Actual source code: mkl_pardiso.c

  1: #include <../src/mat/impls/aij/seq/aij.h>
  2: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  3: #include <../src/mat/impls/dense/seq/dense.h>

  5: #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
  6:   #define MKL_ILP64
  7: #endif
  8: #include <mkl_pardiso.h>

 10: PETSC_EXTERN void PetscSetMKL_PARDISOThreads(int);

 12: /*
 13:  *  Possible mkl_pardiso phases that controls the execution of the solver.
 14:  *  For more information check mkl_pardiso manual.
 15:  */
 16: #define JOB_ANALYSIS                                                    11
 17: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION                            12
 18: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 19: #define JOB_NUMERICAL_FACTORIZATION                                     22
 20: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT          23
 21: #define JOB_SOLVE_ITERATIVE_REFINEMENT                                  33
 22: #define JOB_SOLVE_FORWARD_SUBSTITUTION                                  331
 23: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION                                 332
 24: #define JOB_SOLVE_BACKWARD_SUBSTITUTION                                 333
 25: #define JOB_RELEASE_OF_LU_MEMORY                                        0
 26: #define JOB_RELEASE_OF_ALL_MEMORY                                       -1

 28: #define IPARM_SIZE 64

 30: #if defined(PETSC_USE_64BIT_INDICES)
 31:   #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
 32:     #define INT_TYPE         long long int
 33:     #define MKL_PARDISO      pardiso
 34:     #define MKL_PARDISO_INIT pardisoinit
 35:   #else
 36:     /* this is the case where the MKL BLAS/LAPACK are 32-bit integers but the 64-bit integer version of
 37:      of PARDISO code is used; hence the need for the 64 below*/
 38:     #define INT_TYPE         long long int
 39:     #define MKL_PARDISO      pardiso_64
 40:     #define MKL_PARDISO_INIT pardiso_64init
 41: void pardiso_64init(void *pt, INT_TYPE *mtype, INT_TYPE iparm[])
 42: {
 43:   int iparm_copy[IPARM_SIZE], mtype_copy, i;

 45:   mtype_copy = *mtype;
 46:   pardisoinit(pt, &mtype_copy, iparm_copy);
 47:   for (i = 0; i < IPARM_SIZE; i++) iparm[i] = iparm_copy[i];
 48: }
 49:   #endif
 50: #else
 51:   #define INT_TYPE         int
 52:   #define MKL_PARDISO      pardiso
 53:   #define MKL_PARDISO_INIT pardisoinit
 54: #endif

 56: /*
 57:    Internal data structure.
 58:  */
 59: typedef struct {
 60:   /* Configuration vector*/
 61:   INT_TYPE iparm[IPARM_SIZE];

 63:   /*
 64:      Internal MKL PARDISO memory location.
 65:      After the first call to MKL PARDISO do not modify pt, as that could cause a serious memory leak.
 66:    */
 67:   void *pt[IPARM_SIZE];

 69:   /* Basic MKL PARDISO info */
 70:   INT_TYPE phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 72:   /* Matrix structure*/
 73:   void     *a;
 74:   INT_TYPE *ia, *ja;

 76:   /* Number of non-zero elements*/
 77:   INT_TYPE nz;

 79:   /* Row permutaton vector*/
 80:   INT_TYPE *perm;

 82:   /* Define if matrix preserves sparse structure.*/
 83:   MatStructure matstruc;

 85:   PetscBool needsym;
 86:   PetscBool freeaij;

 88:   /* Schur complement */
 89:   PetscScalar *schur;
 90:   PetscInt     schur_size;
 91:   PetscInt    *schur_idxs;
 92:   PetscScalar *schur_work;
 93:   PetscBLASInt schur_work_size;
 94:   PetscBool    solve_interior;

 96:   /* True if MKL PARDISO function have been used. */
 97:   PetscBool CleanUp;

 99:   /* Conversion to a format suitable for MKL */
100:   PetscErrorCode (*Convert)(Mat, PetscBool, MatReuse, PetscBool *, INT_TYPE *, INT_TYPE **, INT_TYPE **, PetscScalar **);
101: } Mat_MKL_PARDISO;

103: static PetscErrorCode MatMKLPardiso_Convert_seqsbaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
104: {
105:   Mat_SeqSBAIJ *aa = (Mat_SeqSBAIJ *)A->data;
106:   PetscInt      bs = A->rmap->bs, i;

108:   PetscFunctionBegin;
109:   PetscCheck(sym, PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "This should not happen");
110:   *v = aa->a;
111:   if (bs == 1) { /* already in the correct format */
112:     /* though PetscInt and INT_TYPE are of the same size since they are defined differently the Intel compiler requires a cast */
113:     *r    = (INT_TYPE *)aa->i;
114:     *c    = (INT_TYPE *)aa->j;
115:     *nnz  = (INT_TYPE)aa->nz;
116:     *free = PETSC_FALSE;
117:   } else if (reuse == MAT_INITIAL_MATRIX) {
118:     PetscInt  m = A->rmap->n, nz = aa->nz;
119:     PetscInt *row, *col;
120:     PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
121:     for (i = 0; i < m + 1; i++) row[i] = aa->i[i] + 1;
122:     for (i = 0; i < nz; i++) col[i] = aa->j[i] + 1;
123:     *r    = (INT_TYPE *)row;
124:     *c    = (INT_TYPE *)col;
125:     *nnz  = (INT_TYPE)nz;
126:     *free = PETSC_TRUE;
127:   }
128:   PetscFunctionReturn(PETSC_SUCCESS);
129: }

131: static PetscErrorCode MatMKLPardiso_Convert_seqbaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
132: {
133:   Mat_SeqBAIJ *aa = (Mat_SeqBAIJ *)A->data;
134:   PetscInt     bs = A->rmap->bs, i;

136:   PetscFunctionBegin;
137:   if (!sym) {
138:     *v = aa->a;
139:     if (bs == 1) { /* already in the correct format */
140:       /* though PetscInt and INT_TYPE are of the same size since they are defined differently the Intel compiler requires a cast */
141:       *r    = (INT_TYPE *)aa->i;
142:       *c    = (INT_TYPE *)aa->j;
143:       *nnz  = (INT_TYPE)aa->nz;
144:       *free = PETSC_FALSE;
145:       PetscFunctionReturn(PETSC_SUCCESS);
146:     } else if (reuse == MAT_INITIAL_MATRIX) {
147:       PetscInt  m = A->rmap->n, nz = aa->nz;
148:       PetscInt *row, *col;
149:       PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
150:       for (i = 0; i < m + 1; i++) row[i] = aa->i[i] + 1;
151:       for (i = 0; i < nz; i++) col[i] = aa->j[i] + 1;
152:       *r   = (INT_TYPE *)row;
153:       *c   = (INT_TYPE *)col;
154:       *nnz = (INT_TYPE)nz;
155:     }
156:     *free = PETSC_TRUE;
157:   } else {
158:     SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_PLIB, "This should not happen");
159:   }
160:   PetscFunctionReturn(PETSC_SUCCESS);
161: }

163: static PetscErrorCode MatMKLPardiso_Convert_seqaij(Mat A, PetscBool sym, MatReuse reuse, PetscBool *free, INT_TYPE *nnz, INT_TYPE **r, INT_TYPE **c, PetscScalar **v)
164: {
165:   Mat_SeqAIJ  *aa = (Mat_SeqAIJ *)A->data;
166:   PetscScalar *aav;

168:   PetscFunctionBegin;
169:   PetscCall(MatSeqAIJGetArrayRead(A, (const PetscScalar **)&aav));
170:   if (!sym) { /* already in the correct format */
171:     *v    = aav;
172:     *r    = (INT_TYPE *)aa->i;
173:     *c    = (INT_TYPE *)aa->j;
174:     *nnz  = (INT_TYPE)aa->nz;
175:     *free = PETSC_FALSE;
176:   } else if (reuse == MAT_INITIAL_MATRIX) { /* need to get the triangular part */
177:     PetscScalar *vals, *vv;
178:     PetscInt    *row, *col, *jj;
179:     PetscInt     m = A->rmap->n, nz, i;

181:     nz = 0;
182:     for (i = 0; i < m; i++) nz += aa->i[i + 1] - aa->diag[i];
183:     PetscCall(PetscMalloc2(m + 1, &row, nz, &col));
184:     PetscCall(PetscMalloc1(nz, &vals));
185:     jj = col;
186:     vv = vals;

188:     row[0] = 0;
189:     for (i = 0; i < m; i++) {
190:       PetscInt    *aj = aa->j + aa->diag[i];
191:       PetscScalar *av = aav + aa->diag[i];
192:       PetscInt     rl = aa->i[i + 1] - aa->diag[i], j;

194:       for (j = 0; j < rl; j++) {
195:         *jj = *aj;
196:         jj++;
197:         aj++;
198:         *vv = *av;
199:         vv++;
200:         av++;
201:       }
202:       row[i + 1] = row[i] + rl;
203:     }
204:     *v    = vals;
205:     *r    = (INT_TYPE *)row;
206:     *c    = (INT_TYPE *)col;
207:     *nnz  = (INT_TYPE)nz;
208:     *free = PETSC_TRUE;
209:   } else {
210:     PetscScalar *vv;
211:     PetscInt     m = A->rmap->n, i;

213:     vv = *v;
214:     for (i = 0; i < m; i++) {
215:       PetscScalar *av = aav + aa->diag[i];
216:       PetscInt     rl = aa->i[i + 1] - aa->diag[i], j;
217:       for (j = 0; j < rl; j++) {
218:         *vv = *av;
219:         vv++;
220:         av++;
221:       }
222:     }
223:     *free = PETSC_TRUE;
224:   }
225:   PetscCall(MatSeqAIJRestoreArrayRead(A, (const PetscScalar **)&aav));
226:   PetscFunctionReturn(PETSC_SUCCESS);
227: }

229: static PetscErrorCode MatMKLPardisoSolveSchur_Private(Mat F, PetscScalar *B, PetscScalar *X)
230: {
231:   Mat_MKL_PARDISO     *mpardiso = (Mat_MKL_PARDISO *)F->data;
232:   Mat                  S, Xmat, Bmat;
233:   MatFactorSchurStatus schurstatus;

235:   PetscFunctionBegin;
236:   PetscCall(MatFactorGetSchurComplement(F, &S, &schurstatus));
237:   PetscCheck(X != B || schurstatus != MAT_FACTOR_SCHUR_INVERTED, PETSC_COMM_SELF, PETSC_ERR_SUP, "X and B cannot point to the same address");
238:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, mpardiso->schur_size, mpardiso->nrhs, B, &Bmat));
239:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, mpardiso->schur_size, mpardiso->nrhs, X, &Xmat));
240:   PetscCall(MatSetType(Bmat, ((PetscObject)S)->type_name));
241:   PetscCall(MatSetType(Xmat, ((PetscObject)S)->type_name));
242: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
243:   PetscCall(MatBindToCPU(Xmat, S->boundtocpu));
244:   PetscCall(MatBindToCPU(Bmat, S->boundtocpu));
245: #endif

247: #if defined(PETSC_USE_COMPLEX)
248:   PetscCheck(mpardiso->iparm[12 - 1] != 1, PetscObjectComm((PetscObject)F), PETSC_ERR_SUP, "Hermitian solve not implemented yet");
249: #endif

251:   switch (schurstatus) {
252:   case MAT_FACTOR_SCHUR_FACTORED:
253:     if (!mpardiso->iparm[12 - 1]) {
254:       PetscCall(MatMatSolve(S, Bmat, Xmat));
255:     } else { /* transpose solve */
256:       PetscCall(MatMatSolveTranspose(S, Bmat, Xmat));
257:     }
258:     break;
259:   case MAT_FACTOR_SCHUR_INVERTED:
260:     PetscCall(MatProductCreateWithMat(S, Bmat, NULL, Xmat));
261:     if (!mpardiso->iparm[12 - 1]) {
262:       PetscCall(MatProductSetType(Xmat, MATPRODUCT_AB));
263:     } else { /* transpose solve */
264:       PetscCall(MatProductSetType(Xmat, MATPRODUCT_AtB));
265:     }
266:     PetscCall(MatProductSetFromOptions(Xmat));
267:     PetscCall(MatProductSymbolic(Xmat));
268:     PetscCall(MatProductNumeric(Xmat));
269:     PetscCall(MatProductClear(Xmat));
270:     break;
271:   default:
272:     SETERRQ(PetscObjectComm((PetscObject)F), PETSC_ERR_SUP, "Unhandled MatFactorSchurStatus %" PetscInt_FMT, F->schur_status);
273:     break;
274:   }
275:   PetscCall(MatFactorRestoreSchurComplement(F, &S, schurstatus));
276:   PetscCall(MatDestroy(&Bmat));
277:   PetscCall(MatDestroy(&Xmat));
278:   PetscFunctionReturn(PETSC_SUCCESS);
279: }

281: static PetscErrorCode MatFactorSetSchurIS_MKL_PARDISO(Mat F, IS is)
282: {
283:   Mat_MKL_PARDISO   *mpardiso = (Mat_MKL_PARDISO *)F->data;
284:   const PetscScalar *arr;
285:   const PetscInt    *idxs;
286:   PetscInt           size, i;
287:   PetscMPIInt        csize;
288:   PetscBool          sorted;

290:   PetscFunctionBegin;
291:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)F), &csize));
292:   PetscCheck(csize <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "MKL PARDISO parallel Schur complements not yet supported from PETSc");
293:   PetscCall(ISSorted(is, &sorted));
294:   PetscCheck(sorted, PETSC_COMM_SELF, PETSC_ERR_SUP, "IS for MKL PARDISO Schur complements needs to be sorted");
295:   PetscCall(ISGetLocalSize(is, &size));
296:   PetscCall(PetscFree(mpardiso->schur_work));
297:   PetscCall(PetscBLASIntCast(PetscMax(mpardiso->n, 2 * size), &mpardiso->schur_work_size));
298:   PetscCall(PetscMalloc1(mpardiso->schur_work_size, &mpardiso->schur_work));
299:   PetscCall(MatDestroy(&F->schur));
300:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, size, size, NULL, &F->schur));
301:   PetscCall(MatDenseGetArrayRead(F->schur, &arr));
302:   mpardiso->schur      = (PetscScalar *)arr;
303:   mpardiso->schur_size = size;
304:   PetscCall(MatDenseRestoreArrayRead(F->schur, &arr));
305:   if (mpardiso->mtype == 2) PetscCall(MatSetOption(F->schur, MAT_SPD, PETSC_TRUE));

307:   PetscCall(PetscFree(mpardiso->schur_idxs));
308:   PetscCall(PetscMalloc1(size, &mpardiso->schur_idxs));
309:   PetscCall(PetscArrayzero(mpardiso->perm, mpardiso->n));
310:   PetscCall(ISGetIndices(is, &idxs));
311:   PetscCall(PetscArraycpy(mpardiso->schur_idxs, idxs, size));
312:   for (i = 0; i < size; i++) mpardiso->perm[idxs[i]] = 1;
313:   PetscCall(ISRestoreIndices(is, &idxs));
314:   if (size) { /* turn on Schur switch if the set of indices is not empty */
315:     mpardiso->iparm[36 - 1] = 2;
316:   }
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: static PetscErrorCode MatDestroy_MKL_PARDISO(Mat A)
321: {
322:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;

324:   PetscFunctionBegin;
325:   if (mat_mkl_pardiso->CleanUp) {
326:     mat_mkl_pardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

328:     MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, NULL, NULL, NULL, NULL, &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, NULL, NULL,
329:                 &mat_mkl_pardiso->err);
330:   }
331:   PetscCall(PetscFree(mat_mkl_pardiso->perm));
332:   PetscCall(PetscFree(mat_mkl_pardiso->schur_work));
333:   PetscCall(PetscFree(mat_mkl_pardiso->schur_idxs));
334:   if (mat_mkl_pardiso->freeaij) {
335:     PetscCall(PetscFree2(mat_mkl_pardiso->ia, mat_mkl_pardiso->ja));
336:     if (mat_mkl_pardiso->iparm[34] == 1) PetscCall(PetscFree(mat_mkl_pardiso->a));
337:   }
338:   PetscCall(PetscFree(A->data));

340:   /* clear composed functions */
341:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
342:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorSetSchurIS_C", NULL));
343:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatMkl_PardisoSetCntl_C", NULL));
344:   PetscFunctionReturn(PETSC_SUCCESS);
345: }

347: static PetscErrorCode MatMKLPardisoScatterSchur_Private(Mat_MKL_PARDISO *mpardiso, PetscScalar *whole, PetscScalar *schur, PetscBool reduce)
348: {
349:   PetscFunctionBegin;
350:   if (reduce) { /* data given for the whole matrix */
351:     PetscInt i, m = 0, p = 0;
352:     for (i = 0; i < mpardiso->nrhs; i++) {
353:       PetscInt j;
354:       for (j = 0; j < mpardiso->schur_size; j++) schur[p + j] = whole[m + mpardiso->schur_idxs[j]];
355:       m += mpardiso->n;
356:       p += mpardiso->schur_size;
357:     }
358:   } else { /* from Schur to whole */
359:     PetscInt i, m = 0, p = 0;
360:     for (i = 0; i < mpardiso->nrhs; i++) {
361:       PetscInt j;
362:       for (j = 0; j < mpardiso->schur_size; j++) whole[m + mpardiso->schur_idxs[j]] = schur[p + j];
363:       m += mpardiso->n;
364:       p += mpardiso->schur_size;
365:     }
366:   }
367:   PetscFunctionReturn(PETSC_SUCCESS);
368: }

370: static PetscErrorCode MatSolve_MKL_PARDISO(Mat A, Vec b, Vec x)
371: {
372:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
373:   PetscScalar       *xarray;
374:   const PetscScalar *barray;

376:   PetscFunctionBegin;
377:   mat_mkl_pardiso->nrhs = 1;
378:   PetscCall(VecGetArrayWrite(x, &xarray));
379:   PetscCall(VecGetArrayRead(b, &barray));

381:   if (!mat_mkl_pardiso->schur) mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
382:   else mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;

384:   if (barray == xarray) { /* if the two vectors share the same memory */
385:     PetscScalar *work;
386:     if (!mat_mkl_pardiso->schur_work) {
387:       PetscCall(PetscMalloc1(mat_mkl_pardiso->n, &work));
388:     } else {
389:       work = mat_mkl_pardiso->schur_work;
390:     }
391:     mat_mkl_pardiso->iparm[6 - 1] = 1;
392:     MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, NULL, &mat_mkl_pardiso->nrhs,
393:                 mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)work, &mat_mkl_pardiso->err);
394:     if (!mat_mkl_pardiso->schur_work) PetscCall(PetscFree(work));
395:   } else {
396:     mat_mkl_pardiso->iparm[6 - 1] = 0;
397:     MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
398:                 &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err);
399:   }
400:   PetscCall(VecRestoreArrayRead(b, &barray));

402:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);

404:   if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
405:     if (!mat_mkl_pardiso->solve_interior) {
406:       PetscInt shift = mat_mkl_pardiso->schur_size;

408:       PetscCall(MatFactorFactorizeSchurComplement(A));
409:       /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
410:       if (A->schur_status != MAT_FACTOR_SCHUR_INVERTED) shift = 0;

412:       /* solve Schur complement */
413:       PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work, PETSC_TRUE));
414:       PetscCall(MatMKLPardisoSolveSchur_Private(A, mat_mkl_pardiso->schur_work, mat_mkl_pardiso->schur_work + shift));
415:       PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work + shift, PETSC_FALSE));
416:     } else { /* if we are solving for the interior problem, any value in barray[schur] forward-substituted to xarray[schur] will be neglected */
417:       PetscInt i;
418:       for (i = 0; i < mat_mkl_pardiso->schur_size; i++) xarray[mat_mkl_pardiso->schur_idxs[i]] = 0.;
419:     }

421:     /* expansion phase */
422:     mat_mkl_pardiso->iparm[6 - 1] = 1;
423:     mat_mkl_pardiso->phase        = JOB_SOLVE_BACKWARD_SUBSTITUTION;
424:     MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
425:                 &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
426:                 &mat_mkl_pardiso->err);

428:     PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);
429:     mat_mkl_pardiso->iparm[6 - 1] = 0;
430:   }
431:   PetscCall(VecRestoreArrayWrite(x, &xarray));
432:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
433:   PetscFunctionReturn(PETSC_SUCCESS);
434: }

436: static PetscErrorCode MatSolveTranspose_MKL_PARDISO(Mat A, Vec b, Vec x)
437: {
438:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
439:   PetscInt         oiparm12;

441:   PetscFunctionBegin;
442:   oiparm12                       = mat_mkl_pardiso->iparm[12 - 1];
443:   mat_mkl_pardiso->iparm[12 - 1] = 2;
444:   PetscCall(MatSolve_MKL_PARDISO(A, b, x));
445:   mat_mkl_pardiso->iparm[12 - 1] = oiparm12;
446:   PetscFunctionReturn(PETSC_SUCCESS);
447: }

449: static PetscErrorCode MatMatSolve_MKL_PARDISO(Mat A, Mat B, Mat X)
450: {
451:   Mat_MKL_PARDISO   *mat_mkl_pardiso = (Mat_MKL_PARDISO *)(A)->data;
452:   const PetscScalar *barray;
453:   PetscScalar       *xarray;
454:   PetscBool          flg;

456:   PetscFunctionBegin;
457:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)B, MATSEQDENSE, &flg));
458:   PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Matrix B must be MATSEQDENSE matrix");
459:   if (X != B) {
460:     PetscCall(PetscObjectBaseTypeCompare((PetscObject)X, MATSEQDENSE, &flg));
461:     PetscCheck(flg, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_WRONG, "Matrix X must be MATSEQDENSE matrix");
462:   }

464:   PetscCall(MatGetSize(B, NULL, (PetscInt *)&mat_mkl_pardiso->nrhs));

466:   if (mat_mkl_pardiso->nrhs > 0) {
467:     PetscCall(MatDenseGetArrayRead(B, &barray));
468:     PetscCall(MatDenseGetArrayWrite(X, &xarray));

470:     PetscCheck(barray != xarray, PETSC_COMM_SELF, PETSC_ERR_SUP, "B and X cannot share the same memory location");
471:     if (!mat_mkl_pardiso->schur) mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
472:     else mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;

474:     MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
475:                 &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)barray, (void *)xarray, &mat_mkl_pardiso->err);
476:     PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);

478:     PetscCall(MatDenseRestoreArrayRead(B, &barray));
479:     if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
480:       PetscScalar *o_schur_work = NULL;

482:       /* solve Schur complement */
483:       if (!mat_mkl_pardiso->solve_interior) {
484:         PetscInt shift = mat_mkl_pardiso->schur_size * mat_mkl_pardiso->nrhs, scale;
485:         PetscInt mem   = mat_mkl_pardiso->n * mat_mkl_pardiso->nrhs;

487:         PetscCall(MatFactorFactorizeSchurComplement(A));
488:         /* allocate extra memory if it is needed */
489:         scale = 1;
490:         if (A->schur_status == MAT_FACTOR_SCHUR_INVERTED) scale = 2;
491:         mem *= scale;
492:         if (mem > mat_mkl_pardiso->schur_work_size) {
493:           o_schur_work = mat_mkl_pardiso->schur_work;
494:           PetscCall(PetscMalloc1(mem, &mat_mkl_pardiso->schur_work));
495:         }
496:         /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
497:         if (A->schur_status != MAT_FACTOR_SCHUR_INVERTED) shift = 0;
498:         PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work, PETSC_TRUE));
499:         PetscCall(MatMKLPardisoSolveSchur_Private(A, mat_mkl_pardiso->schur_work, mat_mkl_pardiso->schur_work + shift));
500:         PetscCall(MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso, xarray, mat_mkl_pardiso->schur_work + shift, PETSC_FALSE));
501:       } else { /* if we are solving for the interior problem, any value in barray[schur,n] forward-substituted to xarray[schur,n] will be neglected */
502:         PetscInt i, n, m = 0;
503:         for (n = 0; n < mat_mkl_pardiso->nrhs; n++) {
504:           for (i = 0; i < mat_mkl_pardiso->schur_size; i++) xarray[mat_mkl_pardiso->schur_idxs[i] + m] = 0.;
505:           m += mat_mkl_pardiso->n;
506:         }
507:       }

509:       /* expansion phase */
510:       mat_mkl_pardiso->iparm[6 - 1] = 1;
511:       mat_mkl_pardiso->phase        = JOB_SOLVE_BACKWARD_SUBSTITUTION;
512:       MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
513:                   &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, (void *)xarray, (void *)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
514:                   &mat_mkl_pardiso->err);
515:       if (o_schur_work) { /* restore original Schur_work (minimal size) */
516:         PetscCall(PetscFree(mat_mkl_pardiso->schur_work));
517:         mat_mkl_pardiso->schur_work = o_schur_work;
518:       }
519:       PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);
520:       mat_mkl_pardiso->iparm[6 - 1] = 0;
521:     }
522:     PetscCall(MatDenseRestoreArrayWrite(X, &xarray));
523:   }
524:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
525:   PetscFunctionReturn(PETSC_SUCCESS);
526: }

528: static PetscErrorCode MatFactorNumeric_MKL_PARDISO(Mat F, Mat A, const MatFactorInfo *info)
529: {
530:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)(F)->data;

532:   PetscFunctionBegin;
533:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
534:   PetscCall((*mat_mkl_pardiso->Convert)(A, mat_mkl_pardiso->needsym, MAT_REUSE_MATRIX, &mat_mkl_pardiso->freeaij, &mat_mkl_pardiso->nz, &mat_mkl_pardiso->ia, &mat_mkl_pardiso->ja, (PetscScalar **)&mat_mkl_pardiso->a));

536:   mat_mkl_pardiso->phase = JOB_NUMERICAL_FACTORIZATION;
537:   MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
538:               &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, NULL, (void *)mat_mkl_pardiso->schur, &mat_mkl_pardiso->err);
539:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);

541:   /* report flops */
542:   if (mat_mkl_pardiso->iparm[18] > 0) PetscCall(PetscLogFlops(PetscPowRealInt(10., 6) * mat_mkl_pardiso->iparm[18]));

544:   if (F->schur) { /* schur output from pardiso is in row major format */
545: #if defined(PETSC_HAVE_CUDA)
546:     F->schur->offloadmask = PETSC_OFFLOAD_CPU;
547: #endif
548:     PetscCall(MatFactorRestoreSchurComplement(F, NULL, MAT_FACTOR_SCHUR_UNFACTORED));
549:     PetscCall(MatTranspose(F->schur, MAT_INPLACE_MATRIX, &F->schur));
550:   }
551:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
552:   mat_mkl_pardiso->CleanUp  = PETSC_TRUE;
553:   PetscFunctionReturn(PETSC_SUCCESS);
554: }

556: static PetscErrorCode MatSetFromOptions_MKL_PARDISO(Mat F, Mat A)
557: {
558:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;
559:   PetscInt         icntl, bs, threads = 1;
560:   PetscBool        flg;

562:   PetscFunctionBegin;
563:   PetscOptionsBegin(PetscObjectComm((PetscObject)F), ((PetscObject)F)->prefix, "MKL_PARDISO Options", "Mat");

565:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_65", "Suggested number of threads to use within MKL PARDISO", "None", threads, &threads, &flg));
566:   if (flg) PetscSetMKL_PARDISOThreads((int)threads);

568:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_66", "Maximum number of factors with identical sparsity structure that must be kept in memory at the same time", "None", mat_mkl_pardiso->maxfct, &icntl, &flg));
569:   if (flg) mat_mkl_pardiso->maxfct = icntl;

571:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_67", "Indicates the actual matrix for the solution phase", "None", mat_mkl_pardiso->mnum, &icntl, &flg));
572:   if (flg) mat_mkl_pardiso->mnum = icntl;

574:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_68", "Message level information", "None", mat_mkl_pardiso->msglvl, &icntl, &flg));
575:   if (flg) mat_mkl_pardiso->msglvl = icntl;

577:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_69", "Defines the matrix type", "None", mat_mkl_pardiso->mtype, &icntl, &flg));
578:   if (flg) {
579:     void *pt[IPARM_SIZE];
580:     mat_mkl_pardiso->mtype = icntl;
581:     icntl                  = mat_mkl_pardiso->iparm[34];
582:     bs                     = mat_mkl_pardiso->iparm[36];
583:     MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
584: #if defined(PETSC_USE_REAL_SINGLE)
585:     mat_mkl_pardiso->iparm[27] = 1;
586: #else
587:     mat_mkl_pardiso->iparm[27] = 0;
588: #endif
589:     mat_mkl_pardiso->iparm[34] = icntl;
590:     mat_mkl_pardiso->iparm[36] = bs;
591:   }

593:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_1", "Use default values (if 0)", "None", mat_mkl_pardiso->iparm[0], &icntl, &flg));
594:   if (flg) mat_mkl_pardiso->iparm[0] = icntl;

596:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_2", "Fill-in reducing ordering for the input matrix", "None", mat_mkl_pardiso->iparm[1], &icntl, &flg));
597:   if (flg) mat_mkl_pardiso->iparm[1] = icntl;

599:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_4", "Preconditioned CGS/CG", "None", mat_mkl_pardiso->iparm[3], &icntl, &flg));
600:   if (flg) mat_mkl_pardiso->iparm[3] = icntl;

602:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_5", "User permutation", "None", mat_mkl_pardiso->iparm[4], &icntl, &flg));
603:   if (flg) mat_mkl_pardiso->iparm[4] = icntl;

605:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_6", "Write solution on x", "None", mat_mkl_pardiso->iparm[5], &icntl, &flg));
606:   if (flg) mat_mkl_pardiso->iparm[5] = icntl;

608:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_8", "Iterative refinement step", "None", mat_mkl_pardiso->iparm[7], &icntl, &flg));
609:   if (flg) mat_mkl_pardiso->iparm[7] = icntl;

611:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_10", "Pivoting perturbation", "None", mat_mkl_pardiso->iparm[9], &icntl, &flg));
612:   if (flg) mat_mkl_pardiso->iparm[9] = icntl;

614:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_11", "Scaling vectors", "None", mat_mkl_pardiso->iparm[10], &icntl, &flg));
615:   if (flg) mat_mkl_pardiso->iparm[10] = icntl;

617:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_12", "Solve with transposed or conjugate transposed matrix A", "None", mat_mkl_pardiso->iparm[11], &icntl, &flg));
618:   if (flg) mat_mkl_pardiso->iparm[11] = icntl;

620:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_13", "Improved accuracy using (non-) symmetric weighted matching", "None", mat_mkl_pardiso->iparm[12], &icntl, &flg));
621:   if (flg) mat_mkl_pardiso->iparm[12] = icntl;

623:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_18", "Numbers of non-zero elements", "None", mat_mkl_pardiso->iparm[17], &icntl, &flg));
624:   if (flg) mat_mkl_pardiso->iparm[17] = icntl;

626:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_19", "Report number of floating point operations (0 to disable)", "None", mat_mkl_pardiso->iparm[18], &icntl, &flg));
627:   if (flg) mat_mkl_pardiso->iparm[18] = icntl;

629:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_21", "Pivoting for symmetric indefinite matrices", "None", mat_mkl_pardiso->iparm[20], &icntl, &flg));
630:   if (flg) mat_mkl_pardiso->iparm[20] = icntl;

632:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_24", "Parallel factorization control", "None", mat_mkl_pardiso->iparm[23], &icntl, &flg));
633:   if (flg) mat_mkl_pardiso->iparm[23] = icntl;

635:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_25", "Parallel forward/backward solve control", "None", mat_mkl_pardiso->iparm[24], &icntl, &flg));
636:   if (flg) mat_mkl_pardiso->iparm[24] = icntl;

638:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_27", "Matrix checker", "None", mat_mkl_pardiso->iparm[26], &icntl, &flg));
639:   if (flg) mat_mkl_pardiso->iparm[26] = icntl;

641:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_31", "Partial solve and computing selected components of the solution vectors", "None", mat_mkl_pardiso->iparm[30], &icntl, &flg));
642:   if (flg) mat_mkl_pardiso->iparm[30] = icntl;

644:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_34", "Optimal number of threads for conditional numerical reproducibility (CNR) mode", "None", mat_mkl_pardiso->iparm[33], &icntl, &flg));
645:   if (flg) mat_mkl_pardiso->iparm[33] = icntl;

647:   PetscCall(PetscOptionsInt("-mat_mkl_pardiso_60", "Intel MKL PARDISO mode", "None", mat_mkl_pardiso->iparm[59], &icntl, &flg));
648:   if (flg) mat_mkl_pardiso->iparm[59] = icntl;
649:   PetscOptionsEnd();
650:   PetscFunctionReturn(PETSC_SUCCESS);
651: }

653: static PetscErrorCode MatFactorMKL_PARDISOInitialize_Private(Mat A, MatFactorType ftype, Mat_MKL_PARDISO *mat_mkl_pardiso)
654: {
655:   PetscInt  i, bs;
656:   PetscBool match;

658:   PetscFunctionBegin;
659:   for (i = 0; i < IPARM_SIZE; i++) mat_mkl_pardiso->iparm[i] = 0;
660:   for (i = 0; i < IPARM_SIZE; i++) mat_mkl_pardiso->pt[i] = 0;
661: #if defined(PETSC_USE_REAL_SINGLE)
662:   mat_mkl_pardiso->iparm[27] = 1;
663: #else
664:   mat_mkl_pardiso->iparm[27] = 0;
665: #endif
666:   /* Default options for both sym and unsym */
667:   mat_mkl_pardiso->iparm[0]  = 1;  /* Solver default parameters overridden with provided by iparm */
668:   mat_mkl_pardiso->iparm[1]  = 2;  /* Metis reordering */
669:   mat_mkl_pardiso->iparm[5]  = 0;  /* Write solution into x */
670:   mat_mkl_pardiso->iparm[7]  = 0;  /* Max number of iterative refinement steps */
671:   mat_mkl_pardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
672:   mat_mkl_pardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
673: #if 0
674:   mat_mkl_pardiso->iparm[23] =  1; /* Parallel factorization control*/
675: #endif
676:   PetscCall(PetscObjectTypeCompareAny((PetscObject)A, &match, MATSEQBAIJ, MATSEQSBAIJ, ""));
677:   PetscCall(MatGetBlockSize(A, &bs));
678:   if (!match || bs == 1) {
679:     mat_mkl_pardiso->iparm[34] = 1; /* Cluster Sparse Solver use C-style indexing for ia and ja arrays */
680:     mat_mkl_pardiso->n         = A->rmap->N;
681:   } else {
682:     mat_mkl_pardiso->iparm[34] = 0; /* Cluster Sparse Solver use Fortran-style indexing for ia and ja arrays */
683:     mat_mkl_pardiso->iparm[36] = bs;
684:     mat_mkl_pardiso->n         = A->rmap->N / bs;
685:   }
686:   mat_mkl_pardiso->iparm[39] = 0; /* Input: matrix/rhs/solution stored on rank-0 */

688:   mat_mkl_pardiso->CleanUp = PETSC_FALSE;
689:   mat_mkl_pardiso->maxfct  = 1; /* Maximum number of numerical factorizations. */
690:   mat_mkl_pardiso->mnum    = 1; /* Which factorization to use. */
691:   mat_mkl_pardiso->msglvl  = 0; /* 0: do not print 1: Print statistical information in file */
692:   mat_mkl_pardiso->phase   = -1;
693:   mat_mkl_pardiso->err     = 0;

695:   mat_mkl_pardiso->nrhs  = 1;
696:   mat_mkl_pardiso->err   = 0;
697:   mat_mkl_pardiso->phase = -1;

699:   if (ftype == MAT_FACTOR_LU) {
700:     mat_mkl_pardiso->iparm[9]  = 13; /* Perturb the pivot elements with 1E-13 */
701:     mat_mkl_pardiso->iparm[10] = 1;  /* Use nonsymmetric permutation and scaling MPS */
702:     mat_mkl_pardiso->iparm[12] = 1;  /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
703:   } else {
704:     mat_mkl_pardiso->iparm[9]  = 8; /* Perturb the pivot elements with 1E-8 */
705:     mat_mkl_pardiso->iparm[10] = 0; /* Use nonsymmetric permutation and scaling MPS */
706:     mat_mkl_pardiso->iparm[12] = 1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
707: #if defined(PETSC_USE_DEBUG)
708:     mat_mkl_pardiso->iparm[26] = 1; /* Matrix checker */
709: #endif
710:   }
711:   PetscCall(PetscCalloc1(A->rmap->N * sizeof(INT_TYPE), &mat_mkl_pardiso->perm));
712:   mat_mkl_pardiso->schur_size = 0;
713:   PetscFunctionReturn(PETSC_SUCCESS);
714: }

716: static PetscErrorCode MatFactorSymbolic_AIJMKL_PARDISO_Private(Mat F, Mat A, const MatFactorInfo *info)
717: {
718:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

720:   PetscFunctionBegin;
721:   mat_mkl_pardiso->matstruc = DIFFERENT_NONZERO_PATTERN;
722:   PetscCall(MatSetFromOptions_MKL_PARDISO(F, A));
723:   /* throw away any previously computed structure */
724:   if (mat_mkl_pardiso->freeaij) {
725:     PetscCall(PetscFree2(mat_mkl_pardiso->ia, mat_mkl_pardiso->ja));
726:     if (mat_mkl_pardiso->iparm[34] == 1) PetscCall(PetscFree(mat_mkl_pardiso->a));
727:   }
728:   PetscCall((*mat_mkl_pardiso->Convert)(A, mat_mkl_pardiso->needsym, MAT_INITIAL_MATRIX, &mat_mkl_pardiso->freeaij, &mat_mkl_pardiso->nz, &mat_mkl_pardiso->ia, &mat_mkl_pardiso->ja, (PetscScalar **)&mat_mkl_pardiso->a));
729:   if (mat_mkl_pardiso->iparm[34] == 1) mat_mkl_pardiso->n = A->rmap->N;
730:   else mat_mkl_pardiso->n = A->rmap->N / A->rmap->bs;

732:   mat_mkl_pardiso->phase = JOB_ANALYSIS;

734:   /* reset flops counting if requested */
735:   if (mat_mkl_pardiso->iparm[18]) mat_mkl_pardiso->iparm[18] = -1;

737:   MKL_PARDISO(mat_mkl_pardiso->pt, &mat_mkl_pardiso->maxfct, &mat_mkl_pardiso->mnum, &mat_mkl_pardiso->mtype, &mat_mkl_pardiso->phase, &mat_mkl_pardiso->n, mat_mkl_pardiso->a, mat_mkl_pardiso->ia, mat_mkl_pardiso->ja, mat_mkl_pardiso->perm,
738:               &mat_mkl_pardiso->nrhs, mat_mkl_pardiso->iparm, &mat_mkl_pardiso->msglvl, NULL, NULL, &mat_mkl_pardiso->err);
739:   PetscCheck(mat_mkl_pardiso->err >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "Error reported by MKL PARDISO: err=%d. Please check manual", mat_mkl_pardiso->err);

741:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;

743:   if (F->factortype == MAT_FACTOR_LU) F->ops->lufactornumeric = MatFactorNumeric_MKL_PARDISO;
744:   else F->ops->choleskyfactornumeric = MatFactorNumeric_MKL_PARDISO;

746:   F->ops->solve          = MatSolve_MKL_PARDISO;
747:   F->ops->solvetranspose = MatSolveTranspose_MKL_PARDISO;
748:   F->ops->matsolve       = MatMatSolve_MKL_PARDISO;
749:   PetscFunctionReturn(PETSC_SUCCESS);
750: }

752: static PetscErrorCode MatLUFactorSymbolic_AIJMKL_PARDISO(Mat F, Mat A, IS r, IS c, const MatFactorInfo *info)
753: {
754:   PetscFunctionBegin;
755:   PetscCall(MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info));
756:   PetscFunctionReturn(PETSC_SUCCESS);
757: }

759: #if !defined(PETSC_USE_COMPLEX)
760: static PetscErrorCode MatGetInertia_MKL_PARDISO(Mat F, PetscInt *nneg, PetscInt *nzero, PetscInt *npos)
761: {
762:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

764:   PetscFunctionBegin;
765:   if (nneg) *nneg = mat_mkl_pardiso->iparm[22];
766:   if (npos) *npos = mat_mkl_pardiso->iparm[21];
767:   if (nzero) *nzero = F->rmap->N - (mat_mkl_pardiso->iparm[22] + mat_mkl_pardiso->iparm[21]);
768:   PetscFunctionReturn(PETSC_SUCCESS);
769: }
770: #endif

772: static PetscErrorCode MatCholeskyFactorSymbolic_AIJMKL_PARDISO(Mat F, Mat A, IS r, const MatFactorInfo *info)
773: {
774:   PetscFunctionBegin;
775:   PetscCall(MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info));
776:   F->ops->getinertia = NULL;
777: #if !defined(PETSC_USE_COMPLEX)
778:   F->ops->getinertia = MatGetInertia_MKL_PARDISO;
779: #endif
780:   PetscFunctionReturn(PETSC_SUCCESS);
781: }

783: static PetscErrorCode MatView_MKL_PARDISO(Mat A, PetscViewer viewer)
784: {
785:   PetscBool         iascii;
786:   PetscViewerFormat format;
787:   Mat_MKL_PARDISO  *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;
788:   PetscInt          i;

790:   PetscFunctionBegin;
791:   if (A->ops->solve != MatSolve_MKL_PARDISO) PetscFunctionReturn(PETSC_SUCCESS);

793:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
794:   if (iascii) {
795:     PetscCall(PetscViewerGetFormat(viewer, &format));
796:     if (format == PETSC_VIEWER_ASCII_INFO) {
797:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO run parameters:\n"));
798:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO phase:             %d \n", mat_mkl_pardiso->phase));
799:       for (i = 1; i <= 64; i++) PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO iparm[%d]:     %d \n", i, mat_mkl_pardiso->iparm[i - 1]));
800:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO maxfct:     %d \n", mat_mkl_pardiso->maxfct));
801:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO mnum:     %d \n", mat_mkl_pardiso->mnum));
802:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO mtype:     %d \n", mat_mkl_pardiso->mtype));
803:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO n:     %d \n", mat_mkl_pardiso->n));
804:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO nrhs:     %d \n", mat_mkl_pardiso->nrhs));
805:       PetscCall(PetscViewerASCIIPrintf(viewer, "MKL PARDISO msglvl:     %d \n", mat_mkl_pardiso->msglvl));
806:     }
807:   }
808:   PetscFunctionReturn(PETSC_SUCCESS);
809: }

811: static PetscErrorCode MatGetInfo_MKL_PARDISO(Mat A, MatInfoType flag, MatInfo *info)
812: {
813:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)A->data;

815:   PetscFunctionBegin;
816:   info->block_size        = 1.0;
817:   info->nz_used           = mat_mkl_pardiso->iparm[17];
818:   info->nz_allocated      = mat_mkl_pardiso->iparm[17];
819:   info->nz_unneeded       = 0.0;
820:   info->assemblies        = 0.0;
821:   info->mallocs           = 0.0;
822:   info->memory            = 0.0;
823:   info->fill_ratio_given  = 0;
824:   info->fill_ratio_needed = 0;
825:   info->factor_mallocs    = 0;
826:   PetscFunctionReturn(PETSC_SUCCESS);
827: }

829: static PetscErrorCode MatMkl_PardisoSetCntl_MKL_PARDISO(Mat F, PetscInt icntl, PetscInt ival)
830: {
831:   PetscInt         backup, bs;
832:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO *)F->data;

834:   PetscFunctionBegin;
835:   if (icntl <= 64) {
836:     mat_mkl_pardiso->iparm[icntl - 1] = ival;
837:   } else {
838:     if (icntl == 65) PetscSetMKL_PARDISOThreads(ival);
839:     else if (icntl == 66) mat_mkl_pardiso->maxfct = ival;
840:     else if (icntl == 67) mat_mkl_pardiso->mnum = ival;
841:     else if (icntl == 68) mat_mkl_pardiso->msglvl = ival;
842:     else if (icntl == 69) {
843:       void *pt[IPARM_SIZE];
844:       backup                 = mat_mkl_pardiso->iparm[34];
845:       bs                     = mat_mkl_pardiso->iparm[36];
846:       mat_mkl_pardiso->mtype = ival;
847:       MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
848: #if defined(PETSC_USE_REAL_SINGLE)
849:       mat_mkl_pardiso->iparm[27] = 1;
850: #else
851:       mat_mkl_pardiso->iparm[27] = 0;
852: #endif
853:       mat_mkl_pardiso->iparm[34] = backup;
854:       mat_mkl_pardiso->iparm[36] = bs;
855:     } else if (icntl == 70) mat_mkl_pardiso->solve_interior = (PetscBool) !!ival;
856:   }
857:   PetscFunctionReturn(PETSC_SUCCESS);
858: }

860: /*@
861:   MatMkl_PardisoSetCntl - Set MKL PARDISO <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html> parameters

863:   Logically Collective

865:   Input Parameters:
866: + F     - the factored matrix obtained by calling `MatGetFactor()`
867: . icntl - index of MKL PARDISO parameter
868: - ival  - value of MKL PARDISO parameter

870:   Options Database Key:
871: . -mat_mkl_pardiso_<icntl> <ival> - change the option numbered icntl to the value ival

873:   Level: beginner

875: .seealso: [](ch_matrices), `Mat`, `MATSOLVERMKL_PARDISO`, `MatGetFactor()`
876: @*/
877: PetscErrorCode MatMkl_PardisoSetCntl(Mat F, PetscInt icntl, PetscInt ival)
878: {
879:   PetscFunctionBegin;
880:   PetscTryMethod(F, "MatMkl_PardisoSetCntl_C", (Mat, PetscInt, PetscInt), (F, icntl, ival));
881:   PetscFunctionReturn(PETSC_SUCCESS);
882: }

884: /*MC
885:   MATSOLVERMKL_PARDISO -  A matrix type providing direct solvers, LU, for
886:   `MATSEQAIJ` matrices via the external package MKL PARDISO
887:   <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html>.

889:   Use `-pc_type lu` `-pc_factor_mat_solver_type mkl_pardiso` to use this direct solver

891:   Options Database Keys:
892: + -mat_mkl_pardiso_65 - Suggested number of threads to use within MKL PARDISO
893: . -mat_mkl_pardiso_66 - Maximum number of factors with identical sparsity structure that must be kept in memory at the same time
894: . -mat_mkl_pardiso_67 - Indicates the actual matrix for the solution phase
895: . -mat_mkl_pardiso_68 - Message level information, use 1 to get detailed information on the solver options
896: . -mat_mkl_pardiso_69 - Defines the matrix type. IMPORTANT: When you set this flag, iparm parameters are going to be set to the default ones for the matrix type
897: . -mat_mkl_pardiso_1  - Use default values
898: . -mat_mkl_pardiso_2  - Fill-in reducing ordering for the input matrix
899: . -mat_mkl_pardiso_4  - Preconditioned CGS/CG
900: . -mat_mkl_pardiso_5  - User permutation
901: . -mat_mkl_pardiso_6  - Write solution on x
902: . -mat_mkl_pardiso_8  - Iterative refinement step
903: . -mat_mkl_pardiso_10 - Pivoting perturbation
904: . -mat_mkl_pardiso_11 - Scaling vectors
905: . -mat_mkl_pardiso_12 - Solve with transposed or conjugate transposed matrix A
906: . -mat_mkl_pardiso_13 - Improved accuracy using (non-) symmetric weighted matching
907: . -mat_mkl_pardiso_18 - Numbers of non-zero elements
908: . -mat_mkl_pardiso_19 - Report number of floating point operations
909: . -mat_mkl_pardiso_21 - Pivoting for symmetric indefinite matrices
910: . -mat_mkl_pardiso_24 - Parallel factorization control
911: . -mat_mkl_pardiso_25 - Parallel forward/backward solve control
912: . -mat_mkl_pardiso_27 - Matrix checker
913: . -mat_mkl_pardiso_31 - Partial solve and computing selected components of the solution vectors
914: . -mat_mkl_pardiso_34 - Optimal number of threads for conditional numerical reproducibility (CNR) mode
915: - -mat_mkl_pardiso_60 - Intel MKL PARDISO mode

917:   Level: beginner

919:   Notes:
920:   Use `-mat_mkl_pardiso_68 1` to display the number of threads the solver is using. MKL does not provide a way to directly access this
921:   information.

923:   For more information on the options check the MKL PARDISO manual

925: .seealso: [](ch_matrices), `Mat`, `MATSEQAIJ`, `PCFactorSetMatSolverType()`, `MatSolverType`, `MatMkl_PardisoSetCntl()`, `MATSOLVERMKL_CPARDISO`
926: M*/
927: static PetscErrorCode MatFactorGetSolverType_mkl_pardiso(Mat A, MatSolverType *type)
928: {
929:   PetscFunctionBegin;
930:   *type = MATSOLVERMKL_PARDISO;
931:   PetscFunctionReturn(PETSC_SUCCESS);
932: }

934: PETSC_EXTERN PetscErrorCode MatGetFactor_aij_mkl_pardiso(Mat A, MatFactorType ftype, Mat *F)
935: {
936:   Mat              B;
937:   Mat_MKL_PARDISO *mat_mkl_pardiso;
938:   PetscBool        isSeqAIJ, isSeqBAIJ, isSeqSBAIJ;

940:   PetscFunctionBegin;
941:   PetscCall(PetscObjectBaseTypeCompare((PetscObject)A, MATSEQAIJ, &isSeqAIJ));
942:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQBAIJ, &isSeqBAIJ));
943:   PetscCall(PetscObjectTypeCompare((PetscObject)A, MATSEQSBAIJ, &isSeqSBAIJ));
944:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
945:   PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
946:   PetscCall(PetscStrallocpy("mkl_pardiso", &((PetscObject)B)->type_name));
947:   PetscCall(MatSetUp(B));

949:   PetscCall(PetscNew(&mat_mkl_pardiso));
950:   B->data = mat_mkl_pardiso;

952:   PetscCall(MatFactorMKL_PARDISOInitialize_Private(A, ftype, mat_mkl_pardiso));
953:   if (ftype == MAT_FACTOR_LU) {
954:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_PARDISO;
955:     B->factortype            = MAT_FACTOR_LU;
956:     mat_mkl_pardiso->needsym = PETSC_FALSE;
957:     if (isSeqAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
958:     else if (isSeqBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
959:     else {
960:       PetscCheck(!isSeqSBAIJ, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO LU factor with SEQSBAIJ format! Use MAT_FACTOR_CHOLESKY instead");
961:       SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO LU with %s format", ((PetscObject)A)->type_name);
962:     }
963: #if defined(PETSC_USE_COMPLEX)
964:     mat_mkl_pardiso->mtype = 13;
965: #else
966:     mat_mkl_pardiso->mtype = 11;
967: #endif
968:   } else {
969:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_AIJMKL_PARDISO;
970:     B->factortype                  = MAT_FACTOR_CHOLESKY;
971:     if (isSeqAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
972:     else if (isSeqBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
973:     else if (isSeqSBAIJ) mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqsbaij;
974:     else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for PARDISO CHOLESKY with %s format", ((PetscObject)A)->type_name);

976:     mat_mkl_pardiso->needsym = PETSC_TRUE;
977: #if !defined(PETSC_USE_COMPLEX)
978:     if (A->spd == PETSC_BOOL3_TRUE) mat_mkl_pardiso->mtype = 2;
979:     else mat_mkl_pardiso->mtype = -2;
980: #else
981:     mat_mkl_pardiso->mtype = 6;
982:     PetscCheck(A->hermitian != PETSC_BOOL3_TRUE, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for MKL PARDISO CHOLESKY with Hermitian matrices! Use MAT_FACTOR_LU instead");
983: #endif
984:   }
985:   B->ops->destroy = MatDestroy_MKL_PARDISO;
986:   B->ops->view    = MatView_MKL_PARDISO;
987:   B->ops->getinfo = MatGetInfo_MKL_PARDISO;
988:   B->factortype   = ftype;
989:   B->assembled    = PETSC_TRUE;

991:   PetscCall(PetscFree(B->solvertype));
992:   PetscCall(PetscStrallocpy(MATSOLVERMKL_PARDISO, &B->solvertype));

994:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_mkl_pardiso));
995:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorSetSchurIS_C", MatFactorSetSchurIS_MKL_PARDISO));
996:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMkl_PardisoSetCntl_C", MatMkl_PardisoSetCntl_MKL_PARDISO));

998:   *F = B;
999:   PetscFunctionReturn(PETSC_SUCCESS);
1000: }

1002: PETSC_EXTERN PetscErrorCode MatSolverTypeRegister_MKL_Pardiso(void)
1003: {
1004:   PetscFunctionBegin;
1005:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQAIJ, MAT_FACTOR_LU, MatGetFactor_aij_mkl_pardiso));
1006:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQAIJ, MAT_FACTOR_CHOLESKY, MatGetFactor_aij_mkl_pardiso));
1007:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQBAIJ, MAT_FACTOR_LU, MatGetFactor_aij_mkl_pardiso));
1008:   PetscCall(MatSolverTypeRegister(MATSOLVERMKL_PARDISO, MATSEQSBAIJ, MAT_FACTOR_CHOLESKY, MatGetFactor_aij_mkl_pardiso));
1009:   PetscFunctionReturn(PETSC_SUCCESS);
1010: }