#include "petscds.h" PetscErrorCode PetscDSGetBdJacobianPreconditioner(PetscDS prob, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))Not collective
prob | - The PetscDS | |
f | - The test field number | |
g | - The field number |
g0 | - integrand for the test and basis function term | |
g1 | - integrand for the test function and basis function gradient term | |
g2 | - integrand for the test function gradient and basis function term | |
g3 | - integrand for the test function gradient and basis function gradient term |
\int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi
g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
dim | - the spatial dimension | |
Nf | - the number of fields | |
NfAux | - the number of auxiliary fields | |
uOff | - the offset into u[] and u_t[] for each field | |
uOff_x | - the offset into u_x[] for each field | |
u | - each field evaluated at the current point | |
u_t | - the time derivative of each field evaluated at the current point | |
u_x | - the gradient of each field evaluated at the current point | |
aOff | - the offset into a[] and a_t[] for each auxiliary field | |
aOff_x | - the offset into a_x[] for each auxiliary field | |
a | - each auxiliary field evaluated at the current point | |
a_t | - the time derivative of each auxiliary field evaluated at the current point | |
a_x | - the gradient of auxiliary each field evaluated at the current point | |
t | - current time | |
u_tShift | - the multiplier a for dF/dU_t | |
x | - coordinates of the current point | |
n | - normal at the current point | |
numConstants | - number of constant parameters | |
constants | - constant parameters | |
g0 | - output values at the current point |
This is not yet available in Fortran.