Actual source code: ex11.c

petsc-3.14.6 2021-03-30
Report Typos and Errors
  1: static char help[] = "Second Order TVD Finite Volume Example.\n";

We use a second order TVD finite volume method to evolve a system of PDEs. Our simple upwinded residual evaluation loops
over all mesh faces and uses a Riemann solver to produce the flux given the face geometry and cell values,
\begin{equation}
f_i = \mathrm{riemann}(\mathrm{phys}, p_\mathrm{centroid}, \hat n, x^L, x^R)
\end{equation}
and then update the cell values given the cell volume.
\begin{eqnarray}
f^L_i &-=& \frac{f_i}{vol^L} \\
f^R_i &+=& \frac{f_i}{vol^R}
\end{eqnarray}

As an example, we can consider the shallow water wave equation,
\begin{eqnarray}
h_t + \nabla\cdot \left( uh \right) &=& 0 \\
(uh)_t + \nabla\cdot \left( u\otimes uh + \frac{g h^2}{2} I \right) &=& 0
\end{eqnarray}
where $h$ is wave height, $u$ is wave velocity, and $g$ is the acceleration due to gravity.

A representative Riemann solver for the shallow water equations is given in the PhysicsRiemann_SW() function,
\begin{eqnarray}
f^{L,R}_h &=& uh^{L,R} \cdot \hat n \\
f^{L,R}_{uh} &=& \frac{f^{L,R}_h}{h^{L,R}} uh^{L,R} + g (h^{L,R})^2 \hat n \\
c^{L,R} &=& \sqrt{g h^{L,R}} \\
s &=& \max\left( \left|\frac{uh^L \cdot \hat n}{h^L}\right| + c^L, \left|\frac{uh^R \cdot \hat n}{h^R}\right| + c^R \right) \\
f_i &=& \frac{A_\mathrm{face}}{2} \left( f^L_i + f^R_i + s \left( x^L_i - x^R_i \right) \right)
\end{eqnarray}
where $c$ is the local gravity wave speed and $f_i$ is a Rusanov flux.

The more sophisticated residual evaluation in RHSFunctionLocal_LS() uses a least-squares fit to a quadratic polynomial
over a neighborhood of the given element.

The mesh is read in from an ExodusII file, usually generated by Cubit.
 37: #include <petscdmplex.h>
 38: #include <petscdmforest.h>
 39: #include <petscds.h>
 40: #include <petscts.h>
 41: #include <petscsf.h>

 43: #define DIM 2                   /* Geometric dimension */
 44: #define ALEN(a) (sizeof(a)/sizeof((a)[0]))

 46: static PetscFunctionList PhysicsList, PhysicsRiemannList_SW;

 48: /* Represents continuum physical equations. */
 49: typedef struct _n_Physics *Physics;

 51: /* Physical model includes boundary conditions, initial conditions, and functionals of interest. It is
 52:  * discretization-independent, but its members depend on the scenario being solved. */
 53: typedef struct _n_Model *Model;

 55: /* 'User' implements a discretization of a continuous model. */
 56: typedef struct _n_User *User;
 57: typedef PetscErrorCode (*SolutionFunction)(Model,PetscReal,const PetscReal*,PetscScalar*,void*);
 58: typedef PetscErrorCode (*SetUpBCFunction)(PetscDS,Physics);
 59: typedef PetscErrorCode (*FunctionalFunction)(Model,PetscReal,const PetscReal*,const PetscScalar*,PetscReal*,void*);
 60: typedef PetscErrorCode (*SetupFields)(Physics,PetscSection);
 61: static PetscErrorCode ModelSolutionSetDefault(Model,SolutionFunction,void*);
 62: static PetscErrorCode ModelFunctionalRegister(Model,const char*,PetscInt*,FunctionalFunction,void*);
 63: static PetscErrorCode OutputVTK(DM,const char*,PetscViewer*);

 65: struct FieldDescription {
 66:   const char *name;
 67:   PetscInt dof;
 68: };

 70: typedef struct _n_FunctionalLink *FunctionalLink;
 71: struct _n_FunctionalLink {
 72:   char               *name;
 73:   FunctionalFunction func;
 74:   void               *ctx;
 75:   PetscInt           offset;
 76:   FunctionalLink     next;
 77: };

 79: struct _n_Physics {
 80:   PetscRiemannFunc riemann;
 81:   PetscInt         dof;          /* number of degrees of freedom per cell */
 82:   PetscReal        maxspeed;     /* kludge to pick initial time step, need to add monitoring and step control */
 83:   void             *data;
 84:   PetscInt         nfields;
 85:   const struct FieldDescription *field_desc;
 86: };

 88: struct _n_Model {
 89:   MPI_Comm         comm;        /* Does not do collective communicaton, but some error conditions can be collective */
 90:   Physics          physics;
 91:   FunctionalLink   functionalRegistry;
 92:   PetscInt         maxComputed;
 93:   PetscInt         numMonitored;
 94:   FunctionalLink   *functionalMonitored;
 95:   PetscInt         numCall;
 96:   FunctionalLink   *functionalCall;
 97:   SolutionFunction solution;
 98:   SetUpBCFunction  setupbc;
 99:   void             *solutionctx;
100:   PetscReal        maxspeed;    /* estimate of global maximum speed (for CFL calculation) */
101:   PetscReal        bounds[2*DIM];
102:   DMBoundaryType   bcs[3];
103:   PetscErrorCode   (*errorIndicator)(PetscInt, PetscReal, PetscInt, const PetscScalar[], const PetscScalar[], PetscReal *, void *);
104:   void             *errorCtx;
105: };

107: struct _n_User {
108:   PetscInt numSplitFaces;
109:   PetscInt vtkInterval;   /* For monitor */
110:   char outputBasename[PETSC_MAX_PATH_LEN]; /* Basename for output files */
111:   PetscInt monitorStepOffset;
112:   Model    model;
113:   PetscBool vtkmon;
114: };

116: PETSC_STATIC_INLINE PetscReal DotDIMReal(const PetscReal *x,const PetscReal *y)
117: {
118:   PetscInt  i;
119:   PetscReal prod=0.0;

121:   for (i=0; i<DIM; i++) prod += x[i]*y[i];
122:   return prod;
123: }
124: PETSC_STATIC_INLINE PetscReal NormDIM(const PetscReal *x) { return PetscSqrtReal(PetscAbsReal(DotDIMReal(x,x))); }

126: PETSC_STATIC_INLINE PetscReal Dot2Real(const PetscReal *x,const PetscReal *y) { return x[0]*y[0] + x[1]*y[1];}
127: PETSC_STATIC_INLINE PetscReal Norm2Real(const PetscReal *x) { return PetscSqrtReal(PetscAbsReal(Dot2Real(x,x)));}
128: PETSC_STATIC_INLINE void Normalize2Real(PetscReal *x) { PetscReal a = 1./Norm2Real(x); x[0] *= a; x[1] *= a; }
129: PETSC_STATIC_INLINE void Waxpy2Real(PetscReal a,const PetscReal *x,const PetscReal *y,PetscReal *w) { w[0] = a*x[0] + y[0]; w[1] = a*x[1] + y[1]; }
130: PETSC_STATIC_INLINE void Scale2Real(PetscReal a,const PetscReal *x,PetscReal *y) { y[0] = a*x[0]; y[1] = a*x[1]; }

132: /******************* Advect ********************/
133: typedef enum {ADVECT_SOL_TILTED,ADVECT_SOL_BUMP,ADVECT_SOL_BUMP_CAVITY} AdvectSolType;
134: static const char *const AdvectSolTypes[] = {"TILTED","BUMP","BUMP_CAVITY","AdvectSolType","ADVECT_SOL_",0};
135: typedef enum {ADVECT_SOL_BUMP_CONE,ADVECT_SOL_BUMP_COS} AdvectSolBumpType;
136: static const char *const AdvectSolBumpTypes[] = {"CONE","COS","AdvectSolBumpType","ADVECT_SOL_BUMP_",0};

138: typedef struct {
139:   PetscReal wind[DIM];
140: } Physics_Advect_Tilted;
141: typedef struct {
142:   PetscReal         center[DIM];
143:   PetscReal         radius;
144:   AdvectSolBumpType type;
145: } Physics_Advect_Bump;

147: typedef struct {
148:   PetscReal     inflowState;
149:   AdvectSolType soltype;
150:   union {
151:     Physics_Advect_Tilted tilted;
152:     Physics_Advect_Bump   bump;
153:   } sol;
154:   struct {
155:     PetscInt Solution;
156:     PetscInt Error;
157:   } functional;
158: } Physics_Advect;

160: static const struct FieldDescription PhysicsFields_Advect[] = {{"U",1},{NULL,0}};

162: static PetscErrorCode PhysicsBoundary_Advect_Inflow(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
163: {
164:   Physics        phys    = (Physics)ctx;
165:   Physics_Advect *advect = (Physics_Advect*)phys->data;

168:   xG[0] = advect->inflowState;
169:   return(0);
170: }

172: static PetscErrorCode PhysicsBoundary_Advect_Outflow(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
173: {
175:   xG[0] = xI[0];
176:   return(0);
177: }

179: static void PhysicsRiemann_Advect(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
180: {
181:   Physics_Advect *advect = (Physics_Advect*)phys->data;
182:   PetscReal      wind[DIM],wn;

184:   switch (advect->soltype) {
185:   case ADVECT_SOL_TILTED: {
186:     Physics_Advect_Tilted *tilted = &advect->sol.tilted;
187:     wind[0] = tilted->wind[0];
188:     wind[1] = tilted->wind[1];
189:   } break;
190:   case ADVECT_SOL_BUMP:
191:     wind[0] = -qp[1];
192:     wind[1] = qp[0];
193:     break;
194:   case ADVECT_SOL_BUMP_CAVITY:
195:     {
196:       PetscInt  i;
197:       PetscReal comp2[3] = {0.,0.,0.}, rad2;

199:       rad2 = 0.;
200:       for (i = 0; i < dim; i++) {
201:         comp2[i] = qp[i] * qp[i];
202:         rad2    += comp2[i];
203:       }

205:       wind[0] = -qp[1];
206:       wind[1] = qp[0];
207:       if (rad2 > 1.) {
208:         PetscInt  maxI = 0;
209:         PetscReal maxComp2 = comp2[0];

211:         for (i = 1; i < dim; i++) {
212:           if (comp2[i] > maxComp2) {
213:             maxI     = i;
214:             maxComp2 = comp2[i];
215:           }
216:         }
217:         wind[maxI] = 0.;
218:       }
219:     }
220:     break;
221:   default:
222:   {
223:     PetscInt i;
224:     for (i = 0; i < DIM; ++i) wind[i] = 0.0;
225:   }
226:   /* default: SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for solution type %s",AdvectSolBumpTypes[advect->soltype]); */
227:   }
228:   wn      = Dot2Real(wind, n);
229:   flux[0] = (wn > 0 ? xL[0] : xR[0]) * wn;
230: }

232: static PetscErrorCode PhysicsSolution_Advect(Model mod,PetscReal time,const PetscReal *x,PetscScalar *u,void *ctx)
233: {
234:   Physics        phys    = (Physics)ctx;
235:   Physics_Advect *advect = (Physics_Advect*)phys->data;

238:   switch (advect->soltype) {
239:   case ADVECT_SOL_TILTED: {
240:     PetscReal             x0[DIM];
241:     Physics_Advect_Tilted *tilted = &advect->sol.tilted;
242:     Waxpy2Real(-time,tilted->wind,x,x0);
243:     if (x0[1] > 0) u[0] = 1.*x[0] + 3.*x[1];
244:     else u[0] = advect->inflowState;
245:   } break;
246:   case ADVECT_SOL_BUMP_CAVITY:
247:   case ADVECT_SOL_BUMP: {
248:     Physics_Advect_Bump *bump = &advect->sol.bump;
249:     PetscReal           x0[DIM],v[DIM],r,cost,sint;
250:     cost  = PetscCosReal(time);
251:     sint  = PetscSinReal(time);
252:     x0[0] = cost*x[0] + sint*x[1];
253:     x0[1] = -sint*x[0] + cost*x[1];
254:     Waxpy2Real(-1,bump->center,x0,v);
255:     r = Norm2Real(v);
256:     switch (bump->type) {
257:     case ADVECT_SOL_BUMP_CONE:
258:       u[0] = PetscMax(1 - r/bump->radius,0);
259:       break;
260:     case ADVECT_SOL_BUMP_COS:
261:       u[0] = 0.5 + 0.5*PetscCosReal(PetscMin(r/bump->radius,1)*PETSC_PI);
262:       break;
263:     }
264:   } break;
265:   default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Unknown solution type");
266:   }
267:   return(0);
268: }

270: static PetscErrorCode PhysicsFunctional_Advect(Model mod,PetscReal time,const PetscReal *x,const PetscScalar *y,PetscReal *f,void *ctx)
271: {
272:   Physics        phys    = (Physics)ctx;
273:   Physics_Advect *advect = (Physics_Advect*)phys->data;
274:   PetscScalar    yexact[1];

278:   PhysicsSolution_Advect(mod,time,x,yexact,phys);
279:   f[advect->functional.Solution] = PetscRealPart(y[0]);
280:   f[advect->functional.Error] = PetscAbsScalar(y[0]-yexact[0]);
281:   return(0);
282: }

284: static PetscErrorCode SetUpBC_Advect(PetscDS prob, Physics phys)
285: {
287:   const PetscInt inflowids[] = {100,200,300},outflowids[] = {101};

290:   /* Register "canned" boundary conditions and defaults for where to apply. */
291:   PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "inflow",  "Face Sets", 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Advect_Inflow, NULL,  ALEN(inflowids),  inflowids,  phys);
292:   PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "outflow", "Face Sets", 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Advect_Outflow, NULL, ALEN(outflowids), outflowids, phys);
293:   return(0);
294: }

296: static PetscErrorCode PhysicsCreate_Advect(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
297: {
298:   Physics_Advect *advect;

302:   phys->field_desc = PhysicsFields_Advect;
303:   phys->riemann    = (PetscRiemannFunc)PhysicsRiemann_Advect;
304:   PetscNew(&advect);
305:   phys->data       = advect;
306:   mod->setupbc = SetUpBC_Advect;

308:   PetscOptionsHead(PetscOptionsObject,"Advect options");
309:   {
310:     PetscInt two = 2,dof = 1;
311:     advect->soltype = ADVECT_SOL_TILTED;
312:     PetscOptionsEnum("-advect_sol_type","solution type","",AdvectSolTypes,(PetscEnum)advect->soltype,(PetscEnum*)&advect->soltype,NULL);
313:     switch (advect->soltype) {
314:     case ADVECT_SOL_TILTED: {
315:       Physics_Advect_Tilted *tilted = &advect->sol.tilted;
316:       two = 2;
317:       tilted->wind[0] = 0.0;
318:       tilted->wind[1] = 1.0;
319:       PetscOptionsRealArray("-advect_tilted_wind","background wind vx,vy","",tilted->wind,&two,NULL);
320:       advect->inflowState = -2.0;
321:       PetscOptionsRealArray("-advect_tilted_inflow","Inflow state","",&advect->inflowState,&dof,NULL);
322:       phys->maxspeed = Norm2Real(tilted->wind);
323:     } break;
324:     case ADVECT_SOL_BUMP_CAVITY:
325:     case ADVECT_SOL_BUMP: {
326:       Physics_Advect_Bump *bump = &advect->sol.bump;
327:       two = 2;
328:       bump->center[0] = 2.;
329:       bump->center[1] = 0.;
330:       PetscOptionsRealArray("-advect_bump_center","location of center of bump x,y","",bump->center,&two,NULL);
331:       bump->radius = 0.9;
332:       PetscOptionsReal("-advect_bump_radius","radius of bump","",bump->radius,&bump->radius,NULL);
333:       bump->type = ADVECT_SOL_BUMP_CONE;
334:       PetscOptionsEnum("-advect_bump_type","type of bump","",AdvectSolBumpTypes,(PetscEnum)bump->type,(PetscEnum*)&bump->type,NULL);
335:       phys->maxspeed = 3.;       /* radius of mesh, kludge */
336:     } break;
337:     }
338:   }
339:   PetscOptionsTail();
340:   /* Initial/transient solution with default boundary conditions */
341:   ModelSolutionSetDefault(mod,PhysicsSolution_Advect,phys);
342:   /* Register "canned" functionals */
343:   ModelFunctionalRegister(mod,"Solution",&advect->functional.Solution,PhysicsFunctional_Advect,phys);
344:   ModelFunctionalRegister(mod,"Error",&advect->functional.Error,PhysicsFunctional_Advect,phys);
345:   mod->bcs[0] = mod->bcs[1] = mod->bcs[2] = DM_BOUNDARY_GHOSTED;
346:   return(0);
347: }

349: /******************* Shallow Water ********************/
350: typedef struct {
351:   PetscReal gravity;
352:   PetscReal boundaryHeight;
353:   struct {
354:     PetscInt Height;
355:     PetscInt Speed;
356:     PetscInt Energy;
357:   } functional;
358: } Physics_SW;
359: typedef struct {
360:   PetscReal h;
361:   PetscReal uh[DIM];
362: } SWNode;
363: typedef union {
364:   SWNode    swnode;
365:   PetscReal vals[DIM+1];
366: } SWNodeUnion;

368: static const struct FieldDescription PhysicsFields_SW[] = {{"Height",1},{"Momentum",DIM},{NULL,0}};

370: /*
371:  * h_t + div(uh) = 0
372:  * (uh)_t + div (u\otimes uh + g h^2 / 2 I) = 0
373:  *
374:  * */
375: static PetscErrorCode SWFlux(Physics phys,const PetscReal *n,const SWNode *x,SWNode *f)
376: {
377:   Physics_SW  *sw = (Physics_SW*)phys->data;
378:   PetscReal   uhn,u[DIM];
379:   PetscInt     i;

382:   Scale2Real(1./x->h,x->uh,u);
383:   uhn  = x->uh[0] * n[0] + x->uh[1] * n[1];
384:   f->h = uhn;
385:   for (i=0; i<DIM; i++) f->uh[i] = u[i] * uhn + sw->gravity * PetscSqr(x->h) * n[i];
386:   return(0);
387: }

389: static PetscErrorCode PhysicsBoundary_SW_Wall(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *xI, PetscScalar *xG, void *ctx)
390: {
392:   xG[0] = xI[0];
393:   xG[1] = -xI[1];
394:   xG[2] = -xI[2];
395:   return(0);
396: }

398: static void PhysicsRiemann_SW_HLL(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
399: {
400:   Physics_SW *sw = (Physics_SW *) phys->data;
401:   PetscReal aL, aR;
402:   PetscReal nn[DIM];
403: #if !defined(PETSC_USE_COMPLEX)
404:   const SWNode *uL = (const SWNode *) xL, *uR = (const SWNode *) xR;
405: #else
406:   SWNodeUnion  uLreal, uRreal;
407:   const SWNode *uL = &uLreal.swnode;
408:   const SWNode *uR = &uRreal.swnode;
409: #endif
410:   SWNodeUnion fL, fR;
411:   PetscInt i;
412:   PetscReal zero = 0.;

414: #if defined(PETSC_USE_COMPLEX)
415:   uLreal.swnode.h = 0; uRreal.swnode.h = 0;
416:   for (i = 0; i < 1+dim; i++) uLreal.vals[i] = PetscRealPart(xL[i]);
417:   for (i = 0; i < 1+dim; i++) uRreal.vals[i] = PetscRealPart(xR[i]);
418: #endif
419:   if (uL->h <= 0 || uR->h <= 0) {
420:     for (i = 0; i < 1 + dim; i++) flux[i] = zero;
421:     return;
422:   } /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Reconstructed thickness is negative"); */
423:   nn[0] = n[0];
424:   nn[1] = n[1];
425:   Normalize2Real(nn);
426:   SWFlux(phys, nn, uL, &(fL.swnode));
427:   SWFlux(phys, nn, uR, &(fR.swnode));
428:   /* gravity wave speed */
429:   aL = PetscSqrtReal(sw->gravity * uL->h);
430:   aR = PetscSqrtReal(sw->gravity * uR->h);
431:   // Defining u_tilda and v_tilda as u and v
432:   PetscReal u_L, u_R;
433:   u_L = Dot2Real(uL->uh,nn)/uL->h;
434:   u_R = Dot2Real(uR->uh,nn)/uR->h;
435:   PetscReal sL, sR;
436:   sL = PetscMin(u_L - aL, u_R - aR);
437:   sR = PetscMax(u_L + aL, u_R + aR);
438:   if (sL > zero) {
439:     for (i = 0; i < dim + 1; i++) {
440:       flux[i] = fL.vals[i] * Norm2Real(n);
441:     }
442:   } else if (sR < zero) {
443:     for (i = 0; i < dim + 1; i++) {
444:       flux[i] = fR.vals[i] * Norm2Real(n);
445:     }
446:   } else {
447:     for (i = 0; i < dim + 1; i++) {
448:       flux[i] = ((sR * fL.vals[i] - sL * fR.vals[i] + sR * sL * (xR[i] - xL[i])) / (sR - sL)) * Norm2Real(n);
449:     }
450:   }
451: }

453: static void PhysicsRiemann_SW_Rusanov(PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n, const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
454: {
455:   Physics_SW   *sw = (Physics_SW*)phys->data;
456:   PetscReal    cL,cR,speed;
457:   PetscReal    nn[DIM];
458: #if !defined(PETSC_USE_COMPLEX)
459:   const SWNode *uL = (const SWNode*)xL,*uR = (const SWNode*)xR;
460: #else
461:   SWNodeUnion  uLreal, uRreal;
462:   const SWNode *uL = &uLreal.swnode;
463:   const SWNode *uR = &uRreal.swnode;
464: #endif
465:   SWNodeUnion  fL,fR;
466:   PetscInt     i;
467:   PetscReal    zero=0.;

469: #if defined(PETSC_USE_COMPLEX)
470:   uLreal.swnode.h = 0; uRreal.swnode.h = 0;
471:   for (i = 0; i < 1+dim; i++) uLreal.vals[i] = PetscRealPart(xL[i]);
472:   for (i = 0; i < 1+dim; i++) uRreal.vals[i] = PetscRealPart(xR[i]);
473: #endif
474:   if (uL->h < 0 || uR->h < 0) {for (i=0; i<1+dim; i++) flux[i] = zero/zero; return;} /* SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Reconstructed thickness is negative"); */
475:   nn[0] = n[0];
476:   nn[1] = n[1];
477:   Normalize2Real(nn);
478:   SWFlux(phys,nn,uL,&(fL.swnode));
479:   SWFlux(phys,nn,uR,&(fR.swnode));
480:   cL    = PetscSqrtReal(sw->gravity*uL->h);
481:   cR    = PetscSqrtReal(sw->gravity*uR->h); /* gravity wave speed */
482:   speed = PetscMax(PetscAbsReal(Dot2Real(uL->uh,nn)/uL->h) + cL,PetscAbsReal(Dot2Real(uR->uh,nn)/uR->h) + cR);
483:   for (i=0; i<1+dim; i++) flux[i] = (0.5*(fL.vals[i] + fR.vals[i]) + 0.5*speed*(xL[i] - xR[i])) * Norm2Real(n);
484: }

486: static PetscErrorCode PhysicsSolution_SW(Model mod,PetscReal time,const PetscReal *x,PetscScalar *u,void *ctx)
487: {
488:   PetscReal dx[2],r,sigma;

491:   if (time != 0.0) SETERRQ1(mod->comm,PETSC_ERR_SUP,"No solution known for time %g",(double)time);
492:   dx[0] = x[0] - 1.5;
493:   dx[1] = x[1] - 1.0;
494:   r     = Norm2Real(dx);
495:   sigma = 0.5;
496:   u[0]  = 1 + 2*PetscExpReal(-PetscSqr(r)/(2*PetscSqr(sigma)));
497:   u[1]  = 0.0;
498:   u[2]  = 0.0;
499:   return(0);
500: }

502: static PetscErrorCode PhysicsFunctional_SW(Model mod,PetscReal time,const PetscReal *coord,const PetscScalar *xx,PetscReal *f,void *ctx)
503: {
504:   Physics      phys = (Physics)ctx;
505:   Physics_SW   *sw  = (Physics_SW*)phys->data;
506:   const SWNode *x   = (const SWNode*)xx;
507:   PetscReal  u[2];
508:   PetscReal    h;

511:   h = x->h;
512:   Scale2Real(1./x->h,x->uh,u);
513:   f[sw->functional.Height] = h;
514:   f[sw->functional.Speed]  = Norm2Real(u) + PetscSqrtReal(sw->gravity*h);
515:   f[sw->functional.Energy] = 0.5*(Dot2Real(x->uh,u) + sw->gravity*PetscSqr(h));
516:   return(0);
517: }

519: static PetscErrorCode SetUpBC_SW(PetscDS prob,Physics phys)
520: {
522:   const PetscInt wallids[] = {100,101,200,300};
524:   PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", "Face Sets", 0, 0, NULL, (void (*)(void)) PhysicsBoundary_SW_Wall, NULL, ALEN(wallids), wallids, phys);
525:   return(0);
526: }

528: static PetscErrorCode PhysicsCreate_SW(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
529: {
530:   Physics_SW     *sw;
531:   char           sw_riemann[64] = "rusanov";

535:   phys->field_desc = PhysicsFields_SW;
536:   PetscNew(&sw);
537:   phys->data    = sw;
538:   mod->setupbc  = SetUpBC_SW;

540:   PetscFunctionListAdd(&PhysicsRiemannList_SW, "rusanov", PhysicsRiemann_SW_Rusanov);
541:   PetscFunctionListAdd(&PhysicsRiemannList_SW, "hll", PhysicsRiemann_SW_HLL);

543:   PetscOptionsHead(PetscOptionsObject,"SW options");
544:   {
545:     void (*PhysicsRiemann_SW)(PetscInt, PetscInt, const PetscReal *, const PetscReal *, const PetscScalar *, const PetscScalar *, PetscInt, const PetscScalar, PetscScalar *, Physics);
546:     sw->gravity = 1.0;
547:     PetscOptionsReal("-sw_gravity","Gravitational constant","",sw->gravity,&sw->gravity,NULL);
548:     PetscOptionsFList("-sw_riemann","Riemann solver","",PhysicsRiemannList_SW,sw_riemann,sw_riemann,sizeof sw_riemann,NULL);
549:     PetscFunctionListFind(PhysicsRiemannList_SW,sw_riemann,&PhysicsRiemann_SW);
550:     phys->riemann = (PetscRiemannFunc) PhysicsRiemann_SW;
551:   }
552:   PetscOptionsTail();
553:   phys->maxspeed = PetscSqrtReal(2.0*sw->gravity); /* Mach 1 for depth of 2 */

555:   ModelSolutionSetDefault(mod,PhysicsSolution_SW,phys);
556:   ModelFunctionalRegister(mod,"Height",&sw->functional.Height,PhysicsFunctional_SW,phys);
557:   ModelFunctionalRegister(mod,"Speed",&sw->functional.Speed,PhysicsFunctional_SW,phys);
558:   ModelFunctionalRegister(mod,"Energy",&sw->functional.Energy,PhysicsFunctional_SW,phys);

560:   mod->bcs[0] = mod->bcs[1] = mod->bcs[2] = DM_BOUNDARY_GHOSTED;

562:   return(0);
563: }

565: /******************* Euler Density Shock (EULER_IV_SHOCK,EULER_SS_SHOCK) ********************/
566: /* An initial-value and self-similar solutions of the compressible Euler equations */
567: /* Ravi Samtaney and D. I. Pullin */
568: /* Phys. Fluids 8, 2650 (1996); http://dx.doi.org/10.1063/1.869050 */
569: typedef enum {EULER_PAR_GAMMA,EULER_PAR_RHOR,EULER_PAR_AMACH,EULER_PAR_ITANA,EULER_PAR_SIZE} EulerParamIdx;
570: typedef enum {EULER_IV_SHOCK,EULER_SS_SHOCK,EULER_SHOCK_TUBE,EULER_LINEAR_WAVE} EulerType;
571: typedef struct {
572:   PetscReal r;
573:   PetscReal ru[DIM];
574:   PetscReal E;
575: } EulerNode;
576: typedef union {
577:   EulerNode eulernode;
578:   PetscReal vals[DIM+2];
579: } EulerNodeUnion;
580: typedef PetscErrorCode (*EquationOfState)(const PetscReal*, const EulerNode*, PetscReal*);
581: typedef struct {
582:   EulerType       type;
583:   PetscReal       pars[EULER_PAR_SIZE];
584:   EquationOfState sound;
585:   struct {
586:     PetscInt Density;
587:     PetscInt Momentum;
588:     PetscInt Energy;
589:     PetscInt Pressure;
590:     PetscInt Speed;
591:   } monitor;
592: } Physics_Euler;

594: static const struct FieldDescription PhysicsFields_Euler[] = {{"Density",1},{"Momentum",DIM},{"Energy",1},{NULL,0}};

596: /* initial condition */
597: int initLinearWave(EulerNode *ux, const PetscReal gamma, const PetscReal coord[], const PetscReal Lx);
598: static PetscErrorCode PhysicsSolution_Euler(Model mod, PetscReal time, const PetscReal *x, PetscScalar *u, void *ctx)
599: {
600:   PetscInt i;
601:   Physics         phys = (Physics)ctx;
602:   Physics_Euler   *eu  = (Physics_Euler*)phys->data;
603:   EulerNode       *uu  = (EulerNode*)u;
604:   PetscReal        p0,gamma,c;
606:   if (time != 0.0) SETERRQ1(mod->comm,PETSC_ERR_SUP,"No solution known for time %g",(double)time);

608:   for (i=0; i<DIM; i++) uu->ru[i] = 0.0; /* zero out initial velocity */
609:   /* set E and rho */
610:   gamma = eu->pars[EULER_PAR_GAMMA];

612:   if (eu->type==EULER_IV_SHOCK || eu->type==EULER_SS_SHOCK) {
613:     /******************* Euler Density Shock ********************/
614:     /* On initial-value and self-similar solutions of the compressible Euler equations */
615:     /* Ravi Samtaney and D. I. Pullin */
616:     /* Phys. Fluids 8, 2650 (1996); http://dx.doi.org/10.1063/1.869050 */
617:     /* initial conditions 1: left of shock, 0: left of discontinuity 2: right of discontinuity,  */
618:     p0 = 1.;
619:     if (x[0] < 0.0 + x[1]*eu->pars[EULER_PAR_ITANA]) {
620:       if (x[0] < mod->bounds[0]*0.5) { /* left of shock (1) */
621:         PetscReal amach,rho,press,gas1,p1;
622:         amach = eu->pars[EULER_PAR_AMACH];
623:         rho = 1.;
624:         press = p0;
625:         p1 = press*(1.0+2.0*gamma/(gamma+1.0)*(amach*amach-1.0));
626:         gas1 = (gamma-1.0)/(gamma+1.0);
627:         uu->r = rho*(p1/press+gas1)/(gas1*p1/press+1.0);
628:         uu->ru[0]   = ((uu->r - rho)*PetscSqrtReal(gamma*press/rho)*amach);
629:         uu->E = p1/(gamma-1.0) + .5/uu->r*uu->ru[0]*uu->ru[0];
630:       }
631:       else { /* left of discontinuity (0) */
632:         uu->r = 1.; /* rho = 1 */
633:         uu->E = p0/(gamma-1.0);
634:       }
635:     }
636:     else { /* right of discontinuity (2) */
637:       uu->r = eu->pars[EULER_PAR_RHOR];
638:       uu->E = p0/(gamma-1.0);
639:     }
640:   }
641:   else if (eu->type==EULER_SHOCK_TUBE) {
642:     /* For (x<x0) set (rho,u,p)=(8,0,10) and for (x>x0) set (rho,u,p)=(1,0,1). Choose x0 to the midpoint of the domain in the x-direction. */
643:     if (x[0] < 0.0) {
644:       uu->r = 8.;
645:       uu->E = 10./(gamma-1.);
646:     }
647:     else {
648:       uu->r = 1.;
649:       uu->E = 1./(gamma-1.);
650:     }
651:   }
652:   else if (eu->type==EULER_LINEAR_WAVE) {
653:     initLinearWave( uu, gamma, x, mod->bounds[1] - mod->bounds[0]);
654:   }
655:   else SETERRQ1(mod->comm,PETSC_ERR_SUP,"Unknown type %d",eu->type);

657:   /* set phys->maxspeed: (mod->maxspeed = phys->maxspeed) in main; */
658:   eu->sound(&gamma,uu,&c);
659:   c = (uu->ru[0]/uu->r) + c;
660:   if (c > phys->maxspeed) phys->maxspeed = c;

662:   return(0);
663: }

665: static PetscErrorCode Pressure_PG(const PetscReal gamma,const EulerNode *x,PetscReal *p)
666: {
667:   PetscReal ru2;

670:   ru2  = DotDIMReal(x->ru,x->ru);
671:   (*p)=(x->E - 0.5*ru2/x->r)*(gamma - 1.0); /* (E - rho V^2/2)(gamma-1) = e rho (gamma-1) */
672:   return(0);
673: }

675: static PetscErrorCode SpeedOfSound_PG(const PetscReal *gamma, const EulerNode *x, PetscReal *c)
676: {
677:   PetscReal p;

680:   Pressure_PG(*gamma,x,&p);
681:   if (p<0.) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"negative pressure time %g -- NEED TO FIX!!!!!!",(double) p);
682:   /* pars[EULER_PAR_GAMMA] = heat capacity ratio */
683:   (*c)=PetscSqrtReal(*gamma * p / x->r);
684:   return(0);
685: }

687: /*
688:  * x = (rho,rho*(u_1),...,rho*e)^T
689:  * x_t+div(f_1(x))+...+div(f_DIM(x)) = 0
690:  *
691:  * f_i(x) = u_i*x+(0,0,...,p,...,p*u_i)^T
692:  *
693:  */
694: static PetscErrorCode EulerFlux(Physics phys,const PetscReal *n,const EulerNode *x,EulerNode *f)
695: {
696:   Physics_Euler *eu = (Physics_Euler*)phys->data;
697:   PetscReal     nu,p;
698:   PetscInt      i;

701:   Pressure_PG(eu->pars[EULER_PAR_GAMMA],x,&p);
702:   nu = DotDIMReal(x->ru,n);
703:   f->r = nu;   /* A rho u */
704:   nu /= x->r;  /* A u */
705:   for (i=0; i<DIM; i++) f->ru[i] = nu * x->ru[i] + n[i]*p;  /* r u^2 + p */
706:   f->E = nu * (x->E + p); /* u(e+p) */
707:   return(0);
708: }

710: /* PetscReal* => EulerNode* conversion */
711: static PetscErrorCode PhysicsBoundary_Euler_Wall(PetscReal time, const PetscReal *c, const PetscReal *n, const PetscScalar *a_xI, PetscScalar *a_xG, void *ctx)
712: {
713:   PetscInt    i;
714:   const EulerNode *xI = (const EulerNode*)a_xI;
715:   EulerNode       *xG = (EulerNode*)a_xG;
716:   Physics         phys = (Physics)ctx;
717:   Physics_Euler   *eu  = (Physics_Euler*)phys->data;
719:   xG->r = xI->r;           /* ghost cell density - same */
720:   xG->E = xI->E;           /* ghost cell energy - same */
721:   if (n[1] != 0.) {        /* top and bottom */
722:     xG->ru[0] =  xI->ru[0]; /* copy tang to wall */
723:     xG->ru[1] = -xI->ru[1]; /* reflect perp to t/b wall */
724:   }
725:   else { /* sides */
726:     for (i=0; i<DIM; i++) xG->ru[i] = xI->ru[i]; /* copy */
727:   }
728:   if (eu->type == EULER_LINEAR_WAVE) { /* debug */
729: #if 0
730:     PetscPrintf(PETSC_COMM_WORLD,"%s coord=%g,%g\n",PETSC_FUNCTION_NAME,c[0],c[1]);
731: #endif
732:   }
733:   return(0);
734: }
735: int godunovflux( const PetscScalar *ul, const PetscScalar *ur, PetscScalar *flux, const PetscReal *nn, const int *ndim, const PetscReal *gamma);
736: /* PetscReal* => EulerNode* conversion */
737: static void PhysicsRiemann_Euler_Godunov( PetscInt dim, PetscInt Nf, const PetscReal *qp, const PetscReal *n,
738:                                           const PetscScalar *xL, const PetscScalar *xR, PetscInt numConstants, const PetscScalar constants[], PetscScalar *flux, Physics phys)
739: {
740:   Physics_Euler   *eu = (Physics_Euler*)phys->data;
741:   PetscReal       cL,cR,speed,velL,velR,nn[DIM],s2;
742:   PetscInt        i;
743:   PetscErrorCode  ierr;

746:   for (i=0,s2=0.; i<DIM; i++) {
747:     nn[i] = n[i];
748:     s2 += nn[i]*nn[i];
749:   }
750:   s2 = PetscSqrtReal(s2); /* |n|_2 = sum(n^2)^1/2 */
751:   for (i=0.; i<DIM; i++) nn[i] /= s2;
752:   if (0) { /* Rusanov */
753:     const EulerNode *uL = (const EulerNode*)xL,*uR = (const EulerNode*)xR;
754:     EulerNodeUnion  fL,fR;
755:     EulerFlux(phys,nn,uL,&(fL.eulernode));
756:     EulerFlux(phys,nn,uR,&(fR.eulernode));
757:     eu->sound(&eu->pars[EULER_PAR_GAMMA],uL,&cL);if (ierr) exit(13);
758:     eu->sound(&eu->pars[EULER_PAR_GAMMA],uR,&cR);if (ierr) exit(14);
759:     velL = DotDIMReal(uL->ru,nn)/uL->r;
760:     velR = DotDIMReal(uR->ru,nn)/uR->r;
761:     speed = PetscMax(velR + cR, velL + cL);
762:     for (i=0; i<2+dim; i++) flux[i] = 0.5*((fL.vals[i]+fR.vals[i]) + speed*(xL[i] - xR[i]))*s2;
763:   }
764:   else {
765:     int dim = DIM;
766:     /* int iwave =  */
767:     godunovflux(xL, xR, flux, nn, &dim, &eu->pars[EULER_PAR_GAMMA]);
768:     for (i=0; i<2+dim; i++) flux[i] *= s2;
769:   }
770:   PetscFunctionReturnVoid();
771: }

773: static PetscErrorCode PhysicsFunctional_Euler(Model mod,PetscReal time,const PetscReal *coord,const PetscScalar *xx,PetscReal *f,void *ctx)
774: {
775:   Physics         phys = (Physics)ctx;
776:   Physics_Euler   *eu  = (Physics_Euler*)phys->data;
777:   const EulerNode *x   = (const EulerNode*)xx;
778:   PetscReal       p;

781:   f[eu->monitor.Density]  = x->r;
782:   f[eu->monitor.Momentum] = NormDIM(x->ru);
783:   f[eu->monitor.Energy]   = x->E;
784:   f[eu->monitor.Speed]    = NormDIM(x->ru)/x->r;
785:   Pressure_PG(eu->pars[EULER_PAR_GAMMA], x, &p);
786:   f[eu->monitor.Pressure] = p;
787:   return(0);
788: }

790: static PetscErrorCode SetUpBC_Euler(PetscDS prob,Physics phys)
791: {
792:   PetscErrorCode  ierr;
793:   Physics_Euler   *eu = (Physics_Euler *) phys->data;
794:   if (eu->type == EULER_LINEAR_WAVE) {
795:     const PetscInt wallids[] = {100,101};
796:     PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", "Face Sets", 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Euler_Wall, NULL, ALEN(wallids), wallids, phys);
797:   }
798:   else {
799:     const PetscInt wallids[] = {100,101,200,300};
800:     PetscDSAddBoundary(prob, DM_BC_NATURAL_RIEMANN, "wall", "Face Sets", 0, 0, NULL, (void (*)(void)) PhysicsBoundary_Euler_Wall, NULL, ALEN(wallids), wallids, phys);
801:   }
802:   return(0);
803: }

805: static PetscErrorCode PhysicsCreate_Euler(Model mod,Physics phys,PetscOptionItems *PetscOptionsObject)
806: {
807:   Physics_Euler   *eu;
808:   PetscErrorCode  ierr;

811:   phys->field_desc = PhysicsFields_Euler;
812:   phys->riemann = (PetscRiemannFunc) PhysicsRiemann_Euler_Godunov;
813:   PetscNew(&eu);
814:   phys->data    = eu;
815:   mod->setupbc = SetUpBC_Euler;
816:   PetscOptionsHead(PetscOptionsObject,"Euler options");
817:   {
818:     PetscReal alpha;
819:     char type[64] = "linear_wave";
820:     PetscBool  is;
821:     mod->bcs[0] = mod->bcs[1] = mod->bcs[2] = DM_BOUNDARY_GHOSTED;
822:     eu->pars[EULER_PAR_GAMMA] = 1.4;
823:     eu->pars[EULER_PAR_AMACH] = 2.02;
824:     eu->pars[EULER_PAR_RHOR] = 3.0;
825:     eu->pars[EULER_PAR_ITANA] = 0.57735026918963; /* angle of Euler self similar (SS) shock */
826:     PetscOptionsReal("-eu_gamma","Heat capacity ratio","",eu->pars[EULER_PAR_GAMMA],&eu->pars[EULER_PAR_GAMMA],NULL);
827:     PetscOptionsReal("-eu_amach","Shock speed (Mach)","",eu->pars[EULER_PAR_AMACH],&eu->pars[EULER_PAR_AMACH],NULL);
828:     PetscOptionsReal("-eu_rho2","Density right of discontinuity","",eu->pars[EULER_PAR_RHOR],&eu->pars[EULER_PAR_RHOR],NULL);
829:     alpha = 60.;
830:     PetscOptionsReal("-eu_alpha","Angle of discontinuity","",alpha,&alpha,NULL);
831:     if (alpha<=0. || alpha>90.) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Alpha bust be > 0 and <= 90 (%g)",alpha);
832:     eu->pars[EULER_PAR_ITANA] = 1./PetscTanReal( alpha * PETSC_PI / 180.0);
833:     PetscOptionsString("-eu_type","Type of Euler test","",type,type,sizeof(type),NULL);
834:     PetscStrcmp(type,"linear_wave", &is);
835:     if (is) {
836:       eu->type = EULER_LINEAR_WAVE;
837:       mod->bcs[0] = mod->bcs[1] = mod->bcs[2] = DM_BOUNDARY_PERIODIC;
838:       mod->bcs[1] = DM_BOUNDARY_GHOSTED; /* debug */
839:       PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"linear_wave");
840:     }
841:     else {
842:       if (DIM != 2) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"DIM must be 2 unless linear wave test %s",type);
843:       PetscStrcmp(type,"iv_shock", &is);
844:       if (is) {
845:         eu->type = EULER_IV_SHOCK;
846:         PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"iv_shock");
847:       }
848:       else {
849:         PetscStrcmp(type,"ss_shock", &is);
850:         if (is) {
851:           eu->type = EULER_SS_SHOCK;
852:           PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"ss_shock");
853:         }
854:         else {
855:           PetscStrcmp(type,"shock_tube", &is);
856:           if (is) eu->type = EULER_SHOCK_TUBE;
857:           else SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Unknown Euler type %s",type);
858:           PetscPrintf(PETSC_COMM_WORLD,"%s set Euler type: %s\n",PETSC_FUNCTION_NAME,"shock_tube");
859:         }
860:       }
861:     }
862:   }
863:   PetscOptionsTail();
864:   eu->sound = SpeedOfSound_PG;
865:   phys->maxspeed = 0.; /* will get set in solution */
866:   ModelSolutionSetDefault(mod,PhysicsSolution_Euler,phys);
867:   ModelFunctionalRegister(mod,"Speed",&eu->monitor.Speed,PhysicsFunctional_Euler,phys);
868:   ModelFunctionalRegister(mod,"Energy",&eu->monitor.Energy,PhysicsFunctional_Euler,phys);
869:   ModelFunctionalRegister(mod,"Density",&eu->monitor.Density,PhysicsFunctional_Euler,phys);
870:   ModelFunctionalRegister(mod,"Momentum",&eu->monitor.Momentum,PhysicsFunctional_Euler,phys);
871:   ModelFunctionalRegister(mod,"Pressure",&eu->monitor.Pressure,PhysicsFunctional_Euler,phys);

873:   return(0);
874: }

876: static PetscErrorCode ErrorIndicator_Simple(PetscInt dim, PetscReal volume, PetscInt numComps, const PetscScalar u[], const PetscScalar grad[], PetscReal *error, void *ctx)
877: {
878:   PetscReal      err = 0.;
879:   PetscInt       i, j;

882:   for (i = 0; i < numComps; i++) {
883:     for (j = 0; j < dim; j++) {
884:       err += PetscSqr(PetscRealPart(grad[i * dim + j]));
885:     }
886:   }
887:   *error = volume * err;
888:   return(0);
889: }

891: PetscErrorCode ConstructCellBoundary(DM dm, User user)
892: {
893:   const char     *name   = "Cell Sets";
894:   const char     *bdname = "split faces";
895:   IS             regionIS, innerIS;
896:   const PetscInt *regions, *cells;
897:   PetscInt       numRegions, innerRegion, numCells, c;
898:   PetscInt       cStart, cEnd, cEndInterior, fStart, fEnd;
899:   PetscBool      hasLabel;

903:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
904:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
905:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);

907:   DMHasLabel(dm, name, &hasLabel);
908:   if (!hasLabel) return(0);
909:   DMGetLabelSize(dm, name, &numRegions);
910:   if (numRegions != 2) return(0);
911:   /* Get the inner id */
912:   DMGetLabelIdIS(dm, name, &regionIS);
913:   ISGetIndices(regionIS, &regions);
914:   innerRegion = regions[0];
915:   ISRestoreIndices(regionIS, &regions);
916:   ISDestroy(&regionIS);
917:   /* Find the faces between cells in different regions, could call DMPlexCreateNeighborCSR() */
918:   DMGetStratumIS(dm, name, innerRegion, &innerIS);
919:   ISGetLocalSize(innerIS, &numCells);
920:   ISGetIndices(innerIS, &cells);
921:   DMCreateLabel(dm, bdname);
922:   for (c = 0; c < numCells; ++c) {
923:     const PetscInt cell = cells[c];
924:     const PetscInt *faces;
925:     PetscInt       numFaces, f;

927:     if ((cell < cStart) || (cell >= cEnd)) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_LIB, "Got invalid point %d which is not a cell", cell);
928:     DMPlexGetConeSize(dm, cell, &numFaces);
929:     DMPlexGetCone(dm, cell, &faces);
930:     for (f = 0; f < numFaces; ++f) {
931:       const PetscInt face = faces[f];
932:       const PetscInt *neighbors;
933:       PetscInt       nC, regionA, regionB;

935:       if ((face < fStart) || (face >= fEnd)) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_LIB, "Got invalid point %d which is not a face", face);
936:       DMPlexGetSupportSize(dm, face, &nC);
937:       if (nC != 2) continue;
938:       DMPlexGetSupport(dm, face, &neighbors);
939:       if ((neighbors[0] >= cEndInterior) || (neighbors[1] >= cEndInterior)) continue;
940:       if ((neighbors[0] < cStart) || (neighbors[0] >= cEnd)) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_LIB, "Got invalid point %d which is not a cell", neighbors[0]);
941:       if ((neighbors[1] < cStart) || (neighbors[1] >= cEnd)) SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_LIB, "Got invalid point %d which is not a cell", neighbors[1]);
942:       DMGetLabelValue(dm, name, neighbors[0], &regionA);
943:       DMGetLabelValue(dm, name, neighbors[1], &regionB);
944:       if (regionA < 0) SETERRQ2(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Invalid label %s: Cell %d has no value", name, neighbors[0]);
945:       if (regionB < 0) SETERRQ2(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Invalid label %s: Cell %d has no value", name, neighbors[1]);
946:       if (regionA != regionB) {
947:         DMSetLabelValue(dm, bdname, faces[f], 1);
948:       }
949:     }
950:   }
951:   ISRestoreIndices(innerIS, &cells);
952:   ISDestroy(&innerIS);
953:   {
954:     DMLabel label;

956:     DMGetLabel(dm, bdname, &label);
957:     DMLabelView(label, PETSC_VIEWER_STDOUT_WORLD);
958:   }
959:   return(0);
960: }

962: /* Right now, I have just added duplicate faces, which see both cells. We can
963: - Add duplicate vertices and decouple the face cones
964: - Disconnect faces from cells across the rotation gap
965: */
966: PetscErrorCode SplitFaces(DM *dmSplit, const char labelName[], User user)
967: {
968:   DM             dm = *dmSplit, sdm;
969:   PetscSF        sfPoint, gsfPoint;
970:   PetscSection   coordSection, newCoordSection;
971:   Vec            coordinates;
972:   IS             idIS;
973:   const PetscInt *ids;
974:   PetscInt       *newpoints;
975:   PetscInt       dim, depth, maxConeSize, maxSupportSize, numLabels, numGhostCells;
976:   PetscInt       numFS, fs, pStart, pEnd, p, cEnd, cEndInterior, vStart, vEnd, v, fStart, fEnd, newf, d, l;
977:   PetscBool      hasLabel;

981:   DMHasLabel(dm, labelName, &hasLabel);
982:   if (!hasLabel) return(0);
983:   DMCreate(PetscObjectComm((PetscObject)dm), &sdm);
984:   DMSetType(sdm, DMPLEX);
985:   DMGetDimension(dm, &dim);
986:   DMSetDimension(sdm, dim);

988:   DMGetLabelIdIS(dm, labelName, &idIS);
989:   ISGetLocalSize(idIS, &numFS);
990:   ISGetIndices(idIS, &ids);

992:   user->numSplitFaces = 0;
993:   for (fs = 0; fs < numFS; ++fs) {
994:     PetscInt numBdFaces;

996:     DMGetStratumSize(dm, labelName, ids[fs], &numBdFaces);
997:     user->numSplitFaces += numBdFaces;
998:   }
999:   DMPlexGetChart(dm, &pStart, &pEnd);
1000:   pEnd += user->numSplitFaces;
1001:   DMPlexSetChart(sdm, pStart, pEnd);
1002:   DMPlexGetGhostCellStratum(dm, &cEndInterior, NULL);
1003:   DMPlexGetHeightStratum(dm, 0, NULL, &cEnd);
1004:   numGhostCells = cEnd - cEndInterior;
1005:   /* Set cone and support sizes */
1006:   DMPlexGetDepth(dm, &depth);
1007:   for (d = 0; d <= depth; ++d) {
1008:     DMPlexGetDepthStratum(dm, d, &pStart, &pEnd);
1009:     for (p = pStart; p < pEnd; ++p) {
1010:       PetscInt newp = p;
1011:       PetscInt size;

1013:       DMPlexGetConeSize(dm, p, &size);
1014:       DMPlexSetConeSize(sdm, newp, size);
1015:       DMPlexGetSupportSize(dm, p, &size);
1016:       DMPlexSetSupportSize(sdm, newp, size);
1017:     }
1018:   }
1019:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
1020:   for (fs = 0, newf = fEnd; fs < numFS; ++fs) {
1021:     IS             faceIS;
1022:     const PetscInt *faces;
1023:     PetscInt       numFaces, f;

1025:     DMGetStratumIS(dm, labelName, ids[fs], &faceIS);
1026:     ISGetLocalSize(faceIS, &numFaces);
1027:     ISGetIndices(faceIS, &faces);
1028:     for (f = 0; f < numFaces; ++f, ++newf) {
1029:       PetscInt size;

1031:       /* Right now I think that both faces should see both cells */
1032:       DMPlexGetConeSize(dm, faces[f], &size);
1033:       DMPlexSetConeSize(sdm, newf, size);
1034:       DMPlexGetSupportSize(dm, faces[f], &size);
1035:       DMPlexSetSupportSize(sdm, newf, size);
1036:     }
1037:     ISRestoreIndices(faceIS, &faces);
1038:     ISDestroy(&faceIS);
1039:   }
1040:   DMSetUp(sdm);
1041:   /* Set cones and supports */
1042:   DMPlexGetMaxSizes(dm, &maxConeSize, &maxSupportSize);
1043:   PetscMalloc1(PetscMax(maxConeSize, maxSupportSize), &newpoints);
1044:   DMPlexGetChart(dm, &pStart, &pEnd);
1045:   for (p = pStart; p < pEnd; ++p) {
1046:     const PetscInt *points, *orientations;
1047:     PetscInt       size, i, newp = p;

1049:     DMPlexGetConeSize(dm, p, &size);
1050:     DMPlexGetCone(dm, p, &points);
1051:     DMPlexGetConeOrientation(dm, p, &orientations);
1052:     for (i = 0; i < size; ++i) newpoints[i] = points[i];
1053:     DMPlexSetCone(sdm, newp, newpoints);
1054:     DMPlexSetConeOrientation(sdm, newp, orientations);
1055:     DMPlexGetSupportSize(dm, p, &size);
1056:     DMPlexGetSupport(dm, p, &points);
1057:     for (i = 0; i < size; ++i) newpoints[i] = points[i];
1058:     DMPlexSetSupport(sdm, newp, newpoints);
1059:   }
1060:   PetscFree(newpoints);
1061:   for (fs = 0, newf = fEnd; fs < numFS; ++fs) {
1062:     IS             faceIS;
1063:     const PetscInt *faces;
1064:     PetscInt       numFaces, f;

1066:     DMGetStratumIS(dm, labelName, ids[fs], &faceIS);
1067:     ISGetLocalSize(faceIS, &numFaces);
1068:     ISGetIndices(faceIS, &faces);
1069:     for (f = 0; f < numFaces; ++f, ++newf) {
1070:       const PetscInt *points;

1072:       DMPlexGetCone(dm, faces[f], &points);
1073:       DMPlexSetCone(sdm, newf, points);
1074:       DMPlexGetSupport(dm, faces[f], &points);
1075:       DMPlexSetSupport(sdm, newf, points);
1076:     }
1077:     ISRestoreIndices(faceIS, &faces);
1078:     ISDestroy(&faceIS);
1079:   }
1080:   ISRestoreIndices(idIS, &ids);
1081:   ISDestroy(&idIS);
1082:   DMPlexStratify(sdm);
1083:   /* Convert coordinates */
1084:   DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
1085:   DMGetCoordinateSection(dm, &coordSection);
1086:   PetscSectionCreate(PetscObjectComm((PetscObject)dm), &newCoordSection);
1087:   PetscSectionSetNumFields(newCoordSection, 1);
1088:   PetscSectionSetFieldComponents(newCoordSection, 0, dim);
1089:   PetscSectionSetChart(newCoordSection, vStart, vEnd);
1090:   for (v = vStart; v < vEnd; ++v) {
1091:     PetscSectionSetDof(newCoordSection, v, dim);
1092:     PetscSectionSetFieldDof(newCoordSection, v, 0, dim);
1093:   }
1094:   PetscSectionSetUp(newCoordSection);
1095:   DMSetCoordinateSection(sdm, PETSC_DETERMINE, newCoordSection);
1096:   PetscSectionDestroy(&newCoordSection); /* relinquish our reference */
1097:   DMGetCoordinatesLocal(dm, &coordinates);
1098:   DMSetCoordinatesLocal(sdm, coordinates);
1099:   /* Convert labels */
1100:   DMGetNumLabels(dm, &numLabels);
1101:   for (l = 0; l < numLabels; ++l) {
1102:     const char *lname;
1103:     PetscBool  isDepth, isDim;

1105:     DMGetLabelName(dm, l, &lname);
1106:     PetscStrcmp(lname, "depth", &isDepth);
1107:     if (isDepth) continue;
1108:     PetscStrcmp(lname, "dim", &isDim);
1109:     if (isDim) continue;
1110:     DMCreateLabel(sdm, lname);
1111:     DMGetLabelIdIS(dm, lname, &idIS);
1112:     ISGetLocalSize(idIS, &numFS);
1113:     ISGetIndices(idIS, &ids);
1114:     for (fs = 0; fs < numFS; ++fs) {
1115:       IS             pointIS;
1116:       const PetscInt *points;
1117:       PetscInt       numPoints;

1119:       DMGetStratumIS(dm, lname, ids[fs], &pointIS);
1120:       ISGetLocalSize(pointIS, &numPoints);
1121:       ISGetIndices(pointIS, &points);
1122:       for (p = 0; p < numPoints; ++p) {
1123:         PetscInt newpoint = points[p];

1125:         DMSetLabelValue(sdm, lname, newpoint, ids[fs]);
1126:       }
1127:       ISRestoreIndices(pointIS, &points);
1128:       ISDestroy(&pointIS);
1129:     }
1130:     ISRestoreIndices(idIS, &ids);
1131:     ISDestroy(&idIS);
1132:   }
1133:   {
1134:     /* Convert pointSF */
1135:     const PetscSFNode *remotePoints;
1136:     PetscSFNode       *gremotePoints;
1137:     const PetscInt    *localPoints;
1138:     PetscInt          *glocalPoints,*newLocation,*newRemoteLocation;
1139:     PetscInt          numRoots, numLeaves;
1140:     PetscMPIInt       size;

1142:     MPI_Comm_size(PetscObjectComm((PetscObject)dm), &size);
1143:     DMGetPointSF(dm, &sfPoint);
1144:     DMGetPointSF(sdm, &gsfPoint);
1145:     DMPlexGetChart(dm,&pStart,&pEnd);
1146:     PetscSFGetGraph(sfPoint, &numRoots, &numLeaves, &localPoints, &remotePoints);
1147:     if (numRoots >= 0) {
1148:       PetscMalloc2(numRoots,&newLocation,pEnd-pStart,&newRemoteLocation);
1149:       for (l=0; l<numRoots; l++) newLocation[l] = l; /* + (l >= cEnd ? numGhostCells : 0); */
1150:       PetscSFBcastBegin(sfPoint, MPIU_INT, newLocation, newRemoteLocation);
1151:       PetscSFBcastEnd(sfPoint, MPIU_INT, newLocation, newRemoteLocation);
1152:       PetscMalloc1(numLeaves,    &glocalPoints);
1153:       PetscMalloc1(numLeaves, &gremotePoints);
1154:       for (l = 0; l < numLeaves; ++l) {
1155:         glocalPoints[l]        = localPoints[l]; /* localPoints[l] >= cEnd ? localPoints[l] + numGhostCells : localPoints[l]; */
1156:         gremotePoints[l].rank  = remotePoints[l].rank;
1157:         gremotePoints[l].index = newRemoteLocation[localPoints[l]];
1158:       }
1159:       PetscFree2(newLocation,newRemoteLocation);
1160:       PetscSFSetGraph(gsfPoint, numRoots+numGhostCells, numLeaves, glocalPoints, PETSC_OWN_POINTER, gremotePoints, PETSC_OWN_POINTER);
1161:     }
1162:     DMDestroy(dmSplit);
1163:     *dmSplit = sdm;
1164:   }
1165:   return(0);
1166: }

1168: PetscErrorCode CreatePartitionVec(DM dm, DM *dmCell, Vec *partition)
1169: {
1170:   PetscSF        sfPoint;
1171:   PetscSection   coordSection;
1172:   Vec            coordinates;
1173:   PetscSection   sectionCell;
1174:   PetscScalar    *part;
1175:   PetscInt       cStart, cEnd, c;
1176:   PetscMPIInt    rank;

1180:   DMGetCoordinateSection(dm, &coordSection);
1181:   DMGetCoordinatesLocal(dm, &coordinates);
1182:   DMClone(dm, dmCell);
1183:   DMGetPointSF(dm, &sfPoint);
1184:   DMSetPointSF(*dmCell, sfPoint);
1185:   DMSetCoordinateSection(*dmCell, PETSC_DETERMINE, coordSection);
1186:   DMSetCoordinatesLocal(*dmCell, coordinates);
1187:   MPI_Comm_rank(PetscObjectComm((PetscObject)dm), &rank);
1188:   PetscSectionCreate(PetscObjectComm((PetscObject)dm), &sectionCell);
1189:   DMPlexGetHeightStratum(*dmCell, 0, &cStart, &cEnd);
1190:   PetscSectionSetChart(sectionCell, cStart, cEnd);
1191:   for (c = cStart; c < cEnd; ++c) {
1192:     PetscSectionSetDof(sectionCell, c, 1);
1193:   }
1194:   PetscSectionSetUp(sectionCell);
1195:   DMSetLocalSection(*dmCell, sectionCell);
1196:   PetscSectionDestroy(&sectionCell);
1197:   DMCreateLocalVector(*dmCell, partition);
1198:   PetscObjectSetName((PetscObject)*partition, "partition");
1199:   VecGetArray(*partition, &part);
1200:   for (c = cStart; c < cEnd; ++c) {
1201:     PetscScalar *p;

1203:     DMPlexPointLocalRef(*dmCell, c, part, &p);
1204:     p[0] = rank;
1205:   }
1206:   VecRestoreArray(*partition, &part);
1207:   return(0);
1208: }

1210: PetscErrorCode CreateMassMatrix(DM dm, Vec *massMatrix, User user)
1211: {
1212:   DM                plex, dmMass, dmFace, dmCell, dmCoord;
1213:   PetscSection      coordSection;
1214:   Vec               coordinates, facegeom, cellgeom;
1215:   PetscSection      sectionMass;
1216:   PetscScalar       *m;
1217:   const PetscScalar *fgeom, *cgeom, *coords;
1218:   PetscInt          vStart, vEnd, v;
1219:   PetscErrorCode    ierr;

1222:   DMConvert(dm, DMPLEX, &plex);
1223:   DMGetCoordinateSection(dm, &coordSection);
1224:   DMGetCoordinatesLocal(dm, &coordinates);
1225:   DMClone(dm, &dmMass);
1226:   DMSetCoordinateSection(dmMass, PETSC_DETERMINE, coordSection);
1227:   DMSetCoordinatesLocal(dmMass, coordinates);
1228:   PetscSectionCreate(PetscObjectComm((PetscObject)dm), &sectionMass);
1229:   DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
1230:   PetscSectionSetChart(sectionMass, vStart, vEnd);
1231:   for (v = vStart; v < vEnd; ++v) {
1232:     PetscInt numFaces;

1234:     DMPlexGetSupportSize(dmMass, v, &numFaces);
1235:     PetscSectionSetDof(sectionMass, v, numFaces*numFaces);
1236:   }
1237:   PetscSectionSetUp(sectionMass);
1238:   DMSetLocalSection(dmMass, sectionMass);
1239:   PetscSectionDestroy(&sectionMass);
1240:   DMGetLocalVector(dmMass, massMatrix);
1241:   VecGetArray(*massMatrix, &m);
1242:   DMPlexGetGeometryFVM(plex, &facegeom, &cellgeom, NULL);
1243:   VecGetDM(facegeom, &dmFace);
1244:   VecGetArrayRead(facegeom, &fgeom);
1245:   VecGetDM(cellgeom, &dmCell);
1246:   VecGetArrayRead(cellgeom, &cgeom);
1247:   DMGetCoordinateDM(dm, &dmCoord);
1248:   VecGetArrayRead(coordinates, &coords);
1249:   for (v = vStart; v < vEnd; ++v) {
1250:     const PetscInt        *faces;
1251:     PetscFVFaceGeom       *fgA, *fgB, *cg;
1252:     PetscScalar           *vertex;
1253:     PetscInt               numFaces, sides[2], f, g;

1255:     DMPlexPointLocalRead(dmCoord, v, coords, &vertex);
1256:     DMPlexGetSupportSize(dmMass, v, &numFaces);
1257:     DMPlexGetSupport(dmMass, v, &faces);
1258:     for (f = 0; f < numFaces; ++f) {
1259:       sides[0] = faces[f];
1260:       DMPlexPointLocalRead(dmFace, faces[f], fgeom, &fgA);
1261:       for (g = 0; g < numFaces; ++g) {
1262:         const PetscInt *cells = NULL;
1263:         PetscReal      area   = 0.0;
1264:         PetscInt       numCells;

1266:         sides[1] = faces[g];
1267:         DMPlexPointLocalRead(dmFace, faces[g], fgeom, &fgB);
1268:         DMPlexGetJoin(dmMass, 2, sides, &numCells, &cells);
1269:         if (numCells != 1) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_LIB, "Invalid join for faces");
1270:         DMPlexPointLocalRead(dmCell, cells[0], cgeom, &cg);
1271:         area += PetscAbsScalar((vertex[0] - cg->centroid[0])*(fgA->centroid[1] - cg->centroid[1]) - (vertex[1] - cg->centroid[1])*(fgA->centroid[0] - cg->centroid[0]));
1272:         area += PetscAbsScalar((vertex[0] - cg->centroid[0])*(fgB->centroid[1] - cg->centroid[1]) - (vertex[1] - cg->centroid[1])*(fgB->centroid[0] - cg->centroid[0]));
1273:         m[f*numFaces+g] = Dot2Real(fgA->normal, fgB->normal)*area*0.5;
1274:         DMPlexRestoreJoin(dmMass, 2, sides, &numCells, &cells);
1275:       }
1276:     }
1277:   }
1278:   VecRestoreArrayRead(facegeom, &fgeom);
1279:   VecRestoreArrayRead(cellgeom, &cgeom);
1280:   VecRestoreArrayRead(coordinates, &coords);
1281:   VecRestoreArray(*massMatrix, &m);
1282:   DMDestroy(&dmMass);
1283:   DMDestroy(&plex);
1284:   return(0);
1285: }

1287: /* Behavior will be different for multi-physics or when using non-default boundary conditions */
1288: static PetscErrorCode ModelSolutionSetDefault(Model mod,SolutionFunction func,void *ctx)
1289: {
1291:   mod->solution    = func;
1292:   mod->solutionctx = ctx;
1293:   return(0);
1294: }

1296: static PetscErrorCode ModelFunctionalRegister(Model mod,const char *name,PetscInt *offset,FunctionalFunction func,void *ctx)
1297: {
1299:   FunctionalLink link,*ptr;
1300:   PetscInt       lastoffset = -1;

1303:   for (ptr=&mod->functionalRegistry; *ptr; ptr = &(*ptr)->next) lastoffset = (*ptr)->offset;
1304:   PetscNew(&link);
1305:   PetscStrallocpy(name,&link->name);
1306:   link->offset = lastoffset + 1;
1307:   link->func   = func;
1308:   link->ctx    = ctx;
1309:   link->next   = NULL;
1310:   *ptr         = link;
1311:   *offset      = link->offset;
1312:   return(0);
1313: }

1315: static PetscErrorCode ModelFunctionalSetFromOptions(Model mod,PetscOptionItems *PetscOptionsObject)
1316: {
1318:   PetscInt       i,j;
1319:   FunctionalLink link;
1320:   char           *names[256];

1323:   mod->numMonitored = ALEN(names);
1324:   PetscOptionsStringArray("-monitor","list of functionals to monitor","",names,&mod->numMonitored,NULL);
1325:   /* Create list of functionals that will be computed somehow */
1326:   PetscMalloc1(mod->numMonitored,&mod->functionalMonitored);
1327:   /* Create index of calls that we will have to make to compute these functionals (over-allocation in general). */
1328:   PetscMalloc1(mod->numMonitored,&mod->functionalCall);
1329:   mod->numCall = 0;
1330:   for (i=0; i<mod->numMonitored; i++) {
1331:     for (link=mod->functionalRegistry; link; link=link->next) {
1332:       PetscBool match;
1333:       PetscStrcasecmp(names[i],link->name,&match);
1334:       if (match) break;
1335:     }
1336:     if (!link) SETERRQ1(mod->comm,PETSC_ERR_USER,"No known functional '%s'",names[i]);
1337:     mod->functionalMonitored[i] = link;
1338:     for (j=0; j<i; j++) {
1339:       if (mod->functionalCall[j]->func == link->func && mod->functionalCall[j]->ctx == link->ctx) goto next_name;
1340:     }
1341:     mod->functionalCall[mod->numCall++] = link; /* Just points to the first link using the result. There may be more results. */
1342: next_name:
1343:     PetscFree(names[i]);
1344:   }

1346:   /* Find out the maximum index of any functional computed by a function we will be calling (even if we are not using it) */
1347:   mod->maxComputed = -1;
1348:   for (link=mod->functionalRegistry; link; link=link->next) {
1349:     for (i=0; i<mod->numCall; i++) {
1350:       FunctionalLink call = mod->functionalCall[i];
1351:       if (link->func == call->func && link->ctx == call->ctx) {
1352:         mod->maxComputed = PetscMax(mod->maxComputed,link->offset);
1353:       }
1354:     }
1355:   }
1356:   return(0);
1357: }

1359: static PetscErrorCode FunctionalLinkDestroy(FunctionalLink *link)
1360: {
1362:   FunctionalLink l,next;

1365:   if (!link) return(0);
1366:   l     = *link;
1367:   *link = NULL;
1368:   for (; l; l=next) {
1369:     next = l->next;
1370:     PetscFree(l->name);
1371:     PetscFree(l);
1372:   }
1373:   return(0);
1374: }

1376: /* put the solution callback into a functional callback */
1377: static PetscErrorCode SolutionFunctional(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *modctx)
1378: {
1379:   Model          mod;
1382:   mod  = (Model) modctx;
1383:   (*mod->solution)(mod, time, x, u, mod->solutionctx);
1384:   return(0);
1385: }

1387: PetscErrorCode SetInitialCondition(DM dm, Vec X, User user)
1388: {
1389:   PetscErrorCode     (*func[1]) (PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx);
1390:   void               *ctx[1];
1391:   Model              mod = user->model;
1392:   PetscErrorCode     ierr;

1395:   func[0] = SolutionFunctional;
1396:   ctx[0]  = (void *) mod;
1397:   DMProjectFunction(dm,0.0,func,ctx,INSERT_ALL_VALUES,X);
1398:   return(0);
1399: }

1401: static PetscErrorCode OutputVTK(DM dm, const char *filename, PetscViewer *viewer)
1402: {

1406:   PetscViewerCreate(PetscObjectComm((PetscObject)dm), viewer);
1407:   PetscViewerSetType(*viewer, PETSCVIEWERVTK);
1408:   PetscViewerFileSetName(*viewer, filename);
1409:   return(0);
1410: }

1412: static PetscErrorCode MonitorVTK(TS ts,PetscInt stepnum,PetscReal time,Vec X,void *ctx)
1413: {
1414:   User           user = (User)ctx;
1415:   DM             dm, plex;
1416:   PetscViewer    viewer;
1417:   char           filename[PETSC_MAX_PATH_LEN],*ftable = NULL;
1418:   PetscReal      xnorm;

1422:   PetscObjectSetName((PetscObject) X, "u");
1423:   VecGetDM(X,&dm);
1424:   VecNorm(X,NORM_INFINITY,&xnorm);

1426:   if (stepnum >= 0) {
1427:     stepnum += user->monitorStepOffset;
1428:   }
1429:   if (stepnum >= 0) {           /* No summary for final time */
1430:     Model             mod = user->model;
1431:     Vec               cellgeom;
1432:     PetscInt          c,cStart,cEnd,fcount,i;
1433:     size_t            ftableused,ftablealloc;
1434:     const PetscScalar *cgeom,*x;
1435:     DM                dmCell;
1436:     DMLabel           vtkLabel;
1437:     PetscReal         *fmin,*fmax,*fintegral,*ftmp;

1439:     DMConvert(dm, DMPLEX, &plex);
1440:     DMPlexGetGeometryFVM(plex, NULL, &cellgeom, NULL);
1441:     fcount = mod->maxComputed+1;
1442:     PetscMalloc4(fcount,&fmin,fcount,&fmax,fcount,&fintegral,fcount,&ftmp);
1443:     for (i=0; i<fcount; i++) {
1444:       fmin[i]      = PETSC_MAX_REAL;
1445:       fmax[i]      = PETSC_MIN_REAL;
1446:       fintegral[i] = 0;
1447:     }
1448:     VecGetDM(cellgeom,&dmCell);
1449:     DMPlexGetSimplexOrBoxCells(dmCell,0,&cStart,&cEnd);
1450:     VecGetArrayRead(cellgeom,&cgeom);
1451:     VecGetArrayRead(X,&x);
1452:     DMGetLabel(dm,"vtk",&vtkLabel);
1453:     for (c = cStart; c < cEnd; ++c) {
1454:       PetscFVCellGeom       *cg;
1455:       const PetscScalar     *cx    = NULL;
1456:       PetscInt              vtkVal = 0;

1458:       /* not that these two routines as currently implemented work for any dm with a
1459:        * localSection/globalSection */
1460:       DMPlexPointLocalRead(dmCell,c,cgeom,&cg);
1461:       DMPlexPointGlobalRead(dm,c,x,&cx);
1462:       if (vtkLabel) {DMLabelGetValue(vtkLabel,c,&vtkVal);}
1463:       if (!vtkVal || !cx) continue;        /* ghost, or not a global cell */
1464:       for (i=0; i<mod->numCall; i++) {
1465:         FunctionalLink flink = mod->functionalCall[i];
1466:         (*flink->func)(mod,time,cg->centroid,cx,ftmp,flink->ctx);
1467:       }
1468:       for (i=0; i<fcount; i++) {
1469:         fmin[i]       = PetscMin(fmin[i],ftmp[i]);
1470:         fmax[i]       = PetscMax(fmax[i],ftmp[i]);
1471:         fintegral[i] += cg->volume * ftmp[i];
1472:       }
1473:     }
1474:     VecRestoreArrayRead(cellgeom,&cgeom);
1475:     VecRestoreArrayRead(X,&x);
1476:     DMDestroy(&plex);
1477:     MPI_Allreduce(MPI_IN_PLACE,fmin,fcount,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
1478:     MPI_Allreduce(MPI_IN_PLACE,fmax,fcount,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
1479:     MPI_Allreduce(MPI_IN_PLACE,fintegral,fcount,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

1481:     ftablealloc = fcount * 100;
1482:     ftableused  = 0;
1483:     PetscMalloc1(ftablealloc,&ftable);
1484:     for (i=0; i<mod->numMonitored; i++) {
1485:       size_t         countused;
1486:       char           buffer[256],*p;
1487:       FunctionalLink flink = mod->functionalMonitored[i];
1488:       PetscInt       id    = flink->offset;
1489:       if (i % 3) {
1490:         PetscArraycpy(buffer,"  ",2);
1491:         p    = buffer + 2;
1492:       } else if (i) {
1493:         char newline[] = "\n";
1494:         PetscMemcpy(buffer,newline,sizeof(newline)-1);
1495:         p    = buffer + sizeof(newline) - 1;
1496:       } else {
1497:         p = buffer;
1498:       }
1499:       PetscSNPrintfCount(p,sizeof buffer-(p-buffer),"%12s [%10.7g,%10.7g] int %10.7g",&countused,flink->name,(double)fmin[id],(double)fmax[id],(double)fintegral[id]);
1500:       countused--;
1501:       countused += p - buffer;
1502:       if (countused > ftablealloc-ftableused-1) { /* reallocate */
1503:         char *ftablenew;
1504:         ftablealloc = 2*ftablealloc + countused;
1505:         PetscMalloc(ftablealloc,&ftablenew);
1506:         PetscArraycpy(ftablenew,ftable,ftableused);
1507:         PetscFree(ftable);
1508:         ftable = ftablenew;
1509:       }
1510:       PetscArraycpy(ftable+ftableused,buffer,countused);
1511:       ftableused += countused;
1512:       ftable[ftableused] = 0;
1513:     }
1514:     PetscFree4(fmin,fmax,fintegral,ftmp);

1516:     PetscPrintf(PetscObjectComm((PetscObject)ts),"% 3D  time %8.4g  |x| %8.4g  %s\n",stepnum,(double)time,(double)xnorm,ftable ? ftable : "");
1517:     PetscFree(ftable);
1518:   }
1519:   if (user->vtkInterval < 1) return(0);
1520:   if ((stepnum == -1) ^ (stepnum % user->vtkInterval == 0)) {
1521:     if (stepnum == -1) {        /* Final time is not multiple of normal time interval, write it anyway */
1522:       TSGetStepNumber(ts,&stepnum);
1523:     }
1524:     PetscSNPrintf(filename,sizeof filename,"%s-%03D.vtu",user->outputBasename,stepnum);
1525:     OutputVTK(dm,filename,&viewer);
1526:     VecView(X,viewer);
1527:     PetscViewerDestroy(&viewer);
1528:   }
1529:   return(0);
1530: }

1532: static PetscErrorCode initializeTS(DM dm, User user, TS *ts)
1533: {

1537:   TSCreate(PetscObjectComm((PetscObject)dm), ts);
1538:   TSSetType(*ts, TSSSP);
1539:   TSSetDM(*ts, dm);
1540:   if (user->vtkmon) {
1541:     TSMonitorSet(*ts,MonitorVTK,user,NULL);
1542:   }
1543:   DMTSSetBoundaryLocal(dm, DMPlexTSComputeBoundary, user);
1544:   DMTSSetRHSFunctionLocal(dm, DMPlexTSComputeRHSFunctionFVM, user);
1545:   TSSetMaxTime(*ts,2.0);
1546:   TSSetExactFinalTime(*ts,TS_EXACTFINALTIME_STEPOVER);
1547:   return(0);
1548: }

1550: static PetscErrorCode adaptToleranceFVM(PetscFV fvm, TS ts, Vec sol, VecTagger refineTag, VecTagger coarsenTag, User user, TS *tsNew, Vec *solNew)
1551: {
1552:   DM                dm, gradDM, plex, cellDM, adaptedDM = NULL;
1553:   Vec               cellGeom, faceGeom;
1554:   PetscBool         isForest, computeGradient;
1555:   Vec               grad, locGrad, locX, errVec;
1556:   PetscInt          cStart, cEnd, c, dim, nRefine, nCoarsen;
1557:   PetscReal         minMaxInd[2] = {PETSC_MAX_REAL, PETSC_MIN_REAL}, minMaxIndGlobal[2], minInd, maxInd, time;
1558:   PetscScalar       *errArray;
1559:   const PetscScalar *pointVals;
1560:   const PetscScalar *pointGrads;
1561:   const PetscScalar *pointGeom;
1562:   DMLabel           adaptLabel = NULL;
1563:   IS                refineIS, coarsenIS;
1564:   PetscErrorCode    ierr;

1567:   TSGetTime(ts,&time);
1568:   VecGetDM(sol, &dm);
1569:   DMGetDimension(dm,&dim);
1570:   PetscFVGetComputeGradients(fvm,&computeGradient);
1571:   PetscFVSetComputeGradients(fvm,PETSC_TRUE);
1572:   DMIsForest(dm, &isForest);
1573:   DMConvert(dm, DMPLEX, &plex);
1574:   DMPlexGetDataFVM(plex, fvm, &cellGeom, &faceGeom, &gradDM);
1575:   DMCreateLocalVector(plex,&locX);
1576:   DMPlexInsertBoundaryValues(plex, PETSC_TRUE, locX, 0.0, faceGeom, cellGeom, NULL);
1577:   DMGlobalToLocalBegin(plex, sol, INSERT_VALUES, locX);
1578:   DMGlobalToLocalEnd  (plex, sol, INSERT_VALUES, locX);
1579:   DMCreateGlobalVector(gradDM, &grad);
1580:   DMPlexReconstructGradientsFVM(plex, locX, grad);
1581:   DMCreateLocalVector(gradDM, &locGrad);
1582:   DMGlobalToLocalBegin(gradDM, grad, INSERT_VALUES, locGrad);
1583:   DMGlobalToLocalEnd(gradDM, grad, INSERT_VALUES, locGrad);
1584:   VecDestroy(&grad);
1585:   DMPlexGetSimplexOrBoxCells(plex,0,&cStart,&cEnd);
1586:   VecGetArrayRead(locGrad,&pointGrads);
1587:   VecGetArrayRead(cellGeom,&pointGeom);
1588:   VecGetArrayRead(locX,&pointVals);
1589:   VecGetDM(cellGeom,&cellDM);
1590:   DMLabelCreate(PETSC_COMM_SELF,"adapt",&adaptLabel);
1591:   VecCreateMPI(PetscObjectComm((PetscObject)plex),cEnd-cStart,PETSC_DETERMINE,&errVec);
1592:   VecSetUp(errVec);
1593:   VecGetArray(errVec,&errArray);
1594:   for (c = cStart; c < cEnd; c++) {
1595:     PetscReal             errInd = 0.;
1596:     PetscScalar           *pointGrad;
1597:     PetscScalar           *pointVal;
1598:     PetscFVCellGeom       *cg;

1600:     DMPlexPointLocalRead(gradDM,c,pointGrads,&pointGrad);
1601:     DMPlexPointLocalRead(cellDM,c,pointGeom,&cg);
1602:     DMPlexPointLocalRead(plex,c,pointVals,&pointVal);

1604:     (user->model->errorIndicator)(dim,cg->volume,user->model->physics->dof,pointVal,pointGrad,&errInd,user->model->errorCtx);
1605:     errArray[c-cStart] = errInd;
1606:     minMaxInd[0] = PetscMin(minMaxInd[0],errInd);
1607:     minMaxInd[1] = PetscMax(minMaxInd[1],errInd);
1608:   }
1609:   VecRestoreArray(errVec,&errArray);
1610:   VecRestoreArrayRead(locX,&pointVals);
1611:   VecRestoreArrayRead(cellGeom,&pointGeom);
1612:   VecRestoreArrayRead(locGrad,&pointGrads);
1613:   VecDestroy(&locGrad);
1614:   VecDestroy(&locX);
1615:   DMDestroy(&plex);

1617:   VecTaggerComputeIS(refineTag,errVec,&refineIS);
1618:   VecTaggerComputeIS(coarsenTag,errVec,&coarsenIS);
1619:   ISGetSize(refineIS,&nRefine);
1620:   ISGetSize(coarsenIS,&nCoarsen);
1621:   if (nRefine) {DMLabelSetStratumIS(adaptLabel,DM_ADAPT_REFINE,refineIS);}
1622:   if (nCoarsen) {DMLabelSetStratumIS(adaptLabel,DM_ADAPT_COARSEN,coarsenIS);}
1623:   ISDestroy(&coarsenIS);
1624:   ISDestroy(&refineIS);
1625:   VecDestroy(&errVec);

1627:   PetscFVSetComputeGradients(fvm,computeGradient);
1628:   minMaxInd[1] = -minMaxInd[1];
1629:   MPI_Allreduce(minMaxInd,minMaxIndGlobal,2,MPIU_REAL,MPI_MIN,PetscObjectComm((PetscObject)dm));
1630:   minInd = minMaxIndGlobal[0];
1631:   maxInd = -minMaxIndGlobal[1];
1632:   PetscInfo2(ts, "error indicator range (%E, %E)\n", minInd, maxInd);
1633:   if (nRefine || nCoarsen) { /* at least one cell is over the refinement threshold */
1634:     DMAdaptLabel(dm,adaptLabel,&adaptedDM);
1635:   }
1636:   DMLabelDestroy(&adaptLabel);
1637:   if (adaptedDM) {
1638:     PetscInfo2(ts, "Adapted mesh, marking %D cells for refinement, and %D cells for coarsening\n", nRefine, nCoarsen);
1639:     if (tsNew) {initializeTS(adaptedDM, user, tsNew);}
1640:     if (solNew) {
1641:       DMCreateGlobalVector(adaptedDM, solNew);
1642:       PetscObjectSetName((PetscObject) *solNew, "solution");
1643:       DMForestTransferVec(dm, sol, adaptedDM, *solNew, PETSC_TRUE, time);
1644:     }
1645:     if (isForest) {DMForestSetAdaptivityForest(adaptedDM,NULL);} /* clear internal references to the previous dm */
1646:     DMDestroy(&adaptedDM);
1647:   } else {
1648:     if (tsNew)  *tsNew  = NULL;
1649:     if (solNew) *solNew = NULL;
1650:   }
1651:   return(0);
1652: }

1654: int main(int argc, char **argv)
1655: {
1656:   MPI_Comm          comm;
1657:   PetscDS           prob;
1658:   PetscFV           fvm;
1659:   PetscLimiter      limiter = NULL, noneLimiter = NULL;
1660:   User              user;
1661:   Model             mod;
1662:   Physics           phys;
1663:   DM                dm, plex;
1664:   PetscReal         ftime, cfl, dt, minRadius;
1665:   PetscInt          dim, nsteps;
1666:   TS                ts;
1667:   TSConvergedReason reason;
1668:   Vec               X;
1669:   PetscViewer       viewer;
1670:   PetscBool         simplex = PETSC_FALSE, vtkCellGeom, splitFaces, useAMR;
1671:   PetscInt          overlap, adaptInterval;
1672:   char              filename[PETSC_MAX_PATH_LEN] = "";
1673:   char              physname[256]  = "advect";
1674:   VecTagger         refineTag = NULL, coarsenTag = NULL;
1675:   PetscErrorCode    ierr;

1677:   PetscInitialize(&argc, &argv, (char*) 0, help);if (ierr) return ierr;
1678:   comm = PETSC_COMM_WORLD;

1680:   PetscNew(&user);
1681:   PetscNew(&user->model);
1682:   PetscNew(&user->model->physics);
1683:   mod           = user->model;
1684:   phys          = mod->physics;
1685:   mod->comm     = comm;
1686:   useAMR        = PETSC_FALSE;
1687:   adaptInterval = 1;

1689:   /* Register physical models to be available on the command line */
1690:   PetscFunctionListAdd(&PhysicsList,"advect"          ,PhysicsCreate_Advect);
1691:   PetscFunctionListAdd(&PhysicsList,"sw"              ,PhysicsCreate_SW);
1692:   PetscFunctionListAdd(&PhysicsList,"euler"           ,PhysicsCreate_Euler);


1695:   PetscOptionsBegin(comm,NULL,"Unstructured Finite Volume Mesh Options","");
1696:   {
1697:     cfl  = 0.9 * 4; /* default SSPRKS2 with s=5 stages is stable for CFL number s-1 */
1698:     PetscOptionsReal("-ufv_cfl","CFL number per step","",cfl,&cfl,NULL);
1699:     PetscOptionsString("-f","Exodus.II filename to read","",filename,filename,sizeof(filename),NULL);
1700:     PetscOptionsBool("-simplex","Flag to use a simplex mesh","",simplex,&simplex,NULL);
1701:     splitFaces = PETSC_FALSE;
1702:     PetscOptionsBool("-ufv_split_faces","Split faces between cell sets","",splitFaces,&splitFaces,NULL);
1703:     overlap = 1;
1704:     PetscOptionsInt("-ufv_mesh_overlap","Number of cells to overlap partitions","",overlap,&overlap,NULL);
1705:     user->vtkInterval = 1;
1706:     PetscOptionsInt("-ufv_vtk_interval","VTK output interval (0 to disable)","",user->vtkInterval,&user->vtkInterval,NULL);
1707:     user->vtkmon = PETSC_TRUE;
1708:     PetscOptionsBool("-ufv_vtk_monitor","Use VTKMonitor routine","",user->vtkmon,&user->vtkmon,NULL);
1709:     vtkCellGeom = PETSC_FALSE;
1710:     PetscStrcpy(user->outputBasename, "ex11");
1711:     PetscOptionsString("-ufv_vtk_basename","VTK output basename","",user->outputBasename,user->outputBasename,sizeof(user->outputBasename),NULL);
1712:     PetscOptionsBool("-ufv_vtk_cellgeom","Write cell geometry (for debugging)","",vtkCellGeom,&vtkCellGeom,NULL);
1713:     PetscOptionsBool("-ufv_use_amr","use local adaptive mesh refinement","",useAMR,&useAMR,NULL);
1714:     PetscOptionsInt("-ufv_adapt_interval","time steps between AMR","",adaptInterval,&adaptInterval,NULL);
1715:   }
1716:   PetscOptionsEnd();

1718:   if (useAMR) {
1719:     VecTaggerBox refineBox, coarsenBox;

1721:     refineBox.min  = refineBox.max  = PETSC_MAX_REAL;
1722:     coarsenBox.min = coarsenBox.max = PETSC_MIN_REAL;

1724:     VecTaggerCreate(comm,&refineTag);
1725:     PetscObjectSetOptionsPrefix((PetscObject)refineTag,"refine_");
1726:     VecTaggerSetType(refineTag,VECTAGGERABSOLUTE);
1727:     VecTaggerAbsoluteSetBox(refineTag,&refineBox);
1728:     VecTaggerSetFromOptions(refineTag);
1729:     VecTaggerSetUp(refineTag);
1730:     PetscObjectViewFromOptions((PetscObject)refineTag,NULL,"-tag_view");

1732:     VecTaggerCreate(comm,&coarsenTag);
1733:     PetscObjectSetOptionsPrefix((PetscObject)coarsenTag,"coarsen_");
1734:     VecTaggerSetType(coarsenTag,VECTAGGERABSOLUTE);
1735:     VecTaggerAbsoluteSetBox(coarsenTag,&coarsenBox);
1736:     VecTaggerSetFromOptions(coarsenTag);
1737:     VecTaggerSetUp(coarsenTag);
1738:     PetscObjectViewFromOptions((PetscObject)coarsenTag,NULL,"-tag_view");
1739:   }

1741:   PetscOptionsBegin(comm,NULL,"Unstructured Finite Volume Physics Options","");
1742:   {
1743:     PetscErrorCode (*physcreate)(Model,Physics,PetscOptionItems*);
1744:     PetscOptionsFList("-physics","Physics module to solve","",PhysicsList,physname,physname,sizeof physname,NULL);
1745:     PetscFunctionListFind(PhysicsList,physname,&physcreate);
1746:     PetscMemzero(phys,sizeof(struct _n_Physics));
1747:     (*physcreate)(mod,phys,PetscOptionsObject);
1748:     /* Count number of fields and dofs */
1749:     for (phys->nfields=0,phys->dof=0; phys->field_desc[phys->nfields].name; phys->nfields++) phys->dof += phys->field_desc[phys->nfields].dof;
1750:     if (phys->dof <= 0) SETERRQ1(comm,PETSC_ERR_ARG_WRONGSTATE,"Physics '%s' did not set dof",physname);
1751:     ModelFunctionalSetFromOptions(mod,PetscOptionsObject);
1752:   }
1753:   PetscOptionsEnd();

1755:   /* Create mesh */
1756:   {
1757:     size_t len,i;
1758:     for (i = 0; i < DIM; i++) { mod->bounds[2*i] = 0.; mod->bounds[2*i+1] = 1.;};
1759:     PetscStrlen(filename,&len);
1760:     dim = DIM;
1761:     if (!len) { /* a null name means just do a hex box */
1762:       PetscInt cells[3] = {1, 1, 1}; /* coarse mesh is one cell; refine from there */
1763:       PetscBool flg1, flg2, skew = PETSC_FALSE;
1764:       PetscInt nret1 = DIM;
1765:       PetscInt nret2 = 2*DIM;
1766:       PetscOptionsBegin(comm,NULL,"Rectangular mesh options","");
1767:       PetscOptionsIntArray("-grid_size","number of cells in each direction","",cells,&nret1,&flg1);
1768:       PetscOptionsRealArray("-grid_bounds","bounds of the mesh in each direction (i.e., x_min,x_max,y_min,y_max","",mod->bounds,&nret2,&flg2);
1769:       PetscOptionsBool("-grid_skew_60","Skew grid for 60 degree shock mesh","",skew,&skew,NULL);
1770:       PetscOptionsEnd();
1771:       if (flg1) {
1772:         dim = nret1;
1773:         if (dim != DIM) SETERRQ1(comm,PETSC_ERR_ARG_SIZ,"Dim wrong size %D in -grid_size",dim);
1774:       }
1775:       DMPlexCreateBoxMesh(comm, dim, simplex, cells, NULL, NULL, mod->bcs, PETSC_TRUE, &dm);
1776:       if (flg2) {
1777:         PetscInt dimEmbed, i;
1778:         PetscInt nCoords;
1779:         PetscScalar *coords;
1780:         Vec coordinates;

1782:         DMGetCoordinatesLocal(dm,&coordinates);
1783:         DMGetCoordinateDim(dm,&dimEmbed);
1784:         VecGetLocalSize(coordinates,&nCoords);
1785:         if (nCoords % dimEmbed) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Coordinate vector the wrong size");
1786:         VecGetArray(coordinates,&coords);
1787:         for (i = 0; i < nCoords; i += dimEmbed) {
1788:           PetscInt j;

1790:           PetscScalar *coord = &coords[i];
1791:           for (j = 0; j < dimEmbed; j++) {
1792:             coord[j] = mod->bounds[2 * j] + coord[j] * (mod->bounds[2 * j + 1] - mod->bounds[2 * j]);
1793:             if (dim==2 && cells[1]==1 && j==0 && skew) {
1794:               if (cells[0]==2 && i==8) {
1795:                 coord[j] = .57735026918963; /* hack to get 60 deg skewed mesh */
1796:               }
1797:               else if (cells[0]==3) {
1798:                 if (i==2 || i==10) coord[j] = mod->bounds[1]/4.;
1799:                 else if (i==4) coord[j] = mod->bounds[1]/2.;
1800:                 else if (i==12) coord[j] = 1.57735026918963*mod->bounds[1]/2.;
1801:               }
1802:             }
1803:           }
1804:         }
1805:         VecRestoreArray(coordinates,&coords);
1806:         DMSetCoordinatesLocal(dm,coordinates);
1807:       }
1808:     } else {
1809:       DMPlexCreateFromFile(comm, filename, PETSC_TRUE, &dm);
1810:     }
1811:   }
1812:   DMViewFromOptions(dm, NULL, "-orig_dm_view");
1813:   DMGetDimension(dm, &dim);

1815:   /* set up BCs, functions, tags */
1816:   DMCreateLabel(dm, "Face Sets");

1818:   mod->errorIndicator = ErrorIndicator_Simple;

1820:   {
1821:     DM dmDist;

1823:     DMSetBasicAdjacency(dm, PETSC_TRUE, PETSC_FALSE);
1824:     DMPlexDistribute(dm, overlap, NULL, &dmDist);
1825:     if (dmDist) {
1826:       DMDestroy(&dm);
1827:       dm   = dmDist;
1828:     }
1829:   }

1831:   DMSetFromOptions(dm);

1833:   {
1834:     DM gdm;

1836:     DMPlexConstructGhostCells(dm, NULL, NULL, &gdm);
1837:     DMDestroy(&dm);
1838:     dm   = gdm;
1839:     DMViewFromOptions(dm, NULL, "-dm_view");
1840:   }
1841:   if (splitFaces) {ConstructCellBoundary(dm, user);}
1842:   SplitFaces(&dm, "split faces", user);

1844:   PetscFVCreate(comm, &fvm);
1845:   PetscFVSetFromOptions(fvm);
1846:   PetscFVSetNumComponents(fvm, phys->dof);
1847:   PetscFVSetSpatialDimension(fvm, dim);
1848:   PetscObjectSetName((PetscObject) fvm,"");
1849:   {
1850:     PetscInt f, dof;
1851:     for (f=0,dof=0; f < phys->nfields; f++) {
1852:       PetscInt newDof = phys->field_desc[f].dof;

1854:       if (newDof == 1) {
1855:         PetscFVSetComponentName(fvm,dof,phys->field_desc[f].name);
1856:       }
1857:       else {
1858:         PetscInt j;

1860:         for (j = 0; j < newDof; j++) {
1861:           char     compName[256]  = "Unknown";

1863:           PetscSNPrintf(compName,sizeof(compName),"%s_%d",phys->field_desc[f].name,j);
1864:           PetscFVSetComponentName(fvm,dof+j,compName);
1865:         }
1866:       }
1867:       dof += newDof;
1868:     }
1869:   }
1870:   /* FV is now structured with one field having all physics as components */
1871:   DMAddField(dm, NULL, (PetscObject) fvm);
1872:   DMCreateDS(dm);
1873:   DMGetDS(dm, &prob);
1874:   PetscDSSetRiemannSolver(prob, 0, user->model->physics->riemann);
1875:   PetscDSSetContext(prob, 0, user->model->physics);
1876:   (*mod->setupbc)(prob,phys);
1877:   PetscDSSetFromOptions(prob);
1878:   {
1879:     char      convType[256];
1880:     PetscBool flg;

1882:     PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");
1883:     PetscOptionsFList("-dm_type","Convert DMPlex to another format","ex12",DMList,DMPLEX,convType,256,&flg);
1884:     PetscOptionsEnd();
1885:     if (flg) {
1886:       DM dmConv;

1888:       DMConvert(dm,convType,&dmConv);
1889:       if (dmConv) {
1890:         DMViewFromOptions(dmConv, NULL, "-dm_conv_view");
1891:         DMDestroy(&dm);
1892:         dm   = dmConv;
1893:         DMSetFromOptions(dm);
1894:       }
1895:     }
1896:   }

1898:   initializeTS(dm, user, &ts);

1900:   DMCreateGlobalVector(dm, &X);
1901:   PetscObjectSetName((PetscObject) X, "solution");
1902:   SetInitialCondition(dm, X, user);
1903:   if (useAMR) {
1904:     PetscInt adaptIter;

1906:     /* use no limiting when reconstructing gradients for adaptivity */
1907:     PetscFVGetLimiter(fvm, &limiter);
1908:     PetscObjectReference((PetscObject) limiter);
1909:     PetscLimiterCreate(PetscObjectComm((PetscObject) fvm), &noneLimiter);
1910:     PetscLimiterSetType(noneLimiter, PETSCLIMITERNONE);

1912:     PetscFVSetLimiter(fvm, noneLimiter);
1913:     for (adaptIter = 0; ; ++adaptIter) {
1914:       PetscLogDouble bytes;
1915:       TS             tsNew = NULL;

1917:       PetscMemoryGetCurrentUsage(&bytes);
1918:       PetscInfo2(ts, "refinement loop %D: memory used %g\n", adaptIter, bytes);
1919:       DMViewFromOptions(dm, NULL, "-initial_dm_view");
1920:       VecViewFromOptions(X, NULL, "-initial_vec_view");
1921: #if 0
1922:       if (viewInitial) {
1923:         PetscViewer viewer;
1924:         char        buf[256];
1925:         PetscBool   isHDF5, isVTK;

1927:         PetscViewerCreate(comm,&viewer);
1928:         PetscViewerSetType(viewer,PETSCVIEWERVTK);
1929:         PetscViewerSetOptionsPrefix(viewer,"initial_");
1930:         PetscViewerSetFromOptions(viewer);
1931:         PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,&isHDF5);
1932:         PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERVTK,&isVTK);
1933:         if (isHDF5) {
1934:           PetscSNPrintf(buf, 256, "ex11-initial-%d.h5", adaptIter);
1935:         } else if (isVTK) {
1936:           PetscSNPrintf(buf, 256, "ex11-initial-%d.vtu", adaptIter);
1937:           PetscViewerPushFormat(viewer,PETSC_VIEWER_VTK_VTU);
1938:         }
1939:         PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);
1940:         PetscViewerFileSetName(viewer,buf);
1941:         if (isHDF5) {
1942:           DMView(dm,viewer);
1943:           PetscViewerFileSetMode(viewer,FILE_MODE_UPDATE);
1944:         }
1945:         VecView(X,viewer);
1946:         PetscViewerDestroy(&viewer);
1947:       }
1948: #endif

1950:       adaptToleranceFVM(fvm, ts, X, refineTag, coarsenTag, user, &tsNew, NULL);
1951:       if (!tsNew) {
1952:         break;
1953:       } else {
1954:         DMDestroy(&dm);
1955:         VecDestroy(&X);
1956:         TSDestroy(&ts);
1957:         ts   = tsNew;
1958:         TSGetDM(ts,&dm);
1959:         PetscObjectReference((PetscObject)dm);
1960:         DMCreateGlobalVector(dm,&X);
1961:         PetscObjectSetName((PetscObject) X, "solution");
1962:         SetInitialCondition(dm, X, user);
1963:       }
1964:     }
1965:     /* restore original limiter */
1966:     PetscFVSetLimiter(fvm, limiter);
1967:   }

1969:   DMConvert(dm, DMPLEX, &plex);
1970:   if (vtkCellGeom) {
1971:     DM  dmCell;
1972:     Vec cellgeom, partition;

1974:     DMPlexGetGeometryFVM(plex, NULL, &cellgeom, NULL);
1975:     OutputVTK(dm, "ex11-cellgeom.vtk", &viewer);
1976:     VecView(cellgeom, viewer);
1977:     PetscViewerDestroy(&viewer);
1978:     CreatePartitionVec(dm, &dmCell, &partition);
1979:     OutputVTK(dmCell, "ex11-partition.vtk", &viewer);
1980:     VecView(partition, viewer);
1981:     PetscViewerDestroy(&viewer);
1982:     VecDestroy(&partition);
1983:     DMDestroy(&dmCell);
1984:   }
1985:   /* collect max maxspeed from all processes -- todo */
1986:   DMPlexGetGeometryFVM(plex, NULL, NULL, &minRadius);
1987:   DMDestroy(&plex);
1988:   MPI_Allreduce(&phys->maxspeed,&mod->maxspeed,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
1989:   if (mod->maxspeed <= 0) SETERRQ1(comm,PETSC_ERR_ARG_WRONGSTATE,"Physics '%s' did not set maxspeed",physname);
1990:   dt   = cfl * minRadius / mod->maxspeed;
1991:   TSSetTimeStep(ts,dt);
1992:   TSSetFromOptions(ts);
1993:   if (!useAMR) {
1994:     TSSolve(ts,X);
1995:     TSGetSolveTime(ts,&ftime);
1996:     TSGetStepNumber(ts,&nsteps);
1997:   } else {
1998:     PetscReal finalTime;
1999:     PetscInt  adaptIter;
2000:     TS        tsNew = NULL;
2001:     Vec       solNew = NULL;

2003:     TSGetMaxTime(ts,&finalTime);
2004:     TSSetMaxSteps(ts,adaptInterval);
2005:     TSSolve(ts,X);
2006:     TSGetSolveTime(ts,&ftime);
2007:     TSGetStepNumber(ts,&nsteps);
2008:     for (adaptIter = 0;ftime < finalTime;adaptIter++) {
2009:       PetscLogDouble bytes;

2011:       PetscMemoryGetCurrentUsage(&bytes);
2012:       PetscInfo2(ts, "AMR time step loop %D: memory used %g\n", adaptIter, bytes);
2013:       PetscFVSetLimiter(fvm,noneLimiter);
2014:       adaptToleranceFVM(fvm,ts,X,refineTag,coarsenTag,user,&tsNew,&solNew);
2015:       PetscFVSetLimiter(fvm,limiter);
2016:       if (tsNew) {
2017:         PetscInfo(ts, "AMR used\n");
2018:         DMDestroy(&dm);
2019:         VecDestroy(&X);
2020:         TSDestroy(&ts);
2021:         ts   = tsNew;
2022:         X    = solNew;
2023:         TSSetFromOptions(ts);
2024:         VecGetDM(X,&dm);
2025:         PetscObjectReference((PetscObject)dm);
2026:         DMConvert(dm, DMPLEX, &plex);
2027:         DMPlexGetGeometryFVM(dm, NULL, NULL, &minRadius);
2028:         DMDestroy(&plex);
2029:         MPI_Allreduce(&phys->maxspeed,&mod->maxspeed,1,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
2030:         if (mod->maxspeed <= 0) SETERRQ1(comm,PETSC_ERR_ARG_WRONGSTATE,"Physics '%s' did not set maxspeed",physname);
2031:         dt   = cfl * minRadius / mod->maxspeed;
2032:         TSSetStepNumber(ts,nsteps);
2033:         TSSetTime(ts,ftime);
2034:         TSSetTimeStep(ts,dt);
2035:       } else {
2036:         PetscInfo(ts, "AMR not used\n");
2037:       }
2038:       user->monitorStepOffset = nsteps;
2039:       TSSetMaxSteps(ts,nsteps+adaptInterval);
2040:       TSSolve(ts,X);
2041:       TSGetSolveTime(ts,&ftime);
2042:       TSGetStepNumber(ts,&nsteps);
2043:     }
2044:   }
2045:   TSGetConvergedReason(ts,&reason);
2046:   PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after %D steps\n",TSConvergedReasons[reason],(double)ftime,nsteps);
2047:   TSDestroy(&ts);

2049:   VecTaggerDestroy(&refineTag);
2050:   VecTaggerDestroy(&coarsenTag);
2051:   PetscFunctionListDestroy(&PhysicsList);
2052:   PetscFunctionListDestroy(&PhysicsRiemannList_SW);
2053:   FunctionalLinkDestroy(&user->model->functionalRegistry);
2054:   PetscFree(user->model->functionalMonitored);
2055:   PetscFree(user->model->functionalCall);
2056:   PetscFree(user->model->physics->data);
2057:   PetscFree(user->model->physics);
2058:   PetscFree(user->model);
2059:   PetscFree(user);
2060:   VecDestroy(&X);
2061:   PetscLimiterDestroy(&limiter);
2062:   PetscLimiterDestroy(&noneLimiter);
2063:   PetscFVDestroy(&fvm);
2064:   DMDestroy(&dm);
2065:   PetscFinalize();
2066:   return ierr;
2067: }

2069: /* Godunov fluxs */
2070: PetscScalar cvmgp_(PetscScalar *a, PetscScalar *b, PetscScalar *test)
2071: {
2072:     /* System generated locals */
2073:     PetscScalar ret_val;

2075:     if (PetscRealPart(*test) > 0.) {
2076:         goto L10;
2077:     }
2078:     ret_val = *b;
2079:     return ret_val;
2080: L10:
2081:     ret_val = *a;
2082:     return ret_val;
2083: } /* cvmgp_ */

2085: PetscScalar cvmgm_(PetscScalar *a, PetscScalar *b, PetscScalar *test)
2086: {
2087:     /* System generated locals */
2088:     PetscScalar ret_val;

2090:     if (PetscRealPart(*test) < 0.) {
2091:         goto L10;
2092:     }
2093:     ret_val = *b;
2094:     return ret_val;
2095: L10:
2096:     ret_val = *a;
2097:     return ret_val;
2098: } /* cvmgm_ */

2100: int riem1mdt( PetscScalar *gaml, PetscScalar *gamr, PetscScalar *rl, PetscScalar *pl,
2101:               PetscScalar *uxl, PetscScalar *rr, PetscScalar *pr,
2102:               PetscScalar *uxr, PetscScalar *rstarl, PetscScalar *rstarr, PetscScalar *
2103:               pstar, PetscScalar *ustar)
2104: {
2105:     /* Initialized data */

2107:     static PetscScalar smallp = 1e-8;

2109:     /* System generated locals */
2110:     int i__1;
2111:     PetscScalar d__1, d__2;

2113:     /* Local variables */
2114:     static int i0;
2115:     static PetscScalar cl, cr, wl, zl, wr, zr, pst, durl, skpr1, skpr2;
2116:     static int iwave;
2117:     static PetscScalar gascl4, gascr4, cstarl, dpstar, cstarr;
2118:     /* static PetscScalar csqrl, csqrr, gascl1, gascl2, gascl3, gascr1, gascr2, gascr3; */
2119:     static int iterno;
2120:     static PetscScalar ustarl, ustarr, rarepr1, rarepr2;



2124:     /* gascl1 = *gaml - 1.; */
2125:     /* gascl2 = (*gaml + 1.) * .5; */
2126:     /* gascl3 = gascl2 / *gaml; */
2127:     gascl4 = 1. / (*gaml - 1.);

2129:     /* gascr1 = *gamr - 1.; */
2130:     /* gascr2 = (*gamr + 1.) * .5; */
2131:     /* gascr3 = gascr2 / *gamr; */
2132:     gascr4 = 1. / (*gamr - 1.);
2133:     iterno = 10;
2134: /*        find pstar: */
2135:     cl = PetscSqrtScalar(*gaml * *pl / *rl);
2136:     cr = PetscSqrtScalar(*gamr * *pr / *rr);
2137:     wl = *rl * cl;
2138:     wr = *rr * cr;
2139:     /* csqrl = wl * wl; */
2140:     /* csqrr = wr * wr; */
2141:     *pstar = (wl * *pr + wr * *pl) / (wl + wr);
2142:     *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
2143:     pst = *pl / *pr;
2144:     skpr1 = cr * (pst - 1.) * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
2145:     d__1 = (*gamr - 1.) / (*gamr * 2.);
2146:     rarepr2 = gascr4 * 2. * cr * (1. - PetscPowScalar(pst, d__1));
2147:     pst = *pr / *pl;
2148:     skpr2 = cl * (pst - 1.) * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
2149:     d__1 = (*gaml - 1.) / (*gaml * 2.);
2150:     rarepr1 = gascl4 * 2. * cl * (1. - PetscPowScalar(pst, d__1));
2151:     durl = *uxr - *uxl;
2152:     if (PetscRealPart(*pr) < PetscRealPart(*pl)) {
2153:         if (PetscRealPart(durl) >= PetscRealPart(rarepr1)) {
2154:             iwave = 100;
2155:         } else if (PetscRealPart(durl) <= PetscRealPart(-skpr1)) {
2156:             iwave = 300;
2157:         } else {
2158:             iwave = 400;
2159:         }
2160:     } else {
2161:         if (PetscRealPart(durl) >= PetscRealPart(rarepr2)) {
2162:             iwave = 100;
2163:         } else if (PetscRealPart(durl) <= PetscRealPart(-skpr2)) {
2164:             iwave = 300;
2165:         } else {
2166:             iwave = 200;
2167:         }
2168:     }
2169:     if (iwave == 100) {
2170: /*     1-wave: rarefaction wave, 3-wave: rarefaction wave */
2171: /*     case (100) */
2172:         i__1 = iterno;
2173:         for (i0 = 1; i0 <= i__1; ++i0) {
2174:             d__1 = *pstar / *pl;
2175:             d__2 = 1. / *gaml;
2176:             *rstarl = *rl * PetscPowScalar(d__1, d__2);
2177:             cstarl = PetscSqrtScalar(*gaml * *pstar / *rstarl);
2178:             ustarl = *uxl - gascl4 * 2. * (cstarl - cl);
2179:             zl = *rstarl * cstarl;
2180:             d__1 = *pstar / *pr;
2181:             d__2 = 1. / *gamr;
2182:             *rstarr = *rr * PetscPowScalar(d__1, d__2);
2183:             cstarr = PetscSqrtScalar(*gamr * *pstar / *rstarr);
2184:             ustarr = *uxr + gascr4 * 2. * (cstarr - cr);
2185:             zr = *rstarr * cstarr;
2186:             dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
2187:             *pstar -= dpstar;
2188:             *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
2189:             if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
2190: #if 0
2191:         break;
2192: #endif
2193:             }
2194:         }
2195: /*     1-wave: shock wave, 3-wave: rarefaction wave */
2196:     } else if (iwave == 200) {
2197: /*     case (200) */
2198:         i__1 = iterno;
2199:         for (i0 = 1; i0 <= i__1; ++i0) {
2200:             pst = *pstar / *pl;
2201:             ustarl = *uxl - (pst - 1.) * cl * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
2202:             zl = *pl / cl * PetscSqrtScalar(*gaml * 2. * (*gaml - 1. + (*gaml + 1.) * pst)) * (*gaml - 1. + (*gaml + 1.) * pst) / (*gaml * 3. - 1. + (*gaml + 1.) * pst);
2203:             d__1 = *pstar / *pr;
2204:             d__2 = 1. / *gamr;
2205:             *rstarr = *rr * PetscPowScalar(d__1, d__2);
2206:             cstarr = PetscSqrtScalar(*gamr * *pstar / *rstarr);
2207:             zr = *rstarr * cstarr;
2208:             ustarr = *uxr + gascr4 * 2. * (cstarr - cr);
2209:             dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
2210:             *pstar -= dpstar;
2211:             *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
2212:             if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
2213: #if 0
2214:         break;
2215: #endif
2216:             }
2217:         }
2218: /*     1-wave: shock wave, 3-wave: shock */
2219:     } else if (iwave == 300) {
2220: /*     case (300) */
2221:         i__1 = iterno;
2222:         for (i0 = 1; i0 <= i__1; ++i0) {
2223:             pst = *pstar / *pl;
2224:             ustarl = *uxl - (pst - 1.) * cl * PetscSqrtScalar(2. / (*gaml * (*gaml - 1. + (*gaml + 1.) * pst)));
2225:             zl = *pl / cl * PetscSqrtScalar(*gaml * 2. * (*gaml - 1. + (*gaml + 1.) * pst)) * (*gaml - 1. + (*gaml + 1.) * pst) / (*gaml * 3. - 1. + (*gaml + 1.) * pst);
2226:             pst = *pstar / *pr;
2227:             ustarr = *uxr + (pst - 1.) * cr * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
2228:             zr = *pr / cr * PetscSqrtScalar(*gamr * 2. * (*gamr - 1. + (*gamr + 1.) * pst)) * (*gamr - 1. + (*gamr + 1.) * pst) / (*gamr * 3. - 1. + (*gamr + 1.) * pst);
2229:             dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
2230:             *pstar -= dpstar;
2231:             *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
2232:             if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
2233: #if 0
2234:         break;
2235: #endif
2236:             }
2237:         }
2238: /*     1-wave: rarefaction wave, 3-wave: shock */
2239:     } else if (iwave == 400) {
2240: /*     case (400) */
2241:         i__1 = iterno;
2242:         for (i0 = 1; i0 <= i__1; ++i0) {
2243:             d__1 = *pstar / *pl;
2244:             d__2 = 1. / *gaml;
2245:             *rstarl = *rl * PetscPowScalar(d__1, d__2);
2246:             cstarl = PetscSqrtScalar(*gaml * *pstar / *rstarl);
2247:             ustarl = *uxl - gascl4 * 2. * (cstarl - cl);
2248:             zl = *rstarl * cstarl;
2249:             pst = *pstar / *pr;
2250:             ustarr = *uxr + (pst - 1.) * cr * PetscSqrtScalar(2. / (*gamr * (*gamr - 1. + (*gamr + 1.) * pst)));
2251:             zr = *pr / cr * PetscSqrtScalar(*gamr * 2. * (*gamr - 1. + (*gamr + 1.) * pst)) * (*gamr - 1. + (*gamr + 1.) * pst) / (*gamr * 3. - 1. + (*gamr + 1.) * pst);
2252:             dpstar = zl * zr * (ustarr - ustarl) / (zl + zr);
2253:             *pstar -= dpstar;
2254:             *pstar = PetscMax(PetscRealPart(*pstar),PetscRealPart(smallp));
2255:             if (PetscAbsScalar(dpstar) / PetscRealPart(*pstar) <= 1e-8) {
2256: #if 0
2257:               break;
2258: #endif
2259:             }
2260:         }
2261:     }

2263:     *ustar = (zl * ustarr + zr * ustarl) / (zl + zr);
2264:     if (PetscRealPart(*pstar) > PetscRealPart(*pl)) {
2265:         pst = *pstar / *pl;
2266:         *rstarl = ((*gaml + 1.) * pst + *gaml - 1.) / ((*gaml - 1.) * pst + *
2267:                 gaml + 1.) * *rl;
2268:     }
2269:     if (PetscRealPart(*pstar) > PetscRealPart(*pr)) {
2270:         pst = *pstar / *pr;
2271:         *rstarr = ((*gamr + 1.) * pst + *gamr - 1.) / ((*gamr - 1.) * pst + *
2272:                 gamr + 1.) * *rr;
2273:     }
2274:     return iwave;
2275: }

2277: PetscScalar sign(PetscScalar x)
2278: {
2279:     if (PetscRealPart(x) > 0) return 1.0;
2280:     if (PetscRealPart(x) < 0) return -1.0;
2281:     return 0.0;
2282: }
2283: /*        Riemann Solver */
2284: /* -------------------------------------------------------------------- */
2285: int riemannsolver(PetscScalar *xcen, PetscScalar *xp,
2286:                    PetscScalar *dtt, PetscScalar *rl, PetscScalar *uxl, PetscScalar *pl,
2287:                    PetscScalar *utl, PetscScalar *ubl, PetscScalar *gaml, PetscScalar *rho1l,
2288:                    PetscScalar *rr, PetscScalar *uxr, PetscScalar *pr, PetscScalar *utr,
2289:                    PetscScalar *ubr, PetscScalar *gamr, PetscScalar *rho1r, PetscScalar *rx,
2290:                    PetscScalar *uxm, PetscScalar *px, PetscScalar *utx, PetscScalar *ubx,
2291:                    PetscScalar *gam, PetscScalar *rho1)
2292: {
2293:     /* System generated locals */
2294:     PetscScalar d__1, d__2;

2296:     /* Local variables */
2297:     static PetscScalar s, c0, p0, r0, u0, w0, x0, x2, ri, cx, sgn0, wsp0, gasc1, gasc2, gasc3, gasc4;
2298:     static PetscScalar cstar, pstar, rstar, ustar, xstar, wspst, ushock, streng, rstarl, rstarr, rstars;
2299:     int iwave;

2301:     if (*rl == *rr && *pr == *pl && *uxl == *uxr && *gaml == *gamr) {
2302:         *rx = *rl;
2303:         *px = *pl;
2304:         *uxm = *uxl;
2305:         *gam = *gaml;
2306:         x2 = *xcen + *uxm * *dtt;

2308:         if (PetscRealPart(*xp) >= PetscRealPart(x2)) {
2309:             *utx = *utr;
2310:             *ubx = *ubr;
2311:             *rho1 = *rho1r;
2312:         } else {
2313:             *utx = *utl;
2314:             *ubx = *ubl;
2315:             *rho1 = *rho1l;
2316:         }
2317:         return 0;
2318:     }
2319:     iwave = riem1mdt(gaml, gamr, rl, pl, uxl, rr, pr, uxr, &rstarl, &rstarr, &pstar, &ustar);

2321:     x2 = *xcen + ustar * *dtt;
2322:     d__1 = *xp - x2;
2323:     sgn0 = sign(d__1);
2324: /*            x is in 3-wave if sgn0 = 1 */
2325: /*            x is in 1-wave if sgn0 = -1 */
2326:     r0 = cvmgm_(rl, rr, &sgn0);
2327:     p0 = cvmgm_(pl, pr, &sgn0);
2328:     u0 = cvmgm_(uxl, uxr, &sgn0);
2329:     *gam = cvmgm_(gaml, gamr, &sgn0);
2330:     gasc1 = *gam - 1.;
2331:     gasc2 = (*gam + 1.) * .5;
2332:     gasc3 = gasc2 / *gam;
2333:     gasc4 = 1. / (*gam - 1.);
2334:     c0 = PetscSqrtScalar(*gam * p0 / r0);
2335:     streng = pstar - p0;
2336:     w0 = *gam * r0 * p0 * (gasc3 * streng / p0 + 1.);
2337:     rstars = r0 / (1. - r0 * streng / w0);
2338:     d__1 = p0 / pstar;
2339:     d__2 = -1. / *gam;
2340:     rstarr = r0 * PetscPowScalar(d__1, d__2);
2341:     rstar = cvmgm_(&rstarr, &rstars, &streng);
2342:     w0 = PetscSqrtScalar(w0);
2343:     cstar = PetscSqrtScalar(*gam * pstar / rstar);
2344:     wsp0 = u0 + sgn0 * c0;
2345:     wspst = ustar + sgn0 * cstar;
2346:     ushock = ustar + sgn0 * w0 / rstar;
2347:     wspst = cvmgp_(&ushock, &wspst, &streng);
2348:     wsp0 = cvmgp_(&ushock, &wsp0, &streng);
2349:     x0 = *xcen + wsp0 * *dtt;
2350:     xstar = *xcen + wspst * *dtt;
2351: /*           using gas formula to evaluate rarefaction wave */
2352: /*            ri : reiman invariant */
2353:     ri = u0 - sgn0 * 2. * gasc4 * c0;
2354:     cx = sgn0 * .5 * gasc1 / gasc2 * ((*xp - *xcen) / *dtt - ri);
2355:     *uxm = ri + sgn0 * 2. * gasc4 * cx;
2356:     s = p0 / PetscPowScalar(r0, *gam);
2357:     d__1 = cx * cx / (*gam * s);
2358:     *rx = PetscPowScalar(d__1, gasc4);
2359:     *px = cx * cx * *rx / *gam;
2360:     d__1 = sgn0 * (x0 - *xp);
2361:     *rx = cvmgp_(rx, &r0, &d__1);
2362:     d__1 = sgn0 * (x0 - *xp);
2363:     *px = cvmgp_(px, &p0, &d__1);
2364:     d__1 = sgn0 * (x0 - *xp);
2365:     *uxm = cvmgp_(uxm, &u0, &d__1);
2366:     d__1 = sgn0 * (xstar - *xp);
2367:     *rx = cvmgm_(rx, &rstar, &d__1);
2368:     d__1 = sgn0 * (xstar - *xp);
2369:     *px = cvmgm_(px, &pstar, &d__1);
2370:     d__1 = sgn0 * (xstar - *xp);
2371:     *uxm = cvmgm_(uxm, &ustar, &d__1);
2372:     if (PetscRealPart(*xp) >= PetscRealPart(x2)) {
2373:         *utx = *utr;
2374:         *ubx = *ubr;
2375:         *rho1 = *rho1r;
2376:     } else {
2377:         *utx = *utl;
2378:         *ubx = *ubl;
2379:         *rho1 = *rho1l;
2380:     }
2381:     return iwave;
2382: }
2383: int godunovflux( const PetscScalar *ul, const PetscScalar *ur,
2384:                  PetscScalar *flux, const PetscReal *nn, const int *ndim,
2385:                  const PetscReal *gamma)
2386: {
2387:     /* System generated locals */
2388:   int i__1,iwave;
2389:     PetscScalar d__1, d__2, d__3;

2391:     /* Local variables */
2392:     static int k;
2393:     static PetscScalar bn[3], fn, ft, tg[3], pl, rl, pm, pr, rr, xp, ubl, ubm,
2394:             ubr, dtt, unm, tmp, utl, utm, uxl, utr, uxr, gaml, gamm, gamr,
2395:             xcen, rhom, rho1l, rho1m, rho1r;
2396:     /* Parameter adjustments */
2397:     --nn;
2398:     --flux;
2399:     --ur;
2400:     --ul;

2402:     /* Function Body */
2403:     xcen = 0.;
2404:     xp = 0.;
2405:     i__1 = *ndim;
2406:     for (k = 1; k <= i__1; ++k) {
2407:         tg[k - 1] = 0.;
2408:         bn[k - 1] = 0.;
2409:     }
2410:     dtt = 1.;
2411:     if (*ndim == 3) {
2412:         if (nn[1] == 0. && nn[2] == 0.) {
2413:             tg[0] = 1.;
2414:         } else {
2415:             tg[0] = -nn[2];
2416:             tg[1] = nn[1];
2417:         }
2418: /*           tmp=dsqrt(tg(1)**2+tg(2)**2) */
2419: /*           tg=tg/tmp */
2420:         bn[0] = -nn[3] * tg[1];
2421:         bn[1] = nn[3] * tg[0];
2422:         bn[2] = nn[1] * tg[1] - nn[2] * tg[0];
2423: /* Computing 2nd power */
2424:         d__1 = bn[0];
2425: /* Computing 2nd power */
2426:         d__2 = bn[1];
2427: /* Computing 2nd power */
2428:         d__3 = bn[2];
2429:         tmp = PetscSqrtScalar(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
2430:         i__1 = *ndim;
2431:         for (k = 1; k <= i__1; ++k) {
2432:             bn[k - 1] /= tmp;
2433:         }
2434:     } else if (*ndim == 2) {
2435:         tg[0] = -nn[2];
2436:         tg[1] = nn[1];
2437: /*           tmp=dsqrt(tg(1)**2+tg(2)**2) */
2438: /*           tg=tg/tmp */
2439:         bn[0] = 0.;
2440:         bn[1] = 0.;
2441:         bn[2] = 1.;
2442:     }
2443:     rl = ul[1];
2444:     rr = ur[1];
2445:     uxl = 0.;
2446:     uxr = 0.;
2447:     utl = 0.;
2448:     utr = 0.;
2449:     ubl = 0.;
2450:     ubr = 0.;
2451:     i__1 = *ndim;
2452:     for (k = 1; k <= i__1; ++k) {
2453:         uxl += ul[k + 1] * nn[k];
2454:         uxr += ur[k + 1] * nn[k];
2455:         utl += ul[k + 1] * tg[k - 1];
2456:         utr += ur[k + 1] * tg[k - 1];
2457:         ubl += ul[k + 1] * bn[k - 1];
2458:         ubr += ur[k + 1] * bn[k - 1];
2459:     }
2460:     uxl /= rl;
2461:     uxr /= rr;
2462:     utl /= rl;
2463:     utr /= rr;
2464:     ubl /= rl;
2465:     ubr /= rr;

2467:     gaml = *gamma;
2468:     gamr = *gamma;
2469: /* Computing 2nd power */
2470:     d__1 = uxl;
2471: /* Computing 2nd power */
2472:     d__2 = utl;
2473: /* Computing 2nd power */
2474:     d__3 = ubl;
2475:     pl = (*gamma - 1.) * (ul[*ndim + 2] - rl * .5 * (d__1 * d__1 + d__2 * d__2 + d__3 * d__3));
2476: /* Computing 2nd power */
2477:     d__1 = uxr;
2478: /* Computing 2nd power */
2479:     d__2 = utr;
2480: /* Computing 2nd power */
2481:     d__3 = ubr;
2482:     pr = (*gamma - 1.) * (ur[*ndim + 2] - rr * .5 * (d__1 * d__1 + d__2 * d__2 + d__3 * d__3));
2483:     rho1l = rl;
2484:     rho1r = rr;

2486:     iwave = riemannsolver(&xcen, &xp, &dtt, &rl, &uxl, &pl, &utl, &ubl, &gaml, &
2487:                           rho1l, &rr, &uxr, &pr, &utr, &ubr, &gamr, &rho1r, &rhom, &unm, &
2488:                           pm, &utm, &ubm, &gamm, &rho1m);

2490:     flux[1] = rhom * unm;
2491:     fn = rhom * unm * unm + pm;
2492:     ft = rhom * unm * utm;
2493: /*           flux(2)=fn*nn(1)+ft*nn(2) */
2494: /*           flux(3)=fn*tg(1)+ft*tg(2) */
2495:     flux[2] = fn * nn[1] + ft * tg[0];
2496:     flux[3] = fn * nn[2] + ft * tg[1];
2497: /*           flux(2)=rhom*unm*(unm)+pm */
2498: /*           flux(3)=rhom*(unm)*utm */
2499:     if (*ndim == 3) {
2500:         flux[4] = rhom * unm * ubm;
2501:     }
2502:     flux[*ndim + 2] = (rhom * .5 * (unm * unm + utm * utm + ubm * ubm) + gamm / (gamm - 1.) * pm) * unm;
2503:     return iwave;
2504: } /* godunovflux_ */

2506: /* Subroutine to set up the initial conditions for the */
2507: /* Shock Interface interaction or linear wave (Ravi Samtaney,Mark Adams). */
2508: /* ----------------------------------------------------------------------- */
2509: int projecteqstate(PetscReal wc[], const PetscReal ueq[], PetscReal lv[][3])
2510: {
2511:   int j,k;
2512: /*      Wc=matmul(lv,Ueq) 3 vars */
2513:   for (k = 0; k < 3; ++k) {
2514:     wc[k] = 0.;
2515:     for (j = 0; j < 3; ++j) {
2516:       wc[k] += lv[k][j]*ueq[j];
2517:     }
2518:   }
2519:   return 0;
2520: }
2521: /* ----------------------------------------------------------------------- */
2522: int projecttoprim(PetscReal v[], const PetscReal wc[], PetscReal rv[][3])
2523: {
2524:   int k,j;
2525:   /*      V=matmul(rv,WC) 3 vars */
2526:   for (k = 0; k < 3; ++k) {
2527:     v[k] = 0.;
2528:     for (j = 0; j < 3; ++j) {
2529:       v[k] += rv[k][j]*wc[j];
2530:     }
2531:   }
2532:   return 0;
2533: }
2534: /* ---------------------------------------------------------------------- */
2535: int eigenvectors(PetscReal rv[][3], PetscReal lv[][3], const PetscReal ueq[], PetscReal gamma)
2536: {
2537:   int j,k;
2538:   PetscReal rho,csnd,p0;
2539:   /* PetscScalar u; */

2541:   for (k = 0; k < 3; ++k) for (j = 0; j < 3; ++j) { lv[k][j] = 0.; rv[k][j] = 0.; }
2542:   rho = ueq[0];
2543:   /* u = ueq[1]; */
2544:   p0 = ueq[2];
2545:   csnd = PetscSqrtReal(gamma * p0 / rho);
2546:   lv[0][1] = rho * .5;
2547:   lv[0][2] = -.5 / csnd;
2548:   lv[1][0] = csnd;
2549:   lv[1][2] = -1. / csnd;
2550:   lv[2][1] = rho * .5;
2551:   lv[2][2] = .5 / csnd;
2552:   rv[0][0] = -1. / csnd;
2553:   rv[1][0] = 1. / rho;
2554:   rv[2][0] = -csnd;
2555:   rv[0][1] = 1. / csnd;
2556:   rv[0][2] = 1. / csnd;
2557:   rv[1][2] = 1. / rho;
2558:   rv[2][2] = csnd;
2559:   return 0;
2560: }

2562: int initLinearWave(EulerNode *ux, const PetscReal gamma, const PetscReal coord[], const PetscReal Lx)
2563: {
2564:   PetscReal p0,u0,wcp[3],wc[3];
2565:   PetscReal lv[3][3];
2566:   PetscReal vp[3];
2567:   PetscReal rv[3][3];
2568:   PetscReal eps, ueq[3], rho0, twopi;

2570:   /* Function Body */
2571:   twopi = 2.*PETSC_PI;
2572:   eps = 1e-4; /* perturbation */
2573:   rho0 = 1e3;   /* density of water */
2574:   p0 = 101325.; /* init pressure of 1 atm (?) */
2575:   u0 = 0.;
2576:   ueq[0] = rho0;
2577:   ueq[1] = u0;
2578:   ueq[2] = p0;
2579:   /* Project initial state to characteristic variables */
2580:   eigenvectors(rv, lv, ueq, gamma);
2581:   projecteqstate(wc, ueq, lv);
2582:   wcp[0] = wc[0];
2583:   wcp[1] = wc[1];
2584:   wcp[2] = wc[2] + eps * PetscCosReal(coord[0] * 2. * twopi / Lx);
2585:   projecttoprim(vp, wcp, rv);
2586:   ux->r = vp[0]; /* density */
2587:   ux->ru[0] = vp[0] * vp[1]; /* x momentum */
2588:   ux->ru[1] = 0.;
2589: #if defined DIM > 2
2590:   if (dim>2) ux->ru[2] = 0.;
2591: #endif
2592:   /* E = rho * e + rho * v^2/2 = p/(gam-1) + rho*v^2/2 */
2593:   ux->E = vp[2]/(gamma - 1.) + 0.5*vp[0]*vp[1]*vp[1];
2594:   return 0;
2595: }

2597: /*TEST

2599:   # 2D Advection 0-10
2600:   test:
2601:     suffix: 0
2602:     requires: exodusii
2603:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo

2605:   test:
2606:     suffix: 1
2607:     requires: exodusii
2608:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo

2610:   test:
2611:     suffix: 2
2612:     requires: exodusii
2613:     nsize: 2
2614:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo

2616:   test:
2617:     suffix: 3
2618:     requires: exodusii
2619:     nsize: 2
2620:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo

2622:   test:
2623:     suffix: 4
2624:     requires: exodusii
2625:     nsize: 8
2626:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad.exo

2628:   test:
2629:     suffix: 5
2630:     requires: exodusii
2631:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo -ts_type rosw -ts_adapt_reject_safety 1

2633:   test:
2634:     suffix: 6
2635:     requires: exodusii
2636:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/squaremotor-30.exo -ufv_split_faces

2638:   test:
2639:     suffix: 7
2640:     requires: exodusii
2641:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1

2643:   test:
2644:     suffix: 8
2645:     requires: exodusii
2646:     nsize: 2
2647:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1

2649:   test:
2650:     suffix: 9
2651:     requires: exodusii
2652:     nsize: 8
2653:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad-15.exo -dm_refine 1

2655:   test:
2656:     suffix: 10
2657:     requires: exodusii
2658:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside-quad.exo

2660:   # 2D Shallow water
2661:   test:
2662:     suffix: sw_0
2663:     requires: exodusii
2664:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -bc_wall 100,101 -physics sw -ufv_cfl 5 -petscfv_type leastsquares -petsclimiter_type sin -ts_max_time 1 -ts_ssp_type rks2 -ts_ssp_nstages 10 -monitor height,energy

2666:   test:
2667:     suffix: sw_hll
2668:     args: -ufv_vtk_interval 0 -bc_wall 1,2,3,4 -physics sw -ufv_cfl 3 -petscfv_type leastsquares -petsclimiter_type sin -ts_max_steps 5 -ts_ssp_type rks2 -ts_ssp_nstages 10 -monitor height,energy -grid_bounds 0,5,0,5 -grid_size 25,25 -sw_riemann hll

2670:   # 2D Advection: p4est
2671:   test:
2672:     suffix: p4est_advec_2d
2673:     requires: p4est
2674:     args: -ufv_vtk_interval 0 -f -dm_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 2 -dm_p4est_refine_pattern hash -dm_forest_maximum_refinement 5

2676:   # Advection in a box
2677:   test:
2678:     suffix: adv_2d_quad_0
2679:     args: -ufv_vtk_interval 0 -dm_refine 3 -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3

2681:   test:
2682:     suffix: adv_2d_quad_1
2683:     args: -ufv_vtk_interval 0 -dm_refine 3 -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1
2684:     timeoutfactor: 3

2686:   test:
2687:     suffix: adv_2d_quad_p4est_0
2688:     requires: p4est
2689:     args: -ufv_vtk_interval 0 -dm_refine 5 -dm_type p4est -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3

2691:   test:
2692:     suffix: adv_2d_quad_p4est_1
2693:     requires: p4est
2694:     args: -ufv_vtk_interval 0 -dm_refine 5 -dm_type p4est -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1
2695:     timeoutfactor: 3

2697:   test:
2698:     suffix: adv_2d_quad_p4est_adapt_0
2699:     requires: p4est !__float128 #broken for quad precision
2700:     args: -ufv_vtk_interval 0 -dm_refine 3 -dm_type p4est -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1 -ufv_use_amr -refine_vec_tagger_box 0.005,inf -coarsen_vec_tagger_box 0,1.e-5 -petscfv_type leastsquares -ts_max_time 0.01
2701:     timeoutfactor: 3

2703:   test:
2704:     suffix: adv_2d_tri_0
2705:     requires: triangle
2706:     TODO: how did this ever get in master when there is no support for this
2707:     args: -ufv_vtk_interval 0 -simplex -dm_refine 3 -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3

2709:   test:
2710:     suffix: adv_2d_tri_1
2711:     requires: triangle
2712:     TODO: how did this ever get in master when there is no support for this
2713:     args: -ufv_vtk_interval 0 -simplex -dm_refine 5 -dm_plex_separate_marker -grid_bounds -0.5,0.5,-0.5,0.5 -bc_inflow 1,2,4 -bc_outflow 3 -advect_sol_type bump -advect_bump_center 0.25,0 -advect_bump_radius 0.1

2715:   test:
2716:     suffix: adv_0
2717:     requires: exodusii
2718:     args: -ufv_vtk_interval 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/blockcylinder-50.exo -bc_inflow 100,101,200 -bc_outflow 201

2720:   test:
2721:     suffix: shock_0
2722:     requires: p4est !single !complex
2723:     args: -ufv_vtk_interval 0 -monitor density,energy -f -grid_size 2,1 -grid_bounds -1,1.,0.,1 -bc_wall 1,2,3,4 -dm_type p4est -dm_forest_partition_overlap 1 -dm_forest_maximum_refinement 6 -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -ufv_use_amr -refine_vec_tagger_box 0.5,inf -coarsen_vec_tagger_box 0,1.e-2 -refine_tag_view -coarsen_tag_view -physics euler -eu_type iv_shock -ufv_cfl 10 -eu_alpha 60. -grid_skew_60 -eu_gamma 1.4 -eu_amach 2.02 -eu_rho2 3. -petscfv_type leastsquares -petsclimiter_type minmod -petscfv_compute_gradients 0 -ts_max_time 0.5 -ts_ssp_type rks2 -ts_ssp_nstages 10 -ufv_vtk_basename ${wPETSC_DIR}/ex11
2724:     timeoutfactor: 3

2726:   # Test GLVis visualization of PetscFV fields
2727:   test:
2728:     suffix: glvis_adv_2d_tet
2729:     args: -ufv_vtk_interval 0 -ts_monitor_solution glvis: -ts_max_steps 0 -ufv_vtk_monitor 0 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_gmsh_periodic 0

2731:   test:
2732:     suffix: glvis_adv_2d_quad
2733:     args: -ufv_vtk_interval 0 -ts_monitor_solution glvis: -ts_max_steps 0 -ufv_vtk_monitor 0 -dm_refine 5 -dm_plex_separate_marker -bc_inflow 1,2,4 -bc_outflow 3

2735:   test:
2736:     suffix: tut_1
2737:     requires: exodusii
2738:     nsize: 1
2739:     args: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo

2741:   test:
2742:     suffix: tut_2
2743:     requires: exodusii
2744:     nsize: 1
2745:     args: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/sevenside.exo -ts_type rosw

2747:   test:
2748:     suffix: tut_3
2749:     requires: exodusii
2750:     nsize: 4
2751:     args: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -monitor Error -advect_sol_type bump -petscfv_type leastsquares -petsclimiter_type sin

2753:   test:
2754:     suffix: tut_4
2755:     requires: exodusii
2756:     nsize: 4
2757:     args: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/annulus-20.exo -physics sw -monitor Height,Energy -petscfv_type leastsquares -petsclimiter_type minmod

2759: TEST*/