Actual source code: ts.c
petsc-3.14.6 2021-03-30
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
6: #include <petscconvest.h>
8: #define SkipSmallValue(a,b,tol) if (PetscAbsScalar(a)< tol || PetscAbsScalar(b)< tol) continue;
10: /* Logging support */
11: PetscClassId TS_CLASSID, DMTS_CLASSID;
12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",NULL};
17: /*@C
18: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
20: Collective on TS
22: Input Parameters:
23: + ts - TS object you wish to monitor
24: . name - the monitor type one is seeking
25: . help - message indicating what monitoring is done
26: . manual - manual page for the monitor
27: . monitor - the monitor function
28: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
30: Level: developer
32: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
33: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
34: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
35: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
36: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
37: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
38: PetscOptionsFList(), PetscOptionsEList()
39: @*/
40: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
41: {
42: PetscErrorCode ierr;
43: PetscViewer viewer;
44: PetscViewerFormat format;
45: PetscBool flg;
48: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
49: if (flg) {
50: PetscViewerAndFormat *vf;
51: PetscViewerAndFormatCreate(viewer,format,&vf);
52: PetscObjectDereference((PetscObject)viewer);
53: if (monitorsetup) {
54: (*monitorsetup)(ts,vf);
55: }
56: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
57: }
58: return(0);
59: }
61: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
62: {
68: if (!((PetscObject)adapt)->type_name) {
69: TSAdaptSetType(adapt,default_type);
70: }
71: return(0);
72: }
74: /*@
75: TSSetFromOptions - Sets various TS parameters from user options.
77: Collective on TS
79: Input Parameter:
80: . ts - the TS context obtained from TSCreate()
82: Options Database Keys:
83: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
84: . -ts_save_trajectory - checkpoint the solution at each time-step
85: . -ts_max_time <time> - maximum time to compute to
86: . -ts_max_steps <steps> - maximum number of time-steps to take
87: . -ts_init_time <time> - initial time to start computation
88: . -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
89: . -ts_dt <dt> - initial time step
90: . -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that time
91: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
92: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
93: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
94: . -ts_rtol <rtol> - relative tolerance for local truncation error
95: . -ts_atol <atol> Absolute tolerance for local truncation error
96: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
97: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
98: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
99: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
100: . -ts_monitor - print information at each timestep
101: . -ts_monitor_lg_solution - Monitor solution graphically
102: . -ts_monitor_lg_error - Monitor error graphically
103: . -ts_monitor_error - Monitors norm of error
104: . -ts_monitor_lg_timestep - Monitor timestep size graphically
105: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
106: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
107: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
108: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
109: . -ts_monitor_draw_solution - Monitor solution graphically
110: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
111: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
112: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
113: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
114: - -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
116: Notes:
117: See SNESSetFromOptions() and KSPSetFromOptions() for how to control the nonlinear and linear solves used by the time-stepper.
119: Certain SNES options get reset for each new nonlinear solver, for example -snes_lag_jacobian <its> and -snes_lag_preconditioner <its>, in order
120: to retain them over the multiple nonlinear solves that TS uses you mush also provide -snes_lag_jacobian_persists true and
121: -snes_lag_preconditioner_persists true
123: Developer Note:
124: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
126: Level: beginner
128: .seealso: TSGetType()
129: @*/
130: PetscErrorCode TSSetFromOptions(TS ts)
131: {
132: PetscBool opt,flg,tflg;
133: PetscErrorCode ierr;
134: char monfilename[PETSC_MAX_PATH_LEN];
135: PetscReal time_step;
136: TSExactFinalTimeOption eftopt;
137: char dir[16];
138: TSIFunction ifun;
139: const char *defaultType;
140: char typeName[256];
145: TSRegisterAll();
146: TSGetIFunction(ts,NULL,&ifun,NULL);
148: PetscObjectOptionsBegin((PetscObject)ts);
149: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
150: else defaultType = ifun ? TSBEULER : TSEULER;
151: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
152: if (opt) {
153: TSSetType(ts,typeName);
154: } else {
155: TSSetType(ts,defaultType);
156: }
158: /* Handle generic TS options */
159: PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
160: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
161: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
162: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
163: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
164: if (flg) {TSSetTimeStep(ts,time_step);}
165: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
166: if (flg) {TSSetExactFinalTime(ts,eftopt);}
167: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
168: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
169: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
170: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
171: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
173: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
174: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
175: PetscOptionsBool("-ts_use_splitrhsfunction","Use the split RHS function for multirate solvers ","TSSetUseSplitRHSFunction",ts->use_splitrhsfunction,&ts->use_splitrhsfunction,NULL);
176: #if defined(PETSC_HAVE_SAWS)
177: {
178: PetscBool set;
179: flg = PETSC_FALSE;
180: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
181: if (set) {
182: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
183: }
184: }
185: #endif
187: /* Monitor options */
188: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
189: TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
190: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
192: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",NULL,monfilename,sizeof(monfilename),&flg);
193: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
195: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
196: if (opt) {
197: PetscInt howoften = 1;
198: DM dm;
199: PetscBool net;
201: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
202: TSGetDM(ts,&dm);
203: PetscObjectTypeCompare((PetscObject)dm,DMNETWORK,&net);
204: if (net) {
205: TSMonitorLGCtxNetwork ctx;
206: TSMonitorLGCtxNetworkCreate(ts,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
207: TSMonitorSet(ts,TSMonitorLGCtxNetworkSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxNetworkDestroy);
208: PetscOptionsBool("-ts_monitor_lg_solution_semilogy","Plot the solution with a semi-log axis","",ctx->semilogy,&ctx->semilogy,NULL);
209: } else {
210: TSMonitorLGCtx ctx;
211: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
212: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
213: }
214: }
216: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
217: if (opt) {
218: TSMonitorLGCtx ctx;
219: PetscInt howoften = 1;
221: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
222: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
223: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
224: }
225: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
227: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
228: if (opt) {
229: TSMonitorLGCtx ctx;
230: PetscInt howoften = 1;
232: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
233: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
234: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
235: }
236: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
237: if (opt) {
238: TSMonitorLGCtx ctx;
239: PetscInt howoften = 1;
241: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
242: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
243: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
244: ctx->semilogy = PETSC_TRUE;
245: }
247: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
248: if (opt) {
249: TSMonitorLGCtx ctx;
250: PetscInt howoften = 1;
252: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
253: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
254: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
255: }
256: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
257: if (opt) {
258: TSMonitorLGCtx ctx;
259: PetscInt howoften = 1;
261: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
262: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
263: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
264: }
265: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
266: if (opt) {
267: TSMonitorSPEigCtx ctx;
268: PetscInt howoften = 1;
270: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
271: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
272: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
273: }
274: PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
275: if (opt) {
276: TSMonitorSPCtx ctx;
277: PetscInt howoften = 1;
278: PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
279: TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
280: TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
281: }
282: opt = PETSC_FALSE;
283: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
284: if (opt) {
285: TSMonitorDrawCtx ctx;
286: PetscInt howoften = 1;
288: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
289: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
290: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
291: }
292: opt = PETSC_FALSE;
293: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
294: if (opt) {
295: TSMonitorDrawCtx ctx;
296: PetscReal bounds[4];
297: PetscInt n = 4;
298: PetscDraw draw;
299: PetscDrawAxis axis;
301: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
302: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
303: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
304: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
305: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
306: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
307: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
308: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
309: }
310: opt = PETSC_FALSE;
311: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
312: if (opt) {
313: TSMonitorDrawCtx ctx;
314: PetscInt howoften = 1;
316: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
317: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
318: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
319: }
320: opt = PETSC_FALSE;
321: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
322: if (opt) {
323: TSMonitorDrawCtx ctx;
324: PetscInt howoften = 1;
326: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
327: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
328: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
329: }
331: opt = PETSC_FALSE;
332: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",NULL,monfilename,sizeof(monfilename),&flg);
333: if (flg) {
334: const char *ptr,*ptr2;
335: char *filetemplate;
336: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
337: /* Do some cursory validation of the input. */
338: PetscStrstr(monfilename,"%",(char**)&ptr);
339: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
340: for (ptr++; ptr && *ptr; ptr++) {
341: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
342: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
343: if (ptr2) break;
344: }
345: PetscStrallocpy(monfilename,&filetemplate);
346: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
347: }
349: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,sizeof(dir),&flg);
350: if (flg) {
351: TSMonitorDMDARayCtx *rayctx;
352: int ray = 0;
353: DMDirection ddir;
354: DM da;
355: PetscMPIInt rank;
357: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
358: if (dir[0] == 'x') ddir = DM_X;
359: else if (dir[0] == 'y') ddir = DM_Y;
360: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
361: sscanf(dir+2,"%d",&ray);
363: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %d\n",dir[0],ray);
364: PetscNew(&rayctx);
365: TSGetDM(ts,&da);
366: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
367: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
368: if (!rank) {
369: PetscViewerDrawOpen(PETSC_COMM_SELF,NULL,NULL,0,0,600,300,&rayctx->viewer);
370: }
371: rayctx->lgctx = NULL;
372: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
373: }
374: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,sizeof(dir),&flg);
375: if (flg) {
376: TSMonitorDMDARayCtx *rayctx;
377: int ray = 0;
378: DMDirection ddir;
379: DM da;
380: PetscInt howoften = 1;
382: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
383: if (dir[0] == 'x') ddir = DM_X;
384: else if (dir[0] == 'y') ddir = DM_Y;
385: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
386: sscanf(dir+2, "%d", &ray);
388: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %d\n", dir[0], ray);
389: PetscNew(&rayctx);
390: TSGetDM(ts, &da);
391: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
392: TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
393: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
394: }
396: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
397: if (opt) {
398: TSMonitorEnvelopeCtx ctx;
400: TSMonitorEnvelopeCtxCreate(ts,&ctx);
401: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
402: }
404: flg = PETSC_FALSE;
405: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
406: if (flg) {
407: DM dm;
408: DMTS tdm;
410: TSGetDM(ts, &dm);
411: DMGetDMTS(dm, &tdm);
412: tdm->ijacobianctx = NULL;
413: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL);
414: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
415: }
417: /* Handle specific TS options */
418: if (ts->ops->setfromoptions) {
419: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
420: }
422: /* Handle TSAdapt options */
423: TSGetAdapt(ts,&ts->adapt);
424: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
425: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
427: /* TS trajectory must be set after TS, since it may use some TS options above */
428: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
429: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
430: if (tflg) {
431: TSSetSaveTrajectory(ts);
432: }
434: TSAdjointSetFromOptions(PetscOptionsObject,ts);
436: /* process any options handlers added with PetscObjectAddOptionsHandler() */
437: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
438: PetscOptionsEnd();
440: if (ts->trajectory) {
441: TSTrajectorySetFromOptions(ts->trajectory,ts);
442: }
444: /* why do we have to do this here and not during TSSetUp? */
445: TSGetSNES(ts,&ts->snes);
446: if (ts->problem_type == TS_LINEAR) {
447: PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
448: if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
449: }
450: SNESSetFromOptions(ts->snes);
451: return(0);
452: }
454: /*@
455: TSGetTrajectory - Gets the trajectory from a TS if it exists
457: Collective on TS
459: Input Parameters:
460: . ts - the TS context obtained from TSCreate()
462: Output Parameters:
463: . tr - the TSTrajectory object, if it exists
465: Note: This routine should be called after all TS options have been set
467: Level: advanced
469: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
471: @*/
472: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
473: {
476: *tr = ts->trajectory;
477: return(0);
478: }
480: /*@
481: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
483: Collective on TS
485: Input Parameters:
486: . ts - the TS context obtained from TSCreate()
488: Options Database:
489: + -ts_save_trajectory - saves the trajectory to a file
490: - -ts_trajectory_type type
492: Note: This routine should be called after all TS options have been set
494: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
495: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
497: Level: intermediate
499: .seealso: TSGetTrajectory(), TSAdjointSolve()
501: @*/
502: PetscErrorCode TSSetSaveTrajectory(TS ts)
503: {
508: if (!ts->trajectory) {
509: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
510: }
511: return(0);
512: }
514: /*@
515: TSResetTrajectory - Destroys and recreates the internal TSTrajectory object
517: Collective on TS
519: Input Parameters:
520: . ts - the TS context obtained from TSCreate()
522: Level: intermediate
524: .seealso: TSGetTrajectory(), TSAdjointSolve()
526: @*/
527: PetscErrorCode TSResetTrajectory(TS ts)
528: {
533: if (ts->trajectory) {
534: TSTrajectoryDestroy(&ts->trajectory);
535: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
536: }
537: return(0);
538: }
540: /*@
541: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
542: set with TSSetRHSJacobian().
544: Collective on TS
546: Input Parameters:
547: + ts - the TS context
548: . t - current timestep
549: - U - input vector
551: Output Parameters:
552: + A - Jacobian matrix
553: . B - optional preconditioning matrix
554: - flag - flag indicating matrix structure
556: Notes:
557: Most users should not need to explicitly call this routine, as it
558: is used internally within the nonlinear solvers.
560: See KSPSetOperators() for important information about setting the
561: flag parameter.
563: Level: developer
565: .seealso: TSSetRHSJacobian(), KSPSetOperators()
566: @*/
567: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
568: {
569: PetscErrorCode ierr;
570: PetscObjectState Ustate;
571: PetscObjectId Uid;
572: DM dm;
573: DMTS tsdm;
574: TSRHSJacobian rhsjacobianfunc;
575: void *ctx;
576: TSRHSFunction rhsfunction;
582: TSGetDM(ts,&dm);
583: DMGetDMTS(dm,&tsdm);
584: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
585: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
586: PetscObjectStateGet((PetscObject)U,&Ustate);
587: PetscObjectGetId((PetscObject)U,&Uid);
589: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) return(0);
591: if (ts->rhsjacobian.shift && ts->rhsjacobian.reuse) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Should not call TSComputeRHSJacobian() on a shifted matrix (shift=%lf) when RHSJacobian is reusable.",ts->rhsjacobian.shift);
592: if (rhsjacobianfunc) {
593: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
594: PetscStackPush("TS user Jacobian function");
595: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
596: PetscStackPop;
597: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
598: } else {
599: MatZeroEntries(A);
600: if (B && A != B) {MatZeroEntries(B);}
601: }
602: ts->rhsjacobian.time = t;
603: ts->rhsjacobian.shift = 0;
604: ts->rhsjacobian.scale = 1.;
605: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
606: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
607: return(0);
608: }
610: /*@
611: TSComputeRHSFunction - Evaluates the right-hand-side function.
613: Collective on TS
615: Input Parameters:
616: + ts - the TS context
617: . t - current time
618: - U - state vector
620: Output Parameter:
621: . y - right hand side
623: Note:
624: Most users should not need to explicitly call this routine, as it
625: is used internally within the nonlinear solvers.
627: Level: developer
629: .seealso: TSSetRHSFunction(), TSComputeIFunction()
630: @*/
631: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
632: {
634: TSRHSFunction rhsfunction;
635: TSIFunction ifunction;
636: void *ctx;
637: DM dm;
643: TSGetDM(ts,&dm);
644: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
645: DMTSGetIFunction(dm,&ifunction,NULL);
647: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
649: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
650: if (rhsfunction) {
651: VecLockReadPush(U);
652: PetscStackPush("TS user right-hand-side function");
653: (*rhsfunction)(ts,t,U,y,ctx);
654: PetscStackPop;
655: VecLockReadPop(U);
656: } else {
657: VecZeroEntries(y);
658: }
660: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
661: return(0);
662: }
664: /*@
665: TSComputeSolutionFunction - Evaluates the solution function.
667: Collective on TS
669: Input Parameters:
670: + ts - the TS context
671: - t - current time
673: Output Parameter:
674: . U - the solution
676: Note:
677: Most users should not need to explicitly call this routine, as it
678: is used internally within the nonlinear solvers.
680: Level: developer
682: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
683: @*/
684: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
685: {
686: PetscErrorCode ierr;
687: TSSolutionFunction solutionfunction;
688: void *ctx;
689: DM dm;
694: TSGetDM(ts,&dm);
695: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
697: if (solutionfunction) {
698: PetscStackPush("TS user solution function");
699: (*solutionfunction)(ts,t,U,ctx);
700: PetscStackPop;
701: }
702: return(0);
703: }
704: /*@
705: TSComputeForcingFunction - Evaluates the forcing function.
707: Collective on TS
709: Input Parameters:
710: + ts - the TS context
711: - t - current time
713: Output Parameter:
714: . U - the function value
716: Note:
717: Most users should not need to explicitly call this routine, as it
718: is used internally within the nonlinear solvers.
720: Level: developer
722: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
723: @*/
724: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
725: {
726: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
727: void *ctx;
728: DM dm;
733: TSGetDM(ts,&dm);
734: DMTSGetForcingFunction(dm,&forcing,&ctx);
736: if (forcing) {
737: PetscStackPush("TS user forcing function");
738: (*forcing)(ts,t,U,ctx);
739: PetscStackPop;
740: }
741: return(0);
742: }
744: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
745: {
746: Vec F;
750: *Frhs = NULL;
751: TSGetIFunction(ts,&F,NULL,NULL);
752: if (!ts->Frhs) {
753: VecDuplicate(F,&ts->Frhs);
754: }
755: *Frhs = ts->Frhs;
756: return(0);
757: }
759: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
760: {
761: Mat A,B;
763: TSIJacobian ijacobian;
766: if (Arhs) *Arhs = NULL;
767: if (Brhs) *Brhs = NULL;
768: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
769: if (Arhs) {
770: if (!ts->Arhs) {
771: if (ijacobian) {
772: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
773: } else {
774: ts->Arhs = A;
775: PetscObjectReference((PetscObject)A);
776: }
777: } else {
778: PetscBool flg;
779: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
780: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
781: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
782: PetscObjectDereference((PetscObject)ts->Arhs);
783: ts->Arhs = A;
784: PetscObjectReference((PetscObject)A);
785: }
786: }
787: *Arhs = ts->Arhs;
788: }
789: if (Brhs) {
790: if (!ts->Brhs) {
791: if (A != B) {
792: if (ijacobian) {
793: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
794: } else {
795: ts->Brhs = B;
796: PetscObjectReference((PetscObject)B);
797: }
798: } else {
799: PetscObjectReference((PetscObject)ts->Arhs);
800: ts->Brhs = ts->Arhs;
801: }
802: }
803: *Brhs = ts->Brhs;
804: }
805: return(0);
806: }
808: /*@
809: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
811: Collective on TS
813: Input Parameters:
814: + ts - the TS context
815: . t - current time
816: . U - state vector
817: . Udot - time derivative of state vector
818: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
820: Output Parameter:
821: . Y - right hand side
823: Note:
824: Most users should not need to explicitly call this routine, as it
825: is used internally within the nonlinear solvers.
827: If the user did did not write their equations in implicit form, this
828: function recasts them in implicit form.
830: Level: developer
832: .seealso: TSSetIFunction(), TSComputeRHSFunction()
833: @*/
834: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
835: {
837: TSIFunction ifunction;
838: TSRHSFunction rhsfunction;
839: void *ctx;
840: DM dm;
848: TSGetDM(ts,&dm);
849: DMTSGetIFunction(dm,&ifunction,&ctx);
850: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
852: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
854: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
855: if (ifunction) {
856: PetscStackPush("TS user implicit function");
857: (*ifunction)(ts,t,U,Udot,Y,ctx);
858: PetscStackPop;
859: }
860: if (imex) {
861: if (!ifunction) {
862: VecCopy(Udot,Y);
863: }
864: } else if (rhsfunction) {
865: if (ifunction) {
866: Vec Frhs;
867: TSGetRHSVec_Private(ts,&Frhs);
868: TSComputeRHSFunction(ts,t,U,Frhs);
869: VecAXPY(Y,-1,Frhs);
870: } else {
871: TSComputeRHSFunction(ts,t,U,Y);
872: VecAYPX(Y,-1,Udot);
873: }
874: }
875: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
876: return(0);
877: }
879: /*
880: TSRecoverRHSJacobian - Recover the Jacobian matrix so that one can call TSComputeRHSJacobian() on it.
882: Note:
883: This routine is needed when one switches from TSComputeIJacobian() to TSComputeRHSJacobian() because the Jacobian matrix may be shifted or scaled in TSComputeIJacobian().
885: */
886: static PetscErrorCode TSRecoverRHSJacobian(TS ts,Mat A,Mat B)
887: {
888: PetscErrorCode ierr;
892: if (A != ts->Arhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Amat");
893: if (B != ts->Brhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Bmat");
895: if (ts->rhsjacobian.shift) {
896: MatShift(A,-ts->rhsjacobian.shift);
897: }
898: if (ts->rhsjacobian.scale == -1.) {
899: MatScale(A,-1);
900: }
901: if (B && B == ts->Brhs && A != B) {
902: if (ts->rhsjacobian.shift) {
903: MatShift(B,-ts->rhsjacobian.shift);
904: }
905: if (ts->rhsjacobian.scale == -1.) {
906: MatScale(B,-1);
907: }
908: }
909: ts->rhsjacobian.shift = 0;
910: ts->rhsjacobian.scale = 1.;
911: return(0);
912: }
914: /*@
915: TSComputeIJacobian - Evaluates the Jacobian of the DAE
917: Collective on TS
919: Input
920: Input Parameters:
921: + ts - the TS context
922: . t - current timestep
923: . U - state vector
924: . Udot - time derivative of state vector
925: . shift - shift to apply, see note below
926: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
928: Output Parameters:
929: + A - Jacobian matrix
930: - B - matrix from which the preconditioner is constructed; often the same as A
932: Notes:
933: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
935: dF/dU + shift*dF/dUdot
937: Most users should not need to explicitly call this routine, as it
938: is used internally within the nonlinear solvers.
940: Level: developer
942: .seealso: TSSetIJacobian()
943: @*/
944: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
945: {
947: TSIJacobian ijacobian;
948: TSRHSJacobian rhsjacobian;
949: DM dm;
950: void *ctx;
961: TSGetDM(ts,&dm);
962: DMTSGetIJacobian(dm,&ijacobian,&ctx);
963: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
965: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
967: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
968: if (ijacobian) {
969: PetscStackPush("TS user implicit Jacobian");
970: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
971: PetscStackPop;
972: }
973: if (imex) {
974: if (!ijacobian) { /* system was written as Udot = G(t,U) */
975: PetscBool assembled;
976: if (rhsjacobian) {
977: Mat Arhs = NULL;
978: TSGetRHSMats_Private(ts,&Arhs,NULL);
979: if (A == Arhs) {
980: if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant"); /* there is no way to reconstruct shift*M-J since J cannot be reevaluated */
981: ts->rhsjacobian.time = PETSC_MIN_REAL;
982: }
983: }
984: MatZeroEntries(A);
985: MatAssembled(A,&assembled);
986: if (!assembled) {
987: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
988: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
989: }
990: MatShift(A,shift);
991: if (A != B) {
992: MatZeroEntries(B);
993: MatAssembled(B,&assembled);
994: if (!assembled) {
995: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
996: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
997: }
998: MatShift(B,shift);
999: }
1000: }
1001: } else {
1002: Mat Arhs = NULL,Brhs = NULL;
1003: if (rhsjacobian) { /* RHSJacobian needs to be converted to part of IJacobian if exists */
1004: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1005: }
1006: if (Arhs == A) { /* No IJacobian matrix, so we only have the RHS matrix */
1007: PetscObjectState Ustate;
1008: PetscObjectId Uid;
1009: TSRHSFunction rhsfunction;
1011: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1012: PetscObjectStateGet((PetscObject)U,&Ustate);
1013: PetscObjectGetId((PetscObject)U,&Uid);
1014: if ((rhsjacobian == TSComputeRHSJacobianConstant || (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && rhsfunction != TSComputeRHSFunctionLinear)) && ts->rhsjacobian.scale == -1.) { /* No need to recompute RHSJacobian */
1015: MatShift(A,shift-ts->rhsjacobian.shift); /* revert the old shift and add the new shift with a single call to MatShift */
1016: if (A != B) {
1017: MatShift(B,shift-ts->rhsjacobian.shift);
1018: }
1019: } else {
1020: PetscBool flg;
1022: if (ts->rhsjacobian.reuse) { /* Undo the damage */
1023: /* MatScale has a short path for this case.
1024: However, this code path is taken the first time TSComputeRHSJacobian is called
1025: and the matrices have not been assembled yet */
1026: TSRecoverRHSJacobian(ts,A,B);
1027: }
1028: TSComputeRHSJacobian(ts,t,U,A,B);
1029: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1030: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1031: if (!flg) {
1032: MatScale(A,-1);
1033: MatShift(A,shift);
1034: }
1035: if (A != B) {
1036: MatScale(B,-1);
1037: MatShift(B,shift);
1038: }
1039: }
1040: ts->rhsjacobian.scale = -1;
1041: ts->rhsjacobian.shift = shift;
1042: } else if (Arhs) { /* Both IJacobian and RHSJacobian exist or the RHS matrix provided (A) is different from the internal RHS matrix (Arhs) */
1043: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1045: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
1046: MatZeroEntries(A);
1047: MatShift(A,shift);
1048: if (A != B) {
1049: MatZeroEntries(B);
1050: MatShift(B,shift);
1051: }
1052: }
1053: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1054: MatAXPY(A,-1,Arhs,axpy);
1055: if (A != B) {
1056: MatAXPY(B,-1,Brhs,axpy);
1057: }
1058: }
1059: }
1060: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1061: return(0);
1062: }
1064: /*@C
1065: TSSetRHSFunction - Sets the routine for evaluating the function,
1066: where U_t = G(t,u).
1068: Logically Collective on TS
1070: Input Parameters:
1071: + ts - the TS context obtained from TSCreate()
1072: . r - vector to put the computed right hand side (or NULL to have it created)
1073: . f - routine for evaluating the right-hand-side function
1074: - ctx - [optional] user-defined context for private data for the
1075: function evaluation routine (may be NULL)
1077: Calling sequence of f:
1078: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec F,void *ctx);
1080: + ts - timestep context
1081: . t - current timestep
1082: . u - input vector
1083: . F - function vector
1084: - ctx - [optional] user-defined function context
1086: Level: beginner
1088: Notes:
1089: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1091: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1092: @*/
1093: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1094: {
1096: SNES snes;
1097: Vec ralloc = NULL;
1098: DM dm;
1104: TSGetDM(ts,&dm);
1105: DMTSSetRHSFunction(dm,f,ctx);
1106: TSGetSNES(ts,&snes);
1107: if (!r && !ts->dm && ts->vec_sol) {
1108: VecDuplicate(ts->vec_sol,&ralloc);
1109: r = ralloc;
1110: }
1111: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1112: VecDestroy(&ralloc);
1113: return(0);
1114: }
1116: /*@C
1117: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1119: Logically Collective on TS
1121: Input Parameters:
1122: + ts - the TS context obtained from TSCreate()
1123: . f - routine for evaluating the solution
1124: - ctx - [optional] user-defined context for private data for the
1125: function evaluation routine (may be NULL)
1127: Calling sequence of f:
1128: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,void *ctx);
1130: + t - current timestep
1131: . u - output vector
1132: - ctx - [optional] user-defined function context
1134: Options Database:
1135: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1136: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1138: Notes:
1139: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1140: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1141: create closed-form solutions with non-physical forcing terms.
1143: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1145: Level: beginner
1147: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1148: @*/
1149: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1150: {
1152: DM dm;
1156: TSGetDM(ts,&dm);
1157: DMTSSetSolutionFunction(dm,f,ctx);
1158: return(0);
1159: }
1161: /*@C
1162: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1164: Logically Collective on TS
1166: Input Parameters:
1167: + ts - the TS context obtained from TSCreate()
1168: . func - routine for evaluating the forcing function
1169: - ctx - [optional] user-defined context for private data for the
1170: function evaluation routine (may be NULL)
1172: Calling sequence of func:
1173: $ PetscErrorCode func (TS ts,PetscReal t,Vec f,void *ctx);
1175: + t - current timestep
1176: . f - output vector
1177: - ctx - [optional] user-defined function context
1179: Notes:
1180: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1181: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1182: definition of the problem you are solving and hence possibly introducing bugs.
1184: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1186: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1187: parameters can be passed in the ctx variable.
1189: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1191: Level: beginner
1193: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1194: @*/
1195: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1196: {
1198: DM dm;
1202: TSGetDM(ts,&dm);
1203: DMTSSetForcingFunction(dm,func,ctx);
1204: return(0);
1205: }
1207: /*@C
1208: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1209: where U_t = G(U,t), as well as the location to store the matrix.
1211: Logically Collective on TS
1213: Input Parameters:
1214: + ts - the TS context obtained from TSCreate()
1215: . Amat - (approximate) Jacobian matrix
1216: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1217: . f - the Jacobian evaluation routine
1218: - ctx - [optional] user-defined context for private data for the
1219: Jacobian evaluation routine (may be NULL)
1221: Calling sequence of f:
1222: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1224: + t - current timestep
1225: . u - input vector
1226: . Amat - (approximate) Jacobian matrix
1227: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1228: - ctx - [optional] user-defined context for matrix evaluation routine
1230: Notes:
1231: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1233: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1234: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1236: Level: beginner
1238: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1240: @*/
1241: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1242: {
1244: SNES snes;
1245: DM dm;
1246: TSIJacobian ijacobian;
1255: TSGetDM(ts,&dm);
1256: DMTSSetRHSJacobian(dm,f,ctx);
1257: DMTSGetIJacobian(dm,&ijacobian,NULL);
1258: TSGetSNES(ts,&snes);
1259: if (!ijacobian) {
1260: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1261: }
1262: if (Amat) {
1263: PetscObjectReference((PetscObject)Amat);
1264: MatDestroy(&ts->Arhs);
1265: ts->Arhs = Amat;
1266: }
1267: if (Pmat) {
1268: PetscObjectReference((PetscObject)Pmat);
1269: MatDestroy(&ts->Brhs);
1270: ts->Brhs = Pmat;
1271: }
1272: return(0);
1273: }
1275: /*@C
1276: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1278: Logically Collective on TS
1280: Input Parameters:
1281: + ts - the TS context obtained from TSCreate()
1282: . r - vector to hold the residual (or NULL to have it created internally)
1283: . f - the function evaluation routine
1284: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1286: Calling sequence of f:
1287: $ PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1289: + t - time at step/stage being solved
1290: . u - state vector
1291: . u_t - time derivative of state vector
1292: . F - function vector
1293: - ctx - [optional] user-defined context for matrix evaluation routine
1295: Important:
1296: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1298: Level: beginner
1300: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1301: @*/
1302: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1303: {
1305: SNES snes;
1306: Vec ralloc = NULL;
1307: DM dm;
1313: TSGetDM(ts,&dm);
1314: DMTSSetIFunction(dm,f,ctx);
1316: TSGetSNES(ts,&snes);
1317: if (!r && !ts->dm && ts->vec_sol) {
1318: VecDuplicate(ts->vec_sol,&ralloc);
1319: r = ralloc;
1320: }
1321: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1322: VecDestroy(&ralloc);
1323: return(0);
1324: }
1326: /*@C
1327: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1329: Not Collective
1331: Input Parameter:
1332: . ts - the TS context
1334: Output Parameter:
1335: + r - vector to hold residual (or NULL)
1336: . func - the function to compute residual (or NULL)
1337: - ctx - the function context (or NULL)
1339: Level: advanced
1341: .seealso: TSSetIFunction(), SNESGetFunction()
1342: @*/
1343: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1344: {
1346: SNES snes;
1347: DM dm;
1351: TSGetSNES(ts,&snes);
1352: SNESGetFunction(snes,r,NULL,NULL);
1353: TSGetDM(ts,&dm);
1354: DMTSGetIFunction(dm,func,ctx);
1355: return(0);
1356: }
1358: /*@C
1359: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1361: Not Collective
1363: Input Parameter:
1364: . ts - the TS context
1366: Output Parameter:
1367: + r - vector to hold computed right hand side (or NULL)
1368: . func - the function to compute right hand side (or NULL)
1369: - ctx - the function context (or NULL)
1371: Level: advanced
1373: .seealso: TSSetRHSFunction(), SNESGetFunction()
1374: @*/
1375: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1376: {
1378: SNES snes;
1379: DM dm;
1383: TSGetSNES(ts,&snes);
1384: SNESGetFunction(snes,r,NULL,NULL);
1385: TSGetDM(ts,&dm);
1386: DMTSGetRHSFunction(dm,func,ctx);
1387: return(0);
1388: }
1390: /*@C
1391: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1392: provided with TSSetIFunction().
1394: Logically Collective on TS
1396: Input Parameters:
1397: + ts - the TS context obtained from TSCreate()
1398: . Amat - (approximate) Jacobian matrix
1399: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1400: . f - the Jacobian evaluation routine
1401: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1403: Calling sequence of f:
1404: $ PetscErrorCode f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1406: + t - time at step/stage being solved
1407: . U - state vector
1408: . U_t - time derivative of state vector
1409: . a - shift
1410: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1411: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1412: - ctx - [optional] user-defined context for matrix evaluation routine
1414: Notes:
1415: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1417: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1418: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1420: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1421: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1422: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1423: a and vector W depend on the integration method, step size, and past states. For example with
1424: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1425: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1427: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1429: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1430: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1432: Level: beginner
1434: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1436: @*/
1437: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1438: {
1440: SNES snes;
1441: DM dm;
1450: TSGetDM(ts,&dm);
1451: DMTSSetIJacobian(dm,f,ctx);
1453: TSGetSNES(ts,&snes);
1454: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1455: return(0);
1456: }
1458: /*@
1459: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1460: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1461: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1462: not been changed by the TS.
1464: Logically Collective
1466: Input Arguments:
1467: + ts - TS context obtained from TSCreate()
1468: - reuse - PETSC_TRUE if the RHS Jacobian
1470: Level: intermediate
1472: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1473: @*/
1474: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1475: {
1477: ts->rhsjacobian.reuse = reuse;
1478: return(0);
1479: }
1481: /*@C
1482: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1484: Logically Collective on TS
1486: Input Parameters:
1487: + ts - the TS context obtained from TSCreate()
1488: . F - vector to hold the residual (or NULL to have it created internally)
1489: . fun - the function evaluation routine
1490: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1492: Calling sequence of fun:
1493: $ PetscErrorCode fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1495: + t - time at step/stage being solved
1496: . U - state vector
1497: . U_t - time derivative of state vector
1498: . U_tt - second time derivative of state vector
1499: . F - function vector
1500: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1502: Level: beginner
1504: .seealso: TSSetI2Jacobian(), TSSetIFunction(), TSCreate(), TSSetRHSFunction()
1505: @*/
1506: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1507: {
1508: DM dm;
1514: TSSetIFunction(ts,F,NULL,NULL);
1515: TSGetDM(ts,&dm);
1516: DMTSSetI2Function(dm,fun,ctx);
1517: return(0);
1518: }
1520: /*@C
1521: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1523: Not Collective
1525: Input Parameter:
1526: . ts - the TS context
1528: Output Parameter:
1529: + r - vector to hold residual (or NULL)
1530: . fun - the function to compute residual (or NULL)
1531: - ctx - the function context (or NULL)
1533: Level: advanced
1535: .seealso: TSSetIFunction(), SNESGetFunction(), TSCreate()
1536: @*/
1537: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1538: {
1540: SNES snes;
1541: DM dm;
1545: TSGetSNES(ts,&snes);
1546: SNESGetFunction(snes,r,NULL,NULL);
1547: TSGetDM(ts,&dm);
1548: DMTSGetI2Function(dm,fun,ctx);
1549: return(0);
1550: }
1552: /*@C
1553: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1554: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1556: Logically Collective on TS
1558: Input Parameters:
1559: + ts - the TS context obtained from TSCreate()
1560: . J - Jacobian matrix
1561: . P - preconditioning matrix for J (may be same as J)
1562: . jac - the Jacobian evaluation routine
1563: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1565: Calling sequence of jac:
1566: $ PetscErrorCode jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1568: + t - time at step/stage being solved
1569: . U - state vector
1570: . U_t - time derivative of state vector
1571: . U_tt - second time derivative of state vector
1572: . v - shift for U_t
1573: . a - shift for U_tt
1574: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1575: . P - preconditioning matrix for J, may be same as J
1576: - ctx - [optional] user-defined context for matrix evaluation routine
1578: Notes:
1579: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1581: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1582: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1583: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1584: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1586: Level: beginner
1588: .seealso: TSSetI2Function(), TSGetI2Jacobian()
1589: @*/
1590: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1591: {
1592: DM dm;
1599: TSSetIJacobian(ts,J,P,NULL,NULL);
1600: TSGetDM(ts,&dm);
1601: DMTSSetI2Jacobian(dm,jac,ctx);
1602: return(0);
1603: }
1605: /*@C
1606: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1608: Not Collective, but parallel objects are returned if TS is parallel
1610: Input Parameter:
1611: . ts - The TS context obtained from TSCreate()
1613: Output Parameters:
1614: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1615: . P - The matrix from which the preconditioner is constructed, often the same as J
1616: . jac - The function to compute the Jacobian matrices
1617: - ctx - User-defined context for Jacobian evaluation routine
1619: Notes:
1620: You can pass in NULL for any return argument you do not need.
1622: Level: advanced
1624: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber(), TSSetI2Jacobian(), TSGetI2Function(), TSCreate()
1626: @*/
1627: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1628: {
1630: SNES snes;
1631: DM dm;
1634: TSGetSNES(ts,&snes);
1635: SNESSetUpMatrices(snes);
1636: SNESGetJacobian(snes,J,P,NULL,NULL);
1637: TSGetDM(ts,&dm);
1638: DMTSGetI2Jacobian(dm,jac,ctx);
1639: return(0);
1640: }
1642: /*@
1643: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1645: Collective on TS
1647: Input Parameters:
1648: + ts - the TS context
1649: . t - current time
1650: . U - state vector
1651: . V - time derivative of state vector (U_t)
1652: - A - second time derivative of state vector (U_tt)
1654: Output Parameter:
1655: . F - the residual vector
1657: Note:
1658: Most users should not need to explicitly call this routine, as it
1659: is used internally within the nonlinear solvers.
1661: Level: developer
1663: .seealso: TSSetI2Function(), TSGetI2Function()
1664: @*/
1665: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1666: {
1667: DM dm;
1668: TSI2Function I2Function;
1669: void *ctx;
1670: TSRHSFunction rhsfunction;
1680: TSGetDM(ts,&dm);
1681: DMTSGetI2Function(dm,&I2Function,&ctx);
1682: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1684: if (!I2Function) {
1685: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1686: return(0);
1687: }
1689: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1691: PetscStackPush("TS user implicit function");
1692: I2Function(ts,t,U,V,A,F,ctx);
1693: PetscStackPop;
1695: if (rhsfunction) {
1696: Vec Frhs;
1697: TSGetRHSVec_Private(ts,&Frhs);
1698: TSComputeRHSFunction(ts,t,U,Frhs);
1699: VecAXPY(F,-1,Frhs);
1700: }
1702: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1703: return(0);
1704: }
1706: /*@
1707: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1709: Collective on TS
1711: Input Parameters:
1712: + ts - the TS context
1713: . t - current timestep
1714: . U - state vector
1715: . V - time derivative of state vector
1716: . A - second time derivative of state vector
1717: . shiftV - shift to apply, see note below
1718: - shiftA - shift to apply, see note below
1720: Output Parameters:
1721: + J - Jacobian matrix
1722: - P - optional preconditioning matrix
1724: Notes:
1725: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1727: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1729: Most users should not need to explicitly call this routine, as it
1730: is used internally within the nonlinear solvers.
1732: Level: developer
1734: .seealso: TSSetI2Jacobian()
1735: @*/
1736: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1737: {
1738: DM dm;
1739: TSI2Jacobian I2Jacobian;
1740: void *ctx;
1741: TSRHSJacobian rhsjacobian;
1752: TSGetDM(ts,&dm);
1753: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1754: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1756: if (!I2Jacobian) {
1757: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1758: return(0);
1759: }
1761: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1763: PetscStackPush("TS user implicit Jacobian");
1764: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1765: PetscStackPop;
1767: if (rhsjacobian) {
1768: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1769: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1770: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1771: MatAXPY(J,-1,Jrhs,axpy);
1772: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1773: }
1775: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1776: return(0);
1777: }
1779: /*@C
1780: TSSetTransientVariable - sets function to transform from state to transient variables
1782: Logically Collective
1784: Input Arguments:
1785: + ts - time stepping context on which to change the transient variable
1786: . tvar - a function that transforms to transient variables
1787: - ctx - a context for tvar
1789: Calling sequence of tvar:
1790: $ PetscErrorCode tvar(TS ts,Vec p,Vec c,void *ctx);
1792: + ts - timestep context
1793: . p - input vector (primative form)
1794: . c - output vector, transient variables (conservative form)
1795: - ctx - [optional] user-defined function context
1797: Level: advanced
1799: Notes:
1800: This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., TSBDF)
1801: can be conservative. In this context, primitive variables P are used to model the state (e.g., because they lead to
1802: well-conditioned formulations even in limiting cases such as low-Mach or zero porosity). The transient variable is
1803: C(P), specified by calling this function. An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1804: evaluated via the chain rule, as in
1806: dF/dP + shift * dF/dCdot dC/dP.
1808: .seealso: DMTSSetTransientVariable(), DMTSGetTransientVariable(), TSSetIFunction(), TSSetIJacobian()
1809: @*/
1810: PetscErrorCode TSSetTransientVariable(TS ts,TSTransientVariable tvar,void *ctx)
1811: {
1813: DM dm;
1817: TSGetDM(ts,&dm);
1818: DMTSSetTransientVariable(dm,tvar,ctx);
1819: return(0);
1820: }
1822: /*@
1823: TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables
1825: Logically Collective
1827: Input Parameters:
1828: + ts - TS on which to compute
1829: - U - state vector to be transformed to transient variables
1831: Output Parameters:
1832: . C - transient (conservative) variable
1834: Developer Notes:
1835: If DMTSSetTransientVariable() has not been called, then C is not modified in this routine and C=NULL is allowed.
1836: This makes it safe to call without a guard. One can use TSHasTransientVariable() to check if transient variables are
1837: being used.
1839: Level: developer
1841: .seealso: DMTSSetTransientVariable(), TSComputeIFunction(), TSComputeIJacobian()
1842: @*/
1843: PetscErrorCode TSComputeTransientVariable(TS ts,Vec U,Vec C)
1844: {
1846: DM dm;
1847: DMTS dmts;
1852: TSGetDM(ts,&dm);
1853: DMGetDMTS(dm,&dmts);
1854: if (dmts->ops->transientvar) {
1856: (*dmts->ops->transientvar)(ts,U,C,dmts->transientvarctx);
1857: }
1858: return(0);
1859: }
1861: /*@
1862: TSHasTransientVariable - determine whether transient variables have been set
1864: Logically Collective
1866: Input Parameters:
1867: . ts - TS on which to compute
1869: Output Parameters:
1870: . has - PETSC_TRUE if transient variables have been set
1872: Level: developer
1874: .seealso: DMTSSetTransientVariable(), TSComputeTransientVariable()
1875: @*/
1876: PetscErrorCode TSHasTransientVariable(TS ts,PetscBool *has)
1877: {
1879: DM dm;
1880: DMTS dmts;
1884: TSGetDM(ts,&dm);
1885: DMGetDMTS(dm,&dmts);
1886: *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1887: return(0);
1888: }
1890: /*@
1891: TS2SetSolution - Sets the initial solution and time derivative vectors
1892: for use by the TS routines handling second order equations.
1894: Logically Collective on TS
1896: Input Parameters:
1897: + ts - the TS context obtained from TSCreate()
1898: . u - the solution vector
1899: - v - the time derivative vector
1901: Level: beginner
1903: @*/
1904: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1905: {
1912: TSSetSolution(ts,u);
1913: PetscObjectReference((PetscObject)v);
1914: VecDestroy(&ts->vec_dot);
1915: ts->vec_dot = v;
1916: return(0);
1917: }
1919: /*@
1920: TS2GetSolution - Returns the solution and time derivative at the present timestep
1921: for second order equations. It is valid to call this routine inside the function
1922: that you are evaluating in order to move to the new timestep. This vector not
1923: changed until the solution at the next timestep has been calculated.
1925: Not Collective, but Vec returned is parallel if TS is parallel
1927: Input Parameter:
1928: . ts - the TS context obtained from TSCreate()
1930: Output Parameter:
1931: + u - the vector containing the solution
1932: - v - the vector containing the time derivative
1934: Level: intermediate
1936: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1938: @*/
1939: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1940: {
1945: if (u) *u = ts->vec_sol;
1946: if (v) *v = ts->vec_dot;
1947: return(0);
1948: }
1950: /*@C
1951: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1953: Collective on PetscViewer
1955: Input Parameters:
1956: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1957: some related function before a call to TSLoad().
1958: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1960: Level: intermediate
1962: Notes:
1963: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1965: Notes for advanced users:
1966: Most users should not need to know the details of the binary storage
1967: format, since TSLoad() and TSView() completely hide these details.
1968: But for anyone who's interested, the standard binary matrix storage
1969: format is
1970: .vb
1971: has not yet been determined
1972: .ve
1974: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1975: @*/
1976: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1977: {
1979: PetscBool isbinary;
1980: PetscInt classid;
1981: char type[256];
1982: DMTS sdm;
1983: DM dm;
1988: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1989: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1991: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1992: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1993: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1994: TSSetType(ts, type);
1995: if (ts->ops->load) {
1996: (*ts->ops->load)(ts,viewer);
1997: }
1998: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1999: DMLoad(dm,viewer);
2000: TSSetDM(ts,dm);
2001: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2002: VecLoad(ts->vec_sol,viewer);
2003: DMGetDMTS(ts->dm,&sdm);
2004: DMTSLoad(sdm,viewer);
2005: return(0);
2006: }
2008: #include <petscdraw.h>
2009: #if defined(PETSC_HAVE_SAWS)
2010: #include <petscviewersaws.h>
2011: #endif
2013: /*@C
2014: TSViewFromOptions - View from Options
2016: Collective on TS
2018: Input Parameters:
2019: + A - the application ordering context
2020: . obj - Optional object
2021: - name - command line option
2023: Level: intermediate
2024: .seealso: TS, TSView, PetscObjectViewFromOptions(), TSCreate()
2025: @*/
2026: PetscErrorCode TSViewFromOptions(TS A,PetscObject obj,const char name[])
2027: {
2032: PetscObjectViewFromOptions((PetscObject)A,obj,name);
2033: return(0);
2034: }
2036: /*@C
2037: TSView - Prints the TS data structure.
2039: Collective on TS
2041: Input Parameters:
2042: + ts - the TS context obtained from TSCreate()
2043: - viewer - visualization context
2045: Options Database Key:
2046: . -ts_view - calls TSView() at end of TSStep()
2048: Notes:
2049: The available visualization contexts include
2050: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
2051: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
2052: output where only the first processor opens
2053: the file. All other processors send their
2054: data to the first processor to print.
2056: The user can open an alternative visualization context with
2057: PetscViewerASCIIOpen() - output to a specified file.
2059: In the debugger you can do "call TSView(ts,0)" to display the TS solver. (The same holds for any PETSc object viewer).
2061: Level: beginner
2063: .seealso: PetscViewerASCIIOpen()
2064: @*/
2065: PetscErrorCode TSView(TS ts,PetscViewer viewer)
2066: {
2068: TSType type;
2069: PetscBool iascii,isstring,isundials,isbinary,isdraw;
2070: DMTS sdm;
2071: #if defined(PETSC_HAVE_SAWS)
2072: PetscBool issaws;
2073: #endif
2077: if (!viewer) {
2078: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
2079: }
2083: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2084: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
2085: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2086: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
2087: #if defined(PETSC_HAVE_SAWS)
2088: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
2089: #endif
2090: if (iascii) {
2091: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
2092: if (ts->ops->view) {
2093: PetscViewerASCIIPushTab(viewer);
2094: (*ts->ops->view)(ts,viewer);
2095: PetscViewerASCIIPopTab(viewer);
2096: }
2097: if (ts->max_steps < PETSC_MAX_INT) {
2098: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
2099: }
2100: if (ts->max_time < PETSC_MAX_REAL) {
2101: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
2102: }
2103: if (ts->usessnes) {
2104: PetscBool lin;
2105: if (ts->problem_type == TS_NONLINEAR) {
2106: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
2107: }
2108: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
2109: PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2110: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2111: }
2112: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
2113: if (ts->vrtol) {
2114: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
2115: } else {
2116: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
2117: }
2118: if (ts->vatol) {
2119: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
2120: } else {
2121: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
2122: }
2123: PetscViewerASCIIPushTab(viewer);
2124: TSAdaptView(ts->adapt,viewer);
2125: PetscViewerASCIIPopTab(viewer);
2126: } else if (isstring) {
2127: TSGetType(ts,&type);
2128: PetscViewerStringSPrintf(viewer," TSType: %-7.7s",type);
2129: if (ts->ops->view) {(*ts->ops->view)(ts,viewer);}
2130: } else if (isbinary) {
2131: PetscInt classid = TS_FILE_CLASSID;
2132: MPI_Comm comm;
2133: PetscMPIInt rank;
2134: char type[256];
2136: PetscObjectGetComm((PetscObject)ts,&comm);
2137: MPI_Comm_rank(comm,&rank);
2138: if (!rank) {
2139: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
2140: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2141: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR);
2142: }
2143: if (ts->ops->view) {
2144: (*ts->ops->view)(ts,viewer);
2145: }
2146: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2147: DMView(ts->dm,viewer);
2148: VecView(ts->vec_sol,viewer);
2149: DMGetDMTS(ts->dm,&sdm);
2150: DMTSView(sdm,viewer);
2151: } else if (isdraw) {
2152: PetscDraw draw;
2153: char str[36];
2154: PetscReal x,y,bottom,h;
2156: PetscViewerDrawGetDraw(viewer,0,&draw);
2157: PetscDrawGetCurrentPoint(draw,&x,&y);
2158: PetscStrcpy(str,"TS: ");
2159: PetscStrcat(str,((PetscObject)ts)->type_name);
2160: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2161: bottom = y - h;
2162: PetscDrawPushCurrentPoint(draw,x,bottom);
2163: if (ts->ops->view) {
2164: (*ts->ops->view)(ts,viewer);
2165: }
2166: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2167: if (ts->snes) {SNESView(ts->snes,viewer);}
2168: PetscDrawPopCurrentPoint(draw);
2169: #if defined(PETSC_HAVE_SAWS)
2170: } else if (issaws) {
2171: PetscMPIInt rank;
2172: const char *name;
2174: PetscObjectGetName((PetscObject)ts,&name);
2175: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2176: if (!((PetscObject)ts)->amsmem && !rank) {
2177: char dir[1024];
2179: PetscObjectViewSAWs((PetscObject)ts,viewer);
2180: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2181: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2182: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2183: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2184: }
2185: if (ts->ops->view) {
2186: (*ts->ops->view)(ts,viewer);
2187: }
2188: #endif
2189: }
2190: if (ts->snes && ts->usessnes) {
2191: PetscViewerASCIIPushTab(viewer);
2192: SNESView(ts->snes,viewer);
2193: PetscViewerASCIIPopTab(viewer);
2194: }
2195: DMGetDMTS(ts->dm,&sdm);
2196: DMTSView(sdm,viewer);
2198: PetscViewerASCIIPushTab(viewer);
2199: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2200: PetscViewerASCIIPopTab(viewer);
2201: return(0);
2202: }
2204: /*@
2205: TSSetApplicationContext - Sets an optional user-defined context for
2206: the timesteppers.
2208: Logically Collective on TS
2210: Input Parameters:
2211: + ts - the TS context obtained from TSCreate()
2212: - usrP - optional user context
2214: Fortran Notes:
2215: To use this from Fortran you must write a Fortran interface definition for this
2216: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2218: Level: intermediate
2220: .seealso: TSGetApplicationContext()
2221: @*/
2222: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2223: {
2226: ts->user = usrP;
2227: return(0);
2228: }
2230: /*@
2231: TSGetApplicationContext - Gets the user-defined context for the
2232: timestepper.
2234: Not Collective
2236: Input Parameter:
2237: . ts - the TS context obtained from TSCreate()
2239: Output Parameter:
2240: . usrP - user context
2242: Fortran Notes:
2243: To use this from Fortran you must write a Fortran interface definition for this
2244: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2246: Level: intermediate
2248: .seealso: TSSetApplicationContext()
2249: @*/
2250: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2251: {
2254: *(void**)usrP = ts->user;
2255: return(0);
2256: }
2258: /*@
2259: TSGetStepNumber - Gets the number of steps completed.
2261: Not Collective
2263: Input Parameter:
2264: . ts - the TS context obtained from TSCreate()
2266: Output Parameter:
2267: . steps - number of steps completed so far
2269: Level: intermediate
2271: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2272: @*/
2273: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2274: {
2278: *steps = ts->steps;
2279: return(0);
2280: }
2282: /*@
2283: TSSetStepNumber - Sets the number of steps completed.
2285: Logically Collective on TS
2287: Input Parameters:
2288: + ts - the TS context
2289: - steps - number of steps completed so far
2291: Notes:
2292: For most uses of the TS solvers the user need not explicitly call
2293: TSSetStepNumber(), as the step counter is appropriately updated in
2294: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2295: reinitialize timestepping by setting the step counter to zero (and time
2296: to the initial time) to solve a similar problem with different initial
2297: conditions or parameters. Other possible use case is to continue
2298: timestepping from a previously interrupted run in such a way that TS
2299: monitors will be called with a initial nonzero step counter.
2301: Level: advanced
2303: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2304: @*/
2305: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2306: {
2310: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2311: ts->steps = steps;
2312: return(0);
2313: }
2315: /*@
2316: TSSetTimeStep - Allows one to reset the timestep at any time,
2317: useful for simple pseudo-timestepping codes.
2319: Logically Collective on TS
2321: Input Parameters:
2322: + ts - the TS context obtained from TSCreate()
2323: - time_step - the size of the timestep
2325: Level: intermediate
2327: .seealso: TSGetTimeStep(), TSSetTime()
2329: @*/
2330: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2331: {
2335: ts->time_step = time_step;
2336: return(0);
2337: }
2339: /*@
2340: TSSetExactFinalTime - Determines whether to adapt the final time step to
2341: match the exact final time, interpolate solution to the exact final time,
2342: or just return at the final time TS computed.
2344: Logically Collective on TS
2346: Input Parameter:
2347: + ts - the time-step context
2348: - eftopt - exact final time option
2350: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2351: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2352: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2354: Options Database:
2355: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2357: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2358: then the final time you selected.
2360: Level: beginner
2362: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2363: @*/
2364: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2365: {
2369: ts->exact_final_time = eftopt;
2370: return(0);
2371: }
2373: /*@
2374: TSGetExactFinalTime - Gets the exact final time option.
2376: Not Collective
2378: Input Parameter:
2379: . ts - the TS context
2381: Output Parameter:
2382: . eftopt - exact final time option
2384: Level: beginner
2386: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2387: @*/
2388: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2389: {
2393: *eftopt = ts->exact_final_time;
2394: return(0);
2395: }
2397: /*@
2398: TSGetTimeStep - Gets the current timestep size.
2400: Not Collective
2402: Input Parameter:
2403: . ts - the TS context obtained from TSCreate()
2405: Output Parameter:
2406: . dt - the current timestep size
2408: Level: intermediate
2410: .seealso: TSSetTimeStep(), TSGetTime()
2412: @*/
2413: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2414: {
2418: *dt = ts->time_step;
2419: return(0);
2420: }
2422: /*@
2423: TSGetSolution - Returns the solution at the present timestep. It
2424: is valid to call this routine inside the function that you are evaluating
2425: in order to move to the new timestep. This vector not changed until
2426: the solution at the next timestep has been calculated.
2428: Not Collective, but Vec returned is parallel if TS is parallel
2430: Input Parameter:
2431: . ts - the TS context obtained from TSCreate()
2433: Output Parameter:
2434: . v - the vector containing the solution
2436: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2437: final time. It returns the solution at the next timestep.
2439: Level: intermediate
2441: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2443: @*/
2444: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2445: {
2449: *v = ts->vec_sol;
2450: return(0);
2451: }
2453: /*@
2454: TSGetSolutionComponents - Returns any solution components at the present
2455: timestep, if available for the time integration method being used.
2456: Solution components are quantities that share the same size and
2457: structure as the solution vector.
2459: Not Collective, but Vec returned is parallel if TS is parallel
2461: Parameters :
2462: + ts - the TS context obtained from TSCreate() (input parameter).
2463: . n - If v is PETSC_NULL, then the number of solution components is
2464: returned through n, else the n-th solution component is
2465: returned in v.
2466: - v - the vector containing the n-th solution component
2467: (may be PETSC_NULL to use this function to find out
2468: the number of solutions components).
2470: Level: advanced
2472: .seealso: TSGetSolution()
2474: @*/
2475: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2476: {
2481: if (!ts->ops->getsolutioncomponents) *n = 0;
2482: else {
2483: (*ts->ops->getsolutioncomponents)(ts,n,v);
2484: }
2485: return(0);
2486: }
2488: /*@
2489: TSGetAuxSolution - Returns an auxiliary solution at the present
2490: timestep, if available for the time integration method being used.
2492: Not Collective, but Vec returned is parallel if TS is parallel
2494: Parameters :
2495: + ts - the TS context obtained from TSCreate() (input parameter).
2496: - v - the vector containing the auxiliary solution
2498: Level: intermediate
2500: .seealso: TSGetSolution()
2502: @*/
2503: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2504: {
2509: if (ts->ops->getauxsolution) {
2510: (*ts->ops->getauxsolution)(ts,v);
2511: } else {
2512: VecZeroEntries(*v);
2513: }
2514: return(0);
2515: }
2517: /*@
2518: TSGetTimeError - Returns the estimated error vector, if the chosen
2519: TSType has an error estimation functionality.
2521: Not Collective, but Vec returned is parallel if TS is parallel
2523: Note: MUST call after TSSetUp()
2525: Parameters :
2526: + ts - the TS context obtained from TSCreate() (input parameter).
2527: . n - current estimate (n=0) or previous one (n=-1)
2528: - v - the vector containing the error (same size as the solution).
2530: Level: intermediate
2532: .seealso: TSGetSolution(), TSSetTimeError()
2534: @*/
2535: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2536: {
2541: if (ts->ops->gettimeerror) {
2542: (*ts->ops->gettimeerror)(ts,n,v);
2543: } else {
2544: VecZeroEntries(*v);
2545: }
2546: return(0);
2547: }
2549: /*@
2550: TSSetTimeError - Sets the estimated error vector, if the chosen
2551: TSType has an error estimation functionality. This can be used
2552: to restart such a time integrator with a given error vector.
2554: Not Collective, but Vec returned is parallel if TS is parallel
2556: Parameters :
2557: + ts - the TS context obtained from TSCreate() (input parameter).
2558: - v - the vector containing the error (same size as the solution).
2560: Level: intermediate
2562: .seealso: TSSetSolution(), TSGetTimeError)
2564: @*/
2565: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2566: {
2571: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2572: if (ts->ops->settimeerror) {
2573: (*ts->ops->settimeerror)(ts,v);
2574: }
2575: return(0);
2576: }
2578: /* ----- Routines to initialize and destroy a timestepper ---- */
2579: /*@
2580: TSSetProblemType - Sets the type of problem to be solved.
2582: Not collective
2584: Input Parameters:
2585: + ts - The TS
2586: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2587: .vb
2588: U_t - A U = 0 (linear)
2589: U_t - A(t) U = 0 (linear)
2590: F(t,U,U_t) = 0 (nonlinear)
2591: .ve
2593: Level: beginner
2595: .seealso: TSSetUp(), TSProblemType, TS
2596: @*/
2597: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2598: {
2603: ts->problem_type = type;
2604: if (type == TS_LINEAR) {
2605: SNES snes;
2606: TSGetSNES(ts,&snes);
2607: SNESSetType(snes,SNESKSPONLY);
2608: }
2609: return(0);
2610: }
2612: /*@C
2613: TSGetProblemType - Gets the type of problem to be solved.
2615: Not collective
2617: Input Parameter:
2618: . ts - The TS
2620: Output Parameter:
2621: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2622: .vb
2623: M U_t = A U
2624: M(t) U_t = A(t) U
2625: F(t,U,U_t)
2626: .ve
2628: Level: beginner
2630: .seealso: TSSetUp(), TSProblemType, TS
2631: @*/
2632: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2633: {
2637: *type = ts->problem_type;
2638: return(0);
2639: }
2641: /*
2642: Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2643: */
2644: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2645: {
2647: PetscBool isnone;
2650: TSGetAdapt(ts,&ts->adapt);
2651: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2653: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2654: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2655: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2656: } else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2657: ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2658: }
2659: return(0);
2660: }
2663: /*@
2664: TSSetUp - Sets up the internal data structures for the later use of a timestepper.
2666: Collective on TS
2668: Input Parameter:
2669: . ts - the TS context obtained from TSCreate()
2671: Notes:
2672: For basic use of the TS solvers the user need not explicitly call
2673: TSSetUp(), since these actions will automatically occur during
2674: the call to TSStep() or TSSolve(). However, if one wishes to control this
2675: phase separately, TSSetUp() should be called after TSCreate()
2676: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2678: Level: advanced
2680: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2681: @*/
2682: PetscErrorCode TSSetUp(TS ts)
2683: {
2685: DM dm;
2686: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2687: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2688: TSIFunction ifun;
2689: TSIJacobian ijac;
2690: TSI2Jacobian i2jac;
2691: TSRHSJacobian rhsjac;
2695: if (ts->setupcalled) return(0);
2697: if (!((PetscObject)ts)->type_name) {
2698: TSGetIFunction(ts,NULL,&ifun,NULL);
2699: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2700: }
2702: if (!ts->vec_sol) {
2703: if (ts->dm) {
2704: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2705: } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2706: }
2708: if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2709: PetscObjectReference((PetscObject)ts->Jacprhs);
2710: ts->Jacp = ts->Jacprhs;
2711: }
2713: if (ts->quadraturets) {
2714: TSSetUp(ts->quadraturets);
2715: VecDestroy(&ts->vec_costintegrand);
2716: VecDuplicate(ts->quadraturets->vec_sol,&ts->vec_costintegrand);
2717: }
2719: TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2720: if (rhsjac == TSComputeRHSJacobianConstant) {
2721: Mat Amat,Pmat;
2722: SNES snes;
2723: TSGetSNES(ts,&snes);
2724: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2725: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2726: * have displaced the RHS matrix */
2727: if (Amat && Amat == ts->Arhs) {
2728: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2729: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2730: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2731: MatDestroy(&Amat);
2732: }
2733: if (Pmat && Pmat == ts->Brhs) {
2734: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2735: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2736: MatDestroy(&Pmat);
2737: }
2738: }
2740: TSGetAdapt(ts,&ts->adapt);
2741: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2743: if (ts->ops->setup) {
2744: (*ts->ops->setup)(ts);
2745: }
2747: TSSetExactFinalTimeDefault(ts);
2749: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2750: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2751: */
2752: TSGetDM(ts,&dm);
2753: DMSNESGetFunction(dm,&func,NULL);
2754: if (!func) {
2755: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2756: }
2757: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2758: Otherwise, the SNES will use coloring internally to form the Jacobian.
2759: */
2760: DMSNESGetJacobian(dm,&jac,NULL);
2761: DMTSGetIJacobian(dm,&ijac,NULL);
2762: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2763: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2764: if (!jac && (ijac || i2jac || rhsjac)) {
2765: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2766: }
2768: /* if time integration scheme has a starting method, call it */
2769: if (ts->ops->startingmethod) {
2770: (*ts->ops->startingmethod)(ts);
2771: }
2773: ts->setupcalled = PETSC_TRUE;
2774: return(0);
2775: }
2777: /*@
2778: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2780: Collective on TS
2782: Input Parameter:
2783: . ts - the TS context obtained from TSCreate()
2785: Level: beginner
2787: .seealso: TSCreate(), TSSetup(), TSDestroy()
2788: @*/
2789: PetscErrorCode TSReset(TS ts)
2790: {
2791: TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2792: PetscErrorCode ierr;
2797: if (ts->ops->reset) {
2798: (*ts->ops->reset)(ts);
2799: }
2800: if (ts->snes) {SNESReset(ts->snes);}
2801: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2803: MatDestroy(&ts->Arhs);
2804: MatDestroy(&ts->Brhs);
2805: VecDestroy(&ts->Frhs);
2806: VecDestroy(&ts->vec_sol);
2807: VecDestroy(&ts->vec_dot);
2808: VecDestroy(&ts->vatol);
2809: VecDestroy(&ts->vrtol);
2810: VecDestroyVecs(ts->nwork,&ts->work);
2812: MatDestroy(&ts->Jacprhs);
2813: MatDestroy(&ts->Jacp);
2814: if (ts->forward_solve) {
2815: TSForwardReset(ts);
2816: }
2817: if (ts->quadraturets) {
2818: TSReset(ts->quadraturets);
2819: VecDestroy(&ts->vec_costintegrand);
2820: }
2821: while (ilink) {
2822: next = ilink->next;
2823: TSDestroy(&ilink->ts);
2824: PetscFree(ilink->splitname);
2825: ISDestroy(&ilink->is);
2826: PetscFree(ilink);
2827: ilink = next;
2828: }
2829: ts->num_rhs_splits = 0;
2830: ts->setupcalled = PETSC_FALSE;
2831: return(0);
2832: }
2834: /*@
2835: TSDestroy - Destroys the timestepper context that was created
2836: with TSCreate().
2838: Collective on TS
2840: Input Parameter:
2841: . ts - the TS context obtained from TSCreate()
2843: Level: beginner
2845: .seealso: TSCreate(), TSSetUp(), TSSolve()
2846: @*/
2847: PetscErrorCode TSDestroy(TS *ts)
2848: {
2852: if (!*ts) return(0);
2854: if (--((PetscObject)(*ts))->refct > 0) {*ts = NULL; return(0);}
2856: TSReset(*ts);
2857: TSAdjointReset(*ts);
2858: if ((*ts)->forward_solve) {
2859: TSForwardReset(*ts);
2860: }
2861: /* if memory was published with SAWs then destroy it */
2862: PetscObjectSAWsViewOff((PetscObject)*ts);
2863: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2865: TSTrajectoryDestroy(&(*ts)->trajectory);
2867: TSAdaptDestroy(&(*ts)->adapt);
2868: TSEventDestroy(&(*ts)->event);
2870: SNESDestroy(&(*ts)->snes);
2871: DMDestroy(&(*ts)->dm);
2872: TSMonitorCancel((*ts));
2873: TSAdjointMonitorCancel((*ts));
2875: TSDestroy(&(*ts)->quadraturets);
2876: PetscHeaderDestroy(ts);
2877: return(0);
2878: }
2880: /*@
2881: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2882: a TS (timestepper) context. Valid only for nonlinear problems.
2884: Not Collective, but SNES is parallel if TS is parallel
2886: Input Parameter:
2887: . ts - the TS context obtained from TSCreate()
2889: Output Parameter:
2890: . snes - the nonlinear solver context
2892: Notes:
2893: The user can then directly manipulate the SNES context to set various
2894: options, etc. Likewise, the user can then extract and manipulate the
2895: KSP, KSP, and PC contexts as well.
2897: TSGetSNES() does not work for integrators that do not use SNES; in
2898: this case TSGetSNES() returns NULL in snes.
2900: Level: beginner
2902: @*/
2903: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2904: {
2910: if (!ts->snes) {
2911: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2912: PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2913: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2914: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2915: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2916: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2917: if (ts->problem_type == TS_LINEAR) {
2918: SNESSetType(ts->snes,SNESKSPONLY);
2919: }
2920: }
2921: *snes = ts->snes;
2922: return(0);
2923: }
2925: /*@
2926: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2928: Collective
2930: Input Parameter:
2931: + ts - the TS context obtained from TSCreate()
2932: - snes - the nonlinear solver context
2934: Notes:
2935: Most users should have the TS created by calling TSGetSNES()
2937: Level: developer
2939: @*/
2940: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2941: {
2943: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2948: PetscObjectReference((PetscObject)snes);
2949: SNESDestroy(&ts->snes);
2951: ts->snes = snes;
2953: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2954: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2955: if (func == SNESTSFormJacobian) {
2956: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2957: }
2958: return(0);
2959: }
2961: /*@
2962: TSGetKSP - Returns the KSP (linear solver) associated with
2963: a TS (timestepper) context.
2965: Not Collective, but KSP is parallel if TS is parallel
2967: Input Parameter:
2968: . ts - the TS context obtained from TSCreate()
2970: Output Parameter:
2971: . ksp - the nonlinear solver context
2973: Notes:
2974: The user can then directly manipulate the KSP context to set various
2975: options, etc. Likewise, the user can then extract and manipulate the
2976: KSP and PC contexts as well.
2978: TSGetKSP() does not work for integrators that do not use KSP;
2979: in this case TSGetKSP() returns NULL in ksp.
2981: Level: beginner
2983: @*/
2984: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2985: {
2987: SNES snes;
2992: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2993: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2994: TSGetSNES(ts,&snes);
2995: SNESGetKSP(snes,ksp);
2996: return(0);
2997: }
2999: /* ----------- Routines to set solver parameters ---------- */
3001: /*@
3002: TSSetMaxSteps - Sets the maximum number of steps to use.
3004: Logically Collective on TS
3006: Input Parameters:
3007: + ts - the TS context obtained from TSCreate()
3008: - maxsteps - maximum number of steps to use
3010: Options Database Keys:
3011: . -ts_max_steps <maxsteps> - Sets maxsteps
3013: Notes:
3014: The default maximum number of steps is 5000
3016: Level: intermediate
3018: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
3019: @*/
3020: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
3021: {
3025: if (maxsteps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
3026: ts->max_steps = maxsteps;
3027: return(0);
3028: }
3030: /*@
3031: TSGetMaxSteps - Gets the maximum number of steps to use.
3033: Not Collective
3035: Input Parameters:
3036: . ts - the TS context obtained from TSCreate()
3038: Output Parameter:
3039: . maxsteps - maximum number of steps to use
3041: Level: advanced
3043: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
3044: @*/
3045: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
3046: {
3050: *maxsteps = ts->max_steps;
3051: return(0);
3052: }
3054: /*@
3055: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
3057: Logically Collective on TS
3059: Input Parameters:
3060: + ts - the TS context obtained from TSCreate()
3061: - maxtime - final time to step to
3063: Options Database Keys:
3064: . -ts_max_time <maxtime> - Sets maxtime
3066: Notes:
3067: The default maximum time is 5.0
3069: Level: intermediate
3071: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
3072: @*/
3073: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
3074: {
3078: ts->max_time = maxtime;
3079: return(0);
3080: }
3082: /*@
3083: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
3085: Not Collective
3087: Input Parameters:
3088: . ts - the TS context obtained from TSCreate()
3090: Output Parameter:
3091: . maxtime - final time to step to
3093: Level: advanced
3095: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3096: @*/
3097: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3098: {
3102: *maxtime = ts->max_time;
3103: return(0);
3104: }
3106: /*@
3107: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
3109: Level: deprecated
3111: @*/
3112: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3113: {
3117: TSSetTime(ts,initial_time);
3118: TSSetTimeStep(ts,time_step);
3119: return(0);
3120: }
3122: /*@
3123: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
3125: Level: deprecated
3127: @*/
3128: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3129: {
3132: if (maxsteps) {
3134: *maxsteps = ts->max_steps;
3135: }
3136: if (maxtime) {
3138: *maxtime = ts->max_time;
3139: }
3140: return(0);
3141: }
3143: /*@
3144: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
3146: Level: deprecated
3148: @*/
3149: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3150: {
3155: if (maxsteps >= 0) ts->max_steps = maxsteps;
3156: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3157: return(0);
3158: }
3160: /*@
3161: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
3163: Level: deprecated
3165: @*/
3166: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3168: /*@
3169: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
3171: Level: deprecated
3173: @*/
3174: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
3176: /*@
3177: TSSetSolution - Sets the initial solution vector
3178: for use by the TS routines.
3180: Logically Collective on TS
3182: Input Parameters:
3183: + ts - the TS context obtained from TSCreate()
3184: - u - the solution vector
3186: Level: beginner
3188: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3189: @*/
3190: PetscErrorCode TSSetSolution(TS ts,Vec u)
3191: {
3193: DM dm;
3198: PetscObjectReference((PetscObject)u);
3199: VecDestroy(&ts->vec_sol);
3200: ts->vec_sol = u;
3202: TSGetDM(ts,&dm);
3203: DMShellSetGlobalVector(dm,u);
3204: return(0);
3205: }
3207: /*@C
3208: TSSetPreStep - Sets the general-purpose function
3209: called once at the beginning of each time step.
3211: Logically Collective on TS
3213: Input Parameters:
3214: + ts - The TS context obtained from TSCreate()
3215: - func - The function
3217: Calling sequence of func:
3218: . PetscErrorCode func (TS ts);
3220: Level: intermediate
3222: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3223: @*/
3224: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3225: {
3228: ts->prestep = func;
3229: return(0);
3230: }
3232: /*@
3233: TSPreStep - Runs the user-defined pre-step function.
3235: Collective on TS
3237: Input Parameters:
3238: . ts - The TS context obtained from TSCreate()
3240: Notes:
3241: TSPreStep() is typically used within time stepping implementations,
3242: so most users would not generally call this routine themselves.
3244: Level: developer
3246: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3247: @*/
3248: PetscErrorCode TSPreStep(TS ts)
3249: {
3254: if (ts->prestep) {
3255: Vec U;
3256: PetscObjectState sprev,spost;
3258: TSGetSolution(ts,&U);
3259: PetscObjectStateGet((PetscObject)U,&sprev);
3260: PetscStackCallStandard((*ts->prestep),(ts));
3261: PetscObjectStateGet((PetscObject)U,&spost);
3262: if (sprev != spost) {TSRestartStep(ts);}
3263: }
3264: return(0);
3265: }
3267: /*@C
3268: TSSetPreStage - Sets the general-purpose function
3269: called once at the beginning of each stage.
3271: Logically Collective on TS
3273: Input Parameters:
3274: + ts - The TS context obtained from TSCreate()
3275: - func - The function
3277: Calling sequence of func:
3278: . PetscErrorCode func(TS ts, PetscReal stagetime);
3280: Level: intermediate
3282: Note:
3283: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3284: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3285: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3287: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3288: @*/
3289: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3290: {
3293: ts->prestage = func;
3294: return(0);
3295: }
3297: /*@C
3298: TSSetPostStage - Sets the general-purpose function
3299: called once at the end of each stage.
3301: Logically Collective on TS
3303: Input Parameters:
3304: + ts - The TS context obtained from TSCreate()
3305: - func - The function
3307: Calling sequence of func:
3308: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3310: Level: intermediate
3312: Note:
3313: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3314: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3315: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3317: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3318: @*/
3319: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3320: {
3323: ts->poststage = func;
3324: return(0);
3325: }
3327: /*@C
3328: TSSetPostEvaluate - Sets the general-purpose function
3329: called once at the end of each step evaluation.
3331: Logically Collective on TS
3333: Input Parameters:
3334: + ts - The TS context obtained from TSCreate()
3335: - func - The function
3337: Calling sequence of func:
3338: . PetscErrorCode func(TS ts);
3340: Level: intermediate
3342: Note:
3343: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3344: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3345: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3346: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3347: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3349: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3350: @*/
3351: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3352: {
3355: ts->postevaluate = func;
3356: return(0);
3357: }
3359: /*@
3360: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3362: Collective on TS
3364: Input Parameters:
3365: . ts - The TS context obtained from TSCreate()
3366: stagetime - The absolute time of the current stage
3368: Notes:
3369: TSPreStage() is typically used within time stepping implementations,
3370: most users would not generally call this routine themselves.
3372: Level: developer
3374: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3375: @*/
3376: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3377: {
3380: if (ts->prestage) {
3381: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3382: }
3383: return(0);
3384: }
3386: /*@
3387: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3389: Collective on TS
3391: Input Parameters:
3392: . ts - The TS context obtained from TSCreate()
3393: stagetime - The absolute time of the current stage
3394: stageindex - Stage number
3395: Y - Array of vectors (of size = total number
3396: of stages) with the stage solutions
3398: Notes:
3399: TSPostStage() is typically used within time stepping implementations,
3400: most users would not generally call this routine themselves.
3402: Level: developer
3404: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3405: @*/
3406: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3407: {
3410: if (ts->poststage) {
3411: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3412: }
3413: return(0);
3414: }
3416: /*@
3417: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3419: Collective on TS
3421: Input Parameters:
3422: . ts - The TS context obtained from TSCreate()
3424: Notes:
3425: TSPostEvaluate() is typically used within time stepping implementations,
3426: most users would not generally call this routine themselves.
3428: Level: developer
3430: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3431: @*/
3432: PetscErrorCode TSPostEvaluate(TS ts)
3433: {
3438: if (ts->postevaluate) {
3439: Vec U;
3440: PetscObjectState sprev,spost;
3442: TSGetSolution(ts,&U);
3443: PetscObjectStateGet((PetscObject)U,&sprev);
3444: PetscStackCallStandard((*ts->postevaluate),(ts));
3445: PetscObjectStateGet((PetscObject)U,&spost);
3446: if (sprev != spost) {TSRestartStep(ts);}
3447: }
3448: return(0);
3449: }
3451: /*@C
3452: TSSetPostStep - Sets the general-purpose function
3453: called once at the end of each time step.
3455: Logically Collective on TS
3457: Input Parameters:
3458: + ts - The TS context obtained from TSCreate()
3459: - func - The function
3461: Calling sequence of func:
3462: $ func (TS ts);
3464: Notes:
3465: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3466: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3467: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3469: Level: intermediate
3471: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3472: @*/
3473: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3474: {
3477: ts->poststep = func;
3478: return(0);
3479: }
3481: /*@
3482: TSPostStep - Runs the user-defined post-step function.
3484: Collective on TS
3486: Input Parameters:
3487: . ts - The TS context obtained from TSCreate()
3489: Notes:
3490: TSPostStep() is typically used within time stepping implementations,
3491: so most users would not generally call this routine themselves.
3493: Level: developer
3495: @*/
3496: PetscErrorCode TSPostStep(TS ts)
3497: {
3502: if (ts->poststep) {
3503: Vec U;
3504: PetscObjectState sprev,spost;
3506: TSGetSolution(ts,&U);
3507: PetscObjectStateGet((PetscObject)U,&sprev);
3508: PetscStackCallStandard((*ts->poststep),(ts));
3509: PetscObjectStateGet((PetscObject)U,&spost);
3510: if (sprev != spost) {TSRestartStep(ts);}
3511: }
3512: return(0);
3513: }
3515: /* ------------ Routines to set performance monitoring options ----------- */
3517: /*@C
3518: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3519: timestep to display the iteration's progress.
3521: Logically Collective on TS
3523: Input Parameters:
3524: + ts - the TS context obtained from TSCreate()
3525: . monitor - monitoring routine
3526: . mctx - [optional] user-defined context for private data for the
3527: monitor routine (use NULL if no context is desired)
3528: - monitordestroy - [optional] routine that frees monitor context
3529: (may be NULL)
3531: Calling sequence of monitor:
3532: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3534: + ts - the TS context
3535: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3536: . time - current time
3537: . u - current iterate
3538: - mctx - [optional] monitoring context
3540: Notes:
3541: This routine adds an additional monitor to the list of monitors that
3542: already has been loaded.
3544: Fortran Notes:
3545: Only a single monitor function can be set for each TS object
3547: Level: intermediate
3549: .seealso: TSMonitorDefault(), TSMonitorCancel()
3550: @*/
3551: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3552: {
3554: PetscInt i;
3555: PetscBool identical;
3559: for (i=0; i<ts->numbermonitors;i++) {
3560: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3561: if (identical) return(0);
3562: }
3563: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3564: ts->monitor[ts->numbermonitors] = monitor;
3565: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3566: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3567: return(0);
3568: }
3570: /*@C
3571: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3573: Logically Collective on TS
3575: Input Parameters:
3576: . ts - the TS context obtained from TSCreate()
3578: Notes:
3579: There is no way to remove a single, specific monitor.
3581: Level: intermediate
3583: .seealso: TSMonitorDefault(), TSMonitorSet()
3584: @*/
3585: PetscErrorCode TSMonitorCancel(TS ts)
3586: {
3588: PetscInt i;
3592: for (i=0; i<ts->numbermonitors; i++) {
3593: if (ts->monitordestroy[i]) {
3594: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3595: }
3596: }
3597: ts->numbermonitors = 0;
3598: return(0);
3599: }
3601: /*@C
3602: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3604: Level: intermediate
3606: .seealso: TSMonitorSet()
3607: @*/
3608: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3609: {
3611: PetscViewer viewer = vf->viewer;
3612: PetscBool iascii,ibinary;
3616: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3617: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3618: PetscViewerPushFormat(viewer,vf->format);
3619: if (iascii) {
3620: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3621: if (step == -1){ /* this indicates it is an interpolated solution */
3622: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3623: } else {
3624: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3625: }
3626: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3627: } else if (ibinary) {
3628: PetscMPIInt rank;
3629: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3630: if (!rank) {
3631: PetscBool skipHeader;
3632: PetscInt classid = REAL_FILE_CLASSID;
3634: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3635: if (!skipHeader) {
3636: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
3637: }
3638: PetscRealView(1,&ptime,viewer);
3639: } else {
3640: PetscRealView(0,&ptime,viewer);
3641: }
3642: }
3643: PetscViewerPopFormat(viewer);
3644: return(0);
3645: }
3647: /*@C
3648: TSMonitorExtreme - Prints the extreme values of the solution at each timestep
3650: Level: intermediate
3652: .seealso: TSMonitorSet()
3653: @*/
3654: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3655: {
3657: PetscViewer viewer = vf->viewer;
3658: PetscBool iascii;
3659: PetscReal max,min;
3664: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3665: PetscViewerPushFormat(viewer,vf->format);
3666: if (iascii) {
3667: VecMax(v,NULL,&max);
3668: VecMin(v,NULL,&min);
3669: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3670: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3671: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3672: }
3673: PetscViewerPopFormat(viewer);
3674: return(0);
3675: }
3677: /*@
3678: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3680: Collective on TS
3682: Input Argument:
3683: + ts - time stepping context
3684: - t - time to interpolate to
3686: Output Argument:
3687: . U - state at given time
3689: Level: intermediate
3691: Developer Notes:
3692: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3694: .seealso: TSSetExactFinalTime(), TSSolve()
3695: @*/
3696: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3697: {
3703: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3704: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3705: (*ts->ops->interpolate)(ts,t,U);
3706: return(0);
3707: }
3709: /*@
3710: TSStep - Steps one time step
3712: Collective on TS
3714: Input Parameter:
3715: . ts - the TS context obtained from TSCreate()
3717: Level: developer
3719: Notes:
3720: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3722: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3723: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3725: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3726: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3728: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3729: @*/
3730: PetscErrorCode TSStep(TS ts)
3731: {
3732: PetscErrorCode ierr;
3733: static PetscBool cite = PETSC_FALSE;
3734: PetscReal ptime;
3738: PetscCitationsRegister("@article{tspaper,\n"
3739: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3740: " author = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3741: " journal = {arXiv e-preprints},\n"
3742: " eprint = {1806.01437},\n"
3743: " archivePrefix = {arXiv},\n"
3744: " year = {2018}\n}\n",&cite);
3746: TSSetUp(ts);
3747: TSTrajectorySetUp(ts->trajectory,ts);
3749: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3750: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3751: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3752: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3754: if (!ts->steps) ts->ptime_prev = ts->ptime;
3755: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3756: ts->reason = TS_CONVERGED_ITERATING;
3758: PetscLogEventBegin(TS_Step,ts,0,0,0);
3759: (*ts->ops->step)(ts);
3760: PetscLogEventEnd(TS_Step,ts,0,0,0);
3762: if (ts->reason >= 0) {
3763: ts->ptime_prev = ptime;
3764: ts->steps++;
3765: ts->steprollback = PETSC_FALSE;
3766: ts->steprestart = PETSC_FALSE;
3767: }
3769: if (!ts->reason) {
3770: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3771: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3772: }
3774: if (ts->reason < 0 && ts->errorifstepfailed && ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3775: if (ts->reason < 0 && ts->errorifstepfailed) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3776: return(0);
3777: }
3779: /*@
3780: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3781: at the end of a time step with a given order of accuracy.
3783: Collective on TS
3785: Input Arguments:
3786: + ts - time stepping context
3787: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3788: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3790: Output Arguments:
3791: + order - optional, the actual order of the error evaluation
3792: - wlte - the weighted local truncation error norm
3794: Level: advanced
3796: Notes:
3797: If the timestepper cannot evaluate the error in a particular step
3798: (eg. in the first step or restart steps after event handling),
3799: this routine returns wlte=-1.0 .
3801: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3802: @*/
3803: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3804: {
3814: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3815: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3816: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3817: return(0);
3818: }
3820: /*@
3821: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3823: Collective on TS
3825: Input Arguments:
3826: + ts - time stepping context
3827: . order - desired order of accuracy
3828: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3830: Output Arguments:
3831: . U - state at the end of the current step
3833: Level: advanced
3835: Notes:
3836: This function cannot be called until all stages have been evaluated.
3837: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3839: .seealso: TSStep(), TSAdapt
3840: @*/
3841: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3842: {
3849: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3850: (*ts->ops->evaluatestep)(ts,order,U,done);
3851: return(0);
3852: }
3854: /*@C
3855: TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.
3857: Not collective
3859: Input Argument:
3860: . ts - time stepping context
3862: Output Argument:
3863: . initConditions - The function which computes an initial condition
3865: Level: advanced
3867: Notes:
3868: The calling sequence for the function is
3869: $ initCondition(TS ts, Vec u)
3870: $ ts - The timestepping context
3871: $ u - The input vector in which the initial condition is stored
3873: .seealso: TSSetComputeInitialCondition(), TSComputeInitialCondition()
3874: @*/
3875: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS, Vec))
3876: {
3880: *initCondition = ts->ops->initcondition;
3881: return(0);
3882: }
3884: /*@C
3885: TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.
3887: Logically collective on ts
3889: Input Arguments:
3890: + ts - time stepping context
3891: - initCondition - The function which computes an initial condition
3893: Level: advanced
3895: Calling sequence for initCondition:
3896: $ PetscErrorCode initCondition(TS ts, Vec u)
3898: + ts - The timestepping context
3899: - u - The input vector in which the initial condition is to be stored
3901: .seealso: TSGetComputeInitialCondition(), TSComputeInitialCondition()
3902: @*/
3903: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS, Vec))
3904: {
3908: ts->ops->initcondition = initCondition;
3909: return(0);
3910: }
3912: /*@
3913: TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set.
3915: Collective on ts
3917: Input Arguments:
3918: + ts - time stepping context
3919: - u - The Vec to store the condition in which will be used in TSSolve()
3921: Level: advanced
3923: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3924: @*/
3925: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3926: {
3932: if (ts->ops->initcondition) {(*ts->ops->initcondition)(ts, u);}
3933: return(0);
3934: }
3936: /*@C
3937: TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.
3939: Not collective
3941: Input Argument:
3942: . ts - time stepping context
3944: Output Argument:
3945: . exactError - The function which computes the solution error
3947: Level: advanced
3949: Calling sequence for exactError:
3950: $ PetscErrorCode exactError(TS ts, Vec u)
3952: + ts - The timestepping context
3953: . u - The approximate solution vector
3954: - e - The input vector in which the error is stored
3956: .seealso: TSGetComputeExactError(), TSComputeExactError()
3957: @*/
3958: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS, Vec, Vec))
3959: {
3963: *exactError = ts->ops->exacterror;
3964: return(0);
3965: }
3967: /*@C
3968: TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.
3970: Logically collective on ts
3972: Input Arguments:
3973: + ts - time stepping context
3974: - exactError - The function which computes the solution error
3976: Level: advanced
3978: Calling sequence for exactError:
3979: $ PetscErrorCode exactError(TS ts, Vec u)
3981: + ts - The timestepping context
3982: . u - The approximate solution vector
3983: - e - The input vector in which the error is stored
3985: .seealso: TSGetComputeExactError(), TSComputeExactError()
3986: @*/
3987: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS, Vec, Vec))
3988: {
3992: ts->ops->exacterror = exactError;
3993: return(0);
3994: }
3996: /*@
3997: TSComputeExactError - Compute the solution error for the timestepping using the function previously set.
3999: Collective on ts
4001: Input Arguments:
4002: + ts - time stepping context
4003: . u - The approximate solution
4004: - e - The Vec used to store the error
4006: Level: advanced
4008: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
4009: @*/
4010: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
4011: {
4018: if (ts->ops->exacterror) {(*ts->ops->exacterror)(ts, u, e);}
4019: return(0);
4020: }
4022: /*@
4023: TSSolve - Steps the requested number of timesteps.
4025: Collective on TS
4027: Input Parameter:
4028: + ts - the TS context obtained from TSCreate()
4029: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4030: otherwise must contain the initial conditions and will contain the solution at the final requested time
4032: Level: beginner
4034: Notes:
4035: The final time returned by this function may be different from the time of the internally
4036: held state accessible by TSGetSolution() and TSGetTime() because the method may have
4037: stepped over the final time.
4039: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4040: @*/
4041: PetscErrorCode TSSolve(TS ts,Vec u)
4042: {
4043: Vec solution;
4044: PetscErrorCode ierr;
4050: TSSetExactFinalTimeDefault(ts);
4051: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4052: if (!ts->vec_sol || u == ts->vec_sol) {
4053: VecDuplicate(u,&solution);
4054: TSSetSolution(ts,solution);
4055: VecDestroy(&solution); /* grant ownership */
4056: }
4057: VecCopy(u,ts->vec_sol);
4058: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4059: } else if (u) {
4060: TSSetSolution(ts,u);
4061: }
4062: TSSetUp(ts);
4063: TSTrajectorySetUp(ts->trajectory,ts);
4065: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4066: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4067: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
4069: if (ts->forward_solve) {
4070: TSForwardSetUp(ts);
4071: }
4073: /* reset number of steps only when the step is not restarted. ARKIMEX
4074: restarts the step after an event. Resetting these counters in such case causes
4075: TSTrajectory to incorrectly save the output files
4076: */
4077: /* reset time step and iteration counters */
4078: if (!ts->steps) {
4079: ts->ksp_its = 0;
4080: ts->snes_its = 0;
4081: ts->num_snes_failures = 0;
4082: ts->reject = 0;
4083: ts->steprestart = PETSC_TRUE;
4084: ts->steprollback = PETSC_FALSE;
4085: ts->rhsjacobian.time = PETSC_MIN_REAL;
4086: }
4088: /* make sure initial time step does not overshoot final time */
4089: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4090: PetscReal maxdt = ts->max_time-ts->ptime;
4091: PetscReal dt = ts->time_step;
4093: ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt,maxdt,10*PETSC_MACHINE_EPSILON,0) ? maxdt : dt);
4094: }
4095: ts->reason = TS_CONVERGED_ITERATING;
4097: {
4098: PetscViewer viewer;
4099: PetscViewerFormat format;
4100: PetscBool flg;
4101: static PetscBool incall = PETSC_FALSE;
4103: if (!incall) {
4104: /* Estimate the convergence rate of the time discretization */
4105: PetscOptionsGetViewer(PetscObjectComm((PetscObject) ts),((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg);
4106: if (flg) {
4107: PetscConvEst conv;
4108: DM dm;
4109: PetscReal *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4110: PetscInt Nf;
4111: PetscBool checkTemporal = PETSC_TRUE;
4113: incall = PETSC_TRUE;
4114: PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg);
4115: TSGetDM(ts, &dm);
4116: DMGetNumFields(dm, &Nf);
4117: PetscCalloc1(PetscMax(Nf, 1), &alpha);
4118: PetscConvEstCreate(PetscObjectComm((PetscObject) ts), &conv);
4119: PetscConvEstUseTS(conv, checkTemporal);
4120: PetscConvEstSetSolver(conv, (PetscObject) ts);
4121: PetscConvEstSetFromOptions(conv);
4122: PetscConvEstSetUp(conv);
4123: PetscConvEstGetConvRate(conv, alpha);
4124: PetscViewerPushFormat(viewer, format);
4125: PetscConvEstRateView(conv, alpha, viewer);
4126: PetscViewerPopFormat(viewer);
4127: PetscViewerDestroy(&viewer);
4128: PetscConvEstDestroy(&conv);
4129: PetscFree(alpha);
4130: incall = PETSC_FALSE;
4131: }
4132: }
4133: }
4135: TSViewFromOptions(ts,NULL,"-ts_view_pre");
4137: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4138: (*ts->ops->solve)(ts);
4139: if (u) {VecCopy(ts->vec_sol,u);}
4140: ts->solvetime = ts->ptime;
4141: solution = ts->vec_sol;
4142: } else { /* Step the requested number of timesteps. */
4143: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4144: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
4146: if (!ts->steps) {
4147: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4148: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4149: }
4151: while (!ts->reason) {
4152: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4153: if (!ts->steprollback) {
4154: TSPreStep(ts);
4155: }
4156: TSStep(ts);
4157: if (ts->testjacobian) {
4158: TSRHSJacobianTest(ts,NULL);
4159: }
4160: if (ts->testjacobiantranspose) {
4161: TSRHSJacobianTestTranspose(ts,NULL);
4162: }
4163: if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4164: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4165: TSForwardCostIntegral(ts);
4166: if (ts->reason >= 0) ts->steps++;
4167: }
4168: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4169: if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4170: TSForwardStep(ts);
4171: if (ts->reason >= 0) ts->steps++;
4172: }
4173: TSPostEvaluate(ts);
4174: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4175: if (ts->steprollback) {
4176: TSPostEvaluate(ts);
4177: }
4178: if (!ts->steprollback) {
4179: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4180: TSPostStep(ts);
4181: }
4182: }
4183: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4185: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4186: TSInterpolate(ts,ts->max_time,u);
4187: ts->solvetime = ts->max_time;
4188: solution = u;
4189: TSMonitor(ts,-1,ts->solvetime,solution);
4190: } else {
4191: if (u) {VecCopy(ts->vec_sol,u);}
4192: ts->solvetime = ts->ptime;
4193: solution = ts->vec_sol;
4194: }
4195: }
4197: TSViewFromOptions(ts,NULL,"-ts_view");
4198: VecViewFromOptions(solution,NULL,"-ts_view_solution");
4199: PetscObjectSAWsBlock((PetscObject)ts);
4200: if (ts->adjoint_solve) {
4201: TSAdjointSolve(ts);
4202: }
4203: return(0);
4204: }
4206: /*@C
4207: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
4209: Collective on TS
4211: Input Parameters:
4212: + ts - time stepping context obtained from TSCreate()
4213: . step - step number that has just completed
4214: . ptime - model time of the state
4215: - u - state at the current model time
4217: Notes:
4218: TSMonitor() is typically used automatically within the time stepping implementations.
4219: Users would almost never call this routine directly.
4221: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
4223: Level: developer
4225: @*/
4226: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4227: {
4228: DM dm;
4229: PetscInt i,n = ts->numbermonitors;
4236: TSGetDM(ts,&dm);
4237: DMSetOutputSequenceNumber(dm,step,ptime);
4239: VecLockReadPush(u);
4240: for (i=0; i<n; i++) {
4241: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4242: }
4243: VecLockReadPop(u);
4244: return(0);
4245: }
4247: /* ------------------------------------------------------------------------*/
4248: /*@C
4249: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4250: TS to monitor the solution process graphically in various ways
4252: Collective on TS
4254: Input Parameters:
4255: + host - the X display to open, or null for the local machine
4256: . label - the title to put in the title bar
4257: . x, y - the screen coordinates of the upper left coordinate of the window
4258: . m, n - the screen width and height in pixels
4259: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
4261: Output Parameter:
4262: . ctx - the context
4264: Options Database Key:
4265: + -ts_monitor_lg_timestep - automatically sets line graph monitor
4266: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4267: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4268: . -ts_monitor_lg_error - monitor the error
4269: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4270: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4271: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
4273: Notes:
4274: Use TSMonitorLGCtxDestroy() to destroy.
4276: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
4278: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4279: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4280: as the first argument.
4282: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
4284: Level: intermediate
4286: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4287: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4288: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4289: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4290: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
4292: @*/
4293: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4294: {
4295: PetscDraw draw;
4299: PetscNew(ctx);
4300: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4301: PetscDrawSetFromOptions(draw);
4302: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4303: PetscDrawLGSetFromOptions((*ctx)->lg);
4304: PetscDrawDestroy(&draw);
4305: (*ctx)->howoften = howoften;
4306: return(0);
4307: }
4309: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4310: {
4311: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4312: PetscReal x = ptime,y;
4316: if (step < 0) return(0); /* -1 indicates an interpolated solution */
4317: if (!step) {
4318: PetscDrawAxis axis;
4319: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4320: PetscDrawLGGetAxis(ctx->lg,&axis);
4321: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4322: PetscDrawLGReset(ctx->lg);
4323: }
4324: TSGetTimeStep(ts,&y);
4325: if (ctx->semilogy) y = PetscLog10Real(y);
4326: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4327: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4328: PetscDrawLGDraw(ctx->lg);
4329: PetscDrawLGSave(ctx->lg);
4330: }
4331: return(0);
4332: }
4334: /*@C
4335: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4336: with TSMonitorLGCtxCreate().
4338: Collective on TSMonitorLGCtx
4340: Input Parameter:
4341: . ctx - the monitor context
4343: Level: intermediate
4345: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
4346: @*/
4347: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4348: {
4352: if ((*ctx)->transformdestroy) {
4353: ((*ctx)->transformdestroy)((*ctx)->transformctx);
4354: }
4355: PetscDrawLGDestroy(&(*ctx)->lg);
4356: PetscStrArrayDestroy(&(*ctx)->names);
4357: PetscStrArrayDestroy(&(*ctx)->displaynames);
4358: PetscFree((*ctx)->displayvariables);
4359: PetscFree((*ctx)->displayvalues);
4360: PetscFree(*ctx);
4361: return(0);
4362: }
4364: /*
4366: Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations
4368: */
4369: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4370: {
4371: PetscDraw draw;
4375: PetscNew(ctx);
4376: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4377: PetscDrawSetFromOptions(draw);
4378: PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4379: PetscDrawDestroy(&draw);
4380: (*ctx)->howoften = howoften;
4381: return(0);
4383: }
4385: /*
4386: Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4387: */
4388: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4389: {
4394: PetscDrawSPDestroy(&(*ctx)->sp);
4395: PetscFree(*ctx);
4397: return(0);
4399: }
4401: /*@
4402: TSGetTime - Gets the time of the most recently completed step.
4404: Not Collective
4406: Input Parameter:
4407: . ts - the TS context obtained from TSCreate()
4409: Output Parameter:
4410: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
4412: Level: beginner
4414: Note:
4415: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4416: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
4418: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep(), TSGetStepNumber()
4420: @*/
4421: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
4422: {
4426: *t = ts->ptime;
4427: return(0);
4428: }
4430: /*@
4431: TSGetPrevTime - Gets the starting time of the previously completed step.
4433: Not Collective
4435: Input Parameter:
4436: . ts - the TS context obtained from TSCreate()
4438: Output Parameter:
4439: . t - the previous time
4441: Level: beginner
4443: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
4445: @*/
4446: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
4447: {
4451: *t = ts->ptime_prev;
4452: return(0);
4453: }
4455: /*@
4456: TSSetTime - Allows one to reset the time.
4458: Logically Collective on TS
4460: Input Parameters:
4461: + ts - the TS context obtained from TSCreate()
4462: - time - the time
4464: Level: intermediate
4466: .seealso: TSGetTime(), TSSetMaxSteps()
4468: @*/
4469: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4470: {
4474: ts->ptime = t;
4475: return(0);
4476: }
4478: /*@C
4479: TSSetOptionsPrefix - Sets the prefix used for searching for all
4480: TS options in the database.
4482: Logically Collective on TS
4484: Input Parameter:
4485: + ts - The TS context
4486: - prefix - The prefix to prepend to all option names
4488: Notes:
4489: A hyphen (-) must NOT be given at the beginning of the prefix name.
4490: The first character of all runtime options is AUTOMATICALLY the
4491: hyphen.
4493: Level: advanced
4495: .seealso: TSSetFromOptions()
4497: @*/
4498: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4499: {
4501: SNES snes;
4505: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4506: TSGetSNES(ts,&snes);
4507: SNESSetOptionsPrefix(snes,prefix);
4508: return(0);
4509: }
4511: /*@C
4512: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4513: TS options in the database.
4515: Logically Collective on TS
4517: Input Parameter:
4518: + ts - The TS context
4519: - prefix - The prefix to prepend to all option names
4521: Notes:
4522: A hyphen (-) must NOT be given at the beginning of the prefix name.
4523: The first character of all runtime options is AUTOMATICALLY the
4524: hyphen.
4526: Level: advanced
4528: .seealso: TSGetOptionsPrefix()
4530: @*/
4531: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4532: {
4534: SNES snes;
4538: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4539: TSGetSNES(ts,&snes);
4540: SNESAppendOptionsPrefix(snes,prefix);
4541: return(0);
4542: }
4544: /*@C
4545: TSGetOptionsPrefix - Sets the prefix used for searching for all
4546: TS options in the database.
4548: Not Collective
4550: Input Parameter:
4551: . ts - The TS context
4553: Output Parameter:
4554: . prefix - A pointer to the prefix string used
4556: Notes:
4557: On the fortran side, the user should pass in a string 'prifix' of
4558: sufficient length to hold the prefix.
4560: Level: intermediate
4562: .seealso: TSAppendOptionsPrefix()
4563: @*/
4564: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4565: {
4571: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4572: return(0);
4573: }
4575: /*@C
4576: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4578: Not Collective, but parallel objects are returned if TS is parallel
4580: Input Parameter:
4581: . ts - The TS context obtained from TSCreate()
4583: Output Parameters:
4584: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4585: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4586: . func - Function to compute the Jacobian of the RHS (or NULL)
4587: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4589: Notes:
4590: You can pass in NULL for any return argument you do not need.
4592: Level: intermediate
4594: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4596: @*/
4597: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4598: {
4600: DM dm;
4603: if (Amat || Pmat) {
4604: SNES snes;
4605: TSGetSNES(ts,&snes);
4606: SNESSetUpMatrices(snes);
4607: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4608: }
4609: TSGetDM(ts,&dm);
4610: DMTSGetRHSJacobian(dm,func,ctx);
4611: return(0);
4612: }
4614: /*@C
4615: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4617: Not Collective, but parallel objects are returned if TS is parallel
4619: Input Parameter:
4620: . ts - The TS context obtained from TSCreate()
4622: Output Parameters:
4623: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4624: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4625: . f - The function to compute the matrices
4626: - ctx - User-defined context for Jacobian evaluation routine
4628: Notes:
4629: You can pass in NULL for any return argument you do not need.
4631: Level: advanced
4633: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4635: @*/
4636: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4637: {
4639: DM dm;
4642: if (Amat || Pmat) {
4643: SNES snes;
4644: TSGetSNES(ts,&snes);
4645: SNESSetUpMatrices(snes);
4646: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4647: }
4648: TSGetDM(ts,&dm);
4649: DMTSGetIJacobian(dm,f,ctx);
4650: return(0);
4651: }
4653: /*@C
4654: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4655: VecView() for the solution at each timestep
4657: Collective on TS
4659: Input Parameters:
4660: + ts - the TS context
4661: . step - current time-step
4662: . ptime - current time
4663: - dummy - either a viewer or NULL
4665: Options Database:
4666: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4668: Notes:
4669: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4670: will look bad
4672: Level: intermediate
4674: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4675: @*/
4676: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4677: {
4678: PetscErrorCode ierr;
4679: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4680: PetscDraw draw;
4683: if (!step && ictx->showinitial) {
4684: if (!ictx->initialsolution) {
4685: VecDuplicate(u,&ictx->initialsolution);
4686: }
4687: VecCopy(u,ictx->initialsolution);
4688: }
4689: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4691: if (ictx->showinitial) {
4692: PetscReal pause;
4693: PetscViewerDrawGetPause(ictx->viewer,&pause);
4694: PetscViewerDrawSetPause(ictx->viewer,0.0);
4695: VecView(ictx->initialsolution,ictx->viewer);
4696: PetscViewerDrawSetPause(ictx->viewer,pause);
4697: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4698: }
4699: VecView(u,ictx->viewer);
4700: if (ictx->showtimestepandtime) {
4701: PetscReal xl,yl,xr,yr,h;
4702: char time[32];
4704: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4705: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4706: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4707: h = yl + .95*(yr - yl);
4708: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4709: PetscDrawFlush(draw);
4710: }
4712: if (ictx->showinitial) {
4713: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4714: }
4715: return(0);
4716: }
4718: /*@C
4719: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4721: Collective on TS
4723: Input Parameters:
4724: + ts - the TS context
4725: . step - current time-step
4726: . ptime - current time
4727: - dummy - either a viewer or NULL
4729: Level: intermediate
4731: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4732: @*/
4733: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4734: {
4735: PetscErrorCode ierr;
4736: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4737: PetscDraw draw;
4738: PetscDrawAxis axis;
4739: PetscInt n;
4740: PetscMPIInt size;
4741: PetscReal U0,U1,xl,yl,xr,yr,h;
4742: char time[32];
4743: const PetscScalar *U;
4746: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4747: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4748: VecGetSize(u,&n);
4749: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4751: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4752: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4753: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4754: if (!step) {
4755: PetscDrawClear(draw);
4756: PetscDrawAxisDraw(axis);
4757: }
4759: VecGetArrayRead(u,&U);
4760: U0 = PetscRealPart(U[0]);
4761: U1 = PetscRealPart(U[1]);
4762: VecRestoreArrayRead(u,&U);
4763: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4765: PetscDrawCollectiveBegin(draw);
4766: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4767: if (ictx->showtimestepandtime) {
4768: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4769: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4770: h = yl + .95*(yr - yl);
4771: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4772: }
4773: PetscDrawCollectiveEnd(draw);
4774: PetscDrawFlush(draw);
4775: PetscDrawPause(draw);
4776: PetscDrawSave(draw);
4777: return(0);
4778: }
4780: /*@C
4781: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4783: Collective on TS
4785: Input Parameters:
4786: . ctx - the monitor context
4788: Level: intermediate
4790: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4791: @*/
4792: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4793: {
4797: PetscViewerDestroy(&(*ictx)->viewer);
4798: VecDestroy(&(*ictx)->initialsolution);
4799: PetscFree(*ictx);
4800: return(0);
4801: }
4803: /*@C
4804: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4806: Collective on TS
4808: Input Parameter:
4809: . ts - time-step context
4811: Output Patameter:
4812: . ctx - the monitor context
4814: Options Database:
4815: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4817: Level: intermediate
4819: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4820: @*/
4821: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4822: {
4823: PetscErrorCode ierr;
4826: PetscNew(ctx);
4827: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4828: PetscViewerSetFromOptions((*ctx)->viewer);
4830: (*ctx)->howoften = howoften;
4831: (*ctx)->showinitial = PETSC_FALSE;
4832: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4834: (*ctx)->showtimestepandtime = PETSC_FALSE;
4835: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4836: return(0);
4837: }
4839: /*@C
4840: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4841: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4843: Collective on TS
4845: Input Parameters:
4846: + ts - the TS context
4847: . step - current time-step
4848: . ptime - current time
4849: - dummy - either a viewer or NULL
4851: Options Database:
4852: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4854: Level: intermediate
4856: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4857: @*/
4858: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4859: {
4860: PetscErrorCode ierr;
4861: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4862: PetscViewer viewer = ctx->viewer;
4863: Vec work;
4866: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4867: VecDuplicate(u,&work);
4868: TSComputeSolutionFunction(ts,ptime,work);
4869: VecView(work,viewer);
4870: VecDestroy(&work);
4871: return(0);
4872: }
4874: /*@C
4875: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4876: VecView() for the error at each timestep
4878: Collective on TS
4880: Input Parameters:
4881: + ts - the TS context
4882: . step - current time-step
4883: . ptime - current time
4884: - dummy - either a viewer or NULL
4886: Options Database:
4887: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4889: Level: intermediate
4891: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4892: @*/
4893: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4894: {
4895: PetscErrorCode ierr;
4896: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4897: PetscViewer viewer = ctx->viewer;
4898: Vec work;
4901: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4902: VecDuplicate(u,&work);
4903: TSComputeSolutionFunction(ts,ptime,work);
4904: VecAXPY(work,-1.0,u);
4905: VecView(work,viewer);
4906: VecDestroy(&work);
4907: return(0);
4908: }
4910: #include <petsc/private/dmimpl.h>
4911: /*@
4912: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4914: Logically Collective on ts
4916: Input Parameters:
4917: + ts - the ODE integrator object
4918: - dm - the dm, cannot be NULL
4920: Notes:
4921: A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4922: even when not using interfaces like DMTSSetIFunction(). Use DMClone() to get a distinct DM when solving
4923: different problems using the same function space.
4925: Level: intermediate
4927: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4928: @*/
4929: PetscErrorCode TSSetDM(TS ts,DM dm)
4930: {
4932: SNES snes;
4933: DMTS tsdm;
4938: PetscObjectReference((PetscObject)dm);
4939: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4940: if (ts->dm->dmts && !dm->dmts) {
4941: DMCopyDMTS(ts->dm,dm);
4942: DMGetDMTS(ts->dm,&tsdm);
4943: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4944: tsdm->originaldm = dm;
4945: }
4946: }
4947: DMDestroy(&ts->dm);
4948: }
4949: ts->dm = dm;
4951: TSGetSNES(ts,&snes);
4952: SNESSetDM(snes,dm);
4953: return(0);
4954: }
4956: /*@
4957: TSGetDM - Gets the DM that may be used by some preconditioners
4959: Not Collective
4961: Input Parameter:
4962: . ts - the preconditioner context
4964: Output Parameter:
4965: . dm - the dm
4967: Level: intermediate
4969: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4970: @*/
4971: PetscErrorCode TSGetDM(TS ts,DM *dm)
4972: {
4977: if (!ts->dm) {
4978: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4979: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4980: }
4981: *dm = ts->dm;
4982: return(0);
4983: }
4985: /*@
4986: SNESTSFormFunction - Function to evaluate nonlinear residual
4988: Logically Collective on SNES
4990: Input Parameter:
4991: + snes - nonlinear solver
4992: . U - the current state at which to evaluate the residual
4993: - ctx - user context, must be a TS
4995: Output Parameter:
4996: . F - the nonlinear residual
4998: Notes:
4999: This function is not normally called by users and is automatically registered with the SNES used by TS.
5000: It is most frequently passed to MatFDColoringSetFunction().
5002: Level: advanced
5004: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
5005: @*/
5006: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
5007: {
5008: TS ts = (TS)ctx;
5016: (ts->ops->snesfunction)(snes,U,F,ts);
5017: return(0);
5018: }
5020: /*@
5021: SNESTSFormJacobian - Function to evaluate the Jacobian
5023: Collective on SNES
5025: Input Parameter:
5026: + snes - nonlinear solver
5027: . U - the current state at which to evaluate the residual
5028: - ctx - user context, must be a TS
5030: Output Parameter:
5031: + A - the Jacobian
5032: . B - the preconditioning matrix (may be the same as A)
5033: - flag - indicates any structure change in the matrix
5035: Notes:
5036: This function is not normally called by users and is automatically registered with the SNES used by TS.
5038: Level: developer
5040: .seealso: SNESSetJacobian()
5041: @*/
5042: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5043: {
5044: TS ts = (TS)ctx;
5055: (ts->ops->snesjacobian)(snes,U,A,B,ts);
5056: return(0);
5057: }
5059: /*@C
5060: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
5062: Collective on TS
5064: Input Arguments:
5065: + ts - time stepping context
5066: . t - time at which to evaluate
5067: . U - state at which to evaluate
5068: - ctx - context
5070: Output Arguments:
5071: . F - right hand side
5073: Level: intermediate
5075: Notes:
5076: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5077: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
5079: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5080: @*/
5081: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5082: {
5084: Mat Arhs,Brhs;
5087: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5088: /* undo the damage caused by shifting */
5089: TSRecoverRHSJacobian(ts,Arhs,Brhs);
5090: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5091: MatMult(Arhs,U,F);
5092: return(0);
5093: }
5095: /*@C
5096: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
5098: Collective on TS
5100: Input Arguments:
5101: + ts - time stepping context
5102: . t - time at which to evaluate
5103: . U - state at which to evaluate
5104: - ctx - context
5106: Output Arguments:
5107: + A - pointer to operator
5108: . B - pointer to preconditioning matrix
5109: - flg - matrix structure flag
5111: Level: intermediate
5113: Notes:
5114: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
5116: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5117: @*/
5118: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5119: {
5121: return(0);
5122: }
5124: /*@C
5125: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
5127: Collective on TS
5129: Input Arguments:
5130: + ts - time stepping context
5131: . t - time at which to evaluate
5132: . U - state at which to evaluate
5133: . Udot - time derivative of state vector
5134: - ctx - context
5136: Output Arguments:
5137: . F - left hand side
5139: Level: intermediate
5141: Notes:
5142: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5143: user is required to write their own TSComputeIFunction.
5144: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5145: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
5147: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
5149: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5150: @*/
5151: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5152: {
5154: Mat A,B;
5157: TSGetIJacobian(ts,&A,&B,NULL,NULL);
5158: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5159: MatMult(A,Udot,F);
5160: return(0);
5161: }
5163: /*@C
5164: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
5166: Collective on TS
5168: Input Arguments:
5169: + ts - time stepping context
5170: . t - time at which to evaluate
5171: . U - state at which to evaluate
5172: . Udot - time derivative of state vector
5173: . shift - shift to apply
5174: - ctx - context
5176: Output Arguments:
5177: + A - pointer to operator
5178: . B - pointer to preconditioning matrix
5179: - flg - matrix structure flag
5181: Level: advanced
5183: Notes:
5184: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
5186: It is only appropriate for problems of the form
5188: $ M Udot = F(U,t)
5190: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
5191: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5192: an implicit operator of the form
5194: $ shift*M + J
5196: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
5197: a copy of M or reassemble it when requested.
5199: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5200: @*/
5201: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5202: {
5206: MatScale(A, shift / ts->ijacobian.shift);
5207: ts->ijacobian.shift = shift;
5208: return(0);
5209: }
5211: /*@
5212: TSGetEquationType - Gets the type of the equation that TS is solving.
5214: Not Collective
5216: Input Parameter:
5217: . ts - the TS context
5219: Output Parameter:
5220: . equation_type - see TSEquationType
5222: Level: beginner
5224: .seealso: TSSetEquationType(), TSEquationType
5225: @*/
5226: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
5227: {
5231: *equation_type = ts->equation_type;
5232: return(0);
5233: }
5235: /*@
5236: TSSetEquationType - Sets the type of the equation that TS is solving.
5238: Not Collective
5240: Input Parameter:
5241: + ts - the TS context
5242: - equation_type - see TSEquationType
5244: Level: advanced
5246: .seealso: TSGetEquationType(), TSEquationType
5247: @*/
5248: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
5249: {
5252: ts->equation_type = equation_type;
5253: return(0);
5254: }
5256: /*@
5257: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
5259: Not Collective
5261: Input Parameter:
5262: . ts - the TS context
5264: Output Parameter:
5265: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5266: manual pages for the individual convergence tests for complete lists
5268: Level: beginner
5270: Notes:
5271: Can only be called after the call to TSSolve() is complete.
5273: .seealso: TSSetConvergenceTest(), TSConvergedReason
5274: @*/
5275: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5276: {
5280: *reason = ts->reason;
5281: return(0);
5282: }
5284: /*@
5285: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
5287: Logically Collective; reason must contain common value
5289: Input Parameters:
5290: + ts - the TS context
5291: - reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5292: manual pages for the individual convergence tests for complete lists
5294: Level: advanced
5296: Notes:
5297: Can only be called while TSSolve() is active.
5299: .seealso: TSConvergedReason
5300: @*/
5301: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
5302: {
5305: ts->reason = reason;
5306: return(0);
5307: }
5309: /*@
5310: TSGetSolveTime - Gets the time after a call to TSSolve()
5312: Not Collective
5314: Input Parameter:
5315: . ts - the TS context
5317: Output Parameter:
5318: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
5320: Level: beginner
5322: Notes:
5323: Can only be called after the call to TSSolve() is complete.
5325: .seealso: TSSetConvergenceTest(), TSConvergedReason
5326: @*/
5327: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
5328: {
5332: *ftime = ts->solvetime;
5333: return(0);
5334: }
5336: /*@
5337: TSGetSNESIterations - Gets the total number of nonlinear iterations
5338: used by the time integrator.
5340: Not Collective
5342: Input Parameter:
5343: . ts - TS context
5345: Output Parameter:
5346: . nits - number of nonlinear iterations
5348: Notes:
5349: This counter is reset to zero for each successive call to TSSolve().
5351: Level: intermediate
5353: .seealso: TSGetKSPIterations()
5354: @*/
5355: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5356: {
5360: *nits = ts->snes_its;
5361: return(0);
5362: }
5364: /*@
5365: TSGetKSPIterations - Gets the total number of linear iterations
5366: used by the time integrator.
5368: Not Collective
5370: Input Parameter:
5371: . ts - TS context
5373: Output Parameter:
5374: . lits - number of linear iterations
5376: Notes:
5377: This counter is reset to zero for each successive call to TSSolve().
5379: Level: intermediate
5381: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
5382: @*/
5383: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5384: {
5388: *lits = ts->ksp_its;
5389: return(0);
5390: }
5392: /*@
5393: TSGetStepRejections - Gets the total number of rejected steps.
5395: Not Collective
5397: Input Parameter:
5398: . ts - TS context
5400: Output Parameter:
5401: . rejects - number of steps rejected
5403: Notes:
5404: This counter is reset to zero for each successive call to TSSolve().
5406: Level: intermediate
5408: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5409: @*/
5410: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5411: {
5415: *rejects = ts->reject;
5416: return(0);
5417: }
5419: /*@
5420: TSGetSNESFailures - Gets the total number of failed SNES solves
5422: Not Collective
5424: Input Parameter:
5425: . ts - TS context
5427: Output Parameter:
5428: . fails - number of failed nonlinear solves
5430: Notes:
5431: This counter is reset to zero for each successive call to TSSolve().
5433: Level: intermediate
5435: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5436: @*/
5437: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5438: {
5442: *fails = ts->num_snes_failures;
5443: return(0);
5444: }
5446: /*@
5447: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5449: Not Collective
5451: Input Parameter:
5452: + ts - TS context
5453: - rejects - maximum number of rejected steps, pass -1 for unlimited
5455: Notes:
5456: The counter is reset to zero for each step
5458: Options Database Key:
5459: . -ts_max_reject - Maximum number of step rejections before a step fails
5461: Level: intermediate
5463: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5464: @*/
5465: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5466: {
5469: ts->max_reject = rejects;
5470: return(0);
5471: }
5473: /*@
5474: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5476: Not Collective
5478: Input Parameter:
5479: + ts - TS context
5480: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5482: Notes:
5483: The counter is reset to zero for each successive call to TSSolve().
5485: Options Database Key:
5486: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5488: Level: intermediate
5490: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5491: @*/
5492: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5493: {
5496: ts->max_snes_failures = fails;
5497: return(0);
5498: }
5500: /*@
5501: TSSetErrorIfStepFails - Error if no step succeeds
5503: Not Collective
5505: Input Parameter:
5506: + ts - TS context
5507: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5509: Options Database Key:
5510: . -ts_error_if_step_fails - Error if no step succeeds
5512: Level: intermediate
5514: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5515: @*/
5516: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5517: {
5520: ts->errorifstepfailed = err;
5521: return(0);
5522: }
5524: /*@C
5525: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5527: Collective on TS
5529: Input Parameters:
5530: + ts - the TS context
5531: . step - current time-step
5532: . ptime - current time
5533: . u - current state
5534: - vf - viewer and its format
5536: Level: intermediate
5538: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5539: @*/
5540: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5541: {
5545: PetscViewerPushFormat(vf->viewer,vf->format);
5546: VecView(u,vf->viewer);
5547: PetscViewerPopFormat(vf->viewer);
5548: return(0);
5549: }
5551: /*@C
5552: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5554: Collective on TS
5556: Input Parameters:
5557: + ts - the TS context
5558: . step - current time-step
5559: . ptime - current time
5560: . u - current state
5561: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5563: Level: intermediate
5565: Notes:
5566: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5567: These are named according to the file name template.
5569: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5571: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5572: @*/
5573: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5574: {
5576: char filename[PETSC_MAX_PATH_LEN];
5577: PetscViewer viewer;
5580: if (step < 0) return(0); /* -1 indicates interpolated solution */
5581: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5582: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5583: VecView(u,viewer);
5584: PetscViewerDestroy(&viewer);
5585: return(0);
5586: }
5588: /*@C
5589: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5591: Collective on TS
5593: Input Parameters:
5594: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5596: Level: intermediate
5598: Note:
5599: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5601: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5602: @*/
5603: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5604: {
5608: PetscFree(*(char**)filenametemplate);
5609: return(0);
5610: }
5612: /*@
5613: TSGetAdapt - Get the adaptive controller context for the current method
5615: Collective on TS if controller has not been created yet
5617: Input Arguments:
5618: . ts - time stepping context
5620: Output Arguments:
5621: . adapt - adaptive controller
5623: Level: intermediate
5625: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5626: @*/
5627: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5628: {
5634: if (!ts->adapt) {
5635: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5636: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5637: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5638: }
5639: *adapt = ts->adapt;
5640: return(0);
5641: }
5643: /*@
5644: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5646: Logically Collective
5648: Input Arguments:
5649: + ts - time integration context
5650: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5651: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5652: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5653: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5655: Options Database keys:
5656: + -ts_rtol <rtol> - relative tolerance for local truncation error
5657: - -ts_atol <atol> Absolute tolerance for local truncation error
5659: Notes:
5660: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5661: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5662: computed only for the differential or the algebraic part then this can be done using the vector of
5663: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5664: differential part and infinity for the algebraic part, the LTE calculation will include only the
5665: differential variables.
5667: Level: beginner
5669: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSGetTolerances()
5670: @*/
5671: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5672: {
5676: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5677: if (vatol) {
5678: PetscObjectReference((PetscObject)vatol);
5679: VecDestroy(&ts->vatol);
5680: ts->vatol = vatol;
5681: }
5682: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5683: if (vrtol) {
5684: PetscObjectReference((PetscObject)vrtol);
5685: VecDestroy(&ts->vrtol);
5686: ts->vrtol = vrtol;
5687: }
5688: return(0);
5689: }
5691: /*@
5692: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5694: Logically Collective
5696: Input Arguments:
5697: . ts - time integration context
5699: Output Arguments:
5700: + atol - scalar absolute tolerances, NULL to ignore
5701: . vatol - vector of absolute tolerances, NULL to ignore
5702: . rtol - scalar relative tolerances, NULL to ignore
5703: - vrtol - vector of relative tolerances, NULL to ignore
5705: Level: beginner
5707: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSSetTolerances()
5708: @*/
5709: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5710: {
5712: if (atol) *atol = ts->atol;
5713: if (vatol) *vatol = ts->vatol;
5714: if (rtol) *rtol = ts->rtol;
5715: if (vrtol) *vrtol = ts->vrtol;
5716: return(0);
5717: }
5719: /*@
5720: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5722: Collective on TS
5724: Input Arguments:
5725: + ts - time stepping context
5726: . U - state vector, usually ts->vec_sol
5727: - Y - state vector to be compared to U
5729: Output Arguments:
5730: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5731: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5732: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5734: Level: developer
5736: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5737: @*/
5738: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5739: {
5740: PetscErrorCode ierr;
5741: PetscInt i,n,N,rstart;
5742: PetscInt n_loc,na_loc,nr_loc;
5743: PetscReal n_glb,na_glb,nr_glb;
5744: const PetscScalar *u,*y;
5745: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5746: PetscReal tol,tola,tolr;
5747: PetscReal err_loc[6],err_glb[6];
5759: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5761: VecGetSize(U,&N);
5762: VecGetLocalSize(U,&n);
5763: VecGetOwnershipRange(U,&rstart,NULL);
5764: VecGetArrayRead(U,&u);
5765: VecGetArrayRead(Y,&y);
5766: sum = 0.; n_loc = 0;
5767: suma = 0.; na_loc = 0;
5768: sumr = 0.; nr_loc = 0;
5769: if (ts->vatol && ts->vrtol) {
5770: const PetscScalar *atol,*rtol;
5771: VecGetArrayRead(ts->vatol,&atol);
5772: VecGetArrayRead(ts->vrtol,&rtol);
5773: for (i=0; i<n; i++) {
5774: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5775: diff = PetscAbsScalar(y[i] - u[i]);
5776: tola = PetscRealPart(atol[i]);
5777: if (tola>0.){
5778: suma += PetscSqr(diff/tola);
5779: na_loc++;
5780: }
5781: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5782: if (tolr>0.){
5783: sumr += PetscSqr(diff/tolr);
5784: nr_loc++;
5785: }
5786: tol=tola+tolr;
5787: if (tol>0.){
5788: sum += PetscSqr(diff/tol);
5789: n_loc++;
5790: }
5791: }
5792: VecRestoreArrayRead(ts->vatol,&atol);
5793: VecRestoreArrayRead(ts->vrtol,&rtol);
5794: } else if (ts->vatol) { /* vector atol, scalar rtol */
5795: const PetscScalar *atol;
5796: VecGetArrayRead(ts->vatol,&atol);
5797: for (i=0; i<n; i++) {
5798: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5799: diff = PetscAbsScalar(y[i] - u[i]);
5800: tola = PetscRealPart(atol[i]);
5801: if (tola>0.){
5802: suma += PetscSqr(diff/tola);
5803: na_loc++;
5804: }
5805: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5806: if (tolr>0.){
5807: sumr += PetscSqr(diff/tolr);
5808: nr_loc++;
5809: }
5810: tol=tola+tolr;
5811: if (tol>0.){
5812: sum += PetscSqr(diff/tol);
5813: n_loc++;
5814: }
5815: }
5816: VecRestoreArrayRead(ts->vatol,&atol);
5817: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5818: const PetscScalar *rtol;
5819: VecGetArrayRead(ts->vrtol,&rtol);
5820: for (i=0; i<n; i++) {
5821: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5822: diff = PetscAbsScalar(y[i] - u[i]);
5823: tola = ts->atol;
5824: if (tola>0.){
5825: suma += PetscSqr(diff/tola);
5826: na_loc++;
5827: }
5828: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5829: if (tolr>0.){
5830: sumr += PetscSqr(diff/tolr);
5831: nr_loc++;
5832: }
5833: tol=tola+tolr;
5834: if (tol>0.){
5835: sum += PetscSqr(diff/tol);
5836: n_loc++;
5837: }
5838: }
5839: VecRestoreArrayRead(ts->vrtol,&rtol);
5840: } else { /* scalar atol, scalar rtol */
5841: for (i=0; i<n; i++) {
5842: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5843: diff = PetscAbsScalar(y[i] - u[i]);
5844: tola = ts->atol;
5845: if (tola>0.){
5846: suma += PetscSqr(diff/tola);
5847: na_loc++;
5848: }
5849: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5850: if (tolr>0.){
5851: sumr += PetscSqr(diff/tolr);
5852: nr_loc++;
5853: }
5854: tol=tola+tolr;
5855: if (tol>0.){
5856: sum += PetscSqr(diff/tol);
5857: n_loc++;
5858: }
5859: }
5860: }
5861: VecRestoreArrayRead(U,&u);
5862: VecRestoreArrayRead(Y,&y);
5864: err_loc[0] = sum;
5865: err_loc[1] = suma;
5866: err_loc[2] = sumr;
5867: err_loc[3] = (PetscReal)n_loc;
5868: err_loc[4] = (PetscReal)na_loc;
5869: err_loc[5] = (PetscReal)nr_loc;
5871: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5873: gsum = err_glb[0];
5874: gsuma = err_glb[1];
5875: gsumr = err_glb[2];
5876: n_glb = err_glb[3];
5877: na_glb = err_glb[4];
5878: nr_glb = err_glb[5];
5880: *norm = 0.;
5881: if (n_glb>0.){*norm = PetscSqrtReal(gsum / n_glb);}
5882: *norma = 0.;
5883: if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5884: *normr = 0.;
5885: if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5887: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5888: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5889: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5890: return(0);
5891: }
5893: /*@
5894: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5896: Collective on TS
5898: Input Arguments:
5899: + ts - time stepping context
5900: . U - state vector, usually ts->vec_sol
5901: - Y - state vector to be compared to U
5903: Output Arguments:
5904: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5905: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5906: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5908: Level: developer
5910: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5911: @*/
5912: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5913: {
5914: PetscErrorCode ierr;
5915: PetscInt i,n,N,rstart;
5916: const PetscScalar *u,*y;
5917: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5918: PetscReal tol,tola,tolr,diff;
5919: PetscReal err_loc[3],err_glb[3];
5931: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5933: VecGetSize(U,&N);
5934: VecGetLocalSize(U,&n);
5935: VecGetOwnershipRange(U,&rstart,NULL);
5936: VecGetArrayRead(U,&u);
5937: VecGetArrayRead(Y,&y);
5939: max=0.;
5940: maxa=0.;
5941: maxr=0.;
5943: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5944: const PetscScalar *atol,*rtol;
5945: VecGetArrayRead(ts->vatol,&atol);
5946: VecGetArrayRead(ts->vrtol,&rtol);
5948: for (i=0; i<n; i++) {
5949: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5950: diff = PetscAbsScalar(y[i] - u[i]);
5951: tola = PetscRealPart(atol[i]);
5952: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5953: tol = tola+tolr;
5954: if (tola>0.){
5955: maxa = PetscMax(maxa,diff / tola);
5956: }
5957: if (tolr>0.){
5958: maxr = PetscMax(maxr,diff / tolr);
5959: }
5960: if (tol>0.){
5961: max = PetscMax(max,diff / tol);
5962: }
5963: }
5964: VecRestoreArrayRead(ts->vatol,&atol);
5965: VecRestoreArrayRead(ts->vrtol,&rtol);
5966: } else if (ts->vatol) { /* vector atol, scalar rtol */
5967: const PetscScalar *atol;
5968: VecGetArrayRead(ts->vatol,&atol);
5969: for (i=0; i<n; i++) {
5970: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5971: diff = PetscAbsScalar(y[i] - u[i]);
5972: tola = PetscRealPart(atol[i]);
5973: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5974: tol = tola+tolr;
5975: if (tola>0.){
5976: maxa = PetscMax(maxa,diff / tola);
5977: }
5978: if (tolr>0.){
5979: maxr = PetscMax(maxr,diff / tolr);
5980: }
5981: if (tol>0.){
5982: max = PetscMax(max,diff / tol);
5983: }
5984: }
5985: VecRestoreArrayRead(ts->vatol,&atol);
5986: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5987: const PetscScalar *rtol;
5988: VecGetArrayRead(ts->vrtol,&rtol);
5990: for (i=0; i<n; i++) {
5991: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5992: diff = PetscAbsScalar(y[i] - u[i]);
5993: tola = ts->atol;
5994: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5995: tol = tola+tolr;
5996: if (tola>0.){
5997: maxa = PetscMax(maxa,diff / tola);
5998: }
5999: if (tolr>0.){
6000: maxr = PetscMax(maxr,diff / tolr);
6001: }
6002: if (tol>0.){
6003: max = PetscMax(max,diff / tol);
6004: }
6005: }
6006: VecRestoreArrayRead(ts->vrtol,&rtol);
6007: } else { /* scalar atol, scalar rtol */
6009: for (i=0; i<n; i++) {
6010: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6011: diff = PetscAbsScalar(y[i] - u[i]);
6012: tola = ts->atol;
6013: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6014: tol = tola+tolr;
6015: if (tola>0.){
6016: maxa = PetscMax(maxa,diff / tola);
6017: }
6018: if (tolr>0.){
6019: maxr = PetscMax(maxr,diff / tolr);
6020: }
6021: if (tol>0.){
6022: max = PetscMax(max,diff / tol);
6023: }
6024: }
6025: }
6026: VecRestoreArrayRead(U,&u);
6027: VecRestoreArrayRead(Y,&y);
6028: err_loc[0] = max;
6029: err_loc[1] = maxa;
6030: err_loc[2] = maxr;
6031: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6032: gmax = err_glb[0];
6033: gmaxa = err_glb[1];
6034: gmaxr = err_glb[2];
6036: *norm = gmax;
6037: *norma = gmaxa;
6038: *normr = gmaxr;
6039: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6040: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6041: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6042: return(0);
6043: }
6045: /*@
6046: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
6048: Collective on TS
6050: Input Arguments:
6051: + ts - time stepping context
6052: . U - state vector, usually ts->vec_sol
6053: . Y - state vector to be compared to U
6054: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6056: Output Arguments:
6057: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6058: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6059: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6061: Options Database Keys:
6062: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6064: Level: developer
6066: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6067: @*/
6068: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6069: {
6073: if (wnormtype == NORM_2) {
6074: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6075: } else if (wnormtype == NORM_INFINITY) {
6076: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6077: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6078: return(0);
6079: }
6082: /*@
6083: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
6085: Collective on TS
6087: Input Arguments:
6088: + ts - time stepping context
6089: . E - error vector
6090: . U - state vector, usually ts->vec_sol
6091: - Y - state vector, previous time step
6093: Output Arguments:
6094: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6095: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6096: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
6098: Level: developer
6100: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6101: @*/
6102: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6103: {
6104: PetscErrorCode ierr;
6105: PetscInt i,n,N,rstart;
6106: PetscInt n_loc,na_loc,nr_loc;
6107: PetscReal n_glb,na_glb,nr_glb;
6108: const PetscScalar *e,*u,*y;
6109: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
6110: PetscReal tol,tola,tolr;
6111: PetscReal err_loc[6],err_glb[6];
6127: VecGetSize(E,&N);
6128: VecGetLocalSize(E,&n);
6129: VecGetOwnershipRange(E,&rstart,NULL);
6130: VecGetArrayRead(E,&e);
6131: VecGetArrayRead(U,&u);
6132: VecGetArrayRead(Y,&y);
6133: sum = 0.; n_loc = 0;
6134: suma = 0.; na_loc = 0;
6135: sumr = 0.; nr_loc = 0;
6136: if (ts->vatol && ts->vrtol) {
6137: const PetscScalar *atol,*rtol;
6138: VecGetArrayRead(ts->vatol,&atol);
6139: VecGetArrayRead(ts->vrtol,&rtol);
6140: for (i=0; i<n; i++) {
6141: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6142: err = PetscAbsScalar(e[i]);
6143: tola = PetscRealPart(atol[i]);
6144: if (tola>0.){
6145: suma += PetscSqr(err/tola);
6146: na_loc++;
6147: }
6148: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6149: if (tolr>0.){
6150: sumr += PetscSqr(err/tolr);
6151: nr_loc++;
6152: }
6153: tol=tola+tolr;
6154: if (tol>0.){
6155: sum += PetscSqr(err/tol);
6156: n_loc++;
6157: }
6158: }
6159: VecRestoreArrayRead(ts->vatol,&atol);
6160: VecRestoreArrayRead(ts->vrtol,&rtol);
6161: } else if (ts->vatol) { /* vector atol, scalar rtol */
6162: const PetscScalar *atol;
6163: VecGetArrayRead(ts->vatol,&atol);
6164: for (i=0; i<n; i++) {
6165: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6166: err = PetscAbsScalar(e[i]);
6167: tola = PetscRealPart(atol[i]);
6168: if (tola>0.){
6169: suma += PetscSqr(err/tola);
6170: na_loc++;
6171: }
6172: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6173: if (tolr>0.){
6174: sumr += PetscSqr(err/tolr);
6175: nr_loc++;
6176: }
6177: tol=tola+tolr;
6178: if (tol>0.){
6179: sum += PetscSqr(err/tol);
6180: n_loc++;
6181: }
6182: }
6183: VecRestoreArrayRead(ts->vatol,&atol);
6184: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6185: const PetscScalar *rtol;
6186: VecGetArrayRead(ts->vrtol,&rtol);
6187: for (i=0; i<n; i++) {
6188: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6189: err = PetscAbsScalar(e[i]);
6190: tola = ts->atol;
6191: if (tola>0.){
6192: suma += PetscSqr(err/tola);
6193: na_loc++;
6194: }
6195: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6196: if (tolr>0.){
6197: sumr += PetscSqr(err/tolr);
6198: nr_loc++;
6199: }
6200: tol=tola+tolr;
6201: if (tol>0.){
6202: sum += PetscSqr(err/tol);
6203: n_loc++;
6204: }
6205: }
6206: VecRestoreArrayRead(ts->vrtol,&rtol);
6207: } else { /* scalar atol, scalar rtol */
6208: for (i=0; i<n; i++) {
6209: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6210: err = PetscAbsScalar(e[i]);
6211: tola = ts->atol;
6212: if (tola>0.){
6213: suma += PetscSqr(err/tola);
6214: na_loc++;
6215: }
6216: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6217: if (tolr>0.){
6218: sumr += PetscSqr(err/tolr);
6219: nr_loc++;
6220: }
6221: tol=tola+tolr;
6222: if (tol>0.){
6223: sum += PetscSqr(err/tol);
6224: n_loc++;
6225: }
6226: }
6227: }
6228: VecRestoreArrayRead(E,&e);
6229: VecRestoreArrayRead(U,&u);
6230: VecRestoreArrayRead(Y,&y);
6232: err_loc[0] = sum;
6233: err_loc[1] = suma;
6234: err_loc[2] = sumr;
6235: err_loc[3] = (PetscReal)n_loc;
6236: err_loc[4] = (PetscReal)na_loc;
6237: err_loc[5] = (PetscReal)nr_loc;
6239: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
6241: gsum = err_glb[0];
6242: gsuma = err_glb[1];
6243: gsumr = err_glb[2];
6244: n_glb = err_glb[3];
6245: na_glb = err_glb[4];
6246: nr_glb = err_glb[5];
6248: *norm = 0.;
6249: if (n_glb>0.){*norm = PetscSqrtReal(gsum / n_glb);}
6250: *norma = 0.;
6251: if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6252: *normr = 0.;
6253: if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
6255: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6256: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6257: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6258: return(0);
6259: }
6261: /*@
6262: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6263: Collective on TS
6265: Input Arguments:
6266: + ts - time stepping context
6267: . E - error vector
6268: . U - state vector, usually ts->vec_sol
6269: - Y - state vector, previous time step
6271: Output Arguments:
6272: + norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6273: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6274: - normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
6276: Level: developer
6278: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6279: @*/
6280: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6281: {
6282: PetscErrorCode ierr;
6283: PetscInt i,n,N,rstart;
6284: const PetscScalar *e,*u,*y;
6285: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6286: PetscReal tol,tola,tolr;
6287: PetscReal err_loc[3],err_glb[3];
6303: VecGetSize(E,&N);
6304: VecGetLocalSize(E,&n);
6305: VecGetOwnershipRange(E,&rstart,NULL);
6306: VecGetArrayRead(E,&e);
6307: VecGetArrayRead(U,&u);
6308: VecGetArrayRead(Y,&y);
6310: max=0.;
6311: maxa=0.;
6312: maxr=0.;
6314: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
6315: const PetscScalar *atol,*rtol;
6316: VecGetArrayRead(ts->vatol,&atol);
6317: VecGetArrayRead(ts->vrtol,&rtol);
6319: for (i=0; i<n; i++) {
6320: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6321: err = PetscAbsScalar(e[i]);
6322: tola = PetscRealPart(atol[i]);
6323: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6324: tol = tola+tolr;
6325: if (tola>0.){
6326: maxa = PetscMax(maxa,err / tola);
6327: }
6328: if (tolr>0.){
6329: maxr = PetscMax(maxr,err / tolr);
6330: }
6331: if (tol>0.){
6332: max = PetscMax(max,err / tol);
6333: }
6334: }
6335: VecRestoreArrayRead(ts->vatol,&atol);
6336: VecRestoreArrayRead(ts->vrtol,&rtol);
6337: } else if (ts->vatol) { /* vector atol, scalar rtol */
6338: const PetscScalar *atol;
6339: VecGetArrayRead(ts->vatol,&atol);
6340: for (i=0; i<n; i++) {
6341: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6342: err = PetscAbsScalar(e[i]);
6343: tola = PetscRealPart(atol[i]);
6344: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6345: tol = tola+tolr;
6346: if (tola>0.){
6347: maxa = PetscMax(maxa,err / tola);
6348: }
6349: if (tolr>0.){
6350: maxr = PetscMax(maxr,err / tolr);
6351: }
6352: if (tol>0.){
6353: max = PetscMax(max,err / tol);
6354: }
6355: }
6356: VecRestoreArrayRead(ts->vatol,&atol);
6357: } else if (ts->vrtol) { /* scalar atol, vector rtol */
6358: const PetscScalar *rtol;
6359: VecGetArrayRead(ts->vrtol,&rtol);
6361: for (i=0; i<n; i++) {
6362: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6363: err = PetscAbsScalar(e[i]);
6364: tola = ts->atol;
6365: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6366: tol = tola+tolr;
6367: if (tola>0.){
6368: maxa = PetscMax(maxa,err / tola);
6369: }
6370: if (tolr>0.){
6371: maxr = PetscMax(maxr,err / tolr);
6372: }
6373: if (tol>0.){
6374: max = PetscMax(max,err / tol);
6375: }
6376: }
6377: VecRestoreArrayRead(ts->vrtol,&rtol);
6378: } else { /* scalar atol, scalar rtol */
6380: for (i=0; i<n; i++) {
6381: SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6382: err = PetscAbsScalar(e[i]);
6383: tola = ts->atol;
6384: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6385: tol = tola+tolr;
6386: if (tola>0.){
6387: maxa = PetscMax(maxa,err / tola);
6388: }
6389: if (tolr>0.){
6390: maxr = PetscMax(maxr,err / tolr);
6391: }
6392: if (tol>0.){
6393: max = PetscMax(max,err / tol);
6394: }
6395: }
6396: }
6397: VecRestoreArrayRead(E,&e);
6398: VecRestoreArrayRead(U,&u);
6399: VecRestoreArrayRead(Y,&y);
6400: err_loc[0] = max;
6401: err_loc[1] = maxa;
6402: err_loc[2] = maxr;
6403: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6404: gmax = err_glb[0];
6405: gmaxa = err_glb[1];
6406: gmaxr = err_glb[2];
6408: *norm = gmax;
6409: *norma = gmaxa;
6410: *normr = gmaxr;
6411: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6412: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6413: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6414: return(0);
6415: }
6417: /*@
6418: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
6420: Collective on TS
6422: Input Arguments:
6423: + ts - time stepping context
6424: . E - error vector
6425: . U - state vector, usually ts->vec_sol
6426: . Y - state vector, previous time step
6427: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6429: Output Arguments:
6430: + norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6431: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6432: - normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6434: Options Database Keys:
6435: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6437: Level: developer
6439: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6440: @*/
6441: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6442: {
6446: if (wnormtype == NORM_2) {
6447: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6448: } else if (wnormtype == NORM_INFINITY) {
6449: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6450: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6451: return(0);
6452: }
6455: /*@
6456: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6458: Logically Collective on TS
6460: Input Arguments:
6461: + ts - time stepping context
6462: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6464: Note:
6465: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6467: Level: intermediate
6469: .seealso: TSGetCFLTime(), TSADAPTCFL
6470: @*/
6471: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6472: {
6475: ts->cfltime_local = cfltime;
6476: ts->cfltime = -1.;
6477: return(0);
6478: }
6480: /*@
6481: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6483: Collective on TS
6485: Input Arguments:
6486: . ts - time stepping context
6488: Output Arguments:
6489: . cfltime - maximum stable time step for forward Euler
6491: Level: advanced
6493: .seealso: TSSetCFLTimeLocal()
6494: @*/
6495: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6496: {
6500: if (ts->cfltime < 0) {
6501: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6502: }
6503: *cfltime = ts->cfltime;
6504: return(0);
6505: }
6507: /*@
6508: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6510: Input Parameters:
6511: + ts - the TS context.
6512: . xl - lower bound.
6513: - xu - upper bound.
6515: Notes:
6516: If this routine is not called then the lower and upper bounds are set to
6517: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6519: Level: advanced
6521: @*/
6522: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6523: {
6525: SNES snes;
6528: TSGetSNES(ts,&snes);
6529: SNESVISetVariableBounds(snes,xl,xu);
6530: return(0);
6531: }
6533: /*@C
6534: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6535: in a time based line graph
6537: Collective on TS
6539: Input Parameters:
6540: + ts - the TS context
6541: . step - current time-step
6542: . ptime - current time
6543: . u - current solution
6544: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6546: Options Database:
6547: . -ts_monitor_lg_solution_variables
6549: Level: intermediate
6551: Notes:
6552: Each process in a parallel run displays its component solutions in a separate window
6554: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6555: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6556: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6557: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6558: @*/
6559: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6560: {
6561: PetscErrorCode ierr;
6562: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6563: const PetscScalar *yy;
6564: Vec v;
6567: if (step < 0) return(0); /* -1 indicates interpolated solution */
6568: if (!step) {
6569: PetscDrawAxis axis;
6570: PetscInt dim;
6571: PetscDrawLGGetAxis(ctx->lg,&axis);
6572: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6573: if (!ctx->names) {
6574: PetscBool flg;
6575: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6576: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6577: if (flg) {
6578: PetscInt i,n;
6579: char **names;
6580: VecGetSize(u,&n);
6581: PetscMalloc1(n+1,&names);
6582: for (i=0; i<n; i++) {
6583: PetscMalloc1(5,&names[i]);
6584: PetscSNPrintf(names[i],5,"%D",i);
6585: }
6586: names[n] = NULL;
6587: ctx->names = names;
6588: }
6589: }
6590: if (ctx->names && !ctx->displaynames) {
6591: char **displaynames;
6592: PetscBool flg;
6593: VecGetLocalSize(u,&dim);
6594: PetscCalloc1(dim+1,&displaynames);
6595: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6596: if (flg) {
6597: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6598: }
6599: PetscStrArrayDestroy(&displaynames);
6600: }
6601: if (ctx->displaynames) {
6602: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6603: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6604: } else if (ctx->names) {
6605: VecGetLocalSize(u,&dim);
6606: PetscDrawLGSetDimension(ctx->lg,dim);
6607: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6608: } else {
6609: VecGetLocalSize(u,&dim);
6610: PetscDrawLGSetDimension(ctx->lg,dim);
6611: }
6612: PetscDrawLGReset(ctx->lg);
6613: }
6615: if (!ctx->transform) v = u;
6616: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6617: VecGetArrayRead(v,&yy);
6618: if (ctx->displaynames) {
6619: PetscInt i;
6620: for (i=0; i<ctx->ndisplayvariables; i++)
6621: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6622: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6623: } else {
6624: #if defined(PETSC_USE_COMPLEX)
6625: PetscInt i,n;
6626: PetscReal *yreal;
6627: VecGetLocalSize(v,&n);
6628: PetscMalloc1(n,&yreal);
6629: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6630: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6631: PetscFree(yreal);
6632: #else
6633: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6634: #endif
6635: }
6636: VecRestoreArrayRead(v,&yy);
6637: if (ctx->transform) {VecDestroy(&v);}
6639: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6640: PetscDrawLGDraw(ctx->lg);
6641: PetscDrawLGSave(ctx->lg);
6642: }
6643: return(0);
6644: }
6646: /*@C
6647: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6649: Collective on TS
6651: Input Parameters:
6652: + ts - the TS context
6653: - names - the names of the components, final string must be NULL
6655: Level: intermediate
6657: Notes:
6658: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6660: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6661: @*/
6662: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6663: {
6664: PetscErrorCode ierr;
6665: PetscInt i;
6668: for (i=0; i<ts->numbermonitors; i++) {
6669: if (ts->monitor[i] == TSMonitorLGSolution) {
6670: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6671: break;
6672: }
6673: }
6674: return(0);
6675: }
6677: /*@C
6678: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6680: Collective on TS
6682: Input Parameters:
6683: + ts - the TS context
6684: - names - the names of the components, final string must be NULL
6686: Level: intermediate
6688: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6689: @*/
6690: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6691: {
6692: PetscErrorCode ierr;
6695: PetscStrArrayDestroy(&ctx->names);
6696: PetscStrArrayallocpy(names,&ctx->names);
6697: return(0);
6698: }
6700: /*@C
6701: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6703: Collective on TS
6705: Input Parameter:
6706: . ts - the TS context
6708: Output Parameter:
6709: . names - the names of the components, final string must be NULL
6711: Level: intermediate
6713: Notes:
6714: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6716: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6717: @*/
6718: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6719: {
6720: PetscInt i;
6723: *names = NULL;
6724: for (i=0; i<ts->numbermonitors; i++) {
6725: if (ts->monitor[i] == TSMonitorLGSolution) {
6726: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6727: *names = (const char *const *)ctx->names;
6728: break;
6729: }
6730: }
6731: return(0);
6732: }
6734: /*@C
6735: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6737: Collective on TS
6739: Input Parameters:
6740: + ctx - the TSMonitorLG context
6741: - displaynames - the names of the components, final string must be NULL
6743: Level: intermediate
6745: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6746: @*/
6747: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6748: {
6749: PetscInt j = 0,k;
6750: PetscErrorCode ierr;
6753: if (!ctx->names) return(0);
6754: PetscStrArrayDestroy(&ctx->displaynames);
6755: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6756: while (displaynames[j]) j++;
6757: ctx->ndisplayvariables = j;
6758: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6759: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6760: j = 0;
6761: while (displaynames[j]) {
6762: k = 0;
6763: while (ctx->names[k]) {
6764: PetscBool flg;
6765: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6766: if (flg) {
6767: ctx->displayvariables[j] = k;
6768: break;
6769: }
6770: k++;
6771: }
6772: j++;
6773: }
6774: return(0);
6775: }
6777: /*@C
6778: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6780: Collective on TS
6782: Input Parameters:
6783: + ts - the TS context
6784: - displaynames - the names of the components, final string must be NULL
6786: Notes:
6787: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6789: Level: intermediate
6791: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6792: @*/
6793: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6794: {
6795: PetscInt i;
6796: PetscErrorCode ierr;
6799: for (i=0; i<ts->numbermonitors; i++) {
6800: if (ts->monitor[i] == TSMonitorLGSolution) {
6801: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6802: break;
6803: }
6804: }
6805: return(0);
6806: }
6808: /*@C
6809: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6811: Collective on TS
6813: Input Parameters:
6814: + ts - the TS context
6815: . transform - the transform function
6816: . destroy - function to destroy the optional context
6817: - ctx - optional context used by transform function
6819: Notes:
6820: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6822: Level: intermediate
6824: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6825: @*/
6826: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6827: {
6828: PetscInt i;
6829: PetscErrorCode ierr;
6832: for (i=0; i<ts->numbermonitors; i++) {
6833: if (ts->monitor[i] == TSMonitorLGSolution) {
6834: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6835: }
6836: }
6837: return(0);
6838: }
6840: /*@C
6841: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6843: Collective on TSLGCtx
6845: Input Parameters:
6846: + ts - the TS context
6847: . transform - the transform function
6848: . destroy - function to destroy the optional context
6849: - ctx - optional context used by transform function
6851: Level: intermediate
6853: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6854: @*/
6855: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6856: {
6858: ctx->transform = transform;
6859: ctx->transformdestroy = destroy;
6860: ctx->transformctx = tctx;
6861: return(0);
6862: }
6864: /*@C
6865: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6866: in a time based line graph
6868: Collective on TS
6870: Input Parameters:
6871: + ts - the TS context
6872: . step - current time-step
6873: . ptime - current time
6874: . u - current solution
6875: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6877: Level: intermediate
6879: Notes:
6880: Each process in a parallel run displays its component errors in a separate window
6882: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6884: Options Database Keys:
6885: . -ts_monitor_lg_error - create a graphical monitor of error history
6887: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6888: @*/
6889: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6890: {
6891: PetscErrorCode ierr;
6892: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6893: const PetscScalar *yy;
6894: Vec y;
6897: if (!step) {
6898: PetscDrawAxis axis;
6899: PetscInt dim;
6900: PetscDrawLGGetAxis(ctx->lg,&axis);
6901: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6902: VecGetLocalSize(u,&dim);
6903: PetscDrawLGSetDimension(ctx->lg,dim);
6904: PetscDrawLGReset(ctx->lg);
6905: }
6906: VecDuplicate(u,&y);
6907: TSComputeSolutionFunction(ts,ptime,y);
6908: VecAXPY(y,-1.0,u);
6909: VecGetArrayRead(y,&yy);
6910: #if defined(PETSC_USE_COMPLEX)
6911: {
6912: PetscReal *yreal;
6913: PetscInt i,n;
6914: VecGetLocalSize(y,&n);
6915: PetscMalloc1(n,&yreal);
6916: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6917: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6918: PetscFree(yreal);
6919: }
6920: #else
6921: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6922: #endif
6923: VecRestoreArrayRead(y,&yy);
6924: VecDestroy(&y);
6925: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6926: PetscDrawLGDraw(ctx->lg);
6927: PetscDrawLGSave(ctx->lg);
6928: }
6929: return(0);
6930: }
6932: /*@C
6933: TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot
6935: Input Parameters:
6936: + ts - the TS context
6937: . step - current time-step
6938: . ptime - current time
6939: . u - current solution
6940: - dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()
6942: Options Database:
6943: . -ts_monitor_sp_swarm
6945: Level: intermediate
6947: @*/
6948: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6949: {
6950: PetscErrorCode ierr;
6951: TSMonitorSPCtx ctx = (TSMonitorSPCtx)dctx;
6952: const PetscScalar *yy;
6953: PetscReal *y,*x;
6954: PetscInt Np, p, dim=2;
6955: DM dm;
6959: if (step < 0) return(0); /* -1 indicates interpolated solution */
6960: if (!step) {
6961: PetscDrawAxis axis;
6962: PetscDrawSPGetAxis(ctx->sp,&axis);
6963: PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6964: PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6965: PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6966: TSGetDM(ts, &dm);
6967: DMGetDimension(dm, &dim);
6968: if (dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
6969: VecGetLocalSize(u, &Np);
6970: Np /= 2*dim;
6971: PetscDrawSPSetDimension(ctx->sp, Np);
6972: PetscDrawSPReset(ctx->sp);
6973: }
6975: VecGetLocalSize(u, &Np);
6976: Np /= 2*dim;
6977: VecGetArrayRead(u,&yy);
6978: PetscMalloc2(Np, &x, Np, &y);
6979: /* get points from solution vector */
6980: for (p=0; p<Np; ++p){
6981: x[p] = PetscRealPart(yy[2*dim*p]);
6982: y[p] = PetscRealPart(yy[2*dim*p+1]);
6983: }
6984: VecRestoreArrayRead(u,&yy);
6986: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6987: PetscDrawSPAddPoint(ctx->sp,x,y);
6988: PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
6989: PetscDrawSPSave(ctx->sp);
6990: }
6992: PetscFree2(x, y);
6994: return(0);
6995: }
6999: /*@C
7000: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
7002: Collective on TS
7004: Input Parameters:
7005: + ts - the TS context
7006: . step - current time-step
7007: . ptime - current time
7008: . u - current solution
7009: - dctx - unused context
7011: Level: intermediate
7013: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
7015: Options Database Keys:
7016: . -ts_monitor_error - create a graphical monitor of error history
7018: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7019: @*/
7020: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
7021: {
7022: PetscErrorCode ierr;
7023: Vec y;
7024: PetscReal nrm;
7025: PetscBool flg;
7028: VecDuplicate(u,&y);
7029: TSComputeSolutionFunction(ts,ptime,y);
7030: VecAXPY(y,-1.0,u);
7031: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7032: if (flg) {
7033: VecNorm(y,NORM_2,&nrm);
7034: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7035: }
7036: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7037: if (flg) {
7038: VecView(y,vf->viewer);
7039: }
7040: VecDestroy(&y);
7041: return(0);
7042: }
7044: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7045: {
7046: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7047: PetscReal x = ptime,y;
7049: PetscInt its;
7052: if (n < 0) return(0); /* -1 indicates interpolated solution */
7053: if (!n) {
7054: PetscDrawAxis axis;
7055: PetscDrawLGGetAxis(ctx->lg,&axis);
7056: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7057: PetscDrawLGReset(ctx->lg);
7058: ctx->snes_its = 0;
7059: }
7060: TSGetSNESIterations(ts,&its);
7061: y = its - ctx->snes_its;
7062: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7063: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7064: PetscDrawLGDraw(ctx->lg);
7065: PetscDrawLGSave(ctx->lg);
7066: }
7067: ctx->snes_its = its;
7068: return(0);
7069: }
7071: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7072: {
7073: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7074: PetscReal x = ptime,y;
7076: PetscInt its;
7079: if (n < 0) return(0); /* -1 indicates interpolated solution */
7080: if (!n) {
7081: PetscDrawAxis axis;
7082: PetscDrawLGGetAxis(ctx->lg,&axis);
7083: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7084: PetscDrawLGReset(ctx->lg);
7085: ctx->ksp_its = 0;
7086: }
7087: TSGetKSPIterations(ts,&its);
7088: y = its - ctx->ksp_its;
7089: PetscDrawLGAddPoint(ctx->lg,&x,&y);
7090: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7091: PetscDrawLGDraw(ctx->lg);
7092: PetscDrawLGSave(ctx->lg);
7093: }
7094: ctx->ksp_its = its;
7095: return(0);
7096: }
7098: /*@
7099: TSComputeLinearStability - computes the linear stability function at a point
7101: Collective on TS
7103: Input Parameters:
7104: + ts - the TS context
7105: - xr,xi - real and imaginary part of input arguments
7107: Output Parameters:
7108: . yr,yi - real and imaginary part of function value
7110: Level: developer
7112: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7113: @*/
7114: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7115: {
7120: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7121: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7122: return(0);
7123: }
7125: /* ------------------------------------------------------------------------*/
7126: /*@C
7127: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
7129: Collective on TS
7131: Input Parameters:
7132: . ts - the ODE solver object
7134: Output Parameter:
7135: . ctx - the context
7137: Level: intermediate
7139: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
7141: @*/
7142: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7143: {
7147: PetscNew(ctx);
7148: return(0);
7149: }
7151: /*@C
7152: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
7154: Collective on TS
7156: Input Parameters:
7157: + ts - the TS context
7158: . step - current time-step
7159: . ptime - current time
7160: . u - current solution
7161: - dctx - the envelope context
7163: Options Database:
7164: . -ts_monitor_envelope
7166: Level: intermediate
7168: Notes:
7169: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
7171: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7172: @*/
7173: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7174: {
7175: PetscErrorCode ierr;
7176: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
7179: if (!ctx->max) {
7180: VecDuplicate(u,&ctx->max);
7181: VecDuplicate(u,&ctx->min);
7182: VecCopy(u,ctx->max);
7183: VecCopy(u,ctx->min);
7184: } else {
7185: VecPointwiseMax(ctx->max,u,ctx->max);
7186: VecPointwiseMin(ctx->min,u,ctx->min);
7187: }
7188: return(0);
7189: }
7191: /*@C
7192: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
7194: Collective on TS
7196: Input Parameter:
7197: . ts - the TS context
7199: Output Parameter:
7200: + max - the maximum values
7201: - min - the minimum values
7203: Notes:
7204: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7206: Level: intermediate
7208: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7209: @*/
7210: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7211: {
7212: PetscInt i;
7215: if (max) *max = NULL;
7216: if (min) *min = NULL;
7217: for (i=0; i<ts->numbermonitors; i++) {
7218: if (ts->monitor[i] == TSMonitorEnvelope) {
7219: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7220: if (max) *max = ctx->max;
7221: if (min) *min = ctx->min;
7222: break;
7223: }
7224: }
7225: return(0);
7226: }
7228: /*@C
7229: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7231: Collective on TSMonitorEnvelopeCtx
7233: Input Parameter:
7234: . ctx - the monitor context
7236: Level: intermediate
7238: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7239: @*/
7240: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7241: {
7245: VecDestroy(&(*ctx)->min);
7246: VecDestroy(&(*ctx)->max);
7247: PetscFree(*ctx);
7248: return(0);
7249: }
7251: /*@
7252: TSRestartStep - Flags the solver to restart the next step
7254: Collective on TS
7256: Input Parameter:
7257: . ts - the TS context obtained from TSCreate()
7259: Level: advanced
7261: Notes:
7262: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7263: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7264: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7265: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7266: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7267: discontinuous source terms).
7269: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7270: @*/
7271: PetscErrorCode TSRestartStep(TS ts)
7272: {
7275: ts->steprestart = PETSC_TRUE;
7276: return(0);
7277: }
7279: /*@
7280: TSRollBack - Rolls back one time step
7282: Collective on TS
7284: Input Parameter:
7285: . ts - the TS context obtained from TSCreate()
7287: Level: advanced
7289: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7290: @*/
7291: PetscErrorCode TSRollBack(TS ts)
7292: {
7297: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7298: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7299: (*ts->ops->rollback)(ts);
7300: ts->time_step = ts->ptime - ts->ptime_prev;
7301: ts->ptime = ts->ptime_prev;
7302: ts->ptime_prev = ts->ptime_prev_rollback;
7303: ts->steps--;
7304: ts->steprollback = PETSC_TRUE;
7305: return(0);
7306: }
7308: /*@
7309: TSGetStages - Get the number of stages and stage values
7311: Input Parameter:
7312: . ts - the TS context obtained from TSCreate()
7314: Output Parameters:
7315: + ns - the number of stages
7316: - Y - the current stage vectors
7318: Level: advanced
7320: Notes: Both ns and Y can be NULL.
7322: .seealso: TSCreate()
7323: @*/
7324: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7325: {
7332: if (!ts->ops->getstages) {
7333: if (ns) *ns = 0;
7334: if (Y) *Y = NULL;
7335: } else {
7336: (*ts->ops->getstages)(ts,ns,Y);
7337: }
7338: return(0);
7339: }
7341: /*@C
7342: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7344: Collective on SNES
7346: Input Parameters:
7347: + ts - the TS context
7348: . t - current timestep
7349: . U - state vector
7350: . Udot - time derivative of state vector
7351: . shift - shift to apply, see note below
7352: - ctx - an optional user context
7354: Output Parameters:
7355: + J - Jacobian matrix (not altered in this routine)
7356: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7358: Level: intermediate
7360: Notes:
7361: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7363: dF/dU + shift*dF/dUdot
7365: Most users should not need to explicitly call this routine, as it
7366: is used internally within the nonlinear solvers.
7368: This will first try to get the coloring from the DM. If the DM type has no coloring
7369: routine, then it will try to get the coloring from the matrix. This requires that the
7370: matrix have nonzero entries precomputed.
7372: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7373: @*/
7374: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7375: {
7376: SNES snes;
7377: MatFDColoring color;
7378: PetscBool hascolor, matcolor = PETSC_FALSE;
7382: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7383: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7384: if (!color) {
7385: DM dm;
7386: ISColoring iscoloring;
7388: TSGetDM(ts, &dm);
7389: DMHasColoring(dm, &hascolor);
7390: if (hascolor && !matcolor) {
7391: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7392: MatFDColoringCreate(B, iscoloring, &color);
7393: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7394: MatFDColoringSetFromOptions(color);
7395: MatFDColoringSetUp(B, iscoloring, color);
7396: ISColoringDestroy(&iscoloring);
7397: } else {
7398: MatColoring mc;
7400: MatColoringCreate(B, &mc);
7401: MatColoringSetDistance(mc, 2);
7402: MatColoringSetType(mc, MATCOLORINGSL);
7403: MatColoringSetFromOptions(mc);
7404: MatColoringApply(mc, &iscoloring);
7405: MatColoringDestroy(&mc);
7406: MatFDColoringCreate(B, iscoloring, &color);
7407: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7408: MatFDColoringSetFromOptions(color);
7409: MatFDColoringSetUp(B, iscoloring, color);
7410: ISColoringDestroy(&iscoloring);
7411: }
7412: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7413: PetscObjectDereference((PetscObject) color);
7414: }
7415: TSGetSNES(ts, &snes);
7416: MatFDColoringApply(B, color, U, snes);
7417: if (J != B) {
7418: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7419: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7420: }
7421: return(0);
7422: }
7424: /*@
7425: TSSetFunctionDomainError - Set a function that tests if the current state vector is valid
7427: Input Parameters:
7428: + ts - the TS context
7429: - func - function called within TSFunctionDomainError
7431: Calling sequence of func:
7432: $ PetscErrorCode func(TS ts,PetscReal time,Vec state,PetscBool reject)
7434: + ts - the TS context
7435: . time - the current time (of the stage)
7436: . state - the state to check if it is valid
7437: - reject - (output parameter) PETSC_FALSE if the state is acceptable, PETSC_TRUE if not acceptable
7439: Level: intermediate
7441: Notes:
7442: If an implicit ODE solver is being used then, in addition to providing this routine, the
7443: user's code should call SNESSetFunctionDomainError() when domain errors occur during
7444: function evaluations where the functions are provided by TSSetIFunction() or TSSetRHSFunction().
7445: Use TSGetSNES() to obtain the SNES object
7447: Developer Notes:
7448: The naming of this function is inconsistent with the SNESSetFunctionDomainError()
7449: since one takes a function pointer and the other does not.
7451: .seealso: TSAdaptCheckStage(), TSFunctionDomainError(), SNESSetFunctionDomainError(), TSGetSNES()
7452: @*/
7454: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7455: {
7458: ts->functiondomainerror = func;
7459: return(0);
7460: }
7462: /*@
7463: TSFunctionDomainError - Checks if the current state is valid
7465: Input Parameters:
7466: + ts - the TS context
7467: . stagetime - time of the simulation
7468: - Y - state vector to check.
7470: Output Parameter:
7471: . accept - Set to PETSC_FALSE if the current state vector is valid.
7473: Note:
7474: This function is called by the TS integration routines and calls the user provided function (set with TSSetFunctionDomainError())
7475: to check if the current state is valid.
7477: Level: developer
7479: .seealso: TSSetFunctionDomainError()
7480: @*/
7481: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7482: {
7485: *accept = PETSC_TRUE;
7486: if (ts->functiondomainerror) {
7487: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7488: }
7489: return(0);
7490: }
7492: /*@C
7493: TSClone - This function clones a time step object.
7495: Collective
7497: Input Parameter:
7498: . tsin - The input TS
7500: Output Parameter:
7501: . tsout - The output TS (cloned)
7503: Notes:
7504: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7506: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7508: Level: developer
7510: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7511: @*/
7512: PetscErrorCode TSClone(TS tsin, TS *tsout)
7513: {
7514: TS t;
7516: SNES snes_start;
7517: DM dm;
7518: TSType type;
7522: *tsout = NULL;
7524: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7526: /* General TS description */
7527: t->numbermonitors = 0;
7528: t->setupcalled = 0;
7529: t->ksp_its = 0;
7530: t->snes_its = 0;
7531: t->nwork = 0;
7532: t->rhsjacobian.time = PETSC_MIN_REAL;
7533: t->rhsjacobian.scale = 1.;
7534: t->ijacobian.shift = 1.;
7536: TSGetSNES(tsin,&snes_start);
7537: TSSetSNES(t,snes_start);
7539: TSGetDM(tsin,&dm);
7540: TSSetDM(t,dm);
7542: t->adapt = tsin->adapt;
7543: PetscObjectReference((PetscObject)t->adapt);
7545: t->trajectory = tsin->trajectory;
7546: PetscObjectReference((PetscObject)t->trajectory);
7548: t->event = tsin->event;
7549: if (t->event) t->event->refct++;
7551: t->problem_type = tsin->problem_type;
7552: t->ptime = tsin->ptime;
7553: t->ptime_prev = tsin->ptime_prev;
7554: t->time_step = tsin->time_step;
7555: t->max_time = tsin->max_time;
7556: t->steps = tsin->steps;
7557: t->max_steps = tsin->max_steps;
7558: t->equation_type = tsin->equation_type;
7559: t->atol = tsin->atol;
7560: t->rtol = tsin->rtol;
7561: t->max_snes_failures = tsin->max_snes_failures;
7562: t->max_reject = tsin->max_reject;
7563: t->errorifstepfailed = tsin->errorifstepfailed;
7565: TSGetType(tsin,&type);
7566: TSSetType(t,type);
7568: t->vec_sol = NULL;
7570: t->cfltime = tsin->cfltime;
7571: t->cfltime_local = tsin->cfltime_local;
7572: t->exact_final_time = tsin->exact_final_time;
7574: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7576: if (((PetscObject)tsin)->fortran_func_pointers) {
7577: PetscInt i;
7578: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7579: for (i=0; i<10; i++) {
7580: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7581: }
7582: }
7583: *tsout = t;
7584: return(0);
7585: }
7587: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7588: {
7590: TS ts = (TS) ctx;
7593: TSComputeRHSFunction(ts,0,x,y);
7594: return(0);
7595: }
7597: /*@
7598: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7600: Logically Collective on TS
7602: Input Parameters:
7603: TS - the time stepping routine
7605: Output Parameter:
7606: . flg - PETSC_TRUE if the multiply is likely correct
7608: Options Database:
7609: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7611: Level: advanced
7613: Notes:
7614: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7616: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7617: @*/
7618: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7619: {
7620: Mat J,B;
7622: TSRHSJacobian func;
7623: void* ctx;
7626: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7627: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7628: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7629: return(0);
7630: }
7632: /*@C
7633: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7635: Logically Collective on TS
7637: Input Parameters:
7638: TS - the time stepping routine
7640: Output Parameter:
7641: . flg - PETSC_TRUE if the multiply is likely correct
7643: Options Database:
7644: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7646: Notes:
7647: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7649: Level: advanced
7651: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7652: @*/
7653: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7654: {
7655: Mat J,B;
7657: void *ctx;
7658: TSRHSJacobian func;
7661: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7662: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7663: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7664: return(0);
7665: }
7667: /*@
7668: TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.
7670: Logically collective
7672: Input Parameter:
7673: + ts - timestepping context
7674: - use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used
7676: Options Database:
7677: . -ts_use_splitrhsfunction - <true,false>
7679: Notes:
7680: This is only useful for multirate methods
7682: Level: intermediate
7684: .seealso: TSGetUseSplitRHSFunction()
7685: @*/
7686: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
7687: {
7690: ts->use_splitrhsfunction = use_splitrhsfunction;
7691: return(0);
7692: }
7694: /*@
7695: TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.
7697: Not collective
7699: Input Parameter:
7700: . ts - timestepping context
7702: Output Parameter:
7703: . use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used
7705: Level: intermediate
7707: .seealso: TSSetUseSplitRHSFunction()
7708: @*/
7709: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
7710: {
7713: *use_splitrhsfunction = ts->use_splitrhsfunction;
7714: return(0);
7715: }