PetscFEIntegrateBdJacobian#
Produce the boundary element Jacobian for a chunk of elements by quadrature integration
Synopsis#
#include "petscfe.h"
PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
Not Collective
Input Parameters#
ds - The
PetscDS
specifying the discretizations and continuum functionswf - The PetscWeakForm holding the pointwise functions
key - The (label+value, fieldI*Nf + fieldJ) being integrated
Ne - The number of elements in the chunk
fgeom - The face geometry for each cell in the chunk
coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
coefficients_t - The array of FEM basis time derivative coefficients for the elements
probAux - The
PetscDS
specifying the auxiliary discretizationscoefficientsAux - The array of FEM auxiliary basis coefficients for the elements
t - The time
u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
Output Parameter#
elemMat - the element matrices for the Jacobian from each element
Note#
Loop over batch of elements (e):
Loop over element matrix entries (f,fc,g,gc --> i,j):
Loop over quadrature points (q):
Make u_q and gradU_q (loops over fields,Nb,Ncomp)
elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
+ \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
+ \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
+ \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
See Also#
Level#
intermediate
Location#
Implementations#
PetscFEIntegrateBdJacobian_Basic() in src/dm/dt/fe/impls/basic/febasic.c
Index of all FE routines
Table of Contents for all manual pages
Index of all manual pages