(yy, &y));
1104:   PetscFunctionReturn(PETSC_SUCCESS);
1105: }

1107: PetscErrorCode MatMultAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1108: {
1109:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1110:   const PetscScalar *v   = mat->v, *x;
1111:   PetscScalar       *y, _DOne = 1.0;
1112:   PetscBLASInt       m, n, _One = 1;

1114:   PetscFunctionBegin;
1115:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1116:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
1117:   PetscCall(VecCopy(zz, yy));
1118:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
1119:   PetscCall(VecGetArrayRead(xx, &x));
1120:   PetscCall(VecGetArray(yy, &y));
1121:   PetscCallBLAS("BLASgemv", BLASgemv_("N", &m, &n, &_DOne, v, &(mat->lda), x, &_One, &_DOne, y, &_One));
1122:   PetscCall(VecRestoreArrayRead(xx, &x));
1123:   PetscCall(VecRestoreArray(yy, &y));
1124:   PetscCall(PetscLogFlops(2.0 * A->rmap->n * A->cmap->n));
1125:   PetscFunctionReturn(PETSC_SUCCESS);
1126: }

1128: PetscErrorCode MatMultTransposeAdd_SeqDense(Mat A, Vec xx, Vec zz, Vec yy)
1129: {
1130:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1131:   const PetscScalar *v   = mat->v, *x;
1132:   PetscScalar       *y;
1133:   PetscBLASInt       m, n, _One = 1;
1134:   PetscScalar        _DOne = 1.0;

1136:   PetscFunctionBegin;
1137:   PetscCall(PetscBLASIntCast(A->rmap->n, &m));
1138:   PetscCall(PetscBLASIntCast(A->cmap->n, &n));
1139:   PetscCall(VecCopy(zz, yy));
1140:   if (!A->rmap->n || !A->cmap->n) PetscFunctionReturn(PETSC_SUCCESS);
1141:   PetscCall(VecGetArrayRead(xx, &x));
1142:   PetscCall(VecGetArray(yy, &y));
1143:   PetscCallBLAS("BLASgemv", BLASgemv_("T", &m, &n, &_DOne, v, &(mat->lda), x, &_One, &_DOne, y, &_One));
1144:   PetscCall(VecRestoreArrayRead(xx, &x));
1145:   PetscCall(VecRestoreArray(yy, &y));
1146:   PetscCall(PetscLogFlops(2.0 * A->rmap->n * A->cmap->n));
1147:   PetscFunctionReturn(PETSC_SUCCESS);
1148: }

1150: static PetscErrorCode MatGetRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1151: {
1152:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1153:   PetscInt      i;

1155:   PetscFunctionBegin;
1156:   if (ncols) *ncols = A->cmap->n;
1157:   if (cols) {
1158:     PetscCall(PetscMalloc1(A->cmap->n, cols));
1159:     for (i = 0; i < A->cmap->n; i++) (*cols)[i] = i;
1160:   }
1161:   if (vals) {
1162:     const PetscScalar *v;

1164:     PetscCall(MatDenseGetArrayRead(A, &v));
1165:     PetscCall(PetscMalloc1(A->cmap->n, vals));
1166:     v += row;
1167:     for (i = 0; i < A->cmap->n; i++) {
1168:       (*vals)[i] = *v;
1169:       v += mat->lda;
1170:     }
1171:     PetscCall(MatDenseRestoreArrayRead(A, &v));
1172:   }
1173:   PetscFunctionReturn(PETSC_SUCCESS);
1174: }

1176: static PetscErrorCode MatRestoreRow_SeqDense(Mat A, PetscInt row, PetscInt *ncols, PetscInt **cols, PetscScalar **vals)
1177: {
1178:   PetscFunctionBegin;
1179:   if (cols) PetscCall(PetscFree(*cols));
1180:   if (vals) PetscCall(PetscFree(*vals));
1181:   PetscFunctionReturn(PETSC_SUCCESS);
1182: }

1184: static PetscErrorCode MatSetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], const PetscScalar v[], InsertMode addv)
1185: {
1186:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1187:   PetscScalar  *av;
1188:   PetscInt      i, j, idx = 0;
1189: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1190:   PetscOffloadMask oldf;
1191: #endif

1193:   PetscFunctionBegin;
1194:   PetscCall(MatDenseGetArray(A, &av));
1195:   if (!mat->roworiented) {
1196:     if (addv == INSERT_VALUES) {
1197:       for (j = 0; j < n; j++) {
1198:         if (indexn[j] < 0) {
1199:           idx += m;
1200:           continue;
1201:         }
1202:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1203:         for (i = 0; i < m; i++) {
1204:           if (indexm[i] < 0) {
1205:             idx++;
1206:             continue;
1207:           }
1208:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1209:           av[indexn[j] * mat->lda + indexm[i]] = v[idx++];
1210:         }
1211:       }
1212:     } else {
1213:       for (j = 0; j < n; j++) {
1214:         if (indexn[j] < 0) {
1215:           idx += m;
1216:           continue;
1217:         }
1218:         PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1219:         for (i = 0; i < m; i++) {
1220:           if (indexm[i] < 0) {
1221:             idx++;
1222:             continue;
1223:           }
1224:           PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1225:           av[indexn[j] * mat->lda + indexm[i]] += v[idx++];
1226:         }
1227:       }
1228:     }
1229:   } else {
1230:     if (addv == INSERT_VALUES) {
1231:       for (i = 0; i < m; i++) {
1232:         if (indexm[i] < 0) {
1233:           idx += n;
1234:           continue;
1235:         }
1236:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1237:         for (j = 0; j < n; j++) {
1238:           if (indexn[j] < 0) {
1239:             idx++;
1240:             continue;
1241:           }
1242:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1243:           av[indexn[j] * mat->lda + indexm[i]] = v[idx++];
1244:         }
1245:       }
1246:     } else {
1247:       for (i = 0; i < m; i++) {
1248:         if (indexm[i] < 0) {
1249:           idx += n;
1250:           continue;
1251:         }
1252:         PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, indexm[i], A->rmap->n - 1);
1253:         for (j = 0; j < n; j++) {
1254:           if (indexn[j] < 0) {
1255:             idx++;
1256:             continue;
1257:           }
1258:           PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, indexn[j], A->cmap->n - 1);
1259:           av[indexn[j] * mat->lda + indexm[i]] += v[idx++];
1260:         }
1261:       }
1262:     }
1263:   }
1264:   /* hack to prevent unneeded copy to the GPU while returning the array */
1265: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1266:   oldf           = A->offloadmask;
1267:   A->offloadmask = PETSC_OFFLOAD_GPU;
1268: #endif
1269:   PetscCall(MatDenseRestoreArray(A, &av));
1270: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1271:   A->offloadmask = (oldf == PETSC_OFFLOAD_UNALLOCATED ? PETSC_OFFLOAD_UNALLOCATED : PETSC_OFFLOAD_CPU);
1272: #endif
1273:   PetscFunctionReturn(PETSC_SUCCESS);
1274: }

1276: static PetscErrorCode MatGetValues_SeqDense(Mat A, PetscInt m, const PetscInt indexm[], PetscInt n, const PetscInt indexn[], PetscScalar v[])
1277: {
1278:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1279:   const PetscScalar *vv;
1280:   PetscInt           i, j;

1282:   PetscFunctionBegin;
1283:   PetscCall(MatDenseGetArrayRead(A, &vv));
1284:   /* row-oriented output */
1285:   for (i = 0; i < m; i++) {
1286:     if (indexm[i] < 0) {
1287:       v += n;
1288:       continue;
1289:     }
1290:     PetscCheck(indexm[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested larger than number rows %" PetscInt_FMT, indexm[i], A->rmap->n);
1291:     for (j = 0; j < n; j++) {
1292:       if (indexn[j] < 0) {
1293:         v++;
1294:         continue;
1295:       }
1296:       PetscCheck(indexn[j] < A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column %" PetscInt_FMT " requested larger than number columns %" PetscInt_FMT, indexn[j], A->cmap->n);
1297:       *v++ = vv[indexn[j] * mat->lda + indexm[i]];
1298:     }
1299:   }
1300:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1301:   PetscFunctionReturn(PETSC_SUCCESS);
1302: }

1304: PetscErrorCode MatView_Dense_Binary(Mat mat, PetscViewer viewer)
1305: {
1306:   PetscBool          skipHeader;
1307:   PetscViewerFormat  format;
1308:   PetscInt           header[4], M, N, m, lda, i, j, k;
1309:   const PetscScalar *v;
1310:   PetscScalar       *vwork;

1312:   PetscFunctionBegin;
1313:   PetscCall(PetscViewerSetUp(viewer));
1314:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));
1315:   PetscCall(PetscViewerGetFormat(viewer, &format));
1316:   if (skipHeader) format = PETSC_VIEWER_NATIVE;

1318:   PetscCall(MatGetSize(mat, &M, &N));

1320:   /* write matrix header */
1321:   header[0] = MAT_FILE_CLASSID;
1322:   header[1] = M;
1323:   header[2] = N;
1324:   header[3] = (format == PETSC_VIEWER_NATIVE) ? MATRIX_BINARY_FORMAT_DENSE : M * N;
1325:   if (!skipHeader) PetscCall(PetscViewerBinaryWrite(viewer, header, 4, PETSC_INT));

1327:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1328:   if (format != PETSC_VIEWER_NATIVE) {
1329:     PetscInt nnz = m * N, *iwork;
1330:     /* store row lengths for each row */
1331:     PetscCall(PetscMalloc1(nnz, &iwork));
1332:     for (i = 0; i < m; i++) iwork[i] = N;
1333:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1334:     /* store column indices (zero start index) */
1335:     for (k = 0, i = 0; i < m; i++)
1336:       for (j = 0; j < N; j++, k++) iwork[k] = j;
1337:     PetscCall(PetscViewerBinaryWriteAll(viewer, iwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1338:     PetscCall(PetscFree(iwork));
1339:   }
1340:   /* store matrix values as a dense matrix in row major order */
1341:   PetscCall(PetscMalloc1(m * N, &vwork));
1342:   PetscCall(MatDenseGetArrayRead(mat, &v));
1343:   PetscCall(MatDenseGetLDA(mat, &lda));
1344:   for (k = 0, i = 0; i < m; i++)
1345:     for (j = 0; j < N; j++, k++) vwork[k] = v[i + lda * j];
1346:   PetscCall(MatDenseRestoreArrayRead(mat, &v));
1347:   PetscCall(PetscViewerBinaryWriteAll(viewer, vwork, m * N, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1348:   PetscCall(PetscFree(vwork));
1349:   PetscFunctionReturn(PETSC_SUCCESS);
1350: }

1352: PetscErrorCode MatLoad_Dense_Binary(Mat mat, PetscViewer viewer)
1353: {
1354:   PetscBool    skipHeader;
1355:   PetscInt     header[4], M, N, m, nz, lda, i, j, k;
1356:   PetscInt     rows, cols;
1357:   PetscScalar *v, *vwork;

1359:   PetscFunctionBegin;
1360:   PetscCall(PetscViewerSetUp(viewer));
1361:   PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));

1363:   if (!skipHeader) {
1364:     PetscCall(PetscViewerBinaryRead(viewer, header, 4, NULL, PETSC_INT));
1365:     PetscCheck(header[0] == MAT_FILE_CLASSID, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Not a matrix object in file");
1366:     M = header[1];
1367:     N = header[2];
1368:     PetscCheck(M >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix row size (%" PetscInt_FMT ") in file is negative", M);
1369:     PetscCheck(N >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix column size (%" PetscInt_FMT ") in file is negative", N);
1370:     nz = header[3];
1371:     PetscCheck(nz == MATRIX_BINARY_FORMAT_DENSE || nz >= 0, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Unknown matrix format %" PetscInt_FMT " in file", nz);
1372:   } else {
1373:     PetscCall(MatGetSize(mat, &M, &N));
1374:     PetscCheck(M >= 0 && N >= 0, PETSC_COMM_SELF, PETSC_ERR_USER, "Matrix binary file header was skipped, thus the user must specify the global sizes of input matrix");
1375:     nz = MATRIX_BINARY_FORMAT_DENSE;
1376:   }

1378:   /* setup global sizes if not set */
1379:   if (mat->rmap->N < 0) mat->rmap->N = M;
1380:   if (mat->cmap->N < 0) mat->cmap->N = N;
1381:   PetscCall(MatSetUp(mat));
1382:   /* check if global sizes are correct */
1383:   PetscCall(MatGetSize(mat, &rows, &cols));
1384:   PetscCheck(M == rows && N == cols, PetscObjectComm((PetscObject)viewer), PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%" PetscInt_FMT ", %" PetscInt_FMT ") than the input matrix (%" PetscInt_FMT ", %" PetscInt_FMT ")", M, N, rows, cols);

1386:   PetscCall(MatGetSize(mat, NULL, &N));
1387:   PetscCall(MatGetLocalSize(mat, &m, NULL));
1388:   PetscCall(MatDenseGetArray(mat, &v));
1389:   PetscCall(MatDenseGetLDA(mat, &lda));
1390:   if (nz == MATRIX_BINARY_FORMAT_DENSE) { /* matrix in file is dense format */
1391:     PetscInt nnz = m * N;
1392:     /* read in matrix values */
1393:     PetscCall(PetscMalloc1(nnz, &vwork));
1394:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1395:     /* store values in column major order */
1396:     for (j = 0; j < N; j++)
1397:       for (i = 0; i < m; i++) v[i + lda * j] = vwork[i * N + j];
1398:     PetscCall(PetscFree(vwork));
1399:   } else { /* matrix in file is sparse format */
1400:     PetscInt nnz = 0, *rlens, *icols;
1401:     /* read in row lengths */
1402:     PetscCall(PetscMalloc1(m, &rlens));
1403:     PetscCall(PetscViewerBinaryReadAll(viewer, rlens, m, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1404:     for (i = 0; i < m; i++) nnz += rlens[i];
1405:     /* read in column indices and values */
1406:     PetscCall(PetscMalloc2(nnz, &icols, nnz, &vwork));
1407:     PetscCall(PetscViewerBinaryReadAll(viewer, icols, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_INT));
1408:     PetscCall(PetscViewerBinaryReadAll(viewer, vwork, nnz, PETSC_DETERMINE, PETSC_DETERMINE, PETSC_SCALAR));
1409:     /* store values in column major order */
1410:     for (k = 0, i = 0; i < m; i++)
1411:       for (j = 0; j < rlens[i]; j++, k++) v[i + lda * icols[k]] = vwork[k];
1412:     PetscCall(PetscFree(rlens));
1413:     PetscCall(PetscFree2(icols, vwork));
1414:   }
1415:   PetscCall(MatDenseRestoreArray(mat, &v));
1416:   PetscCall(MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY));
1417:   PetscCall(MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY));
1418:   PetscFunctionReturn(PETSC_SUCCESS);
1419: }

1421: static PetscErrorCode MatLoad_SeqDense(Mat newMat, PetscViewer viewer)
1422: {
1423:   PetscBool isbinary, ishdf5;

1425:   PetscFunctionBegin;
1428:   /* force binary viewer to load .info file if it has not yet done so */
1429:   PetscCall(PetscViewerSetUp(viewer));
1430:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1431:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERHDF5, &ishdf5));
1432:   if (isbinary) {
1433:     PetscCall(MatLoad_Dense_Binary(newMat, viewer));
1434:   } else if (ishdf5) {
1435: #if defined(PETSC_HAVE_HDF5)
1436:     PetscCall(MatLoad_Dense_HDF5(newMat, viewer));
1437: #else
1438:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
1439: #endif
1440:   } else {
1441:     SETERRQ(PetscObjectComm((PetscObject)newMat), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)newMat)->type_name);
1442:   }
1443:   PetscFunctionReturn(PETSC_SUCCESS);
1444: }

1446: static PetscErrorCode MatView_SeqDense_ASCII(Mat A, PetscViewer viewer)
1447: {
1448:   Mat_SeqDense     *a = (Mat_SeqDense *)A->data;
1449:   PetscInt          i, j;
1450:   const char       *name;
1451:   PetscScalar      *v, *av;
1452:   PetscViewerFormat format;
1453: #if defined(PETSC_USE_COMPLEX)
1454:   PetscBool allreal = PETSC_TRUE;
1455: #endif

1457:   PetscFunctionBegin;
1458:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&av));
1459:   PetscCall(PetscViewerGetFormat(viewer, &format));
1460:   if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
1461:     PetscFunctionReturn(PETSC_SUCCESS); /* do nothing for now */
1462:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
1463:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1464:     for (i = 0; i < A->rmap->n; i++) {
1465:       v = av + i;
1466:       PetscCall(PetscViewerASCIIPrintf(viewer, "row %" PetscInt_FMT ":", i));
1467:       for (j = 0; j < A->cmap->n; j++) {
1468: #if defined(PETSC_USE_COMPLEX)
1469:         if (PetscRealPart(*v) != 0.0 && PetscImaginaryPart(*v) != 0.0) {
1470:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g + %g i) ", j, (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1471:         } else if (PetscRealPart(*v)) {
1472:           PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)PetscRealPart(*v)));
1473:         }
1474: #else
1475:         if (*v) PetscCall(PetscViewerASCIIPrintf(viewer, " (%" PetscInt_FMT ", %g) ", j, (double)*v));
1476: #endif
1477:         v += a->lda;
1478:       }
1479:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1480:     }
1481:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1482:   } else {
1483:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
1484: #if defined(PETSC_USE_COMPLEX)
1485:     /* determine if matrix has all real values */
1486:     for (j = 0; j < A->cmap->n; j++) {
1487:       v = av + j * a->lda;
1488:       for (i = 0; i < A->rmap->n; i++) {
1489:         if (PetscImaginaryPart(v[i])) {
1490:           allreal = PETSC_FALSE;
1491:           break;
1492:         }
1493:       }
1494:     }
1495: #endif
1496:     if (format == PETSC_VIEWER_ASCII_MATLAB) {
1497:       PetscCall(PetscObjectGetName((PetscObject)A, &name));
1498:       PetscCall(PetscViewerASCIIPrintf(viewer, "%% Size = %" PetscInt_FMT " %" PetscInt_FMT " \n", A->rmap->n, A->cmap->n));
1499:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = zeros(%" PetscInt_FMT ",%" PetscInt_FMT ");\n", name, A->rmap->n, A->cmap->n));
1500:       PetscCall(PetscViewerASCIIPrintf(viewer, "%s = [\n", name));
1501:     }

1503:     for (i = 0; i < A->rmap->n; i++) {
1504:       v = av + i;
1505:       for (j = 0; j < A->cmap->n; j++) {
1506: #if defined(PETSC_USE_COMPLEX)
1507:         if (allreal) {
1508:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)PetscRealPart(*v)));
1509:         } else {
1510:           PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e + %18.16ei ", (double)PetscRealPart(*v), (double)PetscImaginaryPart(*v)));
1511:         }
1512: #else
1513:         PetscCall(PetscViewerASCIIPrintf(viewer, "%18.16e ", (double)*v));
1514: #endif
1515:         v += a->lda;
1516:       }
1517:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
1518:     }
1519:     if (format == PETSC_VIEWER_ASCII_MATLAB) PetscCall(PetscViewerASCIIPrintf(viewer, "];\n"));
1520:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
1521:   }
1522:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&av));
1523:   PetscCall(PetscViewerFlush(viewer));
1524:   PetscFunctionReturn(PETSC_SUCCESS);
1525: }

1527: #include <petscdraw.h>
1528: static PetscErrorCode MatView_SeqDense_Draw_Zoom(PetscDraw draw, void *Aa)
1529: {
1530:   Mat                A = (Mat)Aa;
1531:   PetscInt           m = A->rmap->n, n = A->cmap->n, i, j;
1532:   int                color = PETSC_DRAW_WHITE;
1533:   const PetscScalar *v;
1534:   PetscViewer        viewer;
1535:   PetscReal          xl, yl, xr, yr, x_l, x_r, y_l, y_r;
1536:   PetscViewerFormat  format;

1538:   PetscFunctionBegin;
1539:   PetscCall(PetscObjectQuery((PetscObject)A, "Zoomviewer", (PetscObject *)&viewer));
1540:   PetscCall(PetscViewerGetFormat(viewer, &format));
1541:   PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));

1543:   /* Loop over matrix elements drawing boxes */
1544:   PetscCall(MatDenseGetArrayRead(A, &v));
1545:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
1546:     PetscDrawCollectiveBegin(draw);
1547:     /* Blue for negative and Red for positive */
1548:     for (j = 0; j < n; j++) {
1549:       x_l = j;
1550:       x_r = x_l + 1.0;
1551:       for (i = 0; i < m; i++) {
1552:         y_l = m - i - 1.0;
1553:         y_r = y_l + 1.0;
1554:         if (PetscRealPart(v[j * m + i]) > 0.) color = PETSC_DRAW_RED;
1555:         else if (PetscRealPart(v[j * m + i]) < 0.) color = PETSC_DRAW_BLUE;
1556:         else continue;
1557:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1558:       }
1559:     }
1560:     PetscDrawCollectiveEnd(draw);
1561:   } else {
1562:     /* use contour shading to indicate magnitude of values */
1563:     /* first determine max of all nonzero values */
1564:     PetscReal minv = 0.0, maxv = 0.0;
1565:     PetscDraw popup;

1567:     for (i = 0; i < m * n; i++) {
1568:       if (PetscAbsScalar(v[i]) > maxv) maxv = PetscAbsScalar(v[i]);
1569:     }
1570:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
1571:     PetscCall(PetscDrawGetPopup(draw, &popup));
1572:     PetscCall(PetscDrawScalePopup(popup, minv, maxv));

1574:     PetscDrawCollectiveBegin(draw);
1575:     for (j = 0; j < n; j++) {
1576:       x_l = j;
1577:       x_r = x_l + 1.0;
1578:       for (i = 0; i < m; i++) {
1579:         y_l   = m - i - 1.0;
1580:         y_r   = y_l + 1.0;
1581:         color = PetscDrawRealToColor(PetscAbsScalar(v[j * m + i]), minv, maxv);
1582:         PetscCall(PetscDrawRectangle(draw, x_l, y_l, x_r, y_r, color, color, color, color));
1583:       }
1584:     }
1585:     PetscDrawCollectiveEnd(draw);
1586:   }
1587:   PetscCall(MatDenseRestoreArrayRead(A, &v));
1588:   PetscFunctionReturn(PETSC_SUCCESS);
1589: }

1591: static PetscErrorCode MatView_SeqDense_Draw(Mat A, PetscViewer viewer)
1592: {
1593:   PetscDraw draw;
1594:   PetscBool isnull;
1595:   PetscReal xr, yr, xl, yl, h, w;

1597:   PetscFunctionBegin;
1598:   PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1599:   PetscCall(PetscDrawIsNull(draw, &isnull));
1600:   if (isnull) PetscFunctionReturn(PETSC_SUCCESS);

1602:   xr = A->cmap->n;
1603:   yr = A->rmap->n;
1604:   h  = yr / 10.0;
1605:   w  = xr / 10.0;
1606:   xr += w;
1607:   yr += h;
1608:   xl = -w;
1609:   yl = -h;
1610:   PetscCall(PetscDrawSetCoordinates(draw, xl, yl, xr, yr));
1611:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", (PetscObject)viewer));
1612:   PetscCall(PetscDrawZoom(draw, MatView_SeqDense_Draw_Zoom, A));
1613:   PetscCall(PetscObjectCompose((PetscObject)A, "Zoomviewer", NULL));
1614:   PetscCall(PetscDrawSave(draw));
1615:   PetscFunctionReturn(PETSC_SUCCESS);
1616: }

1618: PetscErrorCode MatView_SeqDense(Mat A, PetscViewer viewer)
1619: {
1620:   PetscBool iascii, isbinary, isdraw;

1622:   PetscFunctionBegin;
1623:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1624:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1625:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1626:   if (iascii) PetscCall(MatView_SeqDense_ASCII(A, viewer));
1627:   else if (isbinary) PetscCall(MatView_Dense_Binary(A, viewer));
1628:   else if (isdraw) PetscCall(MatView_SeqDense_Draw(A, viewer));
1629:   PetscFunctionReturn(PETSC_SUCCESS);
1630: }

1632: static PetscErrorCode MatDensePlaceArray_SeqDense(Mat A, const PetscScalar *array)
1633: {
1634:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1636:   PetscFunctionBegin;
1637:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1638:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1639:   PetscCheck(!a->unplacedarray, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreArray() first");
1640:   a->unplacedarray       = a->v;
1641:   a->unplaced_user_alloc = a->user_alloc;
1642:   a->v                   = (PetscScalar *)array;
1643:   a->user_alloc          = PETSC_TRUE;
1644: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1645:   A->offloadmask = PETSC_OFFLOAD_CPU;
1646: #endif
1647:   PetscFunctionReturn(PETSC_SUCCESS);
1648: }

1650: static PetscErrorCode MatDenseResetArray_SeqDense(Mat A)
1651: {
1652:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1654:   PetscFunctionBegin;
1655:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1656:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1657:   a->v             = a->unplacedarray;
1658:   a->user_alloc    = a->unplaced_user_alloc;
1659:   a->unplacedarray = NULL;
1660: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1661:   A->offloadmask = PETSC_OFFLOAD_CPU;
1662: #endif
1663:   PetscFunctionReturn(PETSC_SUCCESS);
1664: }

1666: static PetscErrorCode MatDenseReplaceArray_SeqDense(Mat A, const PetscScalar *array)
1667: {
1668:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

1670:   PetscFunctionBegin;
1671:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1672:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1673:   if (!a->user_alloc) PetscCall(PetscFree(a->v));
1674:   a->v          = (PetscScalar *)array;
1675:   a->user_alloc = PETSC_FALSE;
1676: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
1677:   A->offloadmask = PETSC_OFFLOAD_CPU;
1678: #endif
1679:   PetscFunctionReturn(PETSC_SUCCESS);
1680: }

1682: PetscErrorCode MatDestroy_SeqDense(Mat mat)
1683: {
1684:   Mat_SeqDense *l = (Mat_SeqDense *)mat->data;

1686:   PetscFunctionBegin;
1687:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows %" PetscInt_FMT " Cols %" PetscInt_FMT, mat->rmap->n, mat->cmap->n));
1688:   PetscCall(VecDestroy(&(l->qrrhs)));
1689:   PetscCall(PetscFree(l->tau));
1690:   PetscCall(PetscFree(l->pivots));
1691:   PetscCall(PetscFree(l->fwork));
1692:   if (!l->user_alloc) PetscCall(PetscFree(l->v));
1693:   if (!l->unplaced_user_alloc) PetscCall(PetscFree(l->unplacedarray));
1694:   PetscCheck(!l->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
1695:   PetscCheck(!l->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
1696:   PetscCall(VecDestroy(&l->cvec));
1697:   PetscCall(MatDestroy(&l->cmat));
1698:   PetscCall(PetscFree(mat->data));

1700:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
1701:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactor_C", NULL));
1702:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorSymbolic_C", NULL));
1703:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatQRFactorNumeric_C", NULL));
1704:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetLDA_C", NULL));
1705:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseSetLDA_C", NULL));
1706:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArray_C", NULL));
1707:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArray_C", NULL));
1708:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDensePlaceArray_C", NULL));
1709:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseResetArray_C", NULL));
1710:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseReplaceArray_C", NULL));
1711:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayRead_C", NULL));
1712:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayRead_C", NULL));
1713:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetArrayWrite_C", NULL));
1714:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreArrayWrite_C", NULL));
1715:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqaij_C", NULL));
1716: #if defined(PETSC_HAVE_ELEMENTAL)
1717:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_elemental_C", NULL));
1718: #endif
1719: #if defined(PETSC_HAVE_SCALAPACK)
1720:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_scalapack_C", NULL));
1721: #endif
1722: #if defined(PETSC_HAVE_CUDA)
1723:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensecuda_C", NULL));
1724:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", NULL));
1725:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensecuda_seqdense_C", NULL));
1726:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensecuda_C", NULL));
1727: #endif
1728: #if defined(PETSC_HAVE_HIP)
1729:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_seqdense_seqdensehip_C", NULL));
1730:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", NULL));
1731:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdensehip_seqdense_C", NULL));
1732:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdensehip_C", NULL));
1733: #endif
1734:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatSeqDenseSetPreallocation_C", NULL));
1735:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqaij_seqdense_C", NULL));
1736:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqdense_seqdense_C", NULL));
1737:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqbaij_seqdense_C", NULL));
1738:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatProductSetFromOptions_seqsbaij_seqdense_C", NULL));

1740:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumn_C", NULL));
1741:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumn_C", NULL));
1742:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVec_C", NULL));
1743:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVec_C", NULL));
1744:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecRead_C", NULL));
1745:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecRead_C", NULL));
1746:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetColumnVecWrite_C", NULL));
1747:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreColumnVecWrite_C", NULL));
1748:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseGetSubMatrix_C", NULL));
1749:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatDenseRestoreSubMatrix_C", NULL));
1750:   PetscFunctionReturn(PETSC_SUCCESS);
1751: }

1753: static PetscErrorCode MatTranspose_SeqDense(Mat A, MatReuse reuse, Mat *matout)
1754: {
1755:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1756:   PetscInt      k, j, m = A->rmap->n, M = mat->lda, n = A->cmap->n;
1757:   PetscScalar  *v, tmp;

1759:   PetscFunctionBegin;
1760:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *matout));
1761:   if (reuse == MAT_INPLACE_MATRIX) {
1762:     if (m == n) { /* in place transpose */
1763:       PetscCall(MatDenseGetArray(A, &v));
1764:       for (j = 0; j < m; j++) {
1765:         for (k = 0; k < j; k++) {
1766:           tmp          = v[j + k * M];
1767:           v[j + k * M] = v[k + j * M];
1768:           v[k + j * M] = tmp;
1769:         }
1770:       }
1771:       PetscCall(MatDenseRestoreArray(A, &v));
1772:     } else { /* reuse memory, temporary allocates new memory */
1773:       PetscScalar *v2;
1774:       PetscLayout  tmplayout;

1776:       PetscCall(PetscMalloc1((size_t)m * n, &v2));
1777:       PetscCall(MatDenseGetArray(A, &v));
1778:       for (j = 0; j < n; j++) {
1779:         for (k = 0; k < m; k++) v2[j + (size_t)k * n] = v[k + (size_t)j * M];
1780:       }
1781:       PetscCall(PetscArraycpy(v, v2, (size_t)m * n));
1782:       PetscCall(PetscFree(v2));
1783:       PetscCall(MatDenseRestoreArray(A, &v));
1784:       /* cleanup size dependent quantities */
1785:       PetscCall(VecDestroy(&mat->cvec));
1786:       PetscCall(MatDestroy(&mat->cmat));
1787:       PetscCall(PetscFree(mat->pivots));
1788:       PetscCall(PetscFree(mat->fwork));
1789:       /* swap row/col layouts */
1790:       mat->lda  = n;
1791:       tmplayout = A->rmap;
1792:       A->rmap   = A->cmap;
1793:       A->cmap   = tmplayout;
1794:     }
1795:   } else { /* out-of-place transpose */
1796:     Mat           tmat;
1797:     Mat_SeqDense *tmatd;
1798:     PetscScalar  *v2;
1799:     PetscInt      M2;

1801:     if (reuse == MAT_INITIAL_MATRIX) {
1802:       PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &tmat));
1803:       PetscCall(MatSetSizes(tmat, A->cmap->n, A->rmap->n, A->cmap->n, A->rmap->n));
1804:       PetscCall(MatSetType(tmat, ((PetscObject)A)->type_name));
1805:       PetscCall(MatSeqDenseSetPreallocation(tmat, NULL));
1806:     } else tmat = *matout;

1808:     PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&v));
1809:     PetscCall(MatDenseGetArray(tmat, &v2));
1810:     tmatd = (Mat_SeqDense *)tmat->data;
1811:     M2    = tmatd->lda;
1812:     for (j = 0; j < n; j++) {
1813:       for (k = 0; k < m; k++) v2[j + k * M2] = v[k + j * M];
1814:     }
1815:     PetscCall(MatDenseRestoreArray(tmat, &v2));
1816:     PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&v));
1817:     PetscCall(MatAssemblyBegin(tmat, MAT_FINAL_ASSEMBLY));
1818:     PetscCall(MatAssemblyEnd(tmat, MAT_FINAL_ASSEMBLY));
1819:     *matout = tmat;
1820:   }
1821:   PetscFunctionReturn(PETSC_SUCCESS);
1822: }

1824: static PetscErrorCode MatEqual_SeqDense(Mat A1, Mat A2, PetscBool *flg)
1825: {
1826:   Mat_SeqDense      *mat1 = (Mat_SeqDense *)A1->data;
1827:   Mat_SeqDense      *mat2 = (Mat_SeqDense *)A2->data;
1828:   PetscInt           i;
1829:   const PetscScalar *v1, *v2;

1831:   PetscFunctionBegin;
1832:   if (A1->rmap->n != A2->rmap->n) {
1833:     *flg = PETSC_FALSE;
1834:     PetscFunctionReturn(PETSC_SUCCESS);
1835:   }
1836:   if (A1->cmap->n != A2->cmap->n) {
1837:     *flg = PETSC_FALSE;
1838:     PetscFunctionReturn(PETSC_SUCCESS);
1839:   }
1840:   PetscCall(MatDenseGetArrayRead(A1, &v1));
1841:   PetscCall(MatDenseGetArrayRead(A2, &v2));
1842:   for (i = 0; i < A1->cmap->n; i++) {
1843:     PetscCall(PetscArraycmp(v1, v2, A1->rmap->n, flg));
1844:     if (*flg == PETSC_FALSE) PetscFunctionReturn(PETSC_SUCCESS);
1845:     v1 += mat1->lda;
1846:     v2 += mat2->lda;
1847:   }
1848:   PetscCall(MatDenseRestoreArrayRead(A1, &v1));
1849:   PetscCall(MatDenseRestoreArrayRead(A2, &v2));
1850:   *flg = PETSC_TRUE;
1851:   PetscFunctionReturn(PETSC_SUCCESS);
1852: }

1854: PetscErrorCode MatGetDiagonal_SeqDense(Mat A, Vec v)
1855: {
1856:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1857:   PetscInt           i, n, len;
1858:   PetscScalar       *x;
1859:   const PetscScalar *vv;

1861:   PetscFunctionBegin;
1862:   PetscCall(VecGetSize(v, &n));
1863:   PetscCall(VecGetArray(v, &x));
1864:   len = PetscMin(A->rmap->n, A->cmap->n);
1865:   PetscCall(MatDenseGetArrayRead(A, &vv));
1866:   PetscCheck(n == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming mat and vec");
1867:   for (i = 0; i < len; i++) x[i] = vv[i * mat->lda + i];
1868:   PetscCall(MatDenseRestoreArrayRead(A, &vv));
1869:   PetscCall(VecRestoreArray(v, &x));
1870:   PetscFunctionReturn(PETSC_SUCCESS);
1871: }

1873: static PetscErrorCode MatDiagonalScale_SeqDense(Mat A, Vec ll, Vec rr)
1874: {
1875:   Mat_SeqDense      *mat = (Mat_SeqDense *)A->data;
1876:   const PetscScalar *l, *r;
1877:   PetscScalar        x, *v, *vv;
1878:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n;

1880:   PetscFunctionBegin;
1881:   PetscCall(MatDenseGetArray(A, &vv));
1882:   if (ll) {
1883:     PetscCall(VecGetSize(ll, &m));
1884:     PetscCall(VecGetArrayRead(ll, &l));
1885:     PetscCheck(m == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left scaling vec wrong size");
1886:     for (i = 0; i < m; i++) {
1887:       x = l[i];
1888:       v = vv + i;
1889:       for (j = 0; j < n; j++) {
1890:         (*v) *= x;
1891:         v += mat->lda;
1892:       }
1893:     }
1894:     PetscCall(VecRestoreArrayRead(ll, &l));
1895:     PetscCall(PetscLogFlops(1.0 * n * m));
1896:   }
1897:   if (rr) {
1898:     PetscCall(VecGetSize(rr, &n));
1899:     PetscCall(VecGetArrayRead(rr, &r));
1900:     PetscCheck(n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Right scaling vec wrong size");
1901:     for (i = 0; i < n; i++) {
1902:       x = r[i];
1903:       v = vv + i * mat->lda;
1904:       for (j = 0; j < m; j++) (*v++) *= x;
1905:     }
1906:     PetscCall(VecRestoreArrayRead(rr, &r));
1907:     PetscCall(PetscLogFlops(1.0 * n * m));
1908:   }
1909:   PetscCall(MatDenseRestoreArray(A, &vv));
1910:   PetscFunctionReturn(PETSC_SUCCESS);
1911: }

1913: PetscErrorCode MatNorm_SeqDense(Mat A, NormType type, PetscReal *nrm)
1914: {
1915:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
1916:   PetscScalar  *v, *vv;
1917:   PetscReal     sum = 0.0;
1918:   PetscInt      lda, m = A->rmap->n, i, j;

1920:   PetscFunctionBegin;
1921:   PetscCall(MatDenseGetArrayRead(A, (const PetscScalar **)&vv));
1922:   PetscCall(MatDenseGetLDA(A, &lda));
1923:   v = vv;
1924:   if (type == NORM_FROBENIUS) {
1925:     if (lda > m) {
1926:       for (j = 0; j < A->cmap->n; j++) {
1927:         v = vv + j * lda;
1928:         for (i = 0; i < m; i++) {
1929:           sum += PetscRealPart(PetscConj(*v) * (*v));
1930:           v++;
1931:         }
1932:       }
1933:     } else {
1934: #if defined(PETSC_USE_REAL___FP16)
1935:       PetscBLASInt one = 1, cnt = A->cmap->n * A->rmap->n;
1936:       PetscCallBLAS("BLASnrm2", *nrm = BLASnrm2_(&cnt, v, &one));
1937:     }
1938: #else
1939:       for (i = 0; i < A->cmap->n * A->rmap->n; i++) {
1940:         sum += PetscRealPart(PetscConj(*v) * (*v));
1941:         v++;
1942:       }
1943:     }
1944:     *nrm = PetscSqrtReal(sum);
1945: #endif
1946:     PetscCall(PetscLogFlops(2.0 * A->cmap->n * A->rmap->n));
1947:   } else if (type == NORM_1) {
1948:     *nrm = 0.0;
1949:     for (j = 0; j < A->cmap->n; j++) {
1950:       v   = vv + j * mat->lda;
1951:       sum = 0.0;
1952:       for (i = 0; i < A->rmap->n; i++) {
1953:         sum += PetscAbsScalar(*v);
1954:         v++;
1955:       }
1956:       if (sum > *nrm) *nrm = sum;
1957:     }
1958:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
1959:   } else if (type == NORM_INFINITY) {
1960:     *nrm = 0.0;
1961:     for (j = 0; j < A->rmap->n; j++) {
1962:       v   = vv + j;
1963:       sum = 0.0;
1964:       for (i = 0; i < A->cmap->n; i++) {
1965:         sum += PetscAbsScalar(*v);
1966:         v += mat->lda;
1967:       }
1968:       if (sum > *nrm) *nrm = sum;
1969:     }
1970:     PetscCall(PetscLogFlops(1.0 * A->cmap->n * A->rmap->n));
1971:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No two norm");
1972:   PetscCall(MatDenseRestoreArrayRead(A, (const PetscScalar **)&vv));
1973:   PetscFunctionReturn(PETSC_SUCCESS);
1974: }

1976: static PetscErrorCode MatSetOption_SeqDense(Mat A, MatOption op, PetscBool flg)
1977: {
1978:   Mat_SeqDense *aij = (Mat_SeqDense *)A->data;

1980:   PetscFunctionBegin;
1981:   switch (op) {
1982:   case MAT_ROW_ORIENTED:
1983:     aij->roworiented = flg;
1984:     break;
1985:   case MAT_NEW_NONZERO_LOCATIONS:
1986:   case MAT_NEW_NONZERO_LOCATION_ERR:
1987:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1988:   case MAT_FORCE_DIAGONAL_ENTRIES:
1989:   case MAT_KEEP_NONZERO_PATTERN:
1990:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1991:   case MAT_USE_HASH_TABLE:
1992:   case MAT_IGNORE_ZERO_ENTRIES:
1993:   case MAT_IGNORE_LOWER_TRIANGULAR:
1994:   case MAT_SORTED_FULL:
1995:     PetscCall(PetscInfo(A, "Option %s ignored\n", MatOptions[op]));
1996:     break;
1997:   case MAT_SPD:
1998:   case MAT_SYMMETRIC:
1999:   case MAT_STRUCTURALLY_SYMMETRIC:
2000:   case MAT_HERMITIAN:
2001:   case MAT_SYMMETRY_ETERNAL:
2002:   case MAT_STRUCTURAL_SYMMETRY_ETERNAL:
2003:   case MAT_SPD_ETERNAL:
2004:     break;
2005:   default:
2006:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "unknown option %s", MatOptions[op]);
2007:   }
2008:   PetscFunctionReturn(PETSC_SUCCESS);
2009: }

2011: PetscErrorCode MatZeroEntries_SeqDense(Mat A)
2012: {
2013:   Mat_SeqDense *l   = (Mat_SeqDense *)A->data;
2014:   PetscInt      lda = l->lda, m = A->rmap->n, n = A->cmap->n, j;
2015:   PetscScalar  *v;

2017:   PetscFunctionBegin;
2018:   PetscCall(MatDenseGetArrayWrite(A, &v));
2019:   if (lda > m) {
2020:     for (j = 0; j < n; j++) PetscCall(PetscArrayzero(v + j * lda, m));
2021:   } else {
2022:     PetscCall(PetscArrayzero(v, PetscInt64Mult(m, n)));
2023:   }
2024:   PetscCall(MatDenseRestoreArrayWrite(A, &v));
2025:   PetscFunctionReturn(PETSC_SUCCESS);
2026: }

2028: static PetscErrorCode MatZeroRows_SeqDense(Mat A, PetscInt N, const PetscInt rows[], PetscScalar diag, Vec x, Vec b)
2029: {
2030:   Mat_SeqDense      *l = (Mat_SeqDense *)A->data;
2031:   PetscInt           m = l->lda, n = A->cmap->n, i, j;
2032:   PetscScalar       *slot, *bb, *v;
2033:   const PetscScalar *xx;

2035:   PetscFunctionBegin;
2036:   if (PetscDefined(USE_DEBUG)) {
2037:     for (i = 0; i < N; i++) {
2038:       PetscCheck(rows[i] >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Negative row requested to be zeroed");
2039:       PetscCheck(rows[i] < A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row %" PetscInt_FMT " requested to be zeroed greater than or equal number of rows %" PetscInt_FMT, rows[i], A->rmap->n);
2040:     }
2041:   }
2042:   if (!N) PetscFunctionReturn(PETSC_SUCCESS);

2044:   /* fix right hand side if needed */
2045:   if (x && b) {
2046:     PetscCall(VecGetArrayRead(x, &xx));
2047:     PetscCall(VecGetArray(b, &bb));
2048:     for (i = 0; i < N; i++) bb[rows[i]] = diag * xx[rows[i]];
2049:     PetscCall(VecRestoreArrayRead(x, &xx));
2050:     PetscCall(VecRestoreArray(b, &bb));
2051:   }

2053:   PetscCall(MatDenseGetArray(A, &v));
2054:   for (i = 0; i < N; i++) {
2055:     slot = v + rows[i];
2056:     for (j = 0; j < n; j++) {
2057:       *slot = 0.0;
2058:       slot += m;
2059:     }
2060:   }
2061:   if (diag != 0.0) {
2062:     PetscCheck(A->rmap->n == A->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only coded for square matrices");
2063:     for (i = 0; i < N; i++) {
2064:       slot  = v + (m + 1) * rows[i];
2065:       *slot = diag;
2066:     }
2067:   }
2068:   PetscCall(MatDenseRestoreArray(A, &v));
2069:   PetscFunctionReturn(PETSC_SUCCESS);
2070: }

2072: static PetscErrorCode MatDenseGetLDA_SeqDense(Mat A, PetscInt *lda)
2073: {
2074:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2076:   PetscFunctionBegin;
2077:   *lda = mat->lda;
2078:   PetscFunctionReturn(PETSC_SUCCESS);
2079: }

2081: PetscErrorCode MatDenseGetArray_SeqDense(Mat A, PetscScalar **array)
2082: {
2083:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;

2085:   PetscFunctionBegin;
2086:   PetscCheck(!mat->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
2087:   *array = mat->v;
2088:   PetscFunctionReturn(PETSC_SUCCESS);
2089: }

2091: PetscErrorCode MatDenseRestoreArray_SeqDense(Mat A, PetscScalar **array)
2092: {
2093:   PetscFunctionBegin;
2094:   if (array) *array = NULL;
2095:   PetscFunctionReturn(PETSC_SUCCESS);
2096: }

2098: /*@
2099:   MatDenseGetLDA - gets the leading dimension of the array returned from `MatDenseGetArray()`

2101:   Not Collective

2103:   Input Parameter:
2104: . A - a `MATDENSE` or `MATDENSECUDA` matrix

2106:   Output Parameter:
2107: . lda - the leading dimension

2109:   Level: intermediate

2111: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseSetLDA()`
2112: @*/
2113: PetscErrorCode MatDenseGetLDA(Mat A, PetscInt *lda)
2114: {
2115:   PetscFunctionBegin;
2117:   PetscAssertPointer(lda, 2);
2118:   MatCheckPreallocated(A, 1);
2119:   PetscUseMethod(A, "MatDenseGetLDA_C", (Mat, PetscInt *), (A, lda));
2120:   PetscFunctionReturn(PETSC_SUCCESS);
2121: }

2123: /*@
2124:   MatDenseSetLDA - Sets the leading dimension of the array used by the `MATDENSE` matrix

2126:   Collective if the matrix layouts have not yet been setup

2128:   Input Parameters:
2129: + A   - a `MATDENSE` or `MATDENSECUDA` matrix
2130: - lda - the leading dimension

2132:   Level: intermediate

2134: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetLDA()`
2135: @*/
2136: PetscErrorCode MatDenseSetLDA(Mat A, PetscInt lda)
2137: {
2138:   PetscFunctionBegin;
2140:   PetscTryMethod(A, "MatDenseSetLDA_C", (Mat, PetscInt), (A, lda));
2141:   PetscFunctionReturn(PETSC_SUCCESS);
2142: }

2144: /*@C
2145:   MatDenseGetArray - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2147:   Logically Collective

2149:   Input Parameter:
2150: . A - a dense matrix

2152:   Output Parameter:
2153: . array - pointer to the data

2155:   Level: intermediate

2157:   Fortran Notes:
2158:   `MatDenseGetArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatDenseGetArrayF90()`

2160: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2161: @*/
2162: PetscErrorCode MatDenseGetArray(Mat A, PetscScalar **array)
2163: {
2164:   PetscFunctionBegin;
2166:   PetscAssertPointer(array, 2);
2167:   PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2168:   PetscFunctionReturn(PETSC_SUCCESS);
2169: }

2171: /*@C
2172:   MatDenseRestoreArray - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArray()`

2174:   Logically Collective

2176:   Input Parameters:
2177: + A     - a dense matrix
2178: - array - pointer to the data (may be `NULL`)

2180:   Level: intermediate

2182:   Fortran Notes:
2183:   `MatDenseRestoreArray()` Fortran binding is deprecated (since PETSc 3.19), use `MatDenseRestoreArrayF90()`

2185: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2186: @*/
2187: PetscErrorCode MatDenseRestoreArray(Mat A, PetscScalar **array)
2188: {
2189:   PetscFunctionBegin;
2191:   if (array) PetscAssertPointer(array, 2);
2192:   PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2193:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2194: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2195:   A->offloadmask = PETSC_OFFLOAD_CPU;
2196: #endif
2197:   PetscFunctionReturn(PETSC_SUCCESS);
2198: }

2200: /*@C
2201:   MatDenseGetArrayRead - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2203:   Not Collective

2205:   Input Parameter:
2206: . A - a dense matrix

2208:   Output Parameter:
2209: . array - pointer to the data

2211:   Level: intermediate

2213: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2214: @*/
2215: PetscErrorCode MatDenseGetArrayRead(Mat A, const PetscScalar **array)
2216: {
2217:   PetscFunctionBegin;
2219:   PetscAssertPointer(array, 2);
2220:   PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2221:   PetscFunctionReturn(PETSC_SUCCESS);
2222: }

2224: /*@C
2225:   MatDenseRestoreArrayRead - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayRead()`

2227:   Not Collective

2229:   Input Parameters:
2230: + A     - a dense matrix
2231: - array - pointer to the data (may be `NULL`)

2233:   Level: intermediate

2235: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayRead()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2236: @*/
2237: PetscErrorCode MatDenseRestoreArrayRead(Mat A, const PetscScalar **array)
2238: {
2239:   PetscFunctionBegin;
2241:   if (array) PetscAssertPointer(array, 2);
2242:   PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2243:   PetscFunctionReturn(PETSC_SUCCESS);
2244: }

2246: /*@C
2247:   MatDenseGetArrayWrite - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2249:   Not Collective

2251:   Input Parameter:
2252: . A - a dense matrix

2254:   Output Parameter:
2255: . array - pointer to the data

2257:   Level: intermediate

2259: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2260: @*/
2261: PetscErrorCode MatDenseGetArrayWrite(Mat A, PetscScalar **array)
2262: {
2263:   PetscFunctionBegin;
2265:   PetscAssertPointer(array, 2);
2266:   PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2267:   PetscFunctionReturn(PETSC_SUCCESS);
2268: }

2270: /*@C
2271:   MatDenseRestoreArrayWrite - returns access to the array where the data for a `MATDENSE` matrix is stored obtained by `MatDenseGetArrayWrite()`

2273:   Not Collective

2275:   Input Parameters:
2276: + A     - a dense matrix
2277: - array - pointer to the data (may be `NULL`)

2279:   Level: intermediate

2281: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWrite()`, `MatDenseGetArray()`, `MatDenseRestoreArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`
2282: @*/
2283: PetscErrorCode MatDenseRestoreArrayWrite(Mat A, PetscScalar **array)
2284: {
2285:   PetscFunctionBegin;
2287:   if (array) PetscAssertPointer(array, 2);
2288:   PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2289:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2290: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
2291:   A->offloadmask = PETSC_OFFLOAD_CPU;
2292: #endif
2293:   PetscFunctionReturn(PETSC_SUCCESS);
2294: }

2296: /*@C
2297:   MatDenseGetArrayAndMemType - gives read-write access to the array where the data for a `MATDENSE` matrix is stored

2299:   Logically Collective

2301:   Input Parameter:
2302: . A - a dense matrix

2304:   Output Parameters:
2305: + array - pointer to the data
2306: - mtype - memory type of the returned pointer

2308:   Level: intermediate

2310:   Note:
2311:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2312:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2314: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArrayRead()`,
2315:    `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2316: @*/
2317: PetscErrorCode MatDenseGetArrayAndMemType(Mat A, PetscScalar **array, PetscMemType *mtype)
2318: {
2319:   PetscBool isMPI;

2321:   PetscFunctionBegin;
2323:   PetscAssertPointer(array, 2);
2324:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2325:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2326:   if (isMPI) {
2327:     /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2328:     PetscCall(MatDenseGetArrayAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2329:   } else {
2330:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2332:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayAndMemType_C", &fptr));
2333:     if (fptr) {
2334:       PetscCall((*fptr)(A, array, mtype));
2335:     } else {
2336:       PetscUseMethod(A, "MatDenseGetArray_C", (Mat, PetscScalar **), (A, array));
2337:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2338:     }
2339:   }
2340:   PetscFunctionReturn(PETSC_SUCCESS);
2341: }

2343: /*@C
2344:   MatDenseRestoreArrayAndMemType - returns access to the array that is obtained by `MatDenseGetArrayAndMemType()`

2346:   Logically Collective

2348:   Input Parameters:
2349: + A     - a dense matrix
2350: - array - pointer to the data

2352:   Level: intermediate

2354: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2355: @*/
2356: PetscErrorCode MatDenseRestoreArrayAndMemType(Mat A, PetscScalar **array)
2357: {
2358:   PetscBool isMPI;

2360:   PetscFunctionBegin;
2362:   PetscAssertPointer(array, 2);
2363:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2364:   if (isMPI) {
2365:     PetscCall(MatDenseRestoreArrayAndMemType(((Mat_MPIDense *)A->data)->A, array));
2366:   } else {
2367:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2369:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayAndMemType_C", &fptr));
2370:     if (fptr) {
2371:       PetscCall((*fptr)(A, array));
2372:     } else {
2373:       PetscUseMethod(A, "MatDenseRestoreArray_C", (Mat, PetscScalar **), (A, array));
2374:     }
2375:     *array = NULL;
2376:   }
2377:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2378:   PetscFunctionReturn(PETSC_SUCCESS);
2379: }

2381: /*@C
2382:   MatDenseGetArrayReadAndMemType - gives read-only access to the array where the data for a `MATDENSE` matrix is stored

2384:   Logically Collective

2386:   Input Parameter:
2387: . A - a dense matrix

2389:   Output Parameters:
2390: + array - pointer to the data
2391: - mtype - memory type of the returned pointer

2393:   Level: intermediate

2395:   Note:
2396:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2397:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2399: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayReadAndMemType()`, `MatDenseGetArrayWriteAndMemType()`,
2400:    `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2401: @*/
2402: PetscErrorCode MatDenseGetArrayReadAndMemType(Mat A, const PetscScalar **array, PetscMemType *mtype)
2403: {
2404:   PetscBool isMPI;

2406:   PetscFunctionBegin;
2408:   PetscAssertPointer(array, 2);
2409:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2410:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2411:   if (isMPI) { /* Dispatch here so that the code can be reused for all subclasses of MATDENSE */
2412:     PetscCall(MatDenseGetArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2413:   } else {
2414:     PetscErrorCode (*fptr)(Mat, const PetscScalar **, PetscMemType *);

2416:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayReadAndMemType_C", &fptr));
2417:     if (fptr) {
2418:       PetscCall((*fptr)(A, array, mtype));
2419:     } else {
2420:       PetscUseMethod(A, "MatDenseGetArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2421:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2422:     }
2423:   }
2424:   PetscFunctionReturn(PETSC_SUCCESS);
2425: }

2427: /*@C
2428:   MatDenseRestoreArrayReadAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2430:   Logically Collective

2432:   Input Parameters:
2433: + A     - a dense matrix
2434: - array - pointer to the data

2436:   Level: intermediate

2438: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2439: @*/
2440: PetscErrorCode MatDenseRestoreArrayReadAndMemType(Mat A, const PetscScalar **array)
2441: {
2442:   PetscBool isMPI;

2444:   PetscFunctionBegin;
2446:   PetscAssertPointer(array, 2);
2447:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2448:   if (isMPI) {
2449:     PetscCall(MatDenseRestoreArrayReadAndMemType(((Mat_MPIDense *)A->data)->A, array));
2450:   } else {
2451:     PetscErrorCode (*fptr)(Mat, const PetscScalar **);

2453:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayReadAndMemType_C", &fptr));
2454:     if (fptr) {
2455:       PetscCall((*fptr)(A, array));
2456:     } else {
2457:       PetscUseMethod(A, "MatDenseRestoreArrayRead_C", (Mat, PetscScalar **), (A, (PetscScalar **)array));
2458:     }
2459:     *array = NULL;
2460:   }
2461:   PetscFunctionReturn(PETSC_SUCCESS);
2462: }

2464: /*@C
2465:   MatDenseGetArrayWriteAndMemType - gives write-only access to the array where the data for a `MATDENSE` matrix is stored

2467:   Logically Collective

2469:   Input Parameter:
2470: . A - a dense matrix

2472:   Output Parameters:
2473: + array - pointer to the data
2474: - mtype - memory type of the returned pointer

2476:   Level: intermediate

2478:   Note:
2479:   If the matrix is of a device type such as `MATDENSECUDA`, `MATDENSEHIP`, etc.,
2480:   an array on device is always returned and is guaranteed to contain the matrix's latest data.

2482: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreArrayWriteAndMemType()`, `MatDenseGetArrayReadAndMemType()`, `MatDenseGetArrayRead()`,
2483:   `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`, `MatSeqAIJGetCSRAndMemType()`
2484: @*/
2485: PetscErrorCode MatDenseGetArrayWriteAndMemType(Mat A, PetscScalar **array, PetscMemType *mtype)
2486: {
2487:   PetscBool isMPI;

2489:   PetscFunctionBegin;
2491:   PetscAssertPointer(array, 2);
2492:   PetscCall(MatBindToCPU(A, PETSC_FALSE)); /* We want device matrices to always return device arrays, so we unbind the matrix if it is bound to CPU */
2493:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2494:   if (isMPI) {
2495:     PetscCall(MatDenseGetArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array, mtype));
2496:   } else {
2497:     PetscErrorCode (*fptr)(Mat, PetscScalar **, PetscMemType *);

2499:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseGetArrayWriteAndMemType_C", &fptr));
2500:     if (fptr) {
2501:       PetscCall((*fptr)(A, array, mtype));
2502:     } else {
2503:       PetscUseMethod(A, "MatDenseGetArrayWrite_C", (Mat, PetscScalar **), (A, array));
2504:       if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2505:     }
2506:   }
2507:   PetscFunctionReturn(PETSC_SUCCESS);
2508: }

2510: /*@C
2511:   MatDenseRestoreArrayWriteAndMemType - returns access to the array that is obtained by `MatDenseGetArrayReadAndMemType()`

2513:   Logically Collective

2515:   Input Parameters:
2516: + A     - a dense matrix
2517: - array - pointer to the data

2519:   Level: intermediate

2521: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetArrayWriteAndMemType()`, `MatDenseGetArray()`, `MatDenseGetArrayRead()`, `MatDenseRestoreArrayRead()`, `MatDenseGetArrayWrite()`, `MatDenseRestoreArrayWrite()`
2522: @*/
2523: PetscErrorCode MatDenseRestoreArrayWriteAndMemType(Mat A, PetscScalar **array)
2524: {
2525:   PetscBool isMPI;

2527:   PetscFunctionBegin;
2529:   PetscAssertPointer(array, 2);
2530:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATMPIDENSE, &isMPI));
2531:   if (isMPI) {
2532:     PetscCall(MatDenseRestoreArrayWriteAndMemType(((Mat_MPIDense *)A->data)->A, array));
2533:   } else {
2534:     PetscErrorCode (*fptr)(Mat, PetscScalar **);

2536:     PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatDenseRestoreArrayWriteAndMemType_C", &fptr));
2537:     if (fptr) {
2538:       PetscCall((*fptr)(A, array));
2539:     } else {
2540:       PetscUseMethod(A, "MatDenseRestoreArrayWrite_C", (Mat, PetscScalar **), (A, array));
2541:     }
2542:     *array = NULL;
2543:   }
2544:   PetscCall(PetscObjectStateIncrease((PetscObject)A));
2545:   PetscFunctionReturn(PETSC_SUCCESS);
2546: }

2548: static PetscErrorCode MatCreateSubMatrix_SeqDense(Mat A, IS isrow, IS iscol, MatReuse scall, Mat *B)
2549: {
2550:   Mat_SeqDense   *mat = (Mat_SeqDense *)A->data;
2551:   PetscInt        i, j, nrows, ncols, ldb;
2552:   const PetscInt *irow, *icol;
2553:   PetscScalar    *av, *bv, *v = mat->v;
2554:   Mat             newmat;

2556:   PetscFunctionBegin;
2557:   PetscCall(ISGetIndices(isrow, &irow));
2558:   PetscCall(ISGetIndices(iscol, &icol));
2559:   PetscCall(ISGetLocalSize(isrow, &nrows));
2560:   PetscCall(ISGetLocalSize(iscol, &ncols));

2562:   /* Check submatrixcall */
2563:   if (scall == MAT_REUSE_MATRIX) {
2564:     PetscInt n_cols, n_rows;
2565:     PetscCall(MatGetSize(*B, &n_rows, &n_cols));
2566:     if (n_rows != nrows || n_cols != ncols) {
2567:       /* resize the result matrix to match number of requested rows/columns */
2568:       PetscCall(MatSetSizes(*B, nrows, ncols, nrows, ncols));
2569:     }
2570:     newmat = *B;
2571:   } else {
2572:     /* Create and fill new matrix */
2573:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &newmat));
2574:     PetscCall(MatSetSizes(newmat, nrows, ncols, nrows, ncols));
2575:     PetscCall(MatSetType(newmat, ((PetscObject)A)->type_name));
2576:     PetscCall(MatSeqDenseSetPreallocation(newmat, NULL));
2577:   }

2579:   /* Now extract the data pointers and do the copy,column at a time */
2580:   PetscCall(MatDenseGetArray(newmat, &bv));
2581:   PetscCall(MatDenseGetLDA(newmat, &ldb));
2582:   for (i = 0; i < ncols; i++) {
2583:     av = v + mat->lda * icol[i];
2584:     for (j = 0; j < nrows; j++) bv[j] = av[irow[j]];
2585:     bv += ldb;
2586:   }
2587:   PetscCall(MatDenseRestoreArray(newmat, &bv));

2589:   /* Assemble the matrices so that the correct flags are set */
2590:   PetscCall(MatAssemblyBegin(newmat, MAT_FINAL_ASSEMBLY));
2591:   PetscCall(MatAssemblyEnd(newmat, MAT_FINAL_ASSEMBLY));

2593:   /* Free work space */
2594:   PetscCall(ISRestoreIndices(isrow, &irow));
2595:   PetscCall(ISRestoreIndices(iscol, &icol));
2596:   *B = newmat;
2597:   PetscFunctionReturn(PETSC_SUCCESS);
2598: }

2600: static PetscErrorCode MatCreateSubMatrices_SeqDense(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
2601: {
2602:   PetscInt i;

2604:   PetscFunctionBegin;
2605:   if (scall == MAT_INITIAL_MATRIX) PetscCall(PetscCalloc1(n, B));

2607:   for (i = 0; i < n; i++) PetscCall(MatCreateSubMatrix_SeqDense(A, irow[i], icol[i], scall, &(*B)[i]));
2608:   PetscFunctionReturn(PETSC_SUCCESS);
2609: }

2611: static PetscErrorCode MatAssemblyBegin_SeqDense(Mat mat, MatAssemblyType mode)
2612: {
2613:   PetscFunctionBegin;
2614:   PetscFunctionReturn(PETSC_SUCCESS);
2615: }

2617: static PetscErrorCode MatAssemblyEnd_SeqDense(Mat mat, MatAssemblyType mode)
2618: {
2619:   PetscFunctionBegin;
2620:   PetscFunctionReturn(PETSC_SUCCESS);
2621: }

2623: PetscErrorCode MatCopy_SeqDense(Mat A, Mat B, MatStructure str)
2624: {
2625:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data;
2626:   const PetscScalar *va;
2627:   PetscScalar       *vb;
2628:   PetscInt           lda1 = a->lda, lda2 = b->lda, m = A->rmap->n, n = A->cmap->n, j;

2630:   PetscFunctionBegin;
2631:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
2632:   if (A->ops->copy != B->ops->copy) {
2633:     PetscCall(MatCopy_Basic(A, B, str));
2634:     PetscFunctionReturn(PETSC_SUCCESS);
2635:   }
2636:   PetscCheck(m == B->rmap->n && n == B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "size(B) != size(A)");
2637:   PetscCall(MatDenseGetArrayRead(A, &va));
2638:   PetscCall(MatDenseGetArray(B, &vb));
2639:   if (lda1 > m || lda2 > m) {
2640:     for (j = 0; j < n; j++) PetscCall(PetscArraycpy(vb + j * lda2, va + j * lda1, m));
2641:   } else {
2642:     PetscCall(PetscArraycpy(vb, va, A->rmap->n * A->cmap->n));
2643:   }
2644:   PetscCall(MatDenseRestoreArray(B, &vb));
2645:   PetscCall(MatDenseRestoreArrayRead(A, &va));
2646:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2647:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2648:   PetscFunctionReturn(PETSC_SUCCESS);
2649: }

2651: PetscErrorCode MatSetUp_SeqDense(Mat A)
2652: {
2653:   PetscFunctionBegin;
2654:   PetscCall(PetscLayoutSetUp(A->rmap));
2655:   PetscCall(PetscLayoutSetUp(A->cmap));
2656:   if (!A->preallocated) PetscCall(MatSeqDenseSetPreallocation(A, NULL));
2657:   PetscFunctionReturn(PETSC_SUCCESS);
2658: }

2660: static PetscErrorCode MatConjugate_SeqDense(Mat A)
2661: {
2662:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2663:   PetscInt      i, j;
2664:   PetscInt      min = PetscMin(A->rmap->n, A->cmap->n);
2665:   PetscScalar  *aa;

2667:   PetscFunctionBegin;
2668:   PetscCall(MatDenseGetArray(A, &aa));
2669:   for (j = 0; j < A->cmap->n; j++) {
2670:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscConj(aa[i + j * mat->lda]);
2671:   }
2672:   PetscCall(MatDenseRestoreArray(A, &aa));
2673:   if (mat->tau)
2674:     for (i = 0; i < min; i++) mat->tau[i] = PetscConj(mat->tau[i]);
2675:   PetscFunctionReturn(PETSC_SUCCESS);
2676: }

2678: static PetscErrorCode MatRealPart_SeqDense(Mat A)
2679: {
2680:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2681:   PetscInt      i, j;
2682:   PetscScalar  *aa;

2684:   PetscFunctionBegin;
2685:   PetscCall(MatDenseGetArray(A, &aa));
2686:   for (j = 0; j < A->cmap->n; j++) {
2687:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscRealPart(aa[i + j * mat->lda]);
2688:   }
2689:   PetscCall(MatDenseRestoreArray(A, &aa));
2690:   PetscFunctionReturn(PETSC_SUCCESS);
2691: }

2693: static PetscErrorCode MatImaginaryPart_SeqDense(Mat A)
2694: {
2695:   Mat_SeqDense *mat = (Mat_SeqDense *)A->data;
2696:   PetscInt      i, j;
2697:   PetscScalar  *aa;

2699:   PetscFunctionBegin;
2700:   PetscCall(MatDenseGetArray(A, &aa));
2701:   for (j = 0; j < A->cmap->n; j++) {
2702:     for (i = 0; i < A->rmap->n; i++) aa[i + j * mat->lda] = PetscImaginaryPart(aa[i + j * mat->lda]);
2703:   }
2704:   PetscCall(MatDenseRestoreArray(A, &aa));
2705:   PetscFunctionReturn(PETSC_SUCCESS);
2706: }

2708: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2709: {
2710:   PetscInt  m = A->rmap->n, n = B->cmap->n;
2711:   PetscBool cisdense = PETSC_FALSE;

2713:   PetscFunctionBegin;
2714:   PetscCall(MatSetSizes(C, m, n, m, n));
2715: #if defined(PETSC_HAVE_CUDA)
2716:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2717: #endif
2718: #if defined(PETSC_HAVE_HIP)
2719:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2720: #endif
2721:   if (!cisdense) {
2722:     PetscBool flg;

2724:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2725:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2726:   }
2727:   PetscCall(MatSetUp(C));
2728:   PetscFunctionReturn(PETSC_SUCCESS);
2729: }

2731: PetscErrorCode MatMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2732: {
2733:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data, *b = (Mat_SeqDense *)B->data, *c = (Mat_SeqDense *)C->data;
2734:   PetscBLASInt       m, n, k;
2735:   const PetscScalar *av, *bv;
2736:   PetscScalar       *cv;
2737:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2739:   PetscFunctionBegin;
2740:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2741:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2742:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2743:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2744:   PetscCall(MatDenseGetArrayRead(A, &av));
2745:   PetscCall(MatDenseGetArrayRead(B, &bv));
2746:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2747:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2748:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2749:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2750:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2751:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2752:   PetscFunctionReturn(PETSC_SUCCESS);
2753: }

2755: PetscErrorCode MatMatTransposeMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2756: {
2757:   PetscInt  m = A->rmap->n, n = B->rmap->n;
2758:   PetscBool cisdense = PETSC_FALSE;

2760:   PetscFunctionBegin;
2761:   PetscCall(MatSetSizes(C, m, n, m, n));
2762: #if defined(PETSC_HAVE_CUDA)
2763:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2764: #endif
2765: #if defined(PETSC_HAVE_HIP)
2766:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2767: #endif
2768:   if (!cisdense) {
2769:     PetscBool flg;

2771:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2772:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2773:   }
2774:   PetscCall(MatSetUp(C));
2775:   PetscFunctionReturn(PETSC_SUCCESS);
2776: }

2778: PetscErrorCode MatMatTransposeMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2779: {
2780:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2781:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2782:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2783:   const PetscScalar *av, *bv;
2784:   PetscScalar       *cv;
2785:   PetscBLASInt       m, n, k;
2786:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2788:   PetscFunctionBegin;
2789:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2790:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2791:   PetscCall(PetscBLASIntCast(A->cmap->n, &k));
2792:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2793:   PetscCall(MatDenseGetArrayRead(A, &av));
2794:   PetscCall(MatDenseGetArrayRead(B, &bv));
2795:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2796:   PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2797:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2798:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2799:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2800:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2801:   PetscFunctionReturn(PETSC_SUCCESS);
2802: }

2804: PetscErrorCode MatTransposeMatMultSymbolic_SeqDense_SeqDense(Mat A, Mat B, PetscReal fill, Mat C)
2805: {
2806:   PetscInt  m = A->cmap->n, n = B->cmap->n;
2807:   PetscBool cisdense = PETSC_FALSE;

2809:   PetscFunctionBegin;
2810:   PetscCall(MatSetSizes(C, m, n, m, n));
2811: #if defined(PETSC_HAVE_CUDA)
2812:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSECUDA, ""));
2813: #endif
2814: #if defined(PETSC_HAVE_HIP)
2815:   PetscCall(PetscObjectTypeCompareAny((PetscObject)C, &cisdense, MATSEQDENSE, MATSEQDENSEHIP, ""));
2816: #endif
2817:   if (!cisdense) {
2818:     PetscBool flg;

2820:     PetscCall(PetscObjectTypeCompare((PetscObject)B, ((PetscObject)A)->type_name, &flg));
2821:     PetscCall(MatSetType(C, flg ? ((PetscObject)A)->type_name : MATDENSE));
2822:   }
2823:   PetscCall(MatSetUp(C));
2824:   PetscFunctionReturn(PETSC_SUCCESS);
2825: }

2827: PetscErrorCode MatTransposeMatMultNumeric_SeqDense_SeqDense(Mat A, Mat B, Mat C)
2828: {
2829:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2830:   Mat_SeqDense      *b = (Mat_SeqDense *)B->data;
2831:   Mat_SeqDense      *c = (Mat_SeqDense *)C->data;
2832:   const PetscScalar *av, *bv;
2833:   PetscScalar       *cv;
2834:   PetscBLASInt       m, n, k;
2835:   PetscScalar        _DOne = 1.0, _DZero = 0.0;

2837:   PetscFunctionBegin;
2838:   PetscCall(PetscBLASIntCast(C->rmap->n, &m));
2839:   PetscCall(PetscBLASIntCast(C->cmap->n, &n));
2840:   PetscCall(PetscBLASIntCast(A->rmap->n, &k));
2841:   if (!m || !n || !k) PetscFunctionReturn(PETSC_SUCCESS);
2842:   PetscCall(MatDenseGetArrayRead(A, &av));
2843:   PetscCall(MatDenseGetArrayRead(B, &bv));
2844:   PetscCall(MatDenseGetArrayWrite(C, &cv));
2845:   PetscCallBLAS("BLASgemm", BLASgemm_("T", "N", &m, &n, &k, &_DOne, av, &a->lda, bv, &b->lda, &_DZero, cv, &c->lda));
2846:   PetscCall(MatDenseRestoreArrayRead(A, &av));
2847:   PetscCall(MatDenseRestoreArrayRead(B, &bv));
2848:   PetscCall(MatDenseRestoreArrayWrite(C, &cv));
2849:   PetscCall(PetscLogFlops(1.0 * m * n * k + 1.0 * m * n * (k - 1)));
2850:   PetscFunctionReturn(PETSC_SUCCESS);
2851: }

2853: static PetscErrorCode MatProductSetFromOptions_SeqDense_AB(Mat C)
2854: {
2855:   PetscFunctionBegin;
2856:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqDense_SeqDense;
2857:   C->ops->productsymbolic = MatProductSymbolic_AB;
2858:   PetscFunctionReturn(PETSC_SUCCESS);
2859: }

2861: static PetscErrorCode MatProductSetFromOptions_SeqDense_AtB(Mat C)
2862: {
2863:   PetscFunctionBegin;
2864:   C->ops->transposematmultsymbolic = MatTransposeMatMultSymbolic_SeqDense_SeqDense;
2865:   C->ops->productsymbolic          = MatProductSymbolic_AtB;
2866:   PetscFunctionReturn(PETSC_SUCCESS);
2867: }

2869: static PetscErrorCode MatProductSetFromOptions_SeqDense_ABt(Mat C)
2870: {
2871:   PetscFunctionBegin;
2872:   C->ops->mattransposemultsymbolic = MatMatTransposeMultSymbolic_SeqDense_SeqDense;
2873:   C->ops->productsymbolic          = MatProductSymbolic_ABt;
2874:   PetscFunctionReturn(PETSC_SUCCESS);
2875: }

2877: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqDense(Mat C)
2878: {
2879:   Mat_Product *product = C->product;

2881:   PetscFunctionBegin;
2882:   switch (product->type) {
2883:   case MATPRODUCT_AB:
2884:     PetscCall(MatProductSetFromOptions_SeqDense_AB(C));
2885:     break;
2886:   case MATPRODUCT_AtB:
2887:     PetscCall(MatProductSetFromOptions_SeqDense_AtB(C));
2888:     break;
2889:   case MATPRODUCT_ABt:
2890:     PetscCall(MatProductSetFromOptions_SeqDense_ABt(C));
2891:     break;
2892:   default:
2893:     break;
2894:   }
2895:   PetscFunctionReturn(PETSC_SUCCESS);
2896: }

2898: static PetscErrorCode MatGetRowMax_SeqDense(Mat A, Vec v, PetscInt idx[])
2899: {
2900:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2901:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2902:   PetscScalar       *x;
2903:   const PetscScalar *aa;

2905:   PetscFunctionBegin;
2906:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2907:   PetscCall(VecGetArray(v, &x));
2908:   PetscCall(VecGetLocalSize(v, &p));
2909:   PetscCall(MatDenseGetArrayRead(A, &aa));
2910:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2911:   for (i = 0; i < m; i++) {
2912:     x[i] = aa[i];
2913:     if (idx) idx[i] = 0;
2914:     for (j = 1; j < n; j++) {
2915:       if (PetscRealPart(x[i]) < PetscRealPart(aa[i + a->lda * j])) {
2916:         x[i] = aa[i + a->lda * j];
2917:         if (idx) idx[i] = j;
2918:       }
2919:     }
2920:   }
2921:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2922:   PetscCall(VecRestoreArray(v, &x));
2923:   PetscFunctionReturn(PETSC_SUCCESS);
2924: }

2926: static PetscErrorCode MatGetRowMaxAbs_SeqDense(Mat A, Vec v, PetscInt idx[])
2927: {
2928:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2929:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2930:   PetscScalar       *x;
2931:   PetscReal          atmp;
2932:   const PetscScalar *aa;

2934:   PetscFunctionBegin;
2935:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2936:   PetscCall(VecGetArray(v, &x));
2937:   PetscCall(VecGetLocalSize(v, &p));
2938:   PetscCall(MatDenseGetArrayRead(A, &aa));
2939:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2940:   for (i = 0; i < m; i++) {
2941:     x[i] = PetscAbsScalar(aa[i]);
2942:     for (j = 1; j < n; j++) {
2943:       atmp = PetscAbsScalar(aa[i + a->lda * j]);
2944:       if (PetscAbsScalar(x[i]) < atmp) {
2945:         x[i] = atmp;
2946:         if (idx) idx[i] = j;
2947:       }
2948:     }
2949:   }
2950:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2951:   PetscCall(VecRestoreArray(v, &x));
2952:   PetscFunctionReturn(PETSC_SUCCESS);
2953: }

2955: static PetscErrorCode MatGetRowMin_SeqDense(Mat A, Vec v, PetscInt idx[])
2956: {
2957:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2958:   PetscInt           i, j, m = A->rmap->n, n = A->cmap->n, p;
2959:   PetscScalar       *x;
2960:   const PetscScalar *aa;

2962:   PetscFunctionBegin;
2963:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2964:   PetscCall(MatDenseGetArrayRead(A, &aa));
2965:   PetscCall(VecGetArray(v, &x));
2966:   PetscCall(VecGetLocalSize(v, &p));
2967:   PetscCheck(p == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Nonconforming matrix and vector");
2968:   for (i = 0; i < m; i++) {
2969:     x[i] = aa[i];
2970:     if (idx) idx[i] = 0;
2971:     for (j = 1; j < n; j++) {
2972:       if (PetscRealPart(x[i]) > PetscRealPart(aa[i + a->lda * j])) {
2973:         x[i] = aa[i + a->lda * j];
2974:         if (idx) idx[i] = j;
2975:       }
2976:     }
2977:   }
2978:   PetscCall(VecRestoreArray(v, &x));
2979:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2980:   PetscFunctionReturn(PETSC_SUCCESS);
2981: }

2983: PetscErrorCode MatGetColumnVector_SeqDense(Mat A, Vec v, PetscInt col)
2984: {
2985:   Mat_SeqDense      *a = (Mat_SeqDense *)A->data;
2986:   PetscScalar       *x;
2987:   const PetscScalar *aa;

2989:   PetscFunctionBegin;
2990:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
2991:   PetscCall(MatDenseGetArrayRead(A, &aa));
2992:   PetscCall(VecGetArray(v, &x));
2993:   PetscCall(PetscArraycpy(x, aa + col * a->lda, A->rmap->n));
2994:   PetscCall(VecRestoreArray(v, &x));
2995:   PetscCall(MatDenseRestoreArrayRead(A, &aa));
2996:   PetscFunctionReturn(PETSC_SUCCESS);
2997: }

2999: PETSC_INTERN PetscErrorCode MatGetColumnReductions_SeqDense(Mat A, PetscInt type, PetscReal *reductions)
3000: {
3001:   PetscInt           i, j, m, n;
3002:   const PetscScalar *a;

3004:   PetscFunctionBegin;
3005:   PetscCall(MatGetSize(A, &m, &n));
3006:   PetscCall(PetscArrayzero(reductions, n));
3007:   PetscCall(MatDenseGetArrayRead(A, &a));
3008:   if (type == NORM_2) {
3009:     for (i = 0; i < n; i++) {
3010:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j] * a[j]);
3011:       a += m;
3012:     }
3013:   } else if (type == NORM_1) {
3014:     for (i = 0; i < n; i++) {
3015:       for (j = 0; j < m; j++) reductions[i] += PetscAbsScalar(a[j]);
3016:       a += m;
3017:     }
3018:   } else if (type == NORM_INFINITY) {
3019:     for (i = 0; i < n; i++) {
3020:       for (j = 0; j < m; j++) reductions[i] = PetscMax(PetscAbsScalar(a[j]), reductions[i]);
3021:       a += m;
3022:     }
3023:   } else if (type == REDUCTION_SUM_REALPART || type == REDUCTION_MEAN_REALPART) {
3024:     for (i = 0; i < n; i++) {
3025:       for (j = 0; j < m; j++) reductions[i] += PetscRealPart(a[j]);
3026:       a += m;
3027:     }
3028:   } else if (type == REDUCTION_SUM_IMAGINARYPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3029:     for (i = 0; i < n; i++) {
3030:       for (j = 0; j < m; j++) reductions[i] += PetscImaginaryPart(a[j]);
3031:       a += m;
3032:     }
3033:   } else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Unknown reduction type");
3034:   PetscCall(MatDenseRestoreArrayRead(A, &a));
3035:   if (type == NORM_2) {
3036:     for (i = 0; i < n; i++) reductions[i] = PetscSqrtReal(reductions[i]);
3037:   } else if (type == REDUCTION_MEAN_REALPART || type == REDUCTION_MEAN_IMAGINARYPART) {
3038:     for (i = 0; i < n; i++) reductions[i] /= m;
3039:   }
3040:   PetscFunctionReturn(PETSC_SUCCESS);
3041: }

3043: PetscErrorCode MatSetRandom_SeqDense(Mat x, PetscRandom rctx)
3044: {
3045:   PetscScalar *a;
3046:   PetscInt     lda, m, n, i, j;

3048:   PetscFunctionBegin;
3049:   PetscCall(MatGetSize(x, &m, &n));
3050:   PetscCall(MatDenseGetLDA(x, &lda));
3051:   PetscCall(MatDenseGetArrayWrite(x, &a));
3052:   for (j = 0; j < n; j++) {
3053:     for (i = 0; i < m; i++) PetscCall(PetscRandomGetValue(rctx, a + j * lda + i));
3054:   }
3055:   PetscCall(MatDenseRestoreArrayWrite(x, &a));
3056:   PetscFunctionReturn(PETSC_SUCCESS);
3057: }

3059: static PetscErrorCode MatMissingDiagonal_SeqDense(Mat A, PetscBool *missing, PetscInt *d)
3060: {
3061:   PetscFunctionBegin;
3062:   *missing = PETSC_FALSE;
3063:   PetscFunctionReturn(PETSC_SUCCESS);
3064: }

3066: /* vals is not const */
3067: static PetscErrorCode MatDenseGetColumn_SeqDense(Mat A, PetscInt col, PetscScalar **vals)
3068: {
3069:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;
3070:   PetscScalar  *v;

3072:   PetscFunctionBegin;
3073:   PetscCheck(!A->factortype, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Not for factored matrix");
3074:   PetscCall(MatDenseGetArray(A, &v));
3075:   *vals = v + col * a->lda;
3076:   PetscCall(MatDenseRestoreArray(A, &v));
3077:   PetscFunctionReturn(PETSC_SUCCESS);
3078: }

3080: static PetscErrorCode MatDenseRestoreColumn_SeqDense(Mat A, PetscScalar **vals)
3081: {
3082:   PetscFunctionBegin;
3083:   if (vals) *vals = NULL; /* user cannot accidentally use the array later */
3084:   PetscFunctionReturn(PETSC_SUCCESS);
3085: }

3087: static struct _MatOps MatOps_Values = {MatSetValues_SeqDense,
3088:                                        MatGetRow_SeqDense,
3089:                                        MatRestoreRow_SeqDense,
3090:                                        MatMult_SeqDense,
3091:                                        /*  4*/ MatMultAdd_SeqDense,
3092:                                        MatMultTranspose_SeqDense,
3093:                                        MatMultTransposeAdd_SeqDense,
3094:                                        NULL,
3095:                                        NULL,
3096:                                        NULL,
3097:                                        /* 10*/ NULL,
3098:                                        MatLUFactor_SeqDense,
3099:                                        MatCholeskyFactor_SeqDense,
3100:                                        MatSOR_SeqDense,
3101:                                        MatTranspose_SeqDense,
3102:                                        /* 15*/ MatGetInfo_SeqDense,
3103:                                        MatEqual_SeqDense,
3104:                                        MatGetDiagonal_SeqDense,
3105:                                        MatDiagonalScale_SeqDense,
3106:                                        MatNorm_SeqDense,
3107:                                        /* 20*/ MatAssemblyBegin_SeqDense,
3108:                                        MatAssemblyEnd_SeqDense,
3109:                                        MatSetOption_SeqDense,
3110:                                        MatZeroEntries_SeqDense,
3111:                                        /* 24*/ MatZeroRows_SeqDense,
3112:                                        NULL,
3113:                                        NULL,
3114:                                        NULL,
3115:                                        NULL,
3116:                                        /* 29*/ MatSetUp_SeqDense,
3117:                                        NULL,
3118:                                        NULL,
3119:                                        NULL,
3120:                                        NULL,
3121:                                        /* 34*/ MatDuplicate_SeqDense,
3122:                                        NULL,
3123:                                        NULL,
3124:                                        NULL,
3125:                                        NULL,
3126:                                        /* 39*/ MatAXPY_SeqDense,
3127:                                        MatCreateSubMatrices_SeqDense,
3128:                                        NULL,
3129:                                        MatGetValues_SeqDense,
3130:                                        MatCopy_SeqDense,
3131:                                        /* 44*/ MatGetRowMax_SeqDense,
3132:                                        MatScale_SeqDense,
3133:                                        MatShift_SeqDense,
3134:                                        NULL,
3135:                                        MatZeroRowsColumns_SeqDense,
3136:                                        /* 49*/ MatSetRandom_SeqDense,
3137:                                        NULL,
3138:                                        NULL,
3139:                                        NULL,
3140:                                        NULL,
3141:                                        /* 54*/ NULL,
3142:                                        NULL,
3143:                                        NULL,
3144:                                        NULL,
3145:                                        NULL,
3146:                                        /* 59*/ MatCreateSubMatrix_SeqDense,
3147:                                        MatDestroy_SeqDense,
3148:                                        MatView_SeqDense,
3149:                                        NULL,
3150:                                        NULL,
3151:                                        /* 64*/ NULL,
3152:                                        NULL,
3153:                                        NULL,
3154:                                        NULL,
3155:                                        NULL,
3156:                                        /* 69*/ MatGetRowMaxAbs_SeqDense,
3157:                                        NULL,
3158:                                        NULL,
3159:                                        NULL,
3160:                                        NULL,
3161:                                        /* 74*/ NULL,
3162:                                        NULL,
3163:                                        NULL,
3164:                                        NULL,
3165:                                        NULL,
3166:                                        /* 79*/ NULL,
3167:                                        NULL,
3168:                                        NULL,
3169:                                        NULL,
3170:                                        /* 83*/ MatLoad_SeqDense,
3171:                                        MatIsSymmetric_SeqDense,
3172:                                        MatIsHermitian_SeqDense,
3173:                                        NULL,
3174:                                        NULL,
3175:                                        NULL,
3176:                                        /* 89*/ NULL,
3177:                                        NULL,
3178:                                        MatMatMultNumeric_SeqDense_SeqDense,
3179:                                        NULL,
3180:                                        NULL,
3181:                                        /* 94*/ NULL,
3182:                                        NULL,
3183:                                        NULL,
3184:                                        MatMatTransposeMultNumeric_SeqDense_SeqDense,
3185:                                        NULL,
3186:                                        /* 99*/ MatProductSetFromOptions_SeqDense,
3187:                                        NULL,
3188:                                        NULL,
3189:                                        MatConjugate_SeqDense,
3190:                                        NULL,
3191:                                        /*104*/ NULL,
3192:                                        MatRealPart_SeqDense,
3193:                                        MatImaginaryPart_SeqDense,
3194:                                        NULL,
3195:                                        NULL,
3196:                                        /*109*/ NULL,
3197:                                        NULL,
3198:                                        MatGetRowMin_SeqDense,
3199:                                        MatGetColumnVector_SeqDense,
3200:                                        MatMissingDiagonal_SeqDense,
3201:                                        /*114*/ NULL,
3202:                                        NULL,
3203:                                        NULL,
3204:                                        NULL,
3205:                                        NULL,
3206:                                        /*119*/ NULL,
3207:                                        NULL,
3208:                                        NULL,
3209:                                        NULL,
3210:                                        NULL,
3211:                                        /*124*/ NULL,
3212:                                        MatGetColumnReductions_SeqDense,
3213:                                        NULL,
3214:                                        NULL,
3215:                                        NULL,
3216:                                        /*129*/ NULL,
3217:                                        NULL,
3218:                                        NULL,
3219:                                        MatTransposeMatMultNumeric_SeqDense_SeqDense,
3220:                                        NULL,
3221:                                        /*134*/ NULL,
3222:                                        NULL,
3223:                                        NULL,
3224:                                        NULL,
3225:                                        NULL,
3226:                                        /*139*/ NULL,
3227:                                        NULL,
3228:                                        NULL,
3229:                                        NULL,
3230:                                        NULL,
3231:                                        MatCreateMPIMatConcatenateSeqMat_SeqDense,
3232:                                        /*145*/ NULL,
3233:                                        NULL,
3234:                                        NULL,
3235:                                        NULL,
3236:                                        NULL,
3237:                                        /*150*/ NULL,
3238:                                        NULL};

3240: /*@C
3241:   MatCreateSeqDense - Creates a `MATSEQDENSE` that
3242:   is stored in column major order (the usual Fortran format).

3244:   Collective

3246:   Input Parameters:
3247: + comm - MPI communicator, set to `PETSC_COMM_SELF`
3248: . m    - number of rows
3249: . n    - number of columns
3250: - data - optional location of matrix data in column major order.  Use `NULL` for PETSc
3251:    to control all matrix memory allocation.

3253:   Output Parameter:
3254: . A - the matrix

3256:   Level: intermediate

3258:   Note:
3259:   The data input variable is intended primarily for Fortran programmers
3260:   who wish to allocate their own matrix memory space.  Most users should
3261:   set `data` = `NULL`.

3263:   Developer Note:
3264:   Many of the matrix operations for this variant use the BLAS and LAPACK routines.

3266: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`
3267: @*/
3268: PetscErrorCode MatCreateSeqDense(MPI_Comm comm, PetscInt m, PetscInt n, PetscScalar *data, Mat *A)
3269: {
3270:   PetscFunctionBegin;
3271:   PetscCall(MatCreate(comm, A));
3272:   PetscCall(MatSetSizes(*A, m, n, m, n));
3273:   PetscCall(MatSetType(*A, MATSEQDENSE));
3274:   PetscCall(MatSeqDenseSetPreallocation(*A, data));
3275:   PetscFunctionReturn(PETSC_SUCCESS);
3276: }

3278: /*@C
3279:   MatSeqDenseSetPreallocation - Sets the array used for storing the matrix elements of a `MATSEQDENSE` matrix

3281:   Collective

3283:   Input Parameters:
3284: + B    - the matrix
3285: - data - the array (or `NULL`)

3287:   Level: intermediate

3289:   Note:
3290:   The data input variable is intended primarily for Fortran programmers
3291:   who wish to allocate their own matrix memory space.  Most users should
3292:   need not call this routine.

3294: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`, `MatDenseSetLDA()`
3295: @*/
3296: PetscErrorCode MatSeqDenseSetPreallocation(Mat B, PetscScalar data[])
3297: {
3298:   PetscFunctionBegin;
3300:   PetscTryMethod(B, "MatSeqDenseSetPreallocation_C", (Mat, PetscScalar[]), (B, data));
3301:   PetscFunctionReturn(PETSC_SUCCESS);
3302: }

3304: PetscErrorCode MatSeqDenseSetPreallocation_SeqDense(Mat B, PetscScalar *data)
3305: {
3306:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;

3308:   PetscFunctionBegin;
3309:   PetscCheck(!b->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3310:   B->preallocated = PETSC_TRUE;

3312:   PetscCall(PetscLayoutSetUp(B->rmap));
3313:   PetscCall(PetscLayoutSetUp(B->cmap));

3315:   if (b->lda <= 0) b->lda = B->rmap->n;

3317:   if (!data) { /* petsc-allocated storage */
3318:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3319:     PetscCall(PetscCalloc1((size_t)b->lda * B->cmap->n, &b->v));

3321:     b->user_alloc = PETSC_FALSE;
3322:   } else { /* user-allocated storage */
3323:     if (!b->user_alloc) PetscCall(PetscFree(b->v));
3324:     b->v          = data;
3325:     b->user_alloc = PETSC_TRUE;
3326:   }
3327:   B->assembled = PETSC_TRUE;
3328:   PetscFunctionReturn(PETSC_SUCCESS);
3329: }

3331: #if defined(PETSC_HAVE_ELEMENTAL)
3332: PETSC_INTERN PetscErrorCode MatConvert_SeqDense_Elemental(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
3333: {
3334:   Mat                mat_elemental;
3335:   const PetscScalar *array;
3336:   PetscScalar       *v_colwise;
3337:   PetscInt           M = A->rmap->N, N = A->cmap->N, i, j, k, *rows, *cols;

3339:   PetscFunctionBegin;
3340:   PetscCall(PetscMalloc3(M * N, &v_colwise, M, &rows, N, &cols));
3341:   PetscCall(MatDenseGetArrayRead(A, &array));
3342:   /* convert column-wise array into row-wise v_colwise, see MatSetValues_Elemental() */
3343:   k = 0;
3344:   for (j = 0; j < N; j++) {
3345:     cols[j] = j;
3346:     for (i = 0; i < M; i++) v_colwise[j * M + i] = array[k++];
3347:   }
3348:   for (i = 0; i < M; i++) rows[i] = i;
3349:   PetscCall(MatDenseRestoreArrayRead(A, &array));

3351:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &mat_elemental));
3352:   PetscCall(MatSetSizes(mat_elemental, PETSC_DECIDE, PETSC_DECIDE, M, N));
3353:   PetscCall(MatSetType(mat_elemental, MATELEMENTAL));
3354:   PetscCall(MatSetUp(mat_elemental));

3356:   /* PETSc-Elemental interaface uses axpy for setting off-processor entries, only ADD_VALUES is allowed */
3357:   PetscCall(MatSetValues(mat_elemental, M, rows, N, cols, v_colwise, ADD_VALUES));
3358:   PetscCall(MatAssemblyBegin(mat_elemental, MAT_FINAL_ASSEMBLY));
3359:   PetscCall(MatAssemblyEnd(mat_elemental, MAT_FINAL_ASSEMBLY));
3360:   PetscCall(PetscFree3(v_colwise, rows, cols));

3362:   if (reuse == MAT_INPLACE_MATRIX) {
3363:     PetscCall(MatHeaderReplace(A, &mat_elemental));
3364:   } else {
3365:     *newmat = mat_elemental;
3366:   }
3367:   PetscFunctionReturn(PETSC_SUCCESS);
3368: }
3369: #endif

3371: PetscErrorCode MatDenseSetLDA_SeqDense(Mat B, PetscInt lda)
3372: {
3373:   Mat_SeqDense *b = (Mat_SeqDense *)B->data;
3374:   PetscBool     data;

3376:   PetscFunctionBegin;
3377:   data = (PetscBool)((B->rmap->n > 0 && B->cmap->n > 0) ? (b->v ? PETSC_TRUE : PETSC_FALSE) : PETSC_FALSE);
3378:   PetscCheck(b->user_alloc || !data || b->lda == lda, PETSC_COMM_SELF, PETSC_ERR_ORDER, "LDA cannot be changed after allocation of internal storage");
3379:   PetscCheck(lda >= B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "LDA %" PetscInt_FMT " must be at least matrix dimension %" PetscInt_FMT, lda, B->rmap->n);
3380:   b->lda = lda;
3381:   PetscFunctionReturn(PETSC_SUCCESS);
3382: }

3384: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqDense(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
3385: {
3386:   PetscFunctionBegin;
3387:   PetscCall(MatCreateMPIMatConcatenateSeqMat_MPIDense(comm, inmat, n, scall, outmat));
3388:   PetscFunctionReturn(PETSC_SUCCESS);
3389: }

3391: PetscErrorCode MatDenseCreateColumnVec_Private(Mat A, Vec *v)
3392: {
3393:   PetscBool   isstd, iskok, iscuda, iship;
3394:   PetscMPIInt size;
3395: #if PetscDefined(HAVE_CUDA) || PetscDefined(HAVE_HIP)
3396:   /* we pass the data of A, to prevent allocating needless GPU memory the first time VecCUPMPlaceArray is called. */
3397:   const PetscScalar *a;
3398: #endif

3400:   PetscFunctionBegin;
3401:   *v = NULL;
3402:   PetscCall(PetscStrcmpAny(A->defaultvectype, &isstd, VECSTANDARD, VECSEQ, VECMPI, ""));
3403:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iskok, VECKOKKOS, VECSEQKOKKOS, VECMPIKOKKOS, ""));
3404:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iscuda, VECCUDA, VECSEQCUDA, VECMPICUDA, ""));
3405:   PetscCall(PetscStrcmpAny(A->defaultvectype, &iship, VECHIP, VECSEQHIP, VECMPIHIP, ""));
3406:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
3407:   if (isstd) {
3408:     if (size > 1) PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3409:     else PetscCall(VecCreateSeqWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3410:   } else if (iskok) {
3411:     PetscCheck(PetscDefined(HAVE_KOKKOS_KERNELS), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using KOKKOS kernels support");
3412: #if PetscDefined(HAVE_KOKKOS_KERNELS)
3413:     if (size > 1) PetscCall(VecCreateMPIKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, v));
3414:     else PetscCall(VecCreateSeqKokkosWithArray(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, v));
3415: #endif
3416:   } else if (iscuda) {
3417:     PetscCheck(PetscDefined(HAVE_CUDA), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using CUDA support");
3418: #if PetscDefined(HAVE_CUDA)
3419:     PetscCall(MatDenseCUDAGetArrayRead(A, &a));
3420:     if (size > 1) PetscCall(VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3421:     else PetscCall(VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3422: #endif
3423:   } else if (iship) {
3424:     PetscCheck(PetscDefined(HAVE_HIP), PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Reconfigure using HIP support");
3425: #if PetscDefined(HAVE_HIP)
3426:     PetscCall(MatDenseHIPGetArrayRead(A, &a));
3427:     if (size > 1) PetscCall(VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, A->rmap->N, NULL, a, v));
3428:     else PetscCall(VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)A), A->rmap->bs, A->rmap->n, NULL, a, v));
3429: #endif
3430:   }
3431:   PetscCheck(*v, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Not coded for type %s", A->defaultvectype);
3432:   PetscFunctionReturn(PETSC_SUCCESS);
3433: }

3435: PetscErrorCode MatDenseGetColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3436: {
3437:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3439:   PetscFunctionBegin;
3440:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3441:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3442:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3443:   a->vecinuse = col + 1;
3444:   PetscCall(MatDenseGetArray(A, (PetscScalar **)&a->ptrinuse));
3445:   PetscCall(VecPlaceArray(a->cvec, a->ptrinuse + (size_t)col * (size_t)a->lda));
3446:   *v = a->cvec;
3447:   PetscFunctionReturn(PETSC_SUCCESS);
3448: }

3450: PetscErrorCode MatDenseRestoreColumnVec_SeqDense(Mat A, PetscInt col, Vec *v)
3451: {
3452:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3454:   PetscFunctionBegin;
3455:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3456:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3457:   a->vecinuse = 0;
3458:   PetscCall(MatDenseRestoreArray(A, (PetscScalar **)&a->ptrinuse));
3459:   PetscCall(VecResetArray(a->cvec));
3460:   if (v) *v = NULL;
3461:   PetscFunctionReturn(PETSC_SUCCESS);
3462: }

3464: PetscErrorCode MatDenseGetColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3465: {
3466:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3468:   PetscFunctionBegin;
3469:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3470:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3471:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3472:   a->vecinuse = col + 1;
3473:   PetscCall(MatDenseGetArrayRead(A, &a->ptrinuse));
3474:   PetscCall(VecPlaceArray(a->cvec, a->ptrinuse + (size_t)col * (size_t)a->lda));
3475:   PetscCall(VecLockReadPush(a->cvec));
3476:   *v = a->cvec;
3477:   PetscFunctionReturn(PETSC_SUCCESS);
3478: }

3480: PetscErrorCode MatDenseRestoreColumnVecRead_SeqDense(Mat A, PetscInt col, Vec *v)
3481: {
3482:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3484:   PetscFunctionBegin;
3485:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3486:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3487:   a->vecinuse = 0;
3488:   PetscCall(MatDenseRestoreArrayRead(A, &a->ptrinuse));
3489:   PetscCall(VecLockReadPop(a->cvec));
3490:   PetscCall(VecResetArray(a->cvec));
3491:   if (v) *v = NULL;
3492:   PetscFunctionReturn(PETSC_SUCCESS);
3493: }

3495: PetscErrorCode MatDenseGetColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3496: {
3497:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3499:   PetscFunctionBegin;
3500:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3501:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3502:   if (!a->cvec) PetscCall(MatDenseCreateColumnVec_Private(A, &a->cvec));
3503:   a->vecinuse = col + 1;
3504:   PetscCall(MatDenseGetArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3505:   PetscCall(VecPlaceArray(a->cvec, a->ptrinuse + (size_t)col * (size_t)a->lda));
3506:   *v = a->cvec;
3507:   PetscFunctionReturn(PETSC_SUCCESS);
3508: }

3510: PetscErrorCode MatDenseRestoreColumnVecWrite_SeqDense(Mat A, PetscInt col, Vec *v)
3511: {
3512:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3514:   PetscFunctionBegin;
3515:   PetscCheck(a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetColumnVec() first");
3516:   PetscCheck(a->cvec, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column vector");
3517:   a->vecinuse = 0;
3518:   PetscCall(MatDenseRestoreArrayWrite(A, (PetscScalar **)&a->ptrinuse));
3519:   PetscCall(VecResetArray(a->cvec));
3520:   if (v) *v = NULL;
3521:   PetscFunctionReturn(PETSC_SUCCESS);
3522: }

3524: PetscErrorCode MatDenseGetSubMatrix_SeqDense(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3525: {
3526:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3528:   PetscFunctionBegin;
3529:   PetscCheck(!a->vecinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreColumnVec() first");
3530:   PetscCheck(!a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseRestoreSubMatrix() first");
3531:   if (a->cmat && (cend - cbegin != a->cmat->cmap->N || rend - rbegin != a->cmat->rmap->N)) PetscCall(MatDestroy(&a->cmat));
3532:   if (!a->cmat) {
3533:     PetscCall(MatCreateDense(PetscObjectComm((PetscObject)A), rend - rbegin, PETSC_DECIDE, rend - rbegin, cend - cbegin, a->v ? a->v + rbegin + (size_t)cbegin * a->lda : NULL, &a->cmat));
3534:   } else {
3535:     PetscCall(MatDensePlaceArray(a->cmat, a->v ? a->v + rbegin + (size_t)cbegin * a->lda : NULL));
3536:   }
3537:   PetscCall(MatDenseSetLDA(a->cmat, a->lda));
3538:   a->matinuse = cbegin + 1;
3539:   *v          = a->cmat;
3540: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3541:   A->offloadmask = PETSC_OFFLOAD_CPU;
3542: #endif
3543:   PetscFunctionReturn(PETSC_SUCCESS);
3544: }

3546: PetscErrorCode MatDenseRestoreSubMatrix_SeqDense(Mat A, Mat *v)
3547: {
3548:   Mat_SeqDense *a = (Mat_SeqDense *)A->data;

3550:   PetscFunctionBegin;
3551:   PetscCheck(a->matinuse, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Need to call MatDenseGetSubMatrix() first");
3552:   PetscCheck(a->cmat, PETSC_COMM_SELF, PETSC_ERR_PLIB, "Missing internal column matrix");
3553:   PetscCheck(*v == a->cmat, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Not the matrix obtained from MatDenseGetSubMatrix()");
3554:   a->matinuse = 0;
3555:   PetscCall(MatDenseResetArray(a->cmat));
3556:   if (v) *v = NULL;
3557: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
3558:   A->offloadmask = PETSC_OFFLOAD_CPU;
3559: #endif
3560:   PetscFunctionReturn(PETSC_SUCCESS);
3561: }

3563: /*MC
3564:    MATSEQDENSE - MATSEQDENSE = "seqdense" - A matrix type to be used for sequential dense matrices.

3566:    Options Database Key:
3567: . -mat_type seqdense - sets the matrix type to `MATSEQDENSE` during a call to `MatSetFromOptions()`

3569:   Level: beginner

3571: .seealso: [](ch_matrices), `Mat`, `MATSEQDENSE`, `MatCreateSeqDense()`
3572: M*/
3573: PetscErrorCode MatCreate_SeqDense(Mat B)
3574: {
3575:   Mat_SeqDense *b;
3576:   PetscMPIInt   size;

3578:   PetscFunctionBegin;
3579:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
3580:   PetscCheck(size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Comm must be of size 1");

3582:   PetscCall(PetscNew(&b));
3583:   B->data   = (void *)b;
3584:   B->ops[0] = MatOps_Values;

3586:   b->roworiented = PETSC_TRUE;

3588:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatQRFactor_C", MatQRFactor_SeqDense));
3589:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetLDA_C", MatDenseGetLDA_SeqDense));
3590:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseSetLDA_C", MatDenseSetLDA_SeqDense));
3591:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArray_C", MatDenseGetArray_SeqDense));
3592:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArray_C", MatDenseRestoreArray_SeqDense));
3593:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDensePlaceArray_C", MatDensePlaceArray_SeqDense));
3594:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseResetArray_C", MatDenseResetArray_SeqDense));
3595:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseReplaceArray_C", MatDenseReplaceArray_SeqDense));
3596:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayRead_C", MatDenseGetArray_SeqDense));
3597:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayRead_C", MatDenseRestoreArray_SeqDense));
3598:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetArrayWrite_C", MatDenseGetArray_SeqDense));
3599:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreArrayWrite_C", MatDenseRestoreArray_SeqDense));
3600:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqaij_C", MatConvert_SeqDense_SeqAIJ));
3601: #if defined(PETSC_HAVE_ELEMENTAL)
3602:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_elemental_C", MatConvert_SeqDense_Elemental));
3603: #endif
3604: #if defined(PETSC_HAVE_SCALAPACK)
3605:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_scalapack_C", MatConvert_Dense_ScaLAPACK));
3606: #endif
3607: #if defined(PETSC_HAVE_CUDA)
3608:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensecuda_C", MatConvert_SeqDense_SeqDenseCUDA));
3609:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3610:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensecuda_seqdense_C", MatProductSetFromOptions_SeqDense));
3611:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensecuda_C", MatProductSetFromOptions_SeqDense));
3612: #endif
3613: #if defined(PETSC_HAVE_HIP)
3614:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_seqdense_seqdensehip_C", MatConvert_SeqDense_SeqDenseHIP));
3615:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3616:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdensehip_seqdense_C", MatProductSetFromOptions_SeqDense));
3617:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdensehip_C", MatProductSetFromOptions_SeqDense));
3618: #endif
3619:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatSeqDenseSetPreallocation_C", MatSeqDenseSetPreallocation_SeqDense));
3620:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqaij_seqdense_C", MatProductSetFromOptions_SeqAIJ_SeqDense));
3621:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqdense_seqdense_C", MatProductSetFromOptions_SeqDense));
3622:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));
3623:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatProductSetFromOptions_seqsbaij_seqdense_C", MatProductSetFromOptions_SeqXBAIJ_SeqDense));

3625:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumn_C", MatDenseGetColumn_SeqDense));
3626:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumn_C", MatDenseRestoreColumn_SeqDense));
3627:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVec_C", MatDenseGetColumnVec_SeqDense));
3628:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVec_C", MatDenseRestoreColumnVec_SeqDense));
3629:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecRead_C", MatDenseGetColumnVecRead_SeqDense));
3630:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecRead_C", MatDenseRestoreColumnVecRead_SeqDense));
3631:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetColumnVecWrite_C", MatDenseGetColumnVecWrite_SeqDense));
3632:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreColumnVecWrite_C", MatDenseRestoreColumnVecWrite_SeqDense));
3633:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseGetSubMatrix_C", MatDenseGetSubMatrix_SeqDense));
3634:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatDenseRestoreSubMatrix_C", MatDenseRestoreSubMatrix_SeqDense));
3635:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATSEQDENSE));
3636:   PetscFunctionReturn(PETSC_SUCCESS);
3637: }

3639: /*@C
3640:   MatDenseGetColumn - gives access to a column of a dense matrix. This is only the local part of the column. You MUST call `MatDenseRestoreColumn()` to avoid memory bleeding.

3642:   Not Collective

3644:   Input Parameters:
3645: + A   - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3646: - col - column index

3648:   Output Parameter:
3649: . vals - pointer to the data

3651:   Level: intermediate

3653:   Note:
3654:   Use `MatDenseGetColumnVec()` to get access to a column of a `MATDENSE` treated as a `Vec`

3656: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseRestoreColumn()`, `MatDenseGetColumnVec()`
3657: @*/
3658: PetscErrorCode MatDenseGetColumn(Mat A, PetscInt col, PetscScalar **vals)
3659: {
3660:   PetscFunctionBegin;
3663:   PetscAssertPointer(vals, 3);
3664:   PetscUseMethod(A, "MatDenseGetColumn_C", (Mat, PetscInt, PetscScalar **), (A, col, vals));
3665:   PetscFunctionReturn(PETSC_SUCCESS);
3666: }

3668: /*@C
3669:   MatDenseRestoreColumn - returns access to a column of a `MATDENSE` matrix which is returned by `MatDenseGetColumn()`.

3671:   Not Collective

3673:   Input Parameters:
3674: + A    - a `MATSEQDENSE` or `MATMPIDENSE` matrix
3675: - vals - pointer to the data (may be `NULL`)

3677:   Level: intermediate

3679: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MatDenseGetColumn()`
3680: @*/
3681: PetscErrorCode MatDenseRestoreColumn(Mat A, PetscScalar **vals)
3682: {
3683:   PetscFunctionBegin;
3685:   PetscAssertPointer(vals, 2);
3686:   PetscUseMethod(A, "MatDenseRestoreColumn_C", (Mat, PetscScalar **), (A, vals));
3687:   PetscFunctionReturn(PETSC_SUCCESS);
3688: }

3690: /*@
3691:   MatDenseGetColumnVec - Gives read-write access to a column of a `MATDENSE` matrix, represented as a `Vec`.

3693:   Collective

3695:   Input Parameters:
3696: + A   - the `Mat` object
3697: - col - the column index

3699:   Output Parameter:
3700: . v - the vector

3702:   Level: intermediate

3704:   Notes:
3705:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVec()` when the vector is no longer needed.

3707:   Use `MatDenseGetColumnVecRead()` to obtain read-only access or `MatDenseGetColumnVecWrite()` for write-only access.

3709: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`, `MatDenseGetColumn()`
3710: @*/
3711: PetscErrorCode MatDenseGetColumnVec(Mat A, PetscInt col, Vec *v)
3712: {
3713:   PetscFunctionBegin;
3717:   PetscAssertPointer(v, 3);
3718:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3719:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3720:   PetscUseMethod(A, "MatDenseGetColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3721:   PetscFunctionReturn(PETSC_SUCCESS);
3722: }

3724: /*@
3725:   MatDenseRestoreColumnVec - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVec()`.

3727:   Collective

3729:   Input Parameters:
3730: + A   - the `Mat` object
3731: . col - the column index
3732: - v   - the `Vec` object (may be `NULL`)

3734:   Level: intermediate

3736: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3737: @*/
3738: PetscErrorCode MatDenseRestoreColumnVec(Mat A, PetscInt col, Vec *v)
3739: {
3740:   PetscFunctionBegin;
3744:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3745:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3746:   PetscUseMethod(A, "MatDenseRestoreColumnVec_C", (Mat, PetscInt, Vec *), (A, col, v));
3747:   PetscFunctionReturn(PETSC_SUCCESS);
3748: }

3750: /*@
3751:   MatDenseGetColumnVecRead - Gives read-only access to a column of a dense matrix, represented as a `Vec`.

3753:   Collective

3755:   Input Parameters:
3756: + A   - the `Mat` object
3757: - col - the column index

3759:   Output Parameter:
3760: . v - the vector

3762:   Level: intermediate

3764:   Notes:
3765:   The vector is owned by PETSc and users cannot modify it.

3767:   Users need to call `MatDenseRestoreColumnVecRead()` when the vector is no longer needed.

3769:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecWrite()` for write-only access.

3771: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3772: @*/
3773: PetscErrorCode MatDenseGetColumnVecRead(Mat A, PetscInt col, Vec *v)
3774: {
3775:   PetscFunctionBegin;
3779:   PetscAssertPointer(v, 3);
3780:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3781:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3782:   PetscUseMethod(A, "MatDenseGetColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3783:   PetscFunctionReturn(PETSC_SUCCESS);
3784: }

3786: /*@
3787:   MatDenseRestoreColumnVecRead - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecRead()`.

3789:   Collective

3791:   Input Parameters:
3792: + A   - the `Mat` object
3793: . col - the column index
3794: - v   - the `Vec` object (may be `NULL`)

3796:   Level: intermediate

3798: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecWrite()`
3799: @*/
3800: PetscErrorCode MatDenseRestoreColumnVecRead(Mat A, PetscInt col, Vec *v)
3801: {
3802:   PetscFunctionBegin;
3806:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3807:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3808:   PetscUseMethod(A, "MatDenseRestoreColumnVecRead_C", (Mat, PetscInt, Vec *), (A, col, v));
3809:   PetscFunctionReturn(PETSC_SUCCESS);
3810: }

3812: /*@
3813:   MatDenseGetColumnVecWrite - Gives write-only access to a column of a dense matrix, represented as a `Vec`.

3815:   Collective

3817:   Input Parameters:
3818: + A   - the `Mat` object
3819: - col - the column index

3821:   Output Parameter:
3822: . v - the vector

3824:   Level: intermediate

3826:   Notes:
3827:   The vector is owned by PETSc. Users need to call `MatDenseRestoreColumnVecWrite()` when the vector is no longer needed.

3829:   Use `MatDenseGetColumnVec()` to obtain read-write access or `MatDenseGetColumnVecRead()` for read-only access.

3831: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`, `MatDenseRestoreColumnVecWrite()`
3832: @*/
3833: PetscErrorCode MatDenseGetColumnVecWrite(Mat A, PetscInt col, Vec *v)
3834: {
3835:   PetscFunctionBegin;
3839:   PetscAssertPointer(v, 3);
3840:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3841:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3842:   PetscUseMethod(A, "MatDenseGetColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3843:   PetscFunctionReturn(PETSC_SUCCESS);
3844: }

3846: /*@
3847:   MatDenseRestoreColumnVecWrite - Returns access to a column of a dense matrix obtained from `MatDenseGetColumnVecWrite()`.

3849:   Collective

3851:   Input Parameters:
3852: + A   - the `Mat` object
3853: . col - the column index
3854: - v   - the `Vec` object (may be `NULL`)

3856:   Level: intermediate

3858: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseGetColumnVecRead()`, `MatDenseGetColumnVecWrite()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreColumnVecRead()`
3859: @*/
3860: PetscErrorCode MatDenseRestoreColumnVecWrite(Mat A, PetscInt col, Vec *v)
3861: {
3862:   PetscFunctionBegin;
3866:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3867:   PetscCheck(col >= 0 && col < A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid col %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT ")", col, A->cmap->N);
3868:   PetscUseMethod(A, "MatDenseRestoreColumnVecWrite_C", (Mat, PetscInt, Vec *), (A, col, v));
3869:   PetscFunctionReturn(PETSC_SUCCESS);
3870: }

3872: /*@
3873:   MatDenseGetSubMatrix - Gives access to a block of rows and columns of a dense matrix, represented as a `Mat`.

3875:   Collective

3877:   Input Parameters:
3878: + A      - the `Mat` object
3879: . rbegin - the first global row index in the block (if `PETSC_DECIDE`, is 0)
3880: . rend   - the global row index past the last one in the block (if `PETSC_DECIDE`, is `M`)
3881: . cbegin - the first global column index in the block (if `PETSC_DECIDE`, is 0)
3882: - cend   - the global column index past the last one in the block (if `PETSC_DECIDE`, is `N`)

3884:   Output Parameter:
3885: . v - the matrix

3887:   Level: intermediate

3889:   Notes:
3890:   The matrix is owned by PETSc. Users need to call `MatDenseRestoreSubMatrix()` when the matrix is no longer needed.

3892:   The output matrix is not redistributed by PETSc, so depending on the values of `rbegin` and `rend`, some processes may have no local rows.

3894: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseRestoreSubMatrix()`
3895: @*/
3896: PetscErrorCode MatDenseGetSubMatrix(Mat A, PetscInt rbegin, PetscInt rend, PetscInt cbegin, PetscInt cend, Mat *v)
3897: {
3898:   PetscFunctionBegin;
3905:   PetscAssertPointer(v, 6);
3906:   if (rbegin == PETSC_DECIDE) rbegin = 0;
3907:   if (rend == PETSC_DECIDE) rend = A->rmap->N;
3908:   if (cbegin == PETSC_DECIDE) cbegin = 0;
3909:   if (cend == PETSC_DECIDE) cend = A->cmap->N;
3910:   PetscCheck(A->preallocated, PetscObjectComm((PetscObject)A), PETSC_ERR_ORDER, "Matrix not preallocated");
3911:   PetscCheck(rbegin >= 0 && rbegin <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", rbegin, A->rmap->N);
3912:   PetscCheck(rend >= rbegin && rend <= A->rmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid rend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", rend, rbegin, A->rmap->N);
3913:   PetscCheck(cbegin >= 0 && cbegin <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cbegin %" PetscInt_FMT ", should be in [0,%" PetscInt_FMT "]", cbegin, A->cmap->N);
3914:   PetscCheck(cend >= cbegin && cend <= A->cmap->N, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Invalid cend %" PetscInt_FMT ", should be in [%" PetscInt_FMT ",%" PetscInt_FMT "]", cend, cbegin, A->cmap->N);
3915:   PetscUseMethod(A, "MatDenseGetSubMatrix_C", (Mat, PetscInt, PetscInt, PetscInt, PetscInt, Mat *), (A, rbegin, rend, cbegin, cend, v));
3916:   PetscFunctionReturn(PETSC_SUCCESS);
3917: }

3919: /*@
3920:   MatDenseRestoreSubMatrix - Returns access to a block of columns of a dense matrix obtained from `MatDenseGetSubMatrix()`.

3922:   Collective

3924:   Input Parameters:
3925: + A - the `Mat` object
3926: - v - the `Mat` object (may be `NULL`)

3928:   Level: intermediate

3930: .seealso: [](ch_matrices), `Mat`, `MATDENSE`, `MATDENSECUDA`, `MATDENSEHIP`, `MatDenseGetColumnVec()`, `MatDenseRestoreColumnVec()`, `MatDenseGetSubMatrix()`
3931: @*/
3932: PetscErrorCode MatDenseRestoreSubMatrix(Mat A, Mat *v)
3933: {
3934:   PetscFunctionBegin;
3937:   PetscAssertPointer(v, 2);
3938:   PetscUseMethod(A, "MatDenseRestoreSubMatrix_C", (Mat, Mat *), (A, v));
3939:   PetscFunctionReturn(PETSC_SUCCESS);
3940: }

3942: #include <petscblaslapack.h>
3943: #include <petsc/private/kernels/blockinvert.h>

3945: PetscErrorCode MatSeqDenseInvert(Mat A)
3946: {
3947:   PetscInt        m;
3948:   const PetscReal shift = 0.0;
3949:   PetscBool       allowzeropivot, zeropivotdetected = PETSC_FALSE;
3950:   PetscScalar    *values;

3952:   PetscFunctionBegin;
3954:   PetscCall(MatDenseGetArray(A, &values));
3955:   PetscCall(MatGetLocalSize(A, &m, NULL));
3956:   allowzeropivot = PetscNot(A->erroriffailure);
3957:   /* factor and invert each block */
3958:   switch (m) {
3959:   case 1:
3960:     values[0] = (PetscScalar)1.0 / (values[0] + shift);
3961:     break;
3962:   case 2:
3963:     PetscCall(PetscKernel_A_gets_inverse_A_2(values, shift, allowzeropivot, &zeropivotdetected));
3964:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3965:     break;
3966:   case 3:
3967:     PetscCall(PetscKernel_A_gets_inverse_A_3(values, shift, allowzeropivot, &zeropivotdetected));
3968:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3969:     break;
3970:   case 4:
3971:     PetscCall(PetscKernel_A_gets_inverse_A_4(values, shift, allowzeropivot, &zeropivotdetected));
3972:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3973:     break;
3974:   case 5: {
3975:     PetscScalar work[25];
3976:     PetscInt    ipvt[5];

3978:     PetscCall(PetscKernel_A_gets_inverse_A_5(values, ipvt, work, shift, allowzeropivot, &zeropivotdetected));
3979:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3980:   } break;
3981:   case 6:
3982:     PetscCall(PetscKernel_A_gets_inverse_A_6(values, shift, allowzeropivot, &zeropivotdetected));
3983:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3984:     break;
3985:   case 7:
3986:     PetscCall(PetscKernel_A_gets_inverse_A_7(values, shift, allowzeropivot, &zeropivotdetected));
3987:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3988:     break;
3989:   default: {
3990:     PetscInt    *v_pivots, *IJ, j;
3991:     PetscScalar *v_work;

3993:     PetscCall(PetscMalloc3(m, &v_work, m, &v_pivots, m, &IJ));
3994:     for (j = 0; j < m; j++) IJ[j] = j;
3995:     PetscCall(PetscKernel_A_gets_inverse_A(m, values, v_pivots, v_work, allowzeropivot, &zeropivotdetected));
3996:     if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3997:     PetscCall(PetscFree3(v_work, v_pivots, IJ));
3998:   }
3999:   }
4000:   PetscCall(MatDenseRestoreArray(A, &values));
4001:   PetscFunctionReturn(PETSC_SUCCESS);
4002: }