Actual source code: telescope.c

  1: #include <petsc/private/petscimpl.h>
  2: #include <petsc/private/matimpl.h>
  3: #include <petsc/private/pcimpl.h>
  4: #include <petscksp.h>
  5: #include <petscdm.h>
  6: #include "../src/ksp/pc/impls/telescope/telescope.h"

  8: static PetscBool  cited      = PETSC_FALSE;
  9: static const char citation[] = "@inproceedings{MaySananRuppKnepleySmith2016,\n"
 10:                                "  title     = {Extreme-Scale Multigrid Components within PETSc},\n"
 11:                                "  author    = {Dave A. May and Patrick Sanan and Karl Rupp and Matthew G. Knepley and Barry F. Smith},\n"
 12:                                "  booktitle = {Proceedings of the Platform for Advanced Scientific Computing Conference},\n"
 13:                                "  series    = {PASC '16},\n"
 14:                                "  isbn      = {978-1-4503-4126-4},\n"
 15:                                "  location  = {Lausanne, Switzerland},\n"
 16:                                "  pages     = {5:1--5:12},\n"
 17:                                "  articleno = {5},\n"
 18:                                "  numpages  = {12},\n"
 19:                                "  url       = {https://doi.acm.org/10.1145/2929908.2929913},\n"
 20:                                "  doi       = {10.1145/2929908.2929913},\n"
 21:                                "  acmid     = {2929913},\n"
 22:                                "  publisher = {ACM},\n"
 23:                                "  address   = {New York, NY, USA},\n"
 24:                                "  keywords  = {GPU, HPC, agglomeration, coarse-level solver, multigrid, parallel computing, preconditioning},\n"
 25:                                "  year      = {2016}\n"
 26:                                "}\n";

 28: /*
 29:  default setup mode

 31:  [1a] scatter to (FORWARD)
 32:  x(comm) -> xtmp(comm)
 33:  [1b] local copy (to) ranks with color = 0
 34:  xred(subcomm) <- xtmp

 36:  [2] solve on sub KSP to obtain yred(subcomm)

 38:  [3a] local copy (from) ranks with color = 0
 39:  yred(subcomm) --> xtmp
 40:  [2b] scatter from (REVERSE)
 41:  xtmp(comm) -> y(comm)
 42: */

 44: /*
 45:   Collective[comm_f]
 46:   Notes
 47:    * Using comm_f = MPI_COMM_NULL will result in an error
 48:    * Using comm_c = MPI_COMM_NULL is valid. If all instances of comm_c are NULL the subcomm is not valid.
 49:    * If any non NULL comm_c communicator cannot map any of its ranks to comm_f, the subcomm is not valid.
 50: */
 51: static PetscErrorCode PCTelescopeTestValidSubcomm(MPI_Comm comm_f, MPI_Comm comm_c, PetscBool *isvalid)
 52: {
 53:   PetscInt     valid = 1;
 54:   MPI_Group    group_f, group_c;
 55:   PetscMPIInt  count, k, size_f = 0, size_c = 0, size_c_sum = 0;
 56:   PetscMPIInt *ranks_f, *ranks_c;

 58:   PetscFunctionBegin;
 59:   PetscCheck(comm_f != MPI_COMM_NULL, PETSC_COMM_SELF, PETSC_ERR_SUP, "comm_f cannot be MPI_COMM_NULL");

 61:   PetscCallMPI(MPI_Comm_group(comm_f, &group_f));
 62:   if (comm_c != MPI_COMM_NULL) PetscCallMPI(MPI_Comm_group(comm_c, &group_c));

 64:   PetscCallMPI(MPI_Comm_size(comm_f, &size_f));
 65:   if (comm_c != MPI_COMM_NULL) PetscCallMPI(MPI_Comm_size(comm_c, &size_c));

 67:   /* check not all comm_c's are NULL */
 68:   size_c_sum = size_c;
 69:   PetscCallMPI(MPI_Allreduce(MPI_IN_PLACE, &size_c_sum, 1, MPI_INT, MPI_SUM, comm_f));
 70:   if (size_c_sum == 0) valid = 0;

 72:   /* check we can map at least 1 rank in comm_c to comm_f */
 73:   PetscCall(PetscMalloc1(size_f, &ranks_f));
 74:   PetscCall(PetscMalloc1(size_c, &ranks_c));
 75:   for (k = 0; k < size_f; k++) ranks_f[k] = MPI_UNDEFINED;
 76:   for (k = 0; k < size_c; k++) ranks_c[k] = k;

 78:   /*
 79:    MPI_Group_translate_ranks() returns a non-zero exit code if any rank cannot be translated.
 80:    I do not want the code to terminate immediately if this occurs, rather I want to throw
 81:    the error later (during PCSetUp_Telescope()) via SETERRQ() with a message indicating
 82:    that comm_c is not a valid sub-communicator.
 83:    Hence I purposefully do not call PetscCall() after MPI_Group_translate_ranks().
 84:   */
 85:   count = 0;
 86:   if (comm_c != MPI_COMM_NULL) {
 87:     (void)MPI_Group_translate_ranks(group_c, size_c, ranks_c, group_f, ranks_f);
 88:     for (k = 0; k < size_f; k++) {
 89:       if (ranks_f[k] == MPI_UNDEFINED) count++;
 90:     }
 91:   }
 92:   if (count == size_f) valid = 0;

 94:   PetscCall(MPIU_Allreduce(MPI_IN_PLACE, &valid, 1, MPIU_INT, MPI_MIN, comm_f));
 95:   if (valid == 1) *isvalid = PETSC_TRUE;
 96:   else *isvalid = PETSC_FALSE;

 98:   PetscCall(PetscFree(ranks_f));
 99:   PetscCall(PetscFree(ranks_c));
100:   PetscCallMPI(MPI_Group_free(&group_f));
101:   if (comm_c != MPI_COMM_NULL) PetscCallMPI(MPI_Group_free(&group_c));
102:   PetscFunctionReturn(PETSC_SUCCESS);
103: }

105: static DM private_PCTelescopeGetSubDM(PC_Telescope sred)
106: {
107:   DM subdm = NULL;

109:   if (!PCTelescope_isActiveRank(sred)) {
110:     subdm = NULL;
111:   } else {
112:     switch (sred->sr_type) {
113:     case TELESCOPE_DEFAULT:
114:       subdm = NULL;
115:       break;
116:     case TELESCOPE_DMDA:
117:       subdm = ((PC_Telescope_DMDACtx *)sred->dm_ctx)->dmrepart;
118:       break;
119:     case TELESCOPE_DMPLEX:
120:       subdm = NULL;
121:       break;
122:     case TELESCOPE_COARSEDM:
123:       if (sred->ksp) PetscCallAbort(PETSC_COMM_SELF, KSPGetDM(sred->ksp, &subdm));
124:       break;
125:     }
126:   }
127:   return subdm;
128: }

130: static PetscErrorCode PCTelescopeSetUp_default(PC pc, PC_Telescope sred)
131: {
132:   PetscInt   m, M, bs, st, ed;
133:   Vec        x, xred, yred, xtmp;
134:   Mat        B;
135:   MPI_Comm   comm, subcomm;
136:   VecScatter scatter;
137:   IS         isin;
138:   VecType    vectype;

140:   PetscFunctionBegin;
141:   PetscCall(PetscInfo(pc, "PCTelescope: setup (default)\n"));
142:   comm    = PetscSubcommParent(sred->psubcomm);
143:   subcomm = PetscSubcommChild(sred->psubcomm);

145:   PetscCall(PCGetOperators(pc, NULL, &B));
146:   PetscCall(MatGetSize(B, &M, NULL));
147:   PetscCall(MatGetBlockSize(B, &bs));
148:   PetscCall(MatCreateVecs(B, &x, NULL));
149:   PetscCall(MatGetVecType(B, &vectype));

151:   xred = NULL;
152:   m    = 0;
153:   if (PCTelescope_isActiveRank(sred)) {
154:     PetscCall(VecCreate(subcomm, &xred));
155:     PetscCall(VecSetSizes(xred, PETSC_DECIDE, M));
156:     PetscCall(VecSetBlockSize(xred, bs));
157:     PetscCall(VecSetType(xred, vectype)); /* Use the preconditioner matrix's vectype by default */
158:     PetscCall(VecSetFromOptions(xred));
159:     PetscCall(VecGetLocalSize(xred, &m));
160:   }

162:   yred = NULL;
163:   if (PCTelescope_isActiveRank(sred)) PetscCall(VecDuplicate(xred, &yred));

165:   PetscCall(VecCreate(comm, &xtmp));
166:   PetscCall(VecSetSizes(xtmp, m, PETSC_DECIDE));
167:   PetscCall(VecSetBlockSize(xtmp, bs));
168:   PetscCall(VecSetType(xtmp, vectype));

170:   if (PCTelescope_isActiveRank(sred)) {
171:     PetscCall(VecGetOwnershipRange(xred, &st, &ed));
172:     PetscCall(ISCreateStride(comm, (ed - st), st, 1, &isin));
173:   } else {
174:     PetscCall(VecGetOwnershipRange(x, &st, &ed));
175:     PetscCall(ISCreateStride(comm, 0, st, 1, &isin));
176:   }
177:   PetscCall(ISSetBlockSize(isin, bs));

179:   PetscCall(VecScatterCreate(x, isin, xtmp, NULL, &scatter));

181:   sred->isin    = isin;
182:   sred->scatter = scatter;
183:   sred->xred    = xred;
184:   sred->yred    = yred;
185:   sred->xtmp    = xtmp;
186:   PetscCall(VecDestroy(&x));
187:   PetscFunctionReturn(PETSC_SUCCESS);
188: }

190: static PetscErrorCode PCTelescopeMatCreate_default(PC pc, PC_Telescope sred, MatReuse reuse, Mat *A)
191: {
192:   MPI_Comm comm, subcomm;
193:   Mat      Bred, B;
194:   PetscInt nr, nc, bs;
195:   IS       isrow, iscol;
196:   Mat      Blocal, *_Blocal;

198:   PetscFunctionBegin;
199:   PetscCall(PetscInfo(pc, "PCTelescope: updating the redundant preconditioned operator (default)\n"));
200:   PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));
201:   subcomm = PetscSubcommChild(sred->psubcomm);
202:   PetscCall(PCGetOperators(pc, NULL, &B));
203:   PetscCall(MatGetSize(B, &nr, &nc));
204:   isrow = sred->isin;
205:   PetscCall(ISCreateStride(PETSC_COMM_SELF, nc, 0, 1, &iscol));
206:   PetscCall(ISSetIdentity(iscol));
207:   PetscCall(MatGetBlockSizes(B, NULL, &bs));
208:   PetscCall(ISSetBlockSize(iscol, bs));
209:   PetscCall(MatSetOption(B, MAT_SUBMAT_SINGLEIS, PETSC_TRUE));
210:   PetscCall(MatCreateSubMatrices(B, 1, &isrow, &iscol, MAT_INITIAL_MATRIX, &_Blocal));
211:   Blocal = *_Blocal;
212:   PetscCall(PetscFree(_Blocal));
213:   Bred = NULL;
214:   if (PCTelescope_isActiveRank(sred)) {
215:     PetscInt mm;

217:     if (reuse != MAT_INITIAL_MATRIX) Bred = *A;

219:     PetscCall(MatGetSize(Blocal, &mm, NULL));
220:     PetscCall(MatCreateMPIMatConcatenateSeqMat(subcomm, Blocal, mm, reuse, &Bred));
221:   }
222:   *A = Bred;
223:   PetscCall(ISDestroy(&iscol));
224:   PetscCall(MatDestroy(&Blocal));
225:   PetscFunctionReturn(PETSC_SUCCESS);
226: }

228: static PetscErrorCode PCTelescopeSubNullSpaceCreate_Telescope(PC pc, PC_Telescope sred, MatNullSpace nullspace, MatNullSpace *sub_nullspace)
229: {
230:   PetscBool  has_const;
231:   const Vec *vecs;
232:   Vec       *sub_vecs = NULL;
233:   PetscInt   i, k, n = 0;
234:   MPI_Comm   subcomm;

236:   PetscFunctionBegin;
237:   subcomm = PetscSubcommChild(sred->psubcomm);
238:   PetscCall(MatNullSpaceGetVecs(nullspace, &has_const, &n, &vecs));

240:   if (PCTelescope_isActiveRank(sred)) {
241:     if (n) PetscCall(VecDuplicateVecs(sred->xred, n, &sub_vecs));
242:   }

244:   /* copy entries */
245:   for (k = 0; k < n; k++) {
246:     const PetscScalar *x_array;
247:     PetscScalar       *LA_sub_vec;
248:     PetscInt           st, ed;

250:     /* pull in vector x->xtmp */
251:     PetscCall(VecScatterBegin(sred->scatter, vecs[k], sred->xtmp, INSERT_VALUES, SCATTER_FORWARD));
252:     PetscCall(VecScatterEnd(sred->scatter, vecs[k], sred->xtmp, INSERT_VALUES, SCATTER_FORWARD));
253:     if (sub_vecs) {
254:       /* copy vector entries into xred */
255:       PetscCall(VecGetArrayRead(sred->xtmp, &x_array));
256:       if (sub_vecs[k]) {
257:         PetscCall(VecGetOwnershipRange(sub_vecs[k], &st, &ed));
258:         PetscCall(VecGetArray(sub_vecs[k], &LA_sub_vec));
259:         for (i = 0; i < ed - st; i++) LA_sub_vec[i] = x_array[i];
260:         PetscCall(VecRestoreArray(sub_vecs[k], &LA_sub_vec));
261:       }
262:       PetscCall(VecRestoreArrayRead(sred->xtmp, &x_array));
263:     }
264:   }

266:   if (PCTelescope_isActiveRank(sred)) {
267:     /* create new (near) nullspace for redundant object */
268:     PetscCall(MatNullSpaceCreate(subcomm, has_const, n, sub_vecs, sub_nullspace));
269:     PetscCall(VecDestroyVecs(n, &sub_vecs));
270:     PetscCheck(!nullspace->remove, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Propagation of custom remove callbacks not supported when propagating (near) nullspaces with PCTelescope");
271:     PetscCheck(!nullspace->rmctx, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Propagation of custom remove callback context not supported when propagating (near) nullspaces with PCTelescope");
272:   }
273:   PetscFunctionReturn(PETSC_SUCCESS);
274: }

276: static PetscErrorCode PCTelescopeMatNullSpaceCreate_default(PC pc, PC_Telescope sred, Mat sub_mat)
277: {
278:   Mat B;

280:   PetscFunctionBegin;
281:   PetscCall(PCGetOperators(pc, NULL, &B));
282:   /* Propagate the nullspace if it exists */
283:   {
284:     MatNullSpace nullspace, sub_nullspace;
285:     PetscCall(MatGetNullSpace(B, &nullspace));
286:     if (nullspace) {
287:       PetscCall(PetscInfo(pc, "PCTelescope: generating nullspace (default)\n"));
288:       PetscCall(PCTelescopeSubNullSpaceCreate_Telescope(pc, sred, nullspace, &sub_nullspace));
289:       if (PCTelescope_isActiveRank(sred)) {
290:         PetscCall(MatSetNullSpace(sub_mat, sub_nullspace));
291:         PetscCall(MatNullSpaceDestroy(&sub_nullspace));
292:       }
293:     }
294:   }
295:   /* Propagate the near nullspace if it exists */
296:   {
297:     MatNullSpace nearnullspace, sub_nearnullspace;
298:     PetscCall(MatGetNearNullSpace(B, &nearnullspace));
299:     if (nearnullspace) {
300:       PetscCall(PetscInfo(pc, "PCTelescope: generating near nullspace (default)\n"));
301:       PetscCall(PCTelescopeSubNullSpaceCreate_Telescope(pc, sred, nearnullspace, &sub_nearnullspace));
302:       if (PCTelescope_isActiveRank(sred)) {
303:         PetscCall(MatSetNearNullSpace(sub_mat, sub_nearnullspace));
304:         PetscCall(MatNullSpaceDestroy(&sub_nearnullspace));
305:       }
306:     }
307:   }
308:   PetscFunctionReturn(PETSC_SUCCESS);
309: }

311: static PetscErrorCode PCView_Telescope(PC pc, PetscViewer viewer)
312: {
313:   PC_Telescope sred = (PC_Telescope)pc->data;
314:   PetscBool    iascii, isstring;
315:   PetscViewer  subviewer;

317:   PetscFunctionBegin;
318:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
319:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));
320:   if (iascii) {
321:     {
322:       MPI_Comm    comm, subcomm;
323:       PetscMPIInt comm_size, subcomm_size;
324:       DM          dm = NULL, subdm = NULL;

326:       PetscCall(PCGetDM(pc, &dm));
327:       subdm = private_PCTelescopeGetSubDM(sred);

329:       if (sred->psubcomm) {
330:         comm    = PetscSubcommParent(sred->psubcomm);
331:         subcomm = PetscSubcommChild(sred->psubcomm);
332:         PetscCallMPI(MPI_Comm_size(comm, &comm_size));
333:         PetscCallMPI(MPI_Comm_size(subcomm, &subcomm_size));

335:         PetscCall(PetscViewerASCIIPushTab(viewer));
336:         PetscCall(PetscViewerASCIIPrintf(viewer, "petsc subcomm: parent comm size reduction factor = %" PetscInt_FMT "\n", sred->redfactor));
337:         PetscCall(PetscViewerASCIIPrintf(viewer, "petsc subcomm: parent_size = %d , subcomm_size = %d\n", (int)comm_size, (int)subcomm_size));
338:         switch (sred->subcommtype) {
339:         case PETSC_SUBCOMM_INTERLACED:
340:           PetscCall(PetscViewerASCIIPrintf(viewer, "petsc subcomm: type = %s\n", PetscSubcommTypes[sred->subcommtype]));
341:           break;
342:         case PETSC_SUBCOMM_CONTIGUOUS:
343:           PetscCall(PetscViewerASCIIPrintf(viewer, "petsc subcomm type = %s\n", PetscSubcommTypes[sred->subcommtype]));
344:           break;
345:         default:
346:           SETERRQ(PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "General subcomm type not supported by PCTelescope");
347:         }
348:         PetscCall(PetscViewerASCIIPopTab(viewer));
349:       } else {
350:         PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));
351:         subcomm = sred->subcomm;
352:         if (!PCTelescope_isActiveRank(sred)) subcomm = PETSC_COMM_SELF;

354:         PetscCall(PetscViewerASCIIPushTab(viewer));
355:         PetscCall(PetscViewerASCIIPrintf(viewer, "subcomm: using user provided sub-communicator\n"));
356:         PetscCall(PetscViewerASCIIPopTab(viewer));
357:       }

359:       PetscCall(PetscViewerGetSubViewer(viewer, subcomm, &subviewer));
360:       if (PCTelescope_isActiveRank(sred)) {
361:         PetscCall(PetscViewerASCIIPushTab(subviewer));

363:         if (dm && sred->ignore_dm) PetscCall(PetscViewerASCIIPrintf(subviewer, "ignoring DM\n"));
364:         if (sred->ignore_kspcomputeoperators) PetscCall(PetscViewerASCIIPrintf(subviewer, "ignoring KSPComputeOperators\n"));
365:         switch (sred->sr_type) {
366:         case TELESCOPE_DEFAULT:
367:           PetscCall(PetscViewerASCIIPrintf(subviewer, "setup type: default\n"));
368:           break;
369:         case TELESCOPE_DMDA:
370:           PetscCall(PetscViewerASCIIPrintf(subviewer, "setup type: DMDA auto-repartitioning\n"));
371:           PetscCall(DMView_DA_Short(subdm, subviewer));
372:           break;
373:         case TELESCOPE_DMPLEX:
374:           PetscCall(PetscViewerASCIIPrintf(subviewer, "setup type: DMPLEX auto-repartitioning\n"));
375:           break;
376:         case TELESCOPE_COARSEDM:
377:           PetscCall(PetscViewerASCIIPrintf(subviewer, "setup type: coarse DM\n"));
378:           break;
379:         }

381:         if (dm) {
382:           PetscObject obj = (PetscObject)dm;
383:           PetscCall(PetscViewerASCIIPrintf(subviewer, "Parent DM object:"));
384:           PetscCall(PetscViewerASCIIUseTabs(subviewer, PETSC_FALSE));
385:           if (obj->type_name) PetscCall(PetscViewerASCIIPrintf(subviewer, " type = %s;", obj->type_name));
386:           if (obj->name) PetscCall(PetscViewerASCIIPrintf(subviewer, " name = %s;", obj->name));
387:           if (obj->prefix) PetscCall(PetscViewerASCIIPrintf(subviewer, " prefix = %s", obj->prefix));
388:           PetscCall(PetscViewerASCIIPrintf(subviewer, "\n"));
389:           PetscCall(PetscViewerASCIIUseTabs(subviewer, PETSC_TRUE));
390:         } else {
391:           PetscCall(PetscViewerASCIIPrintf(subviewer, "Parent DM object: NULL\n"));
392:         }
393:         if (subdm) {
394:           PetscObject obj = (PetscObject)subdm;
395:           PetscCall(PetscViewerASCIIPrintf(subviewer, "Sub DM object:"));
396:           PetscCall(PetscViewerASCIIUseTabs(subviewer, PETSC_FALSE));
397:           if (obj->type_name) PetscCall(PetscViewerASCIIPrintf(subviewer, " type = %s;", obj->type_name));
398:           if (obj->name) PetscCall(PetscViewerASCIIPrintf(subviewer, " name = %s;", obj->name));
399:           if (obj->prefix) PetscCall(PetscViewerASCIIPrintf(subviewer, " prefix = %s", obj->prefix));
400:           PetscCall(PetscViewerASCIIPrintf(subviewer, "\n"));
401:           PetscCall(PetscViewerASCIIUseTabs(subviewer, PETSC_TRUE));
402:         } else {
403:           PetscCall(PetscViewerASCIIPrintf(subviewer, "Sub DM object: NULL\n"));
404:         }

406:         PetscCall(KSPView(sred->ksp, subviewer));
407:         PetscCall(PetscViewerASCIIPopTab(subviewer));
408:       }
409:       PetscCall(PetscViewerRestoreSubViewer(viewer, subcomm, &subviewer));
410:     }
411:   }
412:   PetscFunctionReturn(PETSC_SUCCESS);
413: }

415: static PetscErrorCode PCSetUp_Telescope(PC pc)
416: {
417:   PC_Telescope    sred = (PC_Telescope)pc->data;
418:   MPI_Comm        comm, subcomm = 0;
419:   PCTelescopeType sr_type;

421:   PetscFunctionBegin;
422:   PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));

424:   /* Determine type of setup/update */
425:   if (!pc->setupcalled) {
426:     PetscBool has_dm, same;
427:     DM        dm;

429:     sr_type = TELESCOPE_DEFAULT;
430:     has_dm  = PETSC_FALSE;
431:     PetscCall(PCGetDM(pc, &dm));
432:     if (dm) has_dm = PETSC_TRUE;
433:     if (has_dm) {
434:       /* check for dmda */
435:       PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMDA, &same));
436:       if (same) {
437:         PetscCall(PetscInfo(pc, "PCTelescope: found DMDA\n"));
438:         sr_type = TELESCOPE_DMDA;
439:       }
440:       /* check for dmplex */
441:       PetscCall(PetscObjectTypeCompare((PetscObject)dm, DMPLEX, &same));
442:       if (same) {
443:         PetscCall(PetscInfo(pc, "PCTelescope: found DMPLEX\n"));
444:         sr_type = TELESCOPE_DMPLEX;
445:       }

447:       if (sred->use_coarse_dm) {
448:         PetscCall(PetscInfo(pc, "PCTelescope: using coarse DM\n"));
449:         sr_type = TELESCOPE_COARSEDM;
450:       }

452:       if (sred->ignore_dm) {
453:         PetscCall(PetscInfo(pc, "PCTelescope: ignoring DM\n"));
454:         sr_type = TELESCOPE_DEFAULT;
455:       }
456:     }
457:     sred->sr_type = sr_type;
458:   } else {
459:     sr_type = sred->sr_type;
460:   }

462:   /* set function pointers for repartition setup, matrix creation/update, matrix (near) nullspace, and reset functionality */
463:   switch (sr_type) {
464:   case TELESCOPE_DEFAULT:
465:     sred->pctelescope_setup_type              = PCTelescopeSetUp_default;
466:     sred->pctelescope_matcreate_type          = PCTelescopeMatCreate_default;
467:     sred->pctelescope_matnullspacecreate_type = PCTelescopeMatNullSpaceCreate_default;
468:     sred->pctelescope_reset_type              = NULL;
469:     break;
470:   case TELESCOPE_DMDA:
471:     pc->ops->apply                            = PCApply_Telescope_dmda;
472:     pc->ops->applyrichardson                  = PCApplyRichardson_Telescope_dmda;
473:     sred->pctelescope_setup_type              = PCTelescopeSetUp_dmda;
474:     sred->pctelescope_matcreate_type          = PCTelescopeMatCreate_dmda;
475:     sred->pctelescope_matnullspacecreate_type = PCTelescopeMatNullSpaceCreate_dmda;
476:     sred->pctelescope_reset_type              = PCReset_Telescope_dmda;
477:     break;
478:   case TELESCOPE_DMPLEX:
479:     SETERRQ(comm, PETSC_ERR_SUP, "Support for DMPLEX is currently not available");
480:   case TELESCOPE_COARSEDM:
481:     pc->ops->apply                            = PCApply_Telescope_CoarseDM;
482:     pc->ops->applyrichardson                  = PCApplyRichardson_Telescope_CoarseDM;
483:     sred->pctelescope_setup_type              = PCTelescopeSetUp_CoarseDM;
484:     sred->pctelescope_matcreate_type          = NULL;
485:     sred->pctelescope_matnullspacecreate_type = NULL; /* PCTelescopeMatNullSpaceCreate_CoarseDM; */
486:     sred->pctelescope_reset_type              = PCReset_Telescope_CoarseDM;
487:     break;
488:   default:
489:     SETERRQ(comm, PETSC_ERR_SUP, "Support only provided for: repartitioning an operator; repartitioning a DMDA; or using a coarse DM");
490:   }

492:   /* subcomm definition */
493:   if (!pc->setupcalled) {
494:     if ((sr_type == TELESCOPE_DEFAULT) || (sr_type == TELESCOPE_DMDA)) {
495:       if (!sred->psubcomm) {
496:         PetscCall(PetscSubcommCreate(comm, &sred->psubcomm));
497:         PetscCall(PetscSubcommSetNumber(sred->psubcomm, sred->redfactor));
498:         PetscCall(PetscSubcommSetType(sred->psubcomm, sred->subcommtype));
499:         sred->subcomm = PetscSubcommChild(sred->psubcomm);
500:       }
501:     } else { /* query PC for DM, check communicators */
502:       DM          dm, dm_coarse_partition          = NULL;
503:       MPI_Comm    comm_fine, comm_coarse_partition = MPI_COMM_NULL;
504:       PetscMPIInt csize_fine = 0, csize_coarse_partition = 0, cs[2], csg[2], cnt = 0;
505:       PetscBool   isvalidsubcomm = PETSC_TRUE;

507:       PetscCall(PCGetDM(pc, &dm));
508:       comm_fine = PetscObjectComm((PetscObject)dm);
509:       PetscCall(DMGetCoarseDM(dm, &dm_coarse_partition));
510:       if (dm_coarse_partition) cnt = 1;
511:       PetscCallMPI(MPI_Allreduce(MPI_IN_PLACE, &cnt, 1, MPI_INT, MPI_SUM, comm_fine));
512:       PetscCheck(cnt != 0, comm_fine, PETSC_ERR_SUP, "Zero instances of a coarse DM were found");

514:       PetscCallMPI(MPI_Comm_size(comm_fine, &csize_fine));
515:       if (dm_coarse_partition) {
516:         comm_coarse_partition = PetscObjectComm((PetscObject)dm_coarse_partition);
517:         PetscCallMPI(MPI_Comm_size(comm_coarse_partition, &csize_coarse_partition));
518:       }

520:       cs[0] = csize_fine;
521:       cs[1] = csize_coarse_partition;
522:       PetscCallMPI(MPI_Allreduce(cs, csg, 2, MPI_INT, MPI_MAX, comm_fine));
523:       PetscCheck(csg[0] != csg[1], comm_fine, PETSC_ERR_SUP, "Coarse DM uses the same size communicator as the parent DM attached to the PC");

525:       PetscCall(PCTelescopeTestValidSubcomm(comm_fine, comm_coarse_partition, &isvalidsubcomm));
526:       PetscCheck(isvalidsubcomm, comm_fine, PETSC_ERR_SUP, "Coarse DM communicator is not a sub-communicator of parentDM->comm");
527:       sred->subcomm = comm_coarse_partition;
528:     }
529:   }
530:   subcomm = sred->subcomm;

532:   /* internal KSP */
533:   if (!pc->setupcalled) {
534:     const char *prefix;

536:     if (PCTelescope_isActiveRank(sred)) {
537:       PetscCall(KSPCreate(subcomm, &sred->ksp));
538:       PetscCall(KSPSetNestLevel(sred->ksp, pc->kspnestlevel));
539:       PetscCall(KSPSetErrorIfNotConverged(sred->ksp, pc->erroriffailure));
540:       PetscCall(PetscObjectIncrementTabLevel((PetscObject)sred->ksp, (PetscObject)pc, 1));
541:       PetscCall(KSPSetType(sred->ksp, KSPPREONLY));
542:       PetscCall(PCGetOptionsPrefix(pc, &prefix));
543:       PetscCall(KSPSetOptionsPrefix(sred->ksp, prefix));
544:       PetscCall(KSPAppendOptionsPrefix(sred->ksp, "telescope_"));
545:     }
546:   }

548:   /* setup */
549:   if (!pc->setupcalled && sred->pctelescope_setup_type) PetscCall(sred->pctelescope_setup_type(pc, sred));
550:   /* update */
551:   if (!pc->setupcalled) {
552:     if (sred->pctelescope_matcreate_type) PetscCall(sred->pctelescope_matcreate_type(pc, sred, MAT_INITIAL_MATRIX, &sred->Bred));
553:     if (sred->pctelescope_matnullspacecreate_type) PetscCall(sred->pctelescope_matnullspacecreate_type(pc, sred, sred->Bred));
554:   } else {
555:     if (sred->pctelescope_matcreate_type) PetscCall(sred->pctelescope_matcreate_type(pc, sred, MAT_REUSE_MATRIX, &sred->Bred));
556:   }

558:   /* common - no construction */
559:   if (PCTelescope_isActiveRank(sred)) {
560:     PetscCall(KSPSetOperators(sred->ksp, sred->Bred, sred->Bred));
561:     if (pc->setfromoptionscalled && !pc->setupcalled) PetscCall(KSPSetFromOptions(sred->ksp));
562:   }
563:   PetscFunctionReturn(PETSC_SUCCESS);
564: }

566: static PetscErrorCode PCApply_Telescope(PC pc, Vec x, Vec y)
567: {
568:   PC_Telescope       sred = (PC_Telescope)pc->data;
569:   Vec                xtmp, xred, yred;
570:   PetscInt           i, st, ed;
571:   VecScatter         scatter;
572:   PetscScalar       *array;
573:   const PetscScalar *x_array;

575:   PetscFunctionBegin;
576:   PetscCall(PetscCitationsRegister(citation, &cited));

578:   xtmp    = sred->xtmp;
579:   scatter = sred->scatter;
580:   xred    = sred->xred;
581:   yred    = sred->yred;

583:   /* pull in vector x->xtmp */
584:   PetscCall(VecScatterBegin(scatter, x, xtmp, INSERT_VALUES, SCATTER_FORWARD));
585:   PetscCall(VecScatterEnd(scatter, x, xtmp, INSERT_VALUES, SCATTER_FORWARD));

587:   /* copy vector entries into xred */
588:   PetscCall(VecGetArrayRead(xtmp, &x_array));
589:   if (xred) {
590:     PetscScalar *LA_xred;
591:     PetscCall(VecGetOwnershipRange(xred, &st, &ed));
592:     PetscCall(VecGetArray(xred, &LA_xred));
593:     for (i = 0; i < ed - st; i++) LA_xred[i] = x_array[i];
594:     PetscCall(VecRestoreArray(xred, &LA_xred));
595:   }
596:   PetscCall(VecRestoreArrayRead(xtmp, &x_array));
597:   /* solve */
598:   if (PCTelescope_isActiveRank(sred)) {
599:     PetscCall(KSPSolve(sred->ksp, xred, yred));
600:     PetscCall(KSPCheckSolve(sred->ksp, pc, yred));
601:   }
602:   /* return vector */
603:   PetscCall(VecGetArray(xtmp, &array));
604:   if (yred) {
605:     const PetscScalar *LA_yred;
606:     PetscCall(VecGetOwnershipRange(yred, &st, &ed));
607:     PetscCall(VecGetArrayRead(yred, &LA_yred));
608:     for (i = 0; i < ed - st; i++) array[i] = LA_yred[i];
609:     PetscCall(VecRestoreArrayRead(yred, &LA_yred));
610:   }
611:   PetscCall(VecRestoreArray(xtmp, &array));
612:   PetscCall(VecScatterBegin(scatter, xtmp, y, INSERT_VALUES, SCATTER_REVERSE));
613:   PetscCall(VecScatterEnd(scatter, xtmp, y, INSERT_VALUES, SCATTER_REVERSE));
614:   PetscFunctionReturn(PETSC_SUCCESS);
615: }

617: static PetscErrorCode PCApplyRichardson_Telescope(PC pc, Vec x, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool zeroguess, PetscInt *outits, PCRichardsonConvergedReason *reason)
618: {
619:   PC_Telescope       sred = (PC_Telescope)pc->data;
620:   Vec                xtmp, yred;
621:   PetscInt           i, st, ed;
622:   VecScatter         scatter;
623:   const PetscScalar *x_array;
624:   PetscBool          default_init_guess_value;

626:   PetscFunctionBegin;
627:   xtmp    = sred->xtmp;
628:   scatter = sred->scatter;
629:   yred    = sred->yred;

631:   PetscCheck(its <= 1, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "PCApplyRichardson_Telescope only supports max_it = 1");
632:   *reason = (PCRichardsonConvergedReason)0;

634:   if (!zeroguess) {
635:     PetscCall(PetscInfo(pc, "PCTelescope: Scattering y for non-zero initial guess\n"));
636:     /* pull in vector y->xtmp */
637:     PetscCall(VecScatterBegin(scatter, y, xtmp, INSERT_VALUES, SCATTER_FORWARD));
638:     PetscCall(VecScatterEnd(scatter, y, xtmp, INSERT_VALUES, SCATTER_FORWARD));

640:     /* copy vector entries into xred */
641:     PetscCall(VecGetArrayRead(xtmp, &x_array));
642:     if (yred) {
643:       PetscScalar *LA_yred;
644:       PetscCall(VecGetOwnershipRange(yred, &st, &ed));
645:       PetscCall(VecGetArray(yred, &LA_yred));
646:       for (i = 0; i < ed - st; i++) LA_yred[i] = x_array[i];
647:       PetscCall(VecRestoreArray(yred, &LA_yred));
648:     }
649:     PetscCall(VecRestoreArrayRead(xtmp, &x_array));
650:   }

652:   if (PCTelescope_isActiveRank(sred)) {
653:     PetscCall(KSPGetInitialGuessNonzero(sred->ksp, &default_init_guess_value));
654:     if (!zeroguess) PetscCall(KSPSetInitialGuessNonzero(sred->ksp, PETSC_TRUE));
655:   }

657:   PetscCall(PCApply_Telescope(pc, x, y));

659:   if (PCTelescope_isActiveRank(sred)) PetscCall(KSPSetInitialGuessNonzero(sred->ksp, default_init_guess_value));

661:   if (!*reason) *reason = PCRICHARDSON_CONVERGED_ITS;
662:   *outits = 1;
663:   PetscFunctionReturn(PETSC_SUCCESS);
664: }

666: static PetscErrorCode PCReset_Telescope(PC pc)
667: {
668:   PC_Telescope sred = (PC_Telescope)pc->data;

670:   PetscFunctionBegin;
671:   PetscCall(ISDestroy(&sred->isin));
672:   PetscCall(VecScatterDestroy(&sred->scatter));
673:   PetscCall(VecDestroy(&sred->xred));
674:   PetscCall(VecDestroy(&sred->yred));
675:   PetscCall(VecDestroy(&sred->xtmp));
676:   PetscCall(MatDestroy(&sred->Bred));
677:   PetscCall(KSPReset(sred->ksp));
678:   if (sred->pctelescope_reset_type) PetscCall(sred->pctelescope_reset_type(pc));
679:   PetscFunctionReturn(PETSC_SUCCESS);
680: }

682: static PetscErrorCode PCDestroy_Telescope(PC pc)
683: {
684:   PC_Telescope sred = (PC_Telescope)pc->data;

686:   PetscFunctionBegin;
687:   PetscCall(PCReset_Telescope(pc));
688:   PetscCall(KSPDestroy(&sred->ksp));
689:   PetscCall(PetscSubcommDestroy(&sred->psubcomm));
690:   PetscCall(PetscFree(sred->dm_ctx));
691:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetKSP_C", NULL));
692:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetSubcommType_C", NULL));
693:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetSubcommType_C", NULL));
694:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetReductionFactor_C", NULL));
695:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetReductionFactor_C", NULL));
696:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetIgnoreDM_C", NULL));
697:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetIgnoreDM_C", NULL));
698:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetIgnoreKSPComputeOperators_C", NULL));
699:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetIgnoreKSPComputeOperators_C", NULL));
700:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetDM_C", NULL));
701:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetUseCoarseDM_C", NULL));
702:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetUseCoarseDM_C", NULL));
703:   PetscCall(PetscFree(pc->data));
704:   PetscFunctionReturn(PETSC_SUCCESS);
705: }

707: static PetscErrorCode PCSetFromOptions_Telescope(PC pc, PetscOptionItems *PetscOptionsObject)
708: {
709:   PC_Telescope     sred = (PC_Telescope)pc->data;
710:   MPI_Comm         comm;
711:   PetscMPIInt      size;
712:   PetscBool        flg;
713:   PetscSubcommType subcommtype;

715:   PetscFunctionBegin;
716:   PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));
717:   PetscCallMPI(MPI_Comm_size(comm, &size));
718:   PetscOptionsHeadBegin(PetscOptionsObject, "Telescope options");
719:   PetscCall(PetscOptionsEnum("-pc_telescope_subcomm_type", "Subcomm type (interlaced or contiguous)", "PCTelescopeSetSubcommType", PetscSubcommTypes, (PetscEnum)sred->subcommtype, (PetscEnum *)&subcommtype, &flg));
720:   if (flg) PetscCall(PCTelescopeSetSubcommType(pc, subcommtype));
721:   PetscCall(PetscOptionsInt("-pc_telescope_reduction_factor", "Factor to reduce comm size by", "PCTelescopeSetReductionFactor", sred->redfactor, &sred->redfactor, NULL));
722:   PetscCheck(sred->redfactor <= size, comm, PETSC_ERR_ARG_WRONG, "-pc_telescope_reduction_factor <= comm size");
723:   PetscCall(PetscOptionsBool("-pc_telescope_ignore_dm", "Ignore any DM attached to the PC", "PCTelescopeSetIgnoreDM", sred->ignore_dm, &sred->ignore_dm, NULL));
724:   PetscCall(PetscOptionsBool("-pc_telescope_ignore_kspcomputeoperators", "Ignore method used to compute A", "PCTelescopeSetIgnoreKSPComputeOperators", sred->ignore_kspcomputeoperators, &sred->ignore_kspcomputeoperators, NULL));
725:   PetscCall(PetscOptionsBool("-pc_telescope_use_coarse_dm", "Define sub-communicator from the coarse DM", "PCTelescopeSetUseCoarseDM", sred->use_coarse_dm, &sred->use_coarse_dm, NULL));
726:   PetscOptionsHeadEnd();
727:   PetscFunctionReturn(PETSC_SUCCESS);
728: }

730: /* PC simplementation specific API's */

732: static PetscErrorCode PCTelescopeGetKSP_Telescope(PC pc, KSP *ksp)
733: {
734:   PC_Telescope red = (PC_Telescope)pc->data;
735:   PetscFunctionBegin;
736:   if (ksp) *ksp = red->ksp;
737:   PetscFunctionReturn(PETSC_SUCCESS);
738: }

740: static PetscErrorCode PCTelescopeGetSubcommType_Telescope(PC pc, PetscSubcommType *subcommtype)
741: {
742:   PC_Telescope red = (PC_Telescope)pc->data;
743:   PetscFunctionBegin;
744:   if (subcommtype) *subcommtype = red->subcommtype;
745:   PetscFunctionReturn(PETSC_SUCCESS);
746: }

748: static PetscErrorCode PCTelescopeSetSubcommType_Telescope(PC pc, PetscSubcommType subcommtype)
749: {
750:   PC_Telescope red = (PC_Telescope)pc->data;

752:   PetscFunctionBegin;
753:   PetscCheck(!pc->setupcalled, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "You cannot change the subcommunicator type for PCTelescope after it has been set up.");
754:   red->subcommtype = subcommtype;
755:   PetscFunctionReturn(PETSC_SUCCESS);
756: }

758: static PetscErrorCode PCTelescopeGetReductionFactor_Telescope(PC pc, PetscInt *fact)
759: {
760:   PC_Telescope red = (PC_Telescope)pc->data;
761:   PetscFunctionBegin;
762:   if (fact) *fact = red->redfactor;
763:   PetscFunctionReturn(PETSC_SUCCESS);
764: }

766: static PetscErrorCode PCTelescopeSetReductionFactor_Telescope(PC pc, PetscInt fact)
767: {
768:   PC_Telescope red = (PC_Telescope)pc->data;
769:   PetscMPIInt  size;

771:   PetscFunctionBegin;
772:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
773:   PetscCheck(fact > 0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Reduction factor of telescoping PC %" PetscInt_FMT " must be positive", fact);
774:   PetscCheck(fact <= size, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Reduction factor of telescoping PC %" PetscInt_FMT " must be <= comm.size", fact);
775:   red->redfactor = fact;
776:   PetscFunctionReturn(PETSC_SUCCESS);
777: }

779: static PetscErrorCode PCTelescopeGetIgnoreDM_Telescope(PC pc, PetscBool *v)
780: {
781:   PC_Telescope red = (PC_Telescope)pc->data;
782:   PetscFunctionBegin;
783:   if (v) *v = red->ignore_dm;
784:   PetscFunctionReturn(PETSC_SUCCESS);
785: }

787: static PetscErrorCode PCTelescopeSetIgnoreDM_Telescope(PC pc, PetscBool v)
788: {
789:   PC_Telescope red = (PC_Telescope)pc->data;
790:   PetscFunctionBegin;
791:   red->ignore_dm = v;
792:   PetscFunctionReturn(PETSC_SUCCESS);
793: }

795: static PetscErrorCode PCTelescopeGetUseCoarseDM_Telescope(PC pc, PetscBool *v)
796: {
797:   PC_Telescope red = (PC_Telescope)pc->data;
798:   PetscFunctionBegin;
799:   if (v) *v = red->use_coarse_dm;
800:   PetscFunctionReturn(PETSC_SUCCESS);
801: }

803: static PetscErrorCode PCTelescopeSetUseCoarseDM_Telescope(PC pc, PetscBool v)
804: {
805:   PC_Telescope red = (PC_Telescope)pc->data;
806:   PetscFunctionBegin;
807:   red->use_coarse_dm = v;
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: static PetscErrorCode PCTelescopeGetIgnoreKSPComputeOperators_Telescope(PC pc, PetscBool *v)
812: {
813:   PC_Telescope red = (PC_Telescope)pc->data;
814:   PetscFunctionBegin;
815:   if (v) *v = red->ignore_kspcomputeoperators;
816:   PetscFunctionReturn(PETSC_SUCCESS);
817: }

819: static PetscErrorCode PCTelescopeSetIgnoreKSPComputeOperators_Telescope(PC pc, PetscBool v)
820: {
821:   PC_Telescope red = (PC_Telescope)pc->data;
822:   PetscFunctionBegin;
823:   red->ignore_kspcomputeoperators = v;
824:   PetscFunctionReturn(PETSC_SUCCESS);
825: }

827: static PetscErrorCode PCTelescopeGetDM_Telescope(PC pc, DM *dm)
828: {
829:   PC_Telescope red = (PC_Telescope)pc->data;
830:   PetscFunctionBegin;
831:   *dm = private_PCTelescopeGetSubDM(red);
832:   PetscFunctionReturn(PETSC_SUCCESS);
833: }

835: /*@
836:   PCTelescopeGetKSP - Gets the `KSP` created by the telescoping `PC`.

838:   Not Collective

840:   Input Parameter:
841: . pc - the preconditioner context

843:   Output Parameter:
844: . subksp - the `KSP` defined on the smaller set of processes

846:   Level: advanced

848: .seealso: [](ch_ksp), `PC`, `KSP`, `PCTELESCOPE`
849: @*/
850: PetscErrorCode PCTelescopeGetKSP(PC pc, KSP *subksp)
851: {
852:   PetscFunctionBegin;
853:   PetscUseMethod(pc, "PCTelescopeGetKSP_C", (PC, KSP *), (pc, subksp));
854:   PetscFunctionReturn(PETSC_SUCCESS);
855: }

857: /*@
858:   PCTelescopeGetReductionFactor - Gets the factor by which the original number of MPI processes has been reduced by that was set by
859:   `PCTelescopeSetReductionFactor()`

861:   Not Collective

863:   Input Parameter:
864: . pc - the preconditioner context

866:   Output Parameter:
867: . fact - the reduction factor

869:   Level: advanced

871: .seealso: [](ch_ksp), `PC`, `PCTELESCOPE`, `PCTelescopeSetReductionFactor()`
872: @*/
873: PetscErrorCode PCTelescopeGetReductionFactor(PC pc, PetscInt *fact)
874: {
875:   PetscFunctionBegin;
876:   PetscUseMethod(pc, "PCTelescopeGetReductionFactor_C", (PC, PetscInt *), (pc, fact));
877:   PetscFunctionReturn(PETSC_SUCCESS);
878: }

880: /*@
881:   PCTelescopeSetReductionFactor - Sets the factor by which the original number of MPI processes will been reduced by.

883:   Not Collective

885:   Input Parameter:
886: . pc - the preconditioner context

888:   Output Parameter:
889: . fact - the reduction factor

891:   Level: advanced

893: .seealso: [](ch_ksp), `PCTELESCOPE`, `PCTelescopeGetReductionFactor()`
894: @*/
895: PetscErrorCode PCTelescopeSetReductionFactor(PC pc, PetscInt fact)
896: {
897:   PetscFunctionBegin;
898:   PetscTryMethod(pc, "PCTelescopeSetReductionFactor_C", (PC, PetscInt), (pc, fact));
899:   PetscFunctionReturn(PETSC_SUCCESS);
900: }

902: /*@
903:   PCTelescopeGetIgnoreDM - Get the flag indicating if any `DM` attached to the `PC` will be used in constructing the `PC` on the
904:   reduced number of MPI processes

906:   Not Collective

908:   Input Parameter:
909: . pc - the preconditioner context

911:   Output Parameter:
912: . v - the flag

914:   Level: advanced

916: .seealso: [](ch_ksp), `DM`, `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`
917: @*/
918: PetscErrorCode PCTelescopeGetIgnoreDM(PC pc, PetscBool *v)
919: {
920:   PetscFunctionBegin;
921:   PetscUseMethod(pc, "PCTelescopeGetIgnoreDM_C", (PC, PetscBool *), (pc, v));
922:   PetscFunctionReturn(PETSC_SUCCESS);
923: }

925: /*@
926:   PCTelescopeSetIgnoreDM - Set a flag to ignore any `DM` attached to the `PC` when constructing the `PC` on the
927:   reduced number of MPI processes

929:   Not Collective

931:   Input Parameter:
932: . pc - the preconditioner context

934:   Output Parameter:
935: . v - Use `PETSC_TRUE` to ignore any `DM`

937:   Level: advanced

939: .seealso: [](ch_ksp), `DM`, `PCTELESCOPE`, `PCTelescopeGetIgnoreDM()`
940: @*/
941: PetscErrorCode PCTelescopeSetIgnoreDM(PC pc, PetscBool v)
942: {
943:   PetscFunctionBegin;
944:   PetscTryMethod(pc, "PCTelescopeSetIgnoreDM_C", (PC, PetscBool), (pc, v));
945:   PetscFunctionReturn(PETSC_SUCCESS);
946: }

948: /*@
949:   PCTelescopeGetUseCoarseDM - Get the flag indicating if the coarse `DM` attached to `DM` associated with the `PC` will be used in constructing
950:   the `PC` on the reduced number of MPI processes

952:   Not Collective

954:   Input Parameter:
955: . pc - the preconditioner context

957:   Output Parameter:
958: . v - the flag

960:   Level: advanced

962: .seealso: [](ch_ksp), `DM`, `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`, `PCTelescopeSetUseCoarseDM()`
963: @*/
964: PetscErrorCode PCTelescopeGetUseCoarseDM(PC pc, PetscBool *v)
965: {
966:   PetscFunctionBegin;
967:   PetscUseMethod(pc, "PCTelescopeGetUseCoarseDM_C", (PC, PetscBool *), (pc, v));
968:   PetscFunctionReturn(PETSC_SUCCESS);
969: }

971: /*@
972:   PCTelescopeSetUseCoarseDM - Set a flag to query the `DM` attached to the `PC` if it also has a coarse `DM` and utilize that `DM`
973:   in constructing the `PC` on the reduced number of MPI processes

975:   Not Collective

977:   Input Parameter:
978: . pc - the preconditioner context

980:   Output Parameter:
981: . v - Use `PETSC_FALSE` to ignore any coarse `DM`

983:   Level: advanced

985:   Notes:
986:   When you have specified to use a coarse `DM`, the communicator used to create the sub-`KSP` within `PCTELESCOPE`
987:   will be that of the coarse `DM`. Hence the flags `-pc_telescope_reduction_factor` and
988:   `-pc_telescope_subcomm_type` will no longer have any meaning.

990:   It is required that the communicator associated with the parent (fine) and the coarse `DM` are of different sizes.
991:   An error will occur of the size of the communicator associated with the coarse `DM`
992:   is the same as that of the parent `DM`.
993:   Furthermore, it is required that the communicator on the coarse `DM` is a sub-communicator of the parent.
994:   This will be checked at the time the preconditioner is setup and an error will occur if
995:   the coarse `DM` does not define a sub-communicator of that used by the parent `DM`.

997:   The particular Telescope setup invoked when using a coarse `DM` is agnostic with respect to the type of
998:   the `DM` used (e.g. it supports `DMSHELL`, `DMPLEX`, etc).

1000:   Support is currently only provided for the case when you are using `KSPSetComputeOperators()`

1002:   The user is required to compose a function with the parent `DM` to facilitate the transfer of fields (`Vec`)
1003:   between the different decompositions defined by the fine and coarse `DM`s.
1004:   In the user code, this is achieved via
1005: .vb
1006:    {
1007:      DM dm_fine;
1008:      PetscObjectCompose((PetscObject)dm_fine,"PCTelescopeFieldScatter",your_field_scatter_method);
1009:    }
1010: .ve
1011:   The signature of the user provided field scatter method is
1012: .vb
1013:    PetscErrorCode your_field_scatter_method(DM dm_fine,Vec x_fine,ScatterMode mode,DM dm_coarse,Vec x_coarse);
1014: .ve
1015:   The user must provide support for both mode `SCATTER_FORWARD` and mode `SCATTER_REVERSE`.
1016:   `SCATTER_FORWARD` implies the direction of transfer is from the parent (fine) `DM` to the coarse `DM`.

1018:   Optionally, the user may also compose a function with the parent `DM` to facilitate the transfer
1019:   of state variables between the fine and coarse `DM`s.
1020:   In the context of a finite element discretization, an example state variable might be
1021:   values associated with quadrature points within each element.
1022:   A user provided state scatter method is composed via
1023: .vb
1024:    {
1025:      DM dm_fine;
1026:      PetscObjectCompose((PetscObject)dm_fine,"PCTelescopeStateScatter",your_state_scatter_method);
1027:    }
1028: .ve
1029:   The signature of the user provided state scatter method is
1030: .vb
1031:    PetscErrorCode your_state_scatter_method(DM dm_fine,ScatterMode mode,DM dm_coarse);
1032: .ve
1033:   `SCATTER_FORWARD` implies the direction of transfer is from the fine `DM` to the coarse `DM`.
1034:   The user is only required to support mode = `SCATTER_FORWARD`.
1035:   No assumption is made about the data type of the state variables.
1036:   These must be managed by the user and must be accessible from the `DM`.

1038:   Care must be taken in defining the user context passed to `KSPSetComputeOperators()` which is to be
1039:   associated with the sub-`KSP` residing within `PCTELESCOPE`.
1040:   In general, `PCTELESCOPE` assumes that the context on the fine and coarse `DM` used with
1041:   `KSPSetComputeOperators()` should be "similar" in type or origin.
1042:   Specifically the following rules are used to infer what context on the sub-`KSP` should be.

1044:   First the contexts from the `KSP` and the fine and coarse `DM`s are retrieved.
1045:   Note that the special case of a `DMSHELL` context is queried.

1047: .vb
1048:    DMKSPGetComputeOperators(dm_fine,&dmfine_kspfunc,&dmfine_kspctx);
1049:    DMGetApplicationContext(dm_fine,&dmfine_appctx);
1050:    DMShellGetContext(dm_fine,&dmfine_shellctx);

1052:    DMGetApplicationContext(dm_coarse,&dmcoarse_appctx);
1053:    DMShellGetContext(dm_coarse,&dmcoarse_shellctx);
1054: .ve

1056:   The following rules are then enforced\:

1058:   1. If `dmfine_kspctx` = `NULL`, then we provide a `NULL` pointer as the context for the sub-`KSP`\:
1059:   `KSPSetComputeOperators`(`sub_ksp`,`dmfine_kspfunc`,`NULL`);

1061:   2. If `dmfine_kspctx` != `NULL` and `dmfine_kspctx` == `dmfine_appctx`,

1063:   check that `dmcoarse_appctx` is also non-`NULL`. If this is true, then\:
1064:   `KSPSetComputeOperators`(`sub_ksp`,`dmfine_kspfunc`,`dmcoarse_appctx`);

1066:   3. If `dmfine_kspctx` != `NULL` and `dmfine_kspctx` == `dmfine_shellctx`,

1068:   check that `dmcoarse_shellctx` is also non-`NULL`. If this is true, then\:
1069:   `KSPSetComputeOperators`(`sub_ksp`,`dmfine_kspfunc`,`dmcoarse_shellctx`);

1071:   If neither of the above three tests passed, then `PCTELESCOPE` cannot safely determine what
1072:   context should be provided to `KSPSetComputeOperators()` for use with the sub-`KSP`.
1073:   In this case, an additional mechanism is provided via a composed function which will return
1074:   the actual context to be used. To use this feature you must compose the "getter" function
1075:   with the coarse `DM`, e.g.
1076: .vb
1077:    {
1078:      DM dm_coarse;
1079:      PetscObjectCompose((PetscObject)dm_coarse,"PCTelescopeGetCoarseDMKSPContext",your_coarse_context_getter);
1080:    }
1081: .ve
1082:   The signature of the user provided method is
1083: .vb
1084:    PetscErrorCode your_coarse_context_getter(DM dm_coarse,void **your_kspcontext);
1085: .ve

1087: .seealso: [](ch_ksp), `DM`, `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`
1088: @*/
1089: PetscErrorCode PCTelescopeSetUseCoarseDM(PC pc, PetscBool v)
1090: {
1091:   PetscFunctionBegin;
1092:   PetscTryMethod(pc, "PCTelescopeSetUseCoarseDM_C", (PC, PetscBool), (pc, v));
1093:   PetscFunctionReturn(PETSC_SUCCESS);
1094: }

1096: /*@
1097:   PCTelescopeGetIgnoreKSPComputeOperators - Get the flag indicating if `KSPComputeOperators()` will be used to construct
1098:   the matrix on the reduced number of MPI processes

1100:   Not Collective

1102:   Input Parameter:
1103: . pc - the preconditioner context

1105:   Output Parameter:
1106: . v - the flag

1108:   Level: advanced

1110: .seealso: [](ch_ksp), `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`, `PCTelescopeSetUseCoarseDM()`, `PCTelescopeSetIgnoreKSPComputeOperators()`
1111: @*/
1112: PetscErrorCode PCTelescopeGetIgnoreKSPComputeOperators(PC pc, PetscBool *v)
1113: {
1114:   PetscFunctionBegin;
1115:   PetscUseMethod(pc, "PCTelescopeGetIgnoreKSPComputeOperators_C", (PC, PetscBool *), (pc, v));
1116:   PetscFunctionReturn(PETSC_SUCCESS);
1117: }

1119: /*@
1120:   PCTelescopeSetIgnoreKSPComputeOperators - Set a flag to have `PCTELESCOPE` ignore the function provided to `KSPComputeOperators()` in
1121:   constructint the matrix on the reduced number of MPI processes

1123:   Not Collective

1125:   Input Parameter:
1126: . pc - the preconditioner context

1128:   Output Parameter:
1129: . v - Use `PETSC_TRUE` to ignore the function (if defined) set via `KSPSetComputeOperators()` on `pc`

1131:   Level: advanced

1133: .seealso: [](ch_ksp), `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`, `PCTelescopeSetUseCoarseDM()`, `PCTelescopeGetIgnoreKSPComputeOperators()`
1134: @*/
1135: PetscErrorCode PCTelescopeSetIgnoreKSPComputeOperators(PC pc, PetscBool v)
1136: {
1137:   PetscFunctionBegin;
1138:   PetscTryMethod(pc, "PCTelescopeSetIgnoreKSPComputeOperators_C", (PC, PetscBool), (pc, v));
1139:   PetscFunctionReturn(PETSC_SUCCESS);
1140: }

1142: /*@
1143:   PCTelescopeGetDM - Get the re-partitioned `DM` attached to the sub-`KSP`.

1145:   Not Collective

1147:   Input Parameter:
1148: . pc - the preconditioner context

1150:   Output Parameter:
1151: . subdm - The re-partitioned `DM`

1153:   Level: advanced

1155: .seealso: [](ch_ksp), `DM`, `PCTELESCOPE`, `PCTelescopeSetIgnoreDM()`, `PCTelescopeSetUseCoarseDM()`, `PCTelescopeGetIgnoreKSPComputeOperators()`
1156: @*/
1157: PetscErrorCode PCTelescopeGetDM(PC pc, DM *subdm)
1158: {
1159:   PetscFunctionBegin;
1160:   PetscUseMethod(pc, "PCTelescopeGetDM_C", (PC, DM *), (pc, subdm));
1161:   PetscFunctionReturn(PETSC_SUCCESS);
1162: }

1164: /*@
1165:   PCTelescopeSetSubcommType - set subcommunicator type (interlaced or contiguous)

1167:   Logically Collective

1169:   Input Parameters:
1170: + pc          - the preconditioner context
1171: - subcommtype - the subcommunicator type (see `PetscSubcommType`)

1173:   Level: advanced

1175: .seealso: [](ch_ksp), `PetscSubcommType`, `PetscSubcomm`, `PCTELESCOPE`, `PCTelescopeGetSubcommType()`
1176: @*/
1177: PetscErrorCode PCTelescopeSetSubcommType(PC pc, PetscSubcommType subcommtype)
1178: {
1179:   PetscFunctionBegin;
1180:   PetscTryMethod(pc, "PCTelescopeSetSubcommType_C", (PC, PetscSubcommType), (pc, subcommtype));
1181:   PetscFunctionReturn(PETSC_SUCCESS);
1182: }

1184: /*@
1185:   PCTelescopeGetSubcommType - Get the subcommunicator type (interlaced or contiguous) set with `PCTelescopeSetSubcommType()`

1187:   Not Collective

1189:   Input Parameter:
1190: . pc - the preconditioner context

1192:   Output Parameter:
1193: . subcommtype - the subcommunicator type (see `PetscSubcommType`)

1195:   Level: advanced

1197: .seealso: [](ch_ksp), `PetscSubcomm`, `PetscSubcommType`, `PCTELESCOPE`, `PCTelescopeSetSubcommType()`
1198: @*/
1199: PetscErrorCode PCTelescopeGetSubcommType(PC pc, PetscSubcommType *subcommtype)
1200: {
1201:   PetscFunctionBegin;
1202:   PetscUseMethod(pc, "PCTelescopeGetSubcommType_C", (PC, PetscSubcommType *), (pc, subcommtype));
1203:   PetscFunctionReturn(PETSC_SUCCESS);
1204: }

1206: /*MC
1207:    PCTELESCOPE - Runs a `KSP` solver on a sub-communicator {cite}`maysananruppknepleysmith2016`. MPI processes not in the sub-communicator are idle during the solve.

1209:    Options Database Keys:
1210: +  -pc_telescope_reduction_factor <r> - factor to reduce the communicator size by. e.g. with 64 MPI ranks and r=4, the new sub-communicator will have 64/4 = 16 ranks.
1211: .  -pc_telescope_ignore_dm  - flag to indicate whether an attached `DM` should be ignored in constructing the new `PC`
1212: .  -pc_telescope_subcomm_type <interlaced,contiguous> - defines the selection of MPI processes on the sub-communicator. see `PetscSubcomm` for more information.
1213: .  -pc_telescope_ignore_kspcomputeoperators - flag to indicate whether `KSPSetComputeOperators()` should be used on the sub-`KSP`.
1214: -  -pc_telescope_use_coarse_dm - flag to indicate whether the coarse `DM` should be used to define the sub-communicator.

1216:    Level: advanced

1218:    Notes:
1219:    Assuming that the parent preconditioner `PC` is defined on a communicator c, this implementation
1220:    creates a child sub-communicator (c') containing fewer MPI processes than the original parent preconditioner `PC`.
1221:    The preconditioner is deemed telescopic as it only calls `KSPSolve()` on a single
1222:    sub-communicator, in contrast with `PCREDUNDANT` which calls `KSPSolve()` on N sub-communicators.
1223:    This means there will be MPI processes which will be idle during the application of this preconditioner.
1224:    Additionally, in comparison with `PCREDUNDANT`, `PCTELESCOPE` can utilize an attached `DM` to construct `DM` dependent preconditioner, such as `PCMG`

1226:    The default type of the sub `KSP` (the `KSP` defined on c') is `KSPPREONLY`.

1228:    There are three setup mechanisms for `PCTELESCOPE`. Features support by each type are described below.
1229:    In the following, we will refer to the operators B and B', these are the Bmat provided to the `KSP` on the
1230:    communicators c and c' respectively.

1232:    [1] Default setup
1233:    The sub-communicator c' is created via `PetscSubcommCreate()`.
1234:    Explicitly defined nullspace and near nullspace vectors will be propagated from B to B'.
1235:    Currently there is no support define nullspaces via a user supplied method (e.g. as passed to `MatNullSpaceSetFunction()`).
1236:    No support is provided for `KSPSetComputeOperators()`.
1237:    Currently there is no support for the flag `-pc_use_amat`.

1239:    [2] `DM` aware setup
1240:    If a `DM` is attached to the `PC`, it is re-partitioned on the sub-communicator c'.
1241:    c' is created via `PetscSubcommCreate()`.
1242:    Both the Bmat operator and the right hand side vector are permuted into the new DOF ordering defined by the re-partitioned `DM`.
1243:    Currently only support for re-partitioning a `DMDA` is provided.
1244:    Any explicitly defined nullspace or near nullspace vectors attached to the original Bmat operator (B) are extracted, re-partitioned and set on the re-partitioned Bmat operator (B').
1245:    Currently there is no support define nullspaces via a user supplied method (e.g. as passed to `MatNullSpaceSetFunction()`).
1246:    Support is provided for `KSPSetComputeOperators()`. The user provided function and context is propagated to the sub `KSP`.
1247:    This is fragile since the user must ensure that their user context is valid for use on c'.
1248:    Currently there is no support for the flag `-pc_use_amat`.

1250:    [3] Coarse `DM` setup
1251:    If a `DM` (dmfine) is attached to the `PC`, dmfine is queried for a "coarse" `DM` (call this dmcoarse) via `DMGetCoarseDM()`.
1252:    `PCTELESCOPE` will interpret the coarse `DM` as being defined on a sub-communicator of c.
1253:    The communicator associated with dmcoarse will define the c' to be used within `PCTELESCOPE`.
1254:    `PCTELESCOPE` will check that c' is in fact a sub-communicator of c. If it is not, an error will be reported.
1255:    The intention of this setup type is that `PCTELESCOPE` will use an existing (e.g. user defined) communicator hierarchy, say as would be
1256:    available with using multi-grid on unstructured meshes.
1257:    This setup will not use the command line options `-pc_telescope_reduction_factor` or `-pc_telescope_subcomm_type`.
1258:    Any explicitly defined nullspace or near nullspace vectors attached to the original Bmat operator (B) are extracted, scattered into the correct ordering consistent with dmcoarse and set on B'.
1259:    Currently there is no support define nullspaces via a user supplied method (e.g. as passed to `MatNullSpaceSetFunction()`).
1260:    There is no general method to permute field orderings, hence only `KSPSetComputeOperators()` is supported.
1261:    The user must use `PetscObjectComposeFunction()` with dmfine to define the method to scatter fields from dmfine to dmcoarse.
1262:    Propagation of the user context for `KSPSetComputeOperators()` on the sub `KSP` is attempted by querying the `DM` contexts associated with dmfine and dmcoarse. Alternatively, the user may use `PetscObjectComposeFunction()` with dmcoarse to define a method which will return the appropriate user context for `KSPSetComputeOperators()`.
1263:    Currently there is no support for the flag `-pc_use_amat`.
1264:    This setup can be invoked by the option `-pc_telescope_use_coarse_dm` or by calling `PCTelescopeSetUseCoarseDM`(pc,`PETSC_TRUE`);
1265:    Further information about the user-provided methods required by this setup type are described here `PCTelescopeSetUseCoarseDM()`.

1267:    Developer Notes:
1268:    During `PCSetup()`, the B operator is scattered onto c'.
1269:    Within `PCApply()`, the RHS vector (x) is scattered into a redundant vector, xred (defined on c').
1270:    Then, `KSPSolve()` is executed on the c' communicator.

1272:    The communicator used within the telescoping preconditioner is defined by a `PetscSubcomm` using the INTERLACED
1273:    creation routine by default (this can be changed with `-pc_telescope_subcomm_type`). We run the sub `KSP` on only
1274:    the ranks within the communicator which have a color equal to zero.

1276:    The telescoping preconditioner is aware of nullspaces and near nullspaces which are attached to the B operator.
1277:    In the case where B has a (near) nullspace attached, the (near) nullspace vectors are extracted from B and mapped into
1278:    a new (near) nullspace, defined on the sub-communicator, which is attached to B' (the B operator which was scattered to c')

1280:    The telescoping preconditioner can re-partition an attached `DM` if it is a `DMDA` (2D or 3D -
1281:    support for 1D `DMDA`s is not provided). If a `DMDA` is found, a topologically equivalent `DMDA` is created on c'
1282:    and this new `DM` is attached the sub `KSP`. The design of telescope is such that it should be possible to extend support
1283:    for re-partitioning other to `DM`'s (e.g. `DMPLEX`). The user can supply a flag to ignore attached DMs.
1284:    Alternatively, user-provided re-partitioned `DM`s can be used via `-pc_telescope_use_coarse_dm`.

1286:    With the default setup mode, B' is defined by fusing rows (in order) associated with MPI processes common to c and c'.

1288:    When a `DMDA` is attached to the parent preconditioner, B' is defined by: (i) performing a symmetric permutation of B
1289:    into the ordering defined by the `DMDA` on c', (ii) extracting the local chunks via `MatCreateSubMatrices()`, (iii) fusing the
1290:    locally (sequential) matrices defined on the ranks common to c and c' into B' using `MatCreateMPIMatConcatenateSeqMat()`

1292:    Limitations/improvements include the following.
1293:    `VecPlaceArray()` could be used within `PCApply()` to improve efficiency and reduce memory usage.
1294:    A unified mechanism to query for user contexts as required by `KSPSetComputeOperators()` and `MatNullSpaceSetFunction()`.

1296:    The symmetric permutation used when a `DMDA` is encountered is performed via explicitly assembling a permutation matrix P,
1297:    and performing P^T.A.P. Possibly it might be more efficient to use `MatPermute()`. We opted to use P^T.A.P as it appears
1298:    `VecPermute()` does not support the use case required here. By computing P, one can permute both the operator and RHS in a
1299:    consistent manner.

1301:    Mapping of vectors (default setup mode) is performed in the following way.
1302:    Suppose the parent communicator size was 4, and we set a reduction factor of 2; this would give a comm size on c' of 2.
1303:    Using the interlaced creation routine, the ranks in c with color = 0 will be rank 0 and 2.
1304:    We perform the scatter to the sub-communicator in the following way.
1305:    [1] Given a vector x defined on communicator c

1307: .vb
1308:    rank(c)  local values of x
1309:    ------- ----------------------------------------
1310:         0   [  0.0,  1.0,  2.0,  3.0,  4.0,  5.0 ]
1311:         1   [  6.0,  7.0,  8.0,  9.0, 10.0, 11.0 ]
1312:         2   [ 12.0, 13.0, 14.0, 15.0, 16.0, 17.0 ]
1313:         3   [ 18.0, 19.0, 20.0, 21.0, 22.0, 23.0 ]
1314: .ve

1316:    scatter into xtmp defined also on comm c, so that we have the following values

1318: .vb
1319:    rank(c)  local values of xtmp
1320:    ------- ----------------------------------------------------------------------------
1321:         0   [  0.0,  1.0,  2.0,  3.0,  4.0,  5.0,  6.0,  7.0,  8.0,  9.0, 10.0, 11.0 ]
1322:         1   [ ]
1323:         2   [ 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0 ]
1324:         3   [ ]
1325: .ve

1327:    The entries on rank 1 and 3 (ranks which do not have a color = 0 in c') have no values

1329:    [2] Copy the values from ranks 0, 2 (indices with respect to comm c) into the vector xred which is defined on communicator c'.
1330:    Ranks 0 and 2 are the only ranks in the subcomm which have a color = 0.

1332: .vb
1333:    rank(c')  local values of xred
1334:    -------- ----------------------------------------------------------------------------
1335:          0   [  0.0,  1.0,  2.0,  3.0,  4.0,  5.0,  6.0,  7.0,  8.0,  9.0, 10.0, 11.0 ]
1336:          1   [ 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0 ]
1337: .ve

1339:   Contributed by:
1340:   Dave May

1342: .seealso: [](ch_ksp), `PCTelescopeGetKSP()`, `PCTelescopeGetDM()`, `PCTelescopeGetReductionFactor()`, `PCTelescopeSetReductionFactor()`, `PCTelescopeGetIgnoreDM()`, `PCTelescopeSetIgnoreDM()`, `PCREDUNDANT`
1343: M*/
1344: PETSC_EXTERN PetscErrorCode PCCreate_Telescope(PC pc)
1345: {
1346:   struct _PC_Telescope *sred;

1348:   PetscFunctionBegin;
1349:   PetscCall(PetscNew(&sred));
1350:   sred->psubcomm                   = NULL;
1351:   sred->subcommtype                = PETSC_SUBCOMM_INTERLACED;
1352:   sred->subcomm                    = MPI_COMM_NULL;
1353:   sred->redfactor                  = 1;
1354:   sred->ignore_dm                  = PETSC_FALSE;
1355:   sred->ignore_kspcomputeoperators = PETSC_FALSE;
1356:   sred->use_coarse_dm              = PETSC_FALSE;
1357:   pc->data                         = (void *)sred;

1359:   pc->ops->apply           = PCApply_Telescope;
1360:   pc->ops->applytranspose  = NULL;
1361:   pc->ops->applyrichardson = PCApplyRichardson_Telescope;
1362:   pc->ops->setup           = PCSetUp_Telescope;
1363:   pc->ops->destroy         = PCDestroy_Telescope;
1364:   pc->ops->reset           = PCReset_Telescope;
1365:   pc->ops->setfromoptions  = PCSetFromOptions_Telescope;
1366:   pc->ops->view            = PCView_Telescope;

1368:   sred->pctelescope_setup_type              = PCTelescopeSetUp_default;
1369:   sred->pctelescope_matcreate_type          = PCTelescopeMatCreate_default;
1370:   sred->pctelescope_matnullspacecreate_type = PCTelescopeMatNullSpaceCreate_default;
1371:   sred->pctelescope_reset_type              = NULL;

1373:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetKSP_C", PCTelescopeGetKSP_Telescope));
1374:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetSubcommType_C", PCTelescopeGetSubcommType_Telescope));
1375:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetSubcommType_C", PCTelescopeSetSubcommType_Telescope));
1376:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetReductionFactor_C", PCTelescopeGetReductionFactor_Telescope));
1377:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetReductionFactor_C", PCTelescopeSetReductionFactor_Telescope));
1378:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetIgnoreDM_C", PCTelescopeGetIgnoreDM_Telescope));
1379:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetIgnoreDM_C", PCTelescopeSetIgnoreDM_Telescope));
1380:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetIgnoreKSPComputeOperators_C", PCTelescopeGetIgnoreKSPComputeOperators_Telescope));
1381:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetIgnoreKSPComputeOperators_C", PCTelescopeSetIgnoreKSPComputeOperators_Telescope));
1382:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetDM_C", PCTelescopeGetDM_Telescope));
1383:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeGetUseCoarseDM_C", PCTelescopeGetUseCoarseDM_Telescope));
1384:   PetscCall(PetscObjectComposeFunction((PetscObject)pc, "PCTelescopeSetUseCoarseDM_C", PCTelescopeSetUseCoarseDM_Telescope));
1385:   PetscFunctionReturn(PETSC_SUCCESS);
1386: }