Actual source code: matmatmult.c

petsc-3.14.6 2021-03-30
Report Typos and Errors

  2: /*
  3:   Defines matrix-matrix product routines for pairs of SeqAIJ matrices
  4:           C = A * B
  5: */

  7: #include <../src/mat/impls/aij/seq/aij.h>
  8: #include <../src/mat/utils/freespace.h>
  9: #include <petscbt.h>
 10: #include <petsc/private/isimpl.h>
 11: #include <../src/mat/impls/dense/seq/dense.h>

 13: PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqAIJ(Mat A,Mat B,Mat C)
 14: {

 18:   if (C->ops->matmultnumeric) {
 19:     if (C->ops->matmultnumeric == MatMatMultNumeric_SeqAIJ_SeqAIJ) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Recursive call");
 20:     (*C->ops->matmultnumeric)(A,B,C);
 21:   } else {
 22:     MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted(A,B,C);
 23:   }
 24:   return(0);
 25: }

 27: /* Modified from MatCreateSeqAIJWithArrays() */
 28: PETSC_INTERN PetscErrorCode MatSetSeqAIJWithArrays_private(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt i[],PetscInt j[],PetscScalar a[],MatType mtype,Mat mat)
 29: {
 31:   PetscInt       ii;
 32:   Mat_SeqAIJ     *aij;
 33:   PetscBool      isseqaij;

 36:   if (m > 0 && i[0]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"i (row indices) must start with 0");
 37:   MatSetSizes(mat,m,n,m,n);

 39:   if (!mtype) {
 40:     PetscObjectBaseTypeCompare((PetscObject)mat,MATSEQAIJ,&isseqaij);
 41:     if (!isseqaij) { MatSetType(mat,MATSEQAIJ); }
 42:   } else {
 43:     MatSetType(mat,mtype);
 44:   }
 45:   MatSeqAIJSetPreallocation_SeqAIJ(mat,MAT_SKIP_ALLOCATION,NULL);
 46:   aij  = (Mat_SeqAIJ*)(mat)->data;
 47:   PetscMalloc1(m,&aij->imax);
 48:   PetscMalloc1(m,&aij->ilen);

 50:   aij->i            = i;
 51:   aij->j            = j;
 52:   aij->a            = a;
 53:   aij->singlemalloc = PETSC_FALSE;
 54:   aij->nonew        = -1; /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
 55:   aij->free_a       = PETSC_FALSE;
 56:   aij->free_ij      = PETSC_FALSE;

 58:   for (ii=0; ii<m; ii++) {
 59:     aij->ilen[ii] = aij->imax[ii] = i[ii+1] - i[ii];
 60:   }

 62:   return(0);
 63: }

 65: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat B,PetscReal fill,Mat C)
 66: {
 67:   PetscErrorCode      ierr;
 68:   Mat_Product         *product = C->product;
 69:   MatProductAlgorithm alg;
 70:   PetscBool           flg;

 73:   if (product) {
 74:     alg = product->alg;
 75:   } else {
 76:     alg = "sorted";
 77:   }
 78:   /* sorted */
 79:   PetscStrcmp(alg,"sorted",&flg);
 80:   if (flg) {
 81:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_Sorted(A,B,fill,C);
 82:     return(0);
 83:   }

 85:   /* scalable */
 86:   PetscStrcmp(alg,"scalable",&flg);
 87:   if (flg) {
 88:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable(A,B,fill,C);
 89:     return(0);
 90:   }

 92:   /* scalable_fast */
 93:   PetscStrcmp(alg,"scalable_fast",&flg);
 94:   if (flg) {
 95:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable_fast(A,B,fill,C);
 96:     return(0);
 97:   }

 99:   /* heap */
100:   PetscStrcmp(alg,"heap",&flg);
101:   if (flg) {
102:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_Heap(A,B,fill,C);
103:     return(0);
104:   }

106:   /* btheap */
107:   PetscStrcmp(alg,"btheap",&flg);
108:   if (flg) {
109:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_BTHeap(A,B,fill,C);
110:     return(0);
111:   }

113:   /* llcondensed */
114:   PetscStrcmp(alg,"llcondensed",&flg);
115:   if (flg) {
116:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_LLCondensed(A,B,fill,C);
117:     return(0);
118:   }

120:   /* rowmerge */
121:   PetscStrcmp(alg,"rowmerge",&flg);
122:   if (flg) {
123:     MatMatMultSymbolic_SeqAIJ_SeqAIJ_RowMerge(A,B,fill,C);
124:     return(0);
125:   }

127: #if defined(PETSC_HAVE_HYPRE)
128:   PetscStrcmp(alg,"hypre",&flg);
129:   if (flg) {
130:     MatMatMultSymbolic_AIJ_AIJ_wHYPRE(A,B,fill,C);
131:     return(0);
132:   }
133: #endif

135:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat Product Algorithm is not supported");
136: }

138: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_LLCondensed(Mat A,Mat B,PetscReal fill,Mat C)
139: {
140:   PetscErrorCode     ierr;
141:   Mat_SeqAIJ         *a =(Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
142:   PetscInt           *ai=a->i,*bi=b->i,*ci,*cj;
143:   PetscInt           am =A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
144:   PetscReal          afill;
145:   PetscInt           i,j,anzi,brow,bnzj,cnzi,*bj,*aj,*lnk,ndouble=0,Crmax;
146:   PetscTable         ta;
147:   PetscBT            lnkbt;
148:   PetscFreeSpaceList free_space=NULL,current_space=NULL;

151:   /* Get ci and cj */
152:   /*---------------*/
153:   /* Allocate ci array, arrays for fill computation and */
154:   /* free space for accumulating nonzero column info */
155:   PetscMalloc1(am+2,&ci);
156:   ci[0] = 0;

158:   /* create and initialize a linked list */
159:   PetscTableCreate(bn,bn,&ta);
160:   MatRowMergeMax_SeqAIJ(b,bm,ta);
161:   PetscTableGetCount(ta,&Crmax);
162:   PetscTableDestroy(&ta);

164:   PetscLLCondensedCreate(Crmax,bn,&lnk,&lnkbt);

166:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
167:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],bi[bm])),&free_space);

169:   current_space = free_space;

171:   /* Determine ci and cj */
172:   for (i=0; i<am; i++) {
173:     anzi = ai[i+1] - ai[i];
174:     aj   = a->j + ai[i];
175:     for (j=0; j<anzi; j++) {
176:       brow = aj[j];
177:       bnzj = bi[brow+1] - bi[brow];
178:       bj   = b->j + bi[brow];
179:       /* add non-zero cols of B into the sorted linked list lnk */
180:       PetscLLCondensedAddSorted(bnzj,bj,lnk,lnkbt);
181:     }
182:     cnzi = lnk[0];

184:     /* If free space is not available, make more free space */
185:     /* Double the amount of total space in the list */
186:     if (current_space->local_remaining<cnzi) {
187:       PetscFreeSpaceGet(PetscIntSumTruncate(cnzi,current_space->total_array_size),&current_space);
188:       ndouble++;
189:     }

191:     /* Copy data into free space, then initialize lnk */
192:     PetscLLCondensedClean(bn,cnzi,current_space->array,lnk,lnkbt);

194:     current_space->array           += cnzi;
195:     current_space->local_used      += cnzi;
196:     current_space->local_remaining -= cnzi;

198:     ci[i+1] = ci[i] + cnzi;
199:   }

201:   /* Column indices are in the list of free space */
202:   /* Allocate space for cj, initialize cj, and */
203:   /* destroy list of free space and other temporary array(s) */
204:   PetscMalloc1(ci[am]+1,&cj);
205:   PetscFreeSpaceContiguous(&free_space,cj);
206:   PetscLLCondensedDestroy(lnk,lnkbt);

208:   /* put together the new symbolic matrix */
209:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,NULL,((PetscObject)A)->type_name,C);
210:   MatSetBlockSizesFromMats(C,A,B);

212:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
213:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
214:   c          = (Mat_SeqAIJ*)(C->data);
215:   c->free_a  = PETSC_FALSE;
216:   c->free_ij = PETSC_TRUE;
217:   c->nonew   = 0;

219:   /* fast, needs non-scalable O(bn) array 'abdense' */
220:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted;

222:   /* set MatInfo */
223:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
224:   if (afill < 1.0) afill = 1.0;
225:   c->maxnz                  = ci[am];
226:   c->nz                     = ci[am];
227:   C->info.mallocs           = ndouble;
228:   C->info.fill_ratio_given  = fill;
229:   C->info.fill_ratio_needed = afill;

231: #if defined(PETSC_USE_INFO)
232:   if (ci[am]) {
233:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
234:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
235:   } else {
236:     PetscInfo(C,"Empty matrix product\n");
237:   }
238: #endif
239:   return(0);
240: }

242: PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted(Mat A,Mat B,Mat C)
243: {
245:   PetscLogDouble flops=0.0;
246:   Mat_SeqAIJ     *a   = (Mat_SeqAIJ*)A->data;
247:   Mat_SeqAIJ     *b   = (Mat_SeqAIJ*)B->data;
248:   Mat_SeqAIJ     *c   = (Mat_SeqAIJ*)C->data;
249:   PetscInt       *ai  =a->i,*aj=a->j,*bi=b->i,*bj=b->j,*bjj,*ci=c->i,*cj=c->j;
250:   PetscInt       am   =A->rmap->n,cm=C->rmap->n;
251:   PetscInt       i,j,k,anzi,bnzi,cnzi,brow;
252:   PetscScalar    *aa=a->a,*ba=b->a,*baj,*ca,valtmp;
253:   PetscScalar    *ab_dense;
254:   PetscContainer cab_dense;

257:   if (!c->a) { /* first call of MatMatMultNumeric_SeqAIJ_SeqAIJ, allocate ca and matmult_abdense */
258:     PetscMalloc1(ci[cm]+1,&ca);
259:     c->a      = ca;
260:     c->free_a = PETSC_TRUE;
261:   } else ca = c->a;

263:   /* TODO this should be done in the symbolic phase */
264:   /* However, this function is so heavily used (sometimes in an hidden way through multnumeric function pointers
265:      that is hard to eradicate) */
266:   PetscObjectQuery((PetscObject)C,"__PETSc__ab_dense",(PetscObject*)&cab_dense);
267:   if (!cab_dense) {
268:     PetscMalloc1(B->cmap->N,&ab_dense);
269:     PetscContainerCreate(PETSC_COMM_SELF,&cab_dense);
270:     PetscContainerSetPointer(cab_dense,ab_dense);
271:     PetscContainerSetUserDestroy(cab_dense,PetscContainerUserDestroyDefault);
272:     PetscObjectCompose((PetscObject)C,"__PETSc__ab_dense",(PetscObject)cab_dense);
273:     PetscObjectDereference((PetscObject)cab_dense);
274:   }
275:   PetscContainerGetPointer(cab_dense,(void**)&ab_dense);
276:   PetscArrayzero(ab_dense,B->cmap->N);

278:   /* clean old values in C */
279:   PetscArrayzero(ca,ci[cm]);
280:   /* Traverse A row-wise. */
281:   /* Build the ith row in C by summing over nonzero columns in A, */
282:   /* the rows of B corresponding to nonzeros of A. */
283:   for (i=0; i<am; i++) {
284:     anzi = ai[i+1] - ai[i];
285:     for (j=0; j<anzi; j++) {
286:       brow = aj[j];
287:       bnzi = bi[brow+1] - bi[brow];
288:       bjj  = bj + bi[brow];
289:       baj  = ba + bi[brow];
290:       /* perform dense axpy */
291:       valtmp = aa[j];
292:       for (k=0; k<bnzi; k++) {
293:         ab_dense[bjj[k]] += valtmp*baj[k];
294:       }
295:       flops += 2*bnzi;
296:     }
297:     aj += anzi; aa += anzi;

299:     cnzi = ci[i+1] - ci[i];
300:     for (k=0; k<cnzi; k++) {
301:       ca[k]          += ab_dense[cj[k]];
302:       ab_dense[cj[k]] = 0.0; /* zero ab_dense */
303:     }
304:     flops += cnzi;
305:     cj    += cnzi; ca += cnzi;
306:   }
307:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
308:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
309:   PetscLogFlops(flops);
310:   return(0);
311: }

313: PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqAIJ_Scalable(Mat A,Mat B,Mat C)
314: {
316:   PetscLogDouble flops=0.0;
317:   Mat_SeqAIJ     *a   = (Mat_SeqAIJ*)A->data;
318:   Mat_SeqAIJ     *b   = (Mat_SeqAIJ*)B->data;
319:   Mat_SeqAIJ     *c   = (Mat_SeqAIJ*)C->data;
320:   PetscInt       *ai  = a->i,*aj=a->j,*bi=b->i,*bj=b->j,*bjj,*ci=c->i,*cj=c->j;
321:   PetscInt       am   = A->rmap->N,cm=C->rmap->N;
322:   PetscInt       i,j,k,anzi,bnzi,cnzi,brow;
323:   PetscScalar    *aa=a->a,*ba=b->a,*baj,*ca=c->a,valtmp;
324:   PetscInt       nextb;

327:   if (!ca) { /* first call of MatMatMultNumeric_SeqAIJ_SeqAIJ, allocate ca and matmult_abdense */
328:     PetscMalloc1(ci[cm]+1,&ca);
329:     c->a      = ca;
330:     c->free_a = PETSC_TRUE;
331:   }

333:   /* clean old values in C */
334:   PetscArrayzero(ca,ci[cm]);
335:   /* Traverse A row-wise. */
336:   /* Build the ith row in C by summing over nonzero columns in A, */
337:   /* the rows of B corresponding to nonzeros of A. */
338:   for (i=0; i<am; i++) {
339:     anzi = ai[i+1] - ai[i];
340:     cnzi = ci[i+1] - ci[i];
341:     for (j=0; j<anzi; j++) {
342:       brow = aj[j];
343:       bnzi = bi[brow+1] - bi[brow];
344:       bjj  = bj + bi[brow];
345:       baj  = ba + bi[brow];
346:       /* perform sparse axpy */
347:       valtmp = aa[j];
348:       nextb  = 0;
349:       for (k=0; nextb<bnzi; k++) {
350:         if (cj[k] == bjj[nextb]) { /* ccol == bcol */
351:           ca[k] += valtmp*baj[nextb++];
352:         }
353:       }
354:       flops += 2*bnzi;
355:     }
356:     aj += anzi; aa += anzi;
357:     cj += cnzi; ca += cnzi;
358:   }
359:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
360:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
361:   PetscLogFlops(flops);
362:   return(0);
363: }

365: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable_fast(Mat A,Mat B,PetscReal fill,Mat C)
366: {
367:   PetscErrorCode     ierr;
368:   Mat_SeqAIJ         *a  = (Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
369:   PetscInt           *ai = a->i,*bi=b->i,*ci,*cj;
370:   PetscInt           am  = A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
371:   MatScalar          *ca;
372:   PetscReal          afill;
373:   PetscInt           i,j,anzi,brow,bnzj,cnzi,*bj,*aj,*lnk,ndouble=0,Crmax;
374:   PetscTable         ta;
375:   PetscFreeSpaceList free_space=NULL,current_space=NULL;

378:   /* Get ci and cj - same as MatMatMultSymbolic_SeqAIJ_SeqAIJ except using PetscLLxxx_fast() */
379:   /*-----------------------------------------------------------------------------------------*/
380:   /* Allocate arrays for fill computation and free space for accumulating nonzero column */
381:   PetscMalloc1(am+2,&ci);
382:   ci[0] = 0;

384:   /* create and initialize a linked list */
385:   PetscTableCreate(bn,bn,&ta);
386:   MatRowMergeMax_SeqAIJ(b,bm,ta);
387:   PetscTableGetCount(ta,&Crmax);
388:   PetscTableDestroy(&ta);

390:   PetscLLCondensedCreate_fast(Crmax,&lnk);

392:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
393:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],bi[bm])),&free_space);
394:   current_space = free_space;

396:   /* Determine ci and cj */
397:   for (i=0; i<am; i++) {
398:     anzi = ai[i+1] - ai[i];
399:     aj   = a->j + ai[i];
400:     for (j=0; j<anzi; j++) {
401:       brow = aj[j];
402:       bnzj = bi[brow+1] - bi[brow];
403:       bj   = b->j + bi[brow];
404:       /* add non-zero cols of B into the sorted linked list lnk */
405:       PetscLLCondensedAddSorted_fast(bnzj,bj,lnk);
406:     }
407:     cnzi = lnk[1];

409:     /* If free space is not available, make more free space */
410:     /* Double the amount of total space in the list */
411:     if (current_space->local_remaining<cnzi) {
412:       PetscFreeSpaceGet(PetscIntSumTruncate(cnzi,current_space->total_array_size),&current_space);
413:       ndouble++;
414:     }

416:     /* Copy data into free space, then initialize lnk */
417:     PetscLLCondensedClean_fast(cnzi,current_space->array,lnk);

419:     current_space->array           += cnzi;
420:     current_space->local_used      += cnzi;
421:     current_space->local_remaining -= cnzi;

423:     ci[i+1] = ci[i] + cnzi;
424:   }

426:   /* Column indices are in the list of free space */
427:   /* Allocate space for cj, initialize cj, and */
428:   /* destroy list of free space and other temporary array(s) */
429:   PetscMalloc1(ci[am]+1,&cj);
430:   PetscFreeSpaceContiguous(&free_space,cj);
431:   PetscLLCondensedDestroy_fast(lnk);

433:   /* Allocate space for ca */
434:   PetscCalloc1(ci[am]+1,&ca);

436:   /* put together the new symbolic matrix */
437:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,ca,((PetscObject)A)->type_name,C);
438:   MatSetBlockSizesFromMats(C,A,B);

440:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
441:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
442:   c          = (Mat_SeqAIJ*)(C->data);
443:   c->free_a  = PETSC_TRUE;
444:   c->free_ij = PETSC_TRUE;
445:   c->nonew   = 0;

447:   /* slower, less memory */
448:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Scalable;

450:   /* set MatInfo */
451:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
452:   if (afill < 1.0) afill = 1.0;
453:   c->maxnz                     = ci[am];
454:   c->nz                        = ci[am];
455:   C->info.mallocs           = ndouble;
456:   C->info.fill_ratio_given  = fill;
457:   C->info.fill_ratio_needed = afill;

459: #if defined(PETSC_USE_INFO)
460:   if (ci[am]) {
461:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
462:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
463:   } else {
464:     PetscInfo(C,"Empty matrix product\n");
465:   }
466: #endif
467:   return(0);
468: }

470: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Scalable(Mat A,Mat B,PetscReal fill,Mat C)
471: {
472:   PetscErrorCode     ierr;
473:   Mat_SeqAIJ         *a  = (Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
474:   PetscInt           *ai = a->i,*bi=b->i,*ci,*cj;
475:   PetscInt           am  = A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
476:   MatScalar          *ca;
477:   PetscReal          afill;
478:   PetscInt           i,j,anzi,brow,bnzj,cnzi,*bj,*aj,*lnk,ndouble=0,Crmax;
479:   PetscTable         ta;
480:   PetscFreeSpaceList free_space=NULL,current_space=NULL;

483:   /* Get ci and cj - same as MatMatMultSymbolic_SeqAIJ_SeqAIJ except using PetscLLxxx_Scalalbe() */
484:   /*---------------------------------------------------------------------------------------------*/
485:   /* Allocate arrays for fill computation and free space for accumulating nonzero column */
486:   PetscMalloc1(am+2,&ci);
487:   ci[0] = 0;

489:   /* create and initialize a linked list */
490:   PetscTableCreate(bn,bn,&ta);
491:   MatRowMergeMax_SeqAIJ(b,bm,ta);
492:   PetscTableGetCount(ta,&Crmax);
493:   PetscTableDestroy(&ta);
494:   PetscLLCondensedCreate_Scalable(Crmax,&lnk);

496:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
497:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],bi[bm])),&free_space);
498:   current_space = free_space;

500:   /* Determine ci and cj */
501:   for (i=0; i<am; i++) {
502:     anzi = ai[i+1] - ai[i];
503:     aj   = a->j + ai[i];
504:     for (j=0; j<anzi; j++) {
505:       brow = aj[j];
506:       bnzj = bi[brow+1] - bi[brow];
507:       bj   = b->j + bi[brow];
508:       /* add non-zero cols of B into the sorted linked list lnk */
509:       PetscLLCondensedAddSorted_Scalable(bnzj,bj,lnk);
510:     }
511:     cnzi = lnk[0];

513:     /* If free space is not available, make more free space */
514:     /* Double the amount of total space in the list */
515:     if (current_space->local_remaining<cnzi) {
516:       PetscFreeSpaceGet(PetscIntSumTruncate(cnzi,current_space->total_array_size),&current_space);
517:       ndouble++;
518:     }

520:     /* Copy data into free space, then initialize lnk */
521:     PetscLLCondensedClean_Scalable(cnzi,current_space->array,lnk);

523:     current_space->array           += cnzi;
524:     current_space->local_used      += cnzi;
525:     current_space->local_remaining -= cnzi;

527:     ci[i+1] = ci[i] + cnzi;
528:   }

530:   /* Column indices are in the list of free space */
531:   /* Allocate space for cj, initialize cj, and */
532:   /* destroy list of free space and other temporary array(s) */
533:   PetscMalloc1(ci[am]+1,&cj);
534:   PetscFreeSpaceContiguous(&free_space,cj);
535:   PetscLLCondensedDestroy_Scalable(lnk);

537:   /* Allocate space for ca */
538:   /*-----------------------*/
539:   PetscCalloc1(ci[am]+1,&ca);

541:   /* put together the new symbolic matrix */
542:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,ca,((PetscObject)A)->type_name,C);
543:   MatSetBlockSizesFromMats(C,A,B);

545:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
546:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
547:   c          = (Mat_SeqAIJ*)(C->data);
548:   c->free_a  = PETSC_TRUE;
549:   c->free_ij = PETSC_TRUE;
550:   c->nonew   = 0;

552:   /* slower, less memory */
553:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Scalable;

555:   /* set MatInfo */
556:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
557:   if (afill < 1.0) afill = 1.0;
558:   c->maxnz                     = ci[am];
559:   c->nz                        = ci[am];
560:   C->info.mallocs           = ndouble;
561:   C->info.fill_ratio_given  = fill;
562:   C->info.fill_ratio_needed = afill;

564: #if defined(PETSC_USE_INFO)
565:   if (ci[am]) {
566:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
567:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
568:   } else {
569:     PetscInfo(C,"Empty matrix product\n");
570:   }
571: #endif
572:   return(0);
573: }

575: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Heap(Mat A,Mat B,PetscReal fill,Mat C)
576: {
577:   PetscErrorCode     ierr;
578:   Mat_SeqAIJ         *a = (Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
579:   const PetscInt     *ai=a->i,*bi=b->i,*aj=a->j,*bj=b->j;
580:   PetscInt           *ci,*cj,*bb;
581:   PetscInt           am=A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
582:   PetscReal          afill;
583:   PetscInt           i,j,col,ndouble = 0;
584:   PetscFreeSpaceList free_space=NULL,current_space=NULL;
585:   PetscHeap          h;

588:   /* Get ci and cj - by merging sorted rows using a heap */
589:   /*---------------------------------------------------------------------------------------------*/
590:   /* Allocate arrays for fill computation and free space for accumulating nonzero column */
591:   PetscMalloc1(am+2,&ci);
592:   ci[0] = 0;

594:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
595:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],bi[bm])),&free_space);
596:   current_space = free_space;

598:   PetscHeapCreate(a->rmax,&h);
599:   PetscMalloc1(a->rmax,&bb);

601:   /* Determine ci and cj */
602:   for (i=0; i<am; i++) {
603:     const PetscInt anzi  = ai[i+1] - ai[i]; /* number of nonzeros in this row of A, this is the number of rows of B that we merge */
604:     const PetscInt *acol = aj + ai[i]; /* column indices of nonzero entries in this row */
605:     ci[i+1] = ci[i];
606:     /* Populate the min heap */
607:     for (j=0; j<anzi; j++) {
608:       bb[j] = bi[acol[j]];         /* bb points at the start of the row */
609:       if (bb[j] < bi[acol[j]+1]) { /* Add if row is nonempty */
610:         PetscHeapAdd(h,j,bj[bb[j]++]);
611:       }
612:     }
613:     /* Pick off the min element, adding it to free space */
614:     PetscHeapPop(h,&j,&col);
615:     while (j >= 0) {
616:       if (current_space->local_remaining < 1) { /* double the size, but don't exceed 16 MiB */
617:         PetscFreeSpaceGet(PetscMin(PetscIntMultTruncate(2,current_space->total_array_size),16 << 20),&current_space);
618:         ndouble++;
619:       }
620:       *(current_space->array++) = col;
621:       current_space->local_used++;
622:       current_space->local_remaining--;
623:       ci[i+1]++;

625:       /* stash if anything else remains in this row of B */
626:       if (bb[j] < bi[acol[j]+1]) {PetscHeapStash(h,j,bj[bb[j]++]);}
627:       while (1) {               /* pop and stash any other rows of B that also had an entry in this column */
628:         PetscInt j2,col2;
629:         PetscHeapPeek(h,&j2,&col2);
630:         if (col2 != col) break;
631:         PetscHeapPop(h,&j2,&col2);
632:         if (bb[j2] < bi[acol[j2]+1]) {PetscHeapStash(h,j2,bj[bb[j2]++]);}
633:       }
634:       /* Put any stashed elements back into the min heap */
635:       PetscHeapUnstash(h);
636:       PetscHeapPop(h,&j,&col);
637:     }
638:   }
639:   PetscFree(bb);
640:   PetscHeapDestroy(&h);

642:   /* Column indices are in the list of free space */
643:   /* Allocate space for cj, initialize cj, and */
644:   /* destroy list of free space and other temporary array(s) */
645:   PetscMalloc1(ci[am],&cj);
646:   PetscFreeSpaceContiguous(&free_space,cj);

648:   /* put together the new symbolic matrix */
649:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,NULL,((PetscObject)A)->type_name,C);
650:   MatSetBlockSizesFromMats(C,A,B);

652:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
653:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
654:   c          = (Mat_SeqAIJ*)(C->data);
655:   c->free_a  = PETSC_TRUE;
656:   c->free_ij = PETSC_TRUE;
657:   c->nonew   = 0;

659:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted;

661:   /* set MatInfo */
662:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
663:   if (afill < 1.0) afill = 1.0;
664:   c->maxnz                     = ci[am];
665:   c->nz                        = ci[am];
666:   C->info.mallocs           = ndouble;
667:   C->info.fill_ratio_given  = fill;
668:   C->info.fill_ratio_needed = afill;

670: #if defined(PETSC_USE_INFO)
671:   if (ci[am]) {
672:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
673:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
674:   } else {
675:     PetscInfo(C,"Empty matrix product\n");
676:   }
677: #endif
678:   return(0);
679: }

681: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_BTHeap(Mat A,Mat B,PetscReal fill,Mat C)
682: {
683:   PetscErrorCode     ierr;
684:   Mat_SeqAIJ         *a  = (Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
685:   const PetscInt     *ai = a->i,*bi=b->i,*aj=a->j,*bj=b->j;
686:   PetscInt           *ci,*cj,*bb;
687:   PetscInt           am=A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
688:   PetscReal          afill;
689:   PetscInt           i,j,col,ndouble = 0;
690:   PetscFreeSpaceList free_space=NULL,current_space=NULL;
691:   PetscHeap          h;
692:   PetscBT            bt;

695:   /* Get ci and cj - using a heap for the sorted rows, but use BT so that each index is only added once */
696:   /*---------------------------------------------------------------------------------------------*/
697:   /* Allocate arrays for fill computation and free space for accumulating nonzero column */
698:   PetscMalloc1(am+2,&ci);
699:   ci[0] = 0;

701:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
702:   PetscFreeSpaceGet(PetscRealIntMultTruncate(fill,PetscIntSumTruncate(ai[am],bi[bm])),&free_space);

704:   current_space = free_space;

706:   PetscHeapCreate(a->rmax,&h);
707:   PetscMalloc1(a->rmax,&bb);
708:   PetscBTCreate(bn,&bt);

710:   /* Determine ci and cj */
711:   for (i=0; i<am; i++) {
712:     const PetscInt anzi  = ai[i+1] - ai[i]; /* number of nonzeros in this row of A, this is the number of rows of B that we merge */
713:     const PetscInt *acol = aj + ai[i]; /* column indices of nonzero entries in this row */
714:     const PetscInt *fptr = current_space->array; /* Save beginning of the row so we can clear the BT later */
715:     ci[i+1] = ci[i];
716:     /* Populate the min heap */
717:     for (j=0; j<anzi; j++) {
718:       PetscInt brow = acol[j];
719:       for (bb[j] = bi[brow]; bb[j] < bi[brow+1]; bb[j]++) {
720:         PetscInt bcol = bj[bb[j]];
721:         if (!PetscBTLookupSet(bt,bcol)) { /* new entry */
722:           PetscHeapAdd(h,j,bcol);
723:           bb[j]++;
724:           break;
725:         }
726:       }
727:     }
728:     /* Pick off the min element, adding it to free space */
729:     PetscHeapPop(h,&j,&col);
730:     while (j >= 0) {
731:       if (current_space->local_remaining < 1) { /* double the size, but don't exceed 16 MiB */
732:         fptr = NULL;                      /* need PetscBTMemzero */
733:         PetscFreeSpaceGet(PetscMin(PetscIntMultTruncate(2,current_space->total_array_size),16 << 20),&current_space);
734:         ndouble++;
735:       }
736:       *(current_space->array++) = col;
737:       current_space->local_used++;
738:       current_space->local_remaining--;
739:       ci[i+1]++;

741:       /* stash if anything else remains in this row of B */
742:       for (; bb[j] < bi[acol[j]+1]; bb[j]++) {
743:         PetscInt bcol = bj[bb[j]];
744:         if (!PetscBTLookupSet(bt,bcol)) { /* new entry */
745:           PetscHeapAdd(h,j,bcol);
746:           bb[j]++;
747:           break;
748:         }
749:       }
750:       PetscHeapPop(h,&j,&col);
751:     }
752:     if (fptr) {                 /* Clear the bits for this row */
753:       for (; fptr<current_space->array; fptr++) {PetscBTClear(bt,*fptr);}
754:     } else {                    /* We reallocated so we don't remember (easily) how to clear only the bits we changed */
755:       PetscBTMemzero(bn,bt);
756:     }
757:   }
758:   PetscFree(bb);
759:   PetscHeapDestroy(&h);
760:   PetscBTDestroy(&bt);

762:   /* Column indices are in the list of free space */
763:   /* Allocate space for cj, initialize cj, and */
764:   /* destroy list of free space and other temporary array(s) */
765:   PetscMalloc1(ci[am],&cj);
766:   PetscFreeSpaceContiguous(&free_space,cj);

768:   /* put together the new symbolic matrix */
769:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,NULL,((PetscObject)A)->type_name,C);
770:   MatSetBlockSizesFromMats(C,A,B);

772:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
773:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
774:   c          = (Mat_SeqAIJ*)(C->data);
775:   c->free_a  = PETSC_TRUE;
776:   c->free_ij = PETSC_TRUE;
777:   c->nonew   = 0;

779:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted;

781:   /* set MatInfo */
782:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
783:   if (afill < 1.0) afill = 1.0;
784:   c->maxnz                     = ci[am];
785:   c->nz                        = ci[am];
786:   C->info.mallocs           = ndouble;
787:   C->info.fill_ratio_given  = fill;
788:   C->info.fill_ratio_needed = afill;

790: #if defined(PETSC_USE_INFO)
791:   if (ci[am]) {
792:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
793:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
794:   } else {
795:     PetscInfo(C,"Empty matrix product\n");
796:   }
797: #endif
798:   return(0);
799: }


802: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_RowMerge(Mat A,Mat B,PetscReal fill,Mat C)
803: {
804:   PetscErrorCode     ierr;
805:   Mat_SeqAIJ         *a=(Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
806:   const PetscInt     *ai=a->i,*bi=b->i,*aj=a->j,*bj=b->j,*inputi,*inputj,*inputcol,*inputcol_L1;
807:   PetscInt           *ci,*cj,*outputj,worki_L1[9],worki_L2[9];
808:   PetscInt           c_maxmem,a_maxrownnz=0,a_rownnz;
809:   const PetscInt     workcol[8]={0,1,2,3,4,5,6,7};
810:   const PetscInt     am=A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
811:   const PetscInt     *brow_ptr[8],*brow_end[8];
812:   PetscInt           window[8];
813:   PetscInt           window_min,old_window_min,ci_nnz,outputi_nnz=0,L1_nrows,L2_nrows;
814:   PetscInt           i,k,ndouble=0,L1_rowsleft,rowsleft;
815:   PetscReal          afill;
816:   PetscInt           *workj_L1,*workj_L2,*workj_L3;
817:   PetscInt           L1_nnz,L2_nnz;

819:   /* Step 1: Get upper bound on memory required for allocation.
820:              Because of the way virtual memory works,
821:              only the memory pages that are actually needed will be physically allocated. */
823:   PetscMalloc1(am+1,&ci);
824:   for (i=0; i<am; i++) {
825:     const PetscInt anzi  = ai[i+1] - ai[i]; /* number of nonzeros in this row of A, this is the number of rows of B that we merge */
826:     const PetscInt *acol = aj + ai[i]; /* column indices of nonzero entries in this row */
827:     a_rownnz = 0;
828:     for (k=0; k<anzi; ++k) {
829:       a_rownnz += bi[acol[k]+1] - bi[acol[k]];
830:       if (a_rownnz > bn) {
831:         a_rownnz = bn;
832:         break;
833:       }
834:     }
835:     a_maxrownnz = PetscMax(a_maxrownnz, a_rownnz);
836:   }
837:   /* temporary work areas for merging rows */
838:   PetscMalloc1(a_maxrownnz*8,&workj_L1);
839:   PetscMalloc1(a_maxrownnz*8,&workj_L2);
840:   PetscMalloc1(a_maxrownnz,&workj_L3);

842:   /* This should be enough for almost all matrices. If not, memory is reallocated later. */
843:   c_maxmem = 8*(ai[am]+bi[bm]);
844:   /* Step 2: Populate pattern for C */
845:   PetscMalloc1(c_maxmem,&cj);

847:   ci_nnz       = 0;
848:   ci[0]        = 0;
849:   worki_L1[0]  = 0;
850:   worki_L2[0]  = 0;
851:   for (i=0; i<am; i++) {
852:     const PetscInt anzi  = ai[i+1] - ai[i]; /* number of nonzeros in this row of A, this is the number of rows of B that we merge */
853:     const PetscInt *acol = aj + ai[i];      /* column indices of nonzero entries in this row */
854:     rowsleft             = anzi;
855:     inputcol_L1          = acol;
856:     L2_nnz               = 0;
857:     L2_nrows             = 1;  /* Number of rows to be merged on Level 3. output of L3 already exists -> initial value 1   */
858:     worki_L2[1]          = 0;
859:     outputi_nnz          = 0;

861:     /* If the number of indices in C so far + the max number of columns in the next row > c_maxmem  -> allocate more memory */
862:     while (ci_nnz+a_maxrownnz > c_maxmem) {
863:       c_maxmem *= 2;
864:       ndouble++;
865:       PetscRealloc(sizeof(PetscInt)*c_maxmem,&cj);
866:     }

868:     while (rowsleft) {
869:       L1_rowsleft = PetscMin(64, rowsleft); /* In the inner loop max 64 rows of B can be merged */
870:       L1_nrows    = 0;
871:       L1_nnz      = 0;
872:       inputcol    = inputcol_L1;
873:       inputi      = bi;
874:       inputj      = bj;

876:       /* The following macro is used to specialize for small rows in A.
877:          This helps with compiler unrolling, improving performance substantially.
878:           Input:  inputj   inputi  inputcol  bn
879:           Output: outputj  outputi_nnz                       */
880:        #define MatMatMultSymbolic_RowMergeMacro(ANNZ)                        \
881:          window_min  = bn;                                                   \
882:          outputi_nnz = 0;                                                    \
883:          for (k=0; k<ANNZ; ++k) {                                            \
884:            brow_ptr[k] = inputj + inputi[inputcol[k]];                       \
885:            brow_end[k] = inputj + inputi[inputcol[k]+1];                     \
886:            window[k]   = (brow_ptr[k] != brow_end[k]) ? *brow_ptr[k] : bn;   \
887:            window_min  = PetscMin(window[k], window_min);                    \
888:          }                                                                   \
889:          while (window_min < bn) {                                           \
890:            outputj[outputi_nnz++] = window_min;                              \
891:            /* advance front and compute new minimum */                       \
892:            old_window_min = window_min;                                      \
893:            window_min = bn;                                                  \
894:            for (k=0; k<ANNZ; ++k) {                                          \
895:              if (window[k] == old_window_min) {                              \
896:                brow_ptr[k]++;                                                \
897:                window[k] = (brow_ptr[k] != brow_end[k]) ? *brow_ptr[k] : bn; \
898:              }                                                               \
899:              window_min = PetscMin(window[k], window_min);                   \
900:            }                                                                 \
901:          }

903:       /************** L E V E L  1 ***************/
904:       /* Merge up to 8 rows of B to L1 work array*/
905:       while (L1_rowsleft) {
906:         outputi_nnz = 0;
907:         if (anzi > 8)  outputj = workj_L1 + L1_nnz;     /* Level 1 rowmerge*/
908:         else           outputj = cj + ci_nnz;           /* Merge directly to C */

910:         switch (L1_rowsleft) {
911:         case 1:  brow_ptr[0] = inputj + inputi[inputcol[0]];
912:                  brow_end[0] = inputj + inputi[inputcol[0]+1];
913:                  for (; brow_ptr[0] != brow_end[0]; ++brow_ptr[0]) outputj[outputi_nnz++] = *brow_ptr[0]; /* copy row in b over */
914:                  inputcol    += L1_rowsleft;
915:                  rowsleft    -= L1_rowsleft;
916:                  L1_rowsleft  = 0;
917:                  break;
918:         case 2:  MatMatMultSymbolic_RowMergeMacro(2);
919:                  inputcol    += L1_rowsleft;
920:                  rowsleft    -= L1_rowsleft;
921:                  L1_rowsleft  = 0;
922:                  break;
923:         case 3: MatMatMultSymbolic_RowMergeMacro(3);
924:                  inputcol    += L1_rowsleft;
925:                  rowsleft    -= L1_rowsleft;
926:                  L1_rowsleft  = 0;
927:                  break;
928:         case 4:  MatMatMultSymbolic_RowMergeMacro(4);
929:                  inputcol    += L1_rowsleft;
930:                  rowsleft    -= L1_rowsleft;
931:                  L1_rowsleft  = 0;
932:                  break;
933:         case 5:  MatMatMultSymbolic_RowMergeMacro(5);
934:                  inputcol    += L1_rowsleft;
935:                  rowsleft    -= L1_rowsleft;
936:                  L1_rowsleft  = 0;
937:                  break;
938:         case 6:  MatMatMultSymbolic_RowMergeMacro(6);
939:                  inputcol    += L1_rowsleft;
940:                  rowsleft    -= L1_rowsleft;
941:                  L1_rowsleft  = 0;
942:                  break;
943:         case 7:  MatMatMultSymbolic_RowMergeMacro(7);
944:                  inputcol    += L1_rowsleft;
945:                  rowsleft    -= L1_rowsleft;
946:                  L1_rowsleft  = 0;
947:                  break;
948:         default: MatMatMultSymbolic_RowMergeMacro(8);
949:                  inputcol    += 8;
950:                  rowsleft    -= 8;
951:                  L1_rowsleft -= 8;
952:                  break;
953:         }
954:         inputcol_L1           = inputcol;
955:         L1_nnz               += outputi_nnz;
956:         worki_L1[++L1_nrows]  = L1_nnz;
957:       }

959:       /********************** L E V E L  2 ************************/
960:       /* Merge from L1 work array to either C or to L2 work array */
961:       if (anzi > 8) {
962:         inputi      = worki_L1;
963:         inputj      = workj_L1;
964:         inputcol    = workcol;
965:         outputi_nnz = 0;

967:         if (anzi <= 64) outputj = cj + ci_nnz;        /* Merge from L1 work array to C */
968:         else            outputj = workj_L2 + L2_nnz;  /* Merge from L1 work array to L2 work array */

970:         switch (L1_nrows) {
971:         case 1:  brow_ptr[0] = inputj + inputi[inputcol[0]];
972:                  brow_end[0] = inputj + inputi[inputcol[0]+1];
973:                  for (; brow_ptr[0] != brow_end[0]; ++brow_ptr[0]) outputj[outputi_nnz++] = *brow_ptr[0]; /* copy row in b over */
974:                  break;
975:         case 2:  MatMatMultSymbolic_RowMergeMacro(2); break;
976:         case 3:  MatMatMultSymbolic_RowMergeMacro(3); break;
977:         case 4:  MatMatMultSymbolic_RowMergeMacro(4); break;
978:         case 5:  MatMatMultSymbolic_RowMergeMacro(5); break;
979:         case 6:  MatMatMultSymbolic_RowMergeMacro(6); break;
980:         case 7:  MatMatMultSymbolic_RowMergeMacro(7); break;
981:         case 8:  MatMatMultSymbolic_RowMergeMacro(8); break;
982:         default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatMatMult logic error: Not merging 1-8 rows from L1 work array!");
983:         }
984:         L2_nnz               += outputi_nnz;
985:         worki_L2[++L2_nrows]  = L2_nnz;

987:         /************************ L E V E L  3 **********************/
988:         /* Merge from L2 work array to either C or to L2 work array */
989:         if (anzi > 64 && (L2_nrows == 8 || rowsleft == 0)) {
990:           inputi      = worki_L2;
991:           inputj      = workj_L2;
992:           inputcol    = workcol;
993:           outputi_nnz = 0;
994:           if (rowsleft) outputj = workj_L3;
995:           else          outputj = cj + ci_nnz;
996:           switch (L2_nrows) {
997:           case 1:  brow_ptr[0] = inputj + inputi[inputcol[0]];
998:                    brow_end[0] = inputj + inputi[inputcol[0]+1];
999:                    for (; brow_ptr[0] != brow_end[0]; ++brow_ptr[0]) outputj[outputi_nnz++] = *brow_ptr[0]; /* copy row in b over */
1000:                    break;
1001:           case 2:  MatMatMultSymbolic_RowMergeMacro(2); break;
1002:           case 3:  MatMatMultSymbolic_RowMergeMacro(3); break;
1003:           case 4:  MatMatMultSymbolic_RowMergeMacro(4); break;
1004:           case 5:  MatMatMultSymbolic_RowMergeMacro(5); break;
1005:           case 6:  MatMatMultSymbolic_RowMergeMacro(6); break;
1006:           case 7:  MatMatMultSymbolic_RowMergeMacro(7); break;
1007:           case 8:  MatMatMultSymbolic_RowMergeMacro(8); break;
1008:           default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatMatMult logic error: Not merging 1-8 rows from L2 work array!");
1009:           }
1010:           L2_nrows    = 1;
1011:           L2_nnz      = outputi_nnz;
1012:           worki_L2[1] = outputi_nnz;
1013:           /* Copy to workj_L2 */
1014:           if (rowsleft) {
1015:             for (k=0; k<outputi_nnz; ++k)  workj_L2[k] = outputj[k];
1016:           }
1017:         }
1018:       }
1019:     }  /* while (rowsleft) */
1020: #undef MatMatMultSymbolic_RowMergeMacro

1022:     /* terminate current row */
1023:     ci_nnz += outputi_nnz;
1024:     ci[i+1] = ci_nnz;
1025:   }

1027:   /* Step 3: Create the new symbolic matrix */
1028:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,NULL,((PetscObject)A)->type_name,C);
1029:   MatSetBlockSizesFromMats(C,A,B);

1031:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
1032:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
1033:   c          = (Mat_SeqAIJ*)(C->data);
1034:   c->free_a  = PETSC_TRUE;
1035:   c->free_ij = PETSC_TRUE;
1036:   c->nonew   = 0;

1038:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted;

1040:   /* set MatInfo */
1041:   afill = (PetscReal)ci[am]/(ai[am]+bi[bm]) + 1.e-5;
1042:   if (afill < 1.0) afill = 1.0;
1043:   c->maxnz                     = ci[am];
1044:   c->nz                        = ci[am];
1045:   C->info.mallocs           = ndouble;
1046:   C->info.fill_ratio_given  = fill;
1047:   C->info.fill_ratio_needed = afill;

1049: #if defined(PETSC_USE_INFO)
1050:   if (ci[am]) {
1051:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
1052:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
1053:   } else {
1054:     PetscInfo(C,"Empty matrix product\n");
1055:   }
1056: #endif

1058:   /* Step 4: Free temporary work areas */
1059:   PetscFree(workj_L1);
1060:   PetscFree(workj_L2);
1061:   PetscFree(workj_L3);
1062:   return(0);
1063: }

1065: /* concatenate unique entries and then sort */
1066: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqAIJ_Sorted(Mat A,Mat B,PetscReal fill,Mat C)
1067: {
1069:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c;
1070:   const PetscInt *ai = a->i,*bi=b->i,*aj=a->j,*bj=b->j;
1071:   PetscInt       *ci,*cj;
1072:   PetscInt       am=A->rmap->N,bn=B->cmap->N,bm=B->rmap->N;
1073:   PetscReal      afill;
1074:   PetscInt       i,j,ndouble = 0;
1075:   PetscSegBuffer seg,segrow;
1076:   char           *seen;

1079:   PetscMalloc1(am+1,&ci);
1080:   ci[0] = 0;

1082:   /* Initial FreeSpace size is fill*(nnz(A)+nnz(B)) */
1083:   PetscSegBufferCreate(sizeof(PetscInt),(PetscInt)(fill*(ai[am]+bi[bm])),&seg);
1084:   PetscSegBufferCreate(sizeof(PetscInt),100,&segrow);
1085:   PetscCalloc1(bn,&seen);

1087:   /* Determine ci and cj */
1088:   for (i=0; i<am; i++) {
1089:     const PetscInt anzi  = ai[i+1] - ai[i]; /* number of nonzeros in this row of A, this is the number of rows of B that we merge */
1090:     const PetscInt *acol = aj + ai[i]; /* column indices of nonzero entries in this row */
1091:     PetscInt packlen = 0,*PETSC_RESTRICT crow;
1092:     /* Pack segrow */
1093:     for (j=0; j<anzi; j++) {
1094:       PetscInt brow = acol[j],bjstart = bi[brow],bjend = bi[brow+1],k;
1095:       for (k=bjstart; k<bjend; k++) {
1096:         PetscInt bcol = bj[k];
1097:         if (!seen[bcol]) { /* new entry */
1098:           PetscInt *PETSC_RESTRICT slot;
1099:           PetscSegBufferGetInts(segrow,1,&slot);
1100:           *slot = bcol;
1101:           seen[bcol] = 1;
1102:           packlen++;
1103:         }
1104:       }
1105:     }
1106:     PetscSegBufferGetInts(seg,packlen,&crow);
1107:     PetscSegBufferExtractTo(segrow,crow);
1108:     PetscSortInt(packlen,crow);
1109:     ci[i+1] = ci[i] + packlen;
1110:     for (j=0; j<packlen; j++) seen[crow[j]] = 0;
1111:   }
1112:   PetscSegBufferDestroy(&segrow);
1113:   PetscFree(seen);

1115:   /* Column indices are in the segmented buffer */
1116:   PetscSegBufferExtractAlloc(seg,&cj);
1117:   PetscSegBufferDestroy(&seg);

1119:   /* put together the new symbolic matrix */
1120:   MatSetSeqAIJWithArrays_private(PetscObjectComm((PetscObject)A),am,bn,ci,cj,NULL,((PetscObject)A)->type_name,C);
1121:   MatSetBlockSizesFromMats(C,A,B);

1123:   /* MatCreateSeqAIJWithArrays flags matrix so PETSc doesn't free the user's arrays. */
1124:   /* These are PETSc arrays, so change flags so arrays can be deleted by PETSc */
1125:   c          = (Mat_SeqAIJ*)(C->data);
1126:   c->free_a  = PETSC_TRUE;
1127:   c->free_ij = PETSC_TRUE;
1128:   c->nonew   = 0;

1130:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqAIJ_Sorted;

1132:   /* set MatInfo */
1133:   afill = (PetscReal)ci[am]/PetscMax(ai[am]+bi[bm],1) + 1.e-5;
1134:   if (afill < 1.0) afill = 1.0;
1135:   c->maxnz                  = ci[am];
1136:   c->nz                     = ci[am];
1137:   C->info.mallocs           = ndouble;
1138:   C->info.fill_ratio_given  = fill;
1139:   C->info.fill_ratio_needed = afill;

1141: #if defined(PETSC_USE_INFO)
1142:   if (ci[am]) {
1143:     PetscInfo3(C,"Reallocs %D; Fill ratio: given %g needed %g.\n",ndouble,(double)fill,(double)afill);
1144:     PetscInfo1(C,"Use MatMatMult(A,B,MatReuse,%g,&C) for best performance.;\n",(double)afill);
1145:   } else {
1146:     PetscInfo(C,"Empty matrix product\n");
1147:   }
1148: #endif
1149:   return(0);
1150: }

1152: PetscErrorCode MatDestroy_SeqAIJ_MatMatMultTrans(void *data)
1153: {
1154:   PetscErrorCode      ierr;
1155:   Mat_MatMatTransMult *abt=(Mat_MatMatTransMult *)data;

1158:   MatTransposeColoringDestroy(&abt->matcoloring);
1159:   MatDestroy(&abt->Bt_den);
1160:   MatDestroy(&abt->ABt_den);
1161:   PetscFree(abt);
1162:   return(0);
1163: }

1165: PetscErrorCode MatMatTransposeMultSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat B,PetscReal fill,Mat C)
1166: {
1167:   PetscErrorCode      ierr;
1168:   Mat                 Bt;
1169:   PetscInt            *bti,*btj;
1170:   Mat_MatMatTransMult *abt;
1171:   Mat_Product         *product = C->product;
1172:   char                *alg;

1175:   if (!product) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Missing product struct");
1176:   if (product->data) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Extra product struct not empty");

1178:   /* create symbolic Bt */
1179:   MatGetSymbolicTranspose_SeqAIJ(B,&bti,&btj);
1180:   MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,B->cmap->n,B->rmap->n,bti,btj,NULL,&Bt);
1181:   MatSetBlockSizes(Bt,PetscAbs(A->cmap->bs),PetscAbs(B->cmap->bs));
1182:   MatSetType(Bt,((PetscObject)A)->type_name);

1184:   /* get symbolic C=A*Bt */
1185:   PetscStrallocpy(product->alg,&alg);
1186:   MatProductSetAlgorithm(C,"sorted"); /* set algorithm for C = A*Bt */
1187:   MatMatMultSymbolic_SeqAIJ_SeqAIJ(A,Bt,fill,C);
1188:   MatProductSetAlgorithm(C,alg); /* resume original algorithm for ABt product */
1189:   PetscFree(alg);

1191:   /* create a supporting struct for reuse intermidiate dense matrices with matcoloring */
1192:   PetscNew(&abt);

1194:   product->data    = abt;
1195:   product->destroy = MatDestroy_SeqAIJ_MatMatMultTrans;

1197:   C->ops->mattransposemultnumeric = MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ;

1199:   abt->usecoloring = PETSC_FALSE;
1200:   PetscStrcmp(product->alg,"color",&abt->usecoloring);
1201:   if (abt->usecoloring) {
1202:     /* Create MatTransposeColoring from symbolic C=A*B^T */
1203:     MatTransposeColoring matcoloring;
1204:     MatColoring          coloring;
1205:     ISColoring           iscoloring;
1206:     Mat                  Bt_dense,C_dense;

1208:     /* inode causes memory problem */
1209:     MatSetOption(C,MAT_USE_INODES,PETSC_FALSE);

1211:     MatColoringCreate(C,&coloring);
1212:     MatColoringSetDistance(coloring,2);
1213:     MatColoringSetType(coloring,MATCOLORINGSL);
1214:     MatColoringSetFromOptions(coloring);
1215:     MatColoringApply(coloring,&iscoloring);
1216:     MatColoringDestroy(&coloring);
1217:     MatTransposeColoringCreate(C,iscoloring,&matcoloring);

1219:     abt->matcoloring = matcoloring;

1221:     ISColoringDestroy(&iscoloring);

1223:     /* Create Bt_dense and C_dense = A*Bt_dense */
1224:     MatCreate(PETSC_COMM_SELF,&Bt_dense);
1225:     MatSetSizes(Bt_dense,A->cmap->n,matcoloring->ncolors,A->cmap->n,matcoloring->ncolors);
1226:     MatSetType(Bt_dense,MATSEQDENSE);
1227:     MatSeqDenseSetPreallocation(Bt_dense,NULL);

1229:     Bt_dense->assembled = PETSC_TRUE;
1230:     abt->Bt_den         = Bt_dense;

1232:     MatCreate(PETSC_COMM_SELF,&C_dense);
1233:     MatSetSizes(C_dense,A->rmap->n,matcoloring->ncolors,A->rmap->n,matcoloring->ncolors);
1234:     MatSetType(C_dense,MATSEQDENSE);
1235:     MatSeqDenseSetPreallocation(C_dense,NULL);

1237:     Bt_dense->assembled = PETSC_TRUE;
1238:     abt->ABt_den  = C_dense;

1240: #if defined(PETSC_USE_INFO)
1241:     {
1242:       Mat_SeqAIJ *c = (Mat_SeqAIJ*)C->data;
1243:       PetscInfo7(C,"Use coloring of C=A*B^T; B^T: %D %D, Bt_dense: %D,%D; Cnz %D / (cm*ncolors %D) = %g\n",B->cmap->n,B->rmap->n,Bt_dense->rmap->n,Bt_dense->cmap->n,c->nz,A->rmap->n*matcoloring->ncolors,(PetscReal)(c->nz)/(A->rmap->n*matcoloring->ncolors));
1244:     }
1245: #endif
1246:   }
1247:   /* clean up */
1248:   MatDestroy(&Bt);
1249:   MatRestoreSymbolicTranspose_SeqAIJ(B,&bti,&btj);
1250:   return(0);
1251: }

1253: PetscErrorCode MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ(Mat A,Mat B,Mat C)
1254: {
1255:   PetscErrorCode      ierr;
1256:   Mat_SeqAIJ          *a   =(Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c=(Mat_SeqAIJ*)C->data;
1257:   PetscInt            *ai  =a->i,*aj=a->j,*bi=b->i,*bj=b->j,anzi,bnzj,nexta,nextb,*acol,*bcol,brow;
1258:   PetscInt            cm   =C->rmap->n,*ci=c->i,*cj=c->j,i,j,cnzi,*ccol;
1259:   PetscLogDouble      flops=0.0;
1260:   MatScalar           *aa  =a->a,*aval,*ba=b->a,*bval,*ca,*cval;
1261:   Mat_MatMatTransMult *abt;
1262:   Mat_Product         *product = C->product;

1265:   if (!product) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Missing product struct");
1266:   abt = (Mat_MatMatTransMult *)product->data;
1267:   if (!abt) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Missing product struct");
1268:   /* clear old values in C */
1269:   if (!c->a) {
1270:     PetscCalloc1(ci[cm]+1,&ca);
1271:     c->a      = ca;
1272:     c->free_a = PETSC_TRUE;
1273:   } else {
1274:     ca =  c->a;
1275:     PetscArrayzero(ca,ci[cm]+1);
1276:   }

1278:   if (abt->usecoloring) {
1279:     MatTransposeColoring matcoloring = abt->matcoloring;
1280:     Mat                  Bt_dense,C_dense = abt->ABt_den;

1282:     /* Get Bt_dense by Apply MatTransposeColoring to B */
1283:     Bt_dense = abt->Bt_den;
1284:     MatTransColoringApplySpToDen(matcoloring,B,Bt_dense);

1286:     /* C_dense = A*Bt_dense */
1287:     MatMatMultNumeric_SeqAIJ_SeqDense(A,Bt_dense,C_dense);

1289:     /* Recover C from C_dense */
1290:     MatTransColoringApplyDenToSp(matcoloring,C_dense,C);
1291:     return(0);
1292:   }

1294:   for (i=0; i<cm; i++) {
1295:     anzi = ai[i+1] - ai[i];
1296:     acol = aj + ai[i];
1297:     aval = aa + ai[i];
1298:     cnzi = ci[i+1] - ci[i];
1299:     ccol = cj + ci[i];
1300:     cval = ca + ci[i];
1301:     for (j=0; j<cnzi; j++) {
1302:       brow = ccol[j];
1303:       bnzj = bi[brow+1] - bi[brow];
1304:       bcol = bj + bi[brow];
1305:       bval = ba + bi[brow];

1307:       /* perform sparse inner-product c(i,j)=A[i,:]*B[j,:]^T */
1308:       nexta = 0; nextb = 0;
1309:       while (nexta<anzi && nextb<bnzj) {
1310:         while (nexta < anzi && acol[nexta] < bcol[nextb]) nexta++;
1311:         if (nexta == anzi) break;
1312:         while (nextb < bnzj && acol[nexta] > bcol[nextb]) nextb++;
1313:         if (nextb == bnzj) break;
1314:         if (acol[nexta] == bcol[nextb]) {
1315:           cval[j] += aval[nexta]*bval[nextb];
1316:           nexta++; nextb++;
1317:           flops += 2;
1318:         }
1319:       }
1320:     }
1321:   }
1322:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
1323:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
1324:   PetscLogFlops(flops);
1325:   return(0);
1326: }

1328: PetscErrorCode MatDestroy_SeqAIJ_MatTransMatMult(void *data)
1329: {
1330:   PetscErrorCode      ierr;
1331:   Mat_MatTransMatMult *atb = (Mat_MatTransMatMult*)data;

1334:   MatDestroy(&atb->At);
1335:   if (atb->destroy) {
1336:     (*atb->destroy)(atb->data);
1337:   }
1338:   PetscFree(atb);
1339:   return(0);
1340: }

1342: PetscErrorCode MatTransposeMatMultSymbolic_SeqAIJ_SeqAIJ(Mat A,Mat B,PetscReal fill,Mat C)
1343: {
1345:   Mat            At = NULL;
1346:   PetscInt       *ati,*atj;
1347:   Mat_Product    *product = C->product;
1348:   PetscBool      flg,def,square;

1351:   MatCheckProduct(C,4);
1352:   square = (PetscBool)(A == B && A->symmetric && A->symmetric_set);
1353:   /* outerproduct */
1354:   PetscStrcmp(product->alg,"outerproduct",&flg);
1355:   if (flg) {
1356:     /* create symbolic At */
1357:     if (!square) {
1358:       MatGetSymbolicTranspose_SeqAIJ(A,&ati,&atj);
1359:       MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,A->cmap->n,A->rmap->n,ati,atj,NULL,&At);
1360:       MatSetBlockSizes(At,PetscAbs(A->cmap->bs),PetscAbs(B->cmap->bs));
1361:       MatSetType(At,((PetscObject)A)->type_name);
1362:     }
1363:     /* get symbolic C=At*B */
1364:     MatProductSetAlgorithm(C,"sorted");
1365:     MatMatMultSymbolic_SeqAIJ_SeqAIJ(square ? A : At,B,fill,C);

1367:     /* clean up */
1368:     if (!square) {
1369:       MatDestroy(&At);
1370:       MatRestoreSymbolicTranspose_SeqAIJ(A,&ati,&atj);
1371:     }

1373:     C->ops->mattransposemultnumeric = MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ; /* outerproduct */
1374:     MatProductSetAlgorithm(C,"outerproduct");
1375:     return(0);
1376:   }

1378:   /* matmatmult */
1379:   PetscStrcmp(product->alg,"default",&def);
1380:   PetscStrcmp(product->alg,"at*b",&flg);
1381:   if (flg || def) {
1382:     Mat_MatTransMatMult *atb;

1384:     if (product->data) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Extra product struct not empty");
1385:     PetscNew(&atb);
1386:     if (!square) {
1387:       MatTranspose_SeqAIJ(A,MAT_INITIAL_MATRIX,&At);
1388:     }
1389:     MatProductSetAlgorithm(C,"sorted");
1390:     MatMatMultSymbolic_SeqAIJ_SeqAIJ(square ? A : At,B,fill,C);
1391:     MatProductSetAlgorithm(C,"at*b");
1392:     product->data    = atb;
1393:     product->destroy = MatDestroy_SeqAIJ_MatTransMatMult;
1394:     atb->At          = At;
1395:     atb->updateAt    = PETSC_FALSE; /* because At is computed here */

1397:     C->ops->mattransposemultnumeric = NULL; /* see MatProductNumeric_AtB_SeqAIJ_SeqAIJ */
1398:     return(0);
1399:   }

1401:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Mat Product Algorithm is not supported");
1402: }

1404: PetscErrorCode MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ(Mat A,Mat B,Mat C)
1405: {
1407:   Mat_SeqAIJ     *a=(Mat_SeqAIJ*)A->data,*b=(Mat_SeqAIJ*)B->data,*c=(Mat_SeqAIJ*)C->data;
1408:   PetscInt       am=A->rmap->n,anzi,*ai=a->i,*aj=a->j,*bi=b->i,*bj,bnzi,nextb;
1409:   PetscInt       cm=C->rmap->n,*ci=c->i,*cj=c->j,crow,*cjj,i,j,k;
1410:   PetscLogDouble flops=0.0;
1411:   MatScalar      *aa=a->a,*ba,*ca,*caj;

1414:   if (!c->a) {
1415:     PetscCalloc1(ci[cm]+1,&ca);

1417:     c->a      = ca;
1418:     c->free_a = PETSC_TRUE;
1419:   } else {
1420:     ca   = c->a;
1421:     PetscArrayzero(ca,ci[cm]);
1422:   }

1424:   /* compute A^T*B using outer product (A^T)[:,i]*B[i,:] */
1425:   for (i=0; i<am; i++) {
1426:     bj   = b->j + bi[i];
1427:     ba   = b->a + bi[i];
1428:     bnzi = bi[i+1] - bi[i];
1429:     anzi = ai[i+1] - ai[i];
1430:     for (j=0; j<anzi; j++) {
1431:       nextb = 0;
1432:       crow  = *aj++;
1433:       cjj   = cj + ci[crow];
1434:       caj   = ca + ci[crow];
1435:       /* perform sparse axpy operation.  Note cjj includes bj. */
1436:       for (k=0; nextb<bnzi; k++) {
1437:         if (cjj[k] == *(bj+nextb)) { /* ccol == bcol */
1438:           caj[k] += (*aa)*(*(ba+nextb));
1439:           nextb++;
1440:         }
1441:       }
1442:       flops += 2*bnzi;
1443:       aa++;
1444:     }
1445:   }

1447:   /* Assemble the final matrix and clean up */
1448:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
1449:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
1450:   PetscLogFlops(flops);
1451:   return(0);
1452: }

1454: PetscErrorCode MatMatMultSymbolic_SeqAIJ_SeqDense(Mat A,Mat B,PetscReal fill,Mat C)
1455: {

1459:   MatMatMultSymbolic_SeqDense_SeqDense(A,B,0.0,C);
1460:   C->ops->matmultnumeric = MatMatMultNumeric_SeqAIJ_SeqDense;
1461:   return(0);
1462: }

1464: PETSC_INTERN PetscErrorCode MatMatMultNumericAdd_SeqAIJ_SeqDense(Mat A,Mat B,Mat C,const PetscBool add)
1465: {
1466:   Mat_SeqAIJ        *a=(Mat_SeqAIJ*)A->data;
1467:   Mat_SeqDense      *bd=(Mat_SeqDense*)B->data;
1468:   Mat_SeqDense      *cd=(Mat_SeqDense*)C->data;
1469:   PetscErrorCode    ierr;
1470:   PetscScalar       *c,r1,r2,r3,r4,*c1,*c2,*c3,*c4;
1471:   const PetscScalar *aa,*b,*b1,*b2,*b3,*b4,*av;
1472:   const PetscInt    *aj;
1473:   PetscInt          cm=C->rmap->n,cn=B->cmap->n,bm=bd->lda,am=A->rmap->n;
1474:   PetscInt          clda=cd->lda;
1475:   PetscInt          am4=4*clda,bm4=4*bm,col,i,j,n;

1478:   if (!cm || !cn) return(0);
1479:   MatSeqAIJGetArrayRead(A,&av);
1480:   if (add) {
1481:     MatDenseGetArray(C,&c);
1482:   } else {
1483:     MatDenseGetArrayWrite(C,&c);
1484:   }
1485:   MatDenseGetArrayRead(B,&b);
1486:   b1 = b; b2 = b1 + bm; b3 = b2 + bm; b4 = b3 + bm;
1487:   c1 = c; c2 = c1 + clda; c3 = c2 + clda; c4 = c3 + clda;
1488:   for (col=0; col<(cn/4)*4; col += 4) {  /* over columns of C */
1489:     for (i=0; i<am; i++) {        /* over rows of A in those columns */
1490:       r1 = r2 = r3 = r4 = 0.0;
1491:       n  = a->i[i+1] - a->i[i];
1492:       aj = a->j + a->i[i];
1493:       aa = av + a->i[i];
1494:       for (j=0; j<n; j++) {
1495:         const PetscScalar aatmp = aa[j];
1496:         const PetscInt    ajtmp = aj[j];
1497:         r1 += aatmp*b1[ajtmp];
1498:         r2 += aatmp*b2[ajtmp];
1499:         r3 += aatmp*b3[ajtmp];
1500:         r4 += aatmp*b4[ajtmp];
1501:       }
1502:       if (add) {
1503:         c1[i] += r1;
1504:         c2[i] += r2;
1505:         c3[i] += r3;
1506:         c4[i] += r4;
1507:       } else {
1508:         c1[i] = r1;
1509:         c2[i] = r2;
1510:         c3[i] = r3;
1511:         c4[i] = r4;
1512:       }
1513:     }
1514:     b1 += bm4; b2 += bm4; b3 += bm4; b4 += bm4;
1515:     c1 += am4; c2 += am4; c3 += am4; c4 += am4;
1516:   }
1517:   /* process remaining columns */
1518:   if (col != cn) {
1519:     PetscInt rc = cn-col;

1521:     if (rc == 1) {
1522:       for (i=0; i<am; i++) {
1523:         r1 = 0.0;
1524:         n  = a->i[i+1] - a->i[i];
1525:         aj = a->j + a->i[i];
1526:         aa = av + a->i[i];
1527:         for (j=0; j<n; j++) r1 += aa[j]*b1[aj[j]];
1528:         if (add) c1[i] += r1;
1529:         else c1[i] = r1;
1530:       }
1531:     } else if (rc == 2) {
1532:       for (i=0; i<am; i++) {
1533:         r1 = r2 = 0.0;
1534:         n  = a->i[i+1] - a->i[i];
1535:         aj = a->j + a->i[i];
1536:         aa = av + a->i[i];
1537:         for (j=0; j<n; j++) {
1538:           const PetscScalar aatmp = aa[j];
1539:           const PetscInt    ajtmp = aj[j];
1540:           r1 += aatmp*b1[ajtmp];
1541:           r2 += aatmp*b2[ajtmp];
1542:         }
1543:         if (add) {
1544:           c1[i] += r1;
1545:           c2[i] += r2;
1546:         } else {
1547:           c1[i] = r1;
1548:           c2[i] = r2;
1549:         }
1550:       }
1551:     } else {
1552:       for (i=0; i<am; i++) {
1553:         r1 = r2 = r3 = 0.0;
1554:         n  = a->i[i+1] - a->i[i];
1555:         aj = a->j + a->i[i];
1556:         aa = av + a->i[i];
1557:         for (j=0; j<n; j++) {
1558:           const PetscScalar aatmp = aa[j];
1559:           const PetscInt    ajtmp = aj[j];
1560:           r1 += aatmp*b1[ajtmp];
1561:           r2 += aatmp*b2[ajtmp];
1562:           r3 += aatmp*b3[ajtmp];
1563:         }
1564:         if (add) {
1565:           c1[i] += r1;
1566:           c2[i] += r2;
1567:           c3[i] += r3;
1568:         } else {
1569:           c1[i] = r1;
1570:           c2[i] = r2;
1571:           c3[i] = r3;
1572:         }
1573:       }
1574:     }
1575:   }
1576:   PetscLogFlops(cn*(2.0*a->nz));
1577:   if (add) {
1578:     MatDenseRestoreArray(C,&c);
1579:   } else {
1580:     MatDenseRestoreArrayWrite(C,&c);
1581:   }
1582:   MatDenseRestoreArrayRead(B,&b);
1583:   MatSeqAIJRestoreArrayRead(A,&av);
1584:   return(0);
1585: }

1587: PetscErrorCode MatMatMultNumeric_SeqAIJ_SeqDense(Mat A,Mat B,Mat C)
1588: {

1592:   if (B->rmap->n != A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number columns in A %D not equal rows in B %D\n",A->cmap->n,B->rmap->n);
1593:   if (A->rmap->n != C->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number rows in C %D not equal rows in A %D\n",C->rmap->n,A->rmap->n);
1594:   if (B->cmap->n != C->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Number columns in B %D not equal columns in C %D\n",B->cmap->n,C->cmap->n);

1596:   MatMatMultNumericAdd_SeqAIJ_SeqDense(A,B,C,PETSC_FALSE);
1597:   return(0);
1598: }

1600: /* ------------------------------------------------------- */
1601: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_SeqDense_AB(Mat C)
1602: {
1604:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqAIJ_SeqDense;
1605:   C->ops->productsymbolic = MatProductSymbolic_AB;
1606:   return(0);
1607: }

1609: PETSC_INTERN PetscErrorCode MatTMatTMultSymbolic_SeqAIJ_SeqDense(Mat,Mat,PetscReal,Mat);

1611: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_SeqDense_AtB(Mat C)
1612: {
1614:   C->ops->transposematmultsymbolic = MatTMatTMultSymbolic_SeqAIJ_SeqDense;
1615:   C->ops->productsymbolic          = MatProductSymbolic_AtB;
1616:   return(0);
1617: }

1619: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_SeqDense_ABt(Mat C)
1620: {
1622:   C->ops->mattransposemultsymbolic = MatTMatTMultSymbolic_SeqAIJ_SeqDense;
1623:   C->ops->productsymbolic          = MatProductSymbolic_ABt;
1624:   return(0);
1625: }

1627: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqAIJ_SeqDense(Mat C)
1628: {
1630:   Mat_Product    *product = C->product;

1633:   switch (product->type) {
1634:   case MATPRODUCT_AB:
1635:     MatProductSetFromOptions_SeqAIJ_SeqDense_AB(C);
1636:     break;
1637:   case MATPRODUCT_AtB:
1638:     MatProductSetFromOptions_SeqAIJ_SeqDense_AtB(C);
1639:     break;
1640:   case MATPRODUCT_ABt:
1641:     MatProductSetFromOptions_SeqAIJ_SeqDense_ABt(C);
1642:     break;
1643:   default:
1644:     break;
1645:   }
1646:   return(0);
1647: }
1648: /* ------------------------------------------------------- */
1649: static PetscErrorCode MatProductSetFromOptions_SeqXBAIJ_SeqDense_AB(Mat C)
1650: {
1652:   Mat_Product    *product = C->product;
1653:   Mat            A = product->A;
1654:   PetscBool      baij;

1657:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&baij);
1658:   if (!baij) { /* A is seqsbaij */
1659:     PetscBool sbaij;
1660:     PetscObjectTypeCompare((PetscObject)A,MATSEQSBAIJ,&sbaij);
1661:     if (!sbaij) SETERRQ(PetscObjectComm((PetscObject)C),PETSC_ERR_ARG_WRONGSTATE,"Mat must be either seqbaij or seqsbaij format");

1663:     C->ops->matmultsymbolic = MatMatMultSymbolic_SeqSBAIJ_SeqDense;
1664:   } else { /* A is seqbaij */
1665:     C->ops->matmultsymbolic = MatMatMultSymbolic_SeqBAIJ_SeqDense;
1666:   }

1668:   C->ops->productsymbolic = MatProductSymbolic_AB;
1669:   return(0);
1670: }

1672: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqXBAIJ_SeqDense(Mat C)
1673: {
1675:   Mat_Product    *product = C->product;

1678:   MatCheckProduct(C,1);
1679:   if (!product->A) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Missing A");
1680:   if (product->type == MATPRODUCT_AB || (product->type == MATPRODUCT_AtB && product->A->symmetric)) {
1681:     MatProductSetFromOptions_SeqXBAIJ_SeqDense_AB(C);
1682:   }
1683:   return(0);
1684: }

1686: /* ------------------------------------------------------- */
1687: static PetscErrorCode MatProductSetFromOptions_SeqDense_SeqAIJ_AB(Mat C)
1688: {
1690:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqDense_SeqAIJ;
1691:   C->ops->productsymbolic = MatProductSymbolic_AB;
1692:   return(0);
1693: }

1695: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_SeqDense_SeqAIJ(Mat C)
1696: {
1698:   Mat_Product    *product = C->product;

1701:   if (product->type == MATPRODUCT_AB) {
1702:     MatProductSetFromOptions_SeqDense_SeqAIJ_AB(C);
1703:   }
1704:   return(0);
1705: }
1706: /* ------------------------------------------------------- */

1708: PetscErrorCode  MatTransColoringApplySpToDen_SeqAIJ(MatTransposeColoring coloring,Mat B,Mat Btdense)
1709: {
1711:   Mat_SeqAIJ     *b       = (Mat_SeqAIJ*)B->data;
1712:   Mat_SeqDense   *btdense = (Mat_SeqDense*)Btdense->data;
1713:   PetscInt       *bi      = b->i,*bj=b->j;
1714:   PetscInt       m        = Btdense->rmap->n,n=Btdense->cmap->n,j,k,l,col,anz,*btcol,brow,ncolumns;
1715:   MatScalar      *btval,*btval_den,*ba=b->a;
1716:   PetscInt       *columns=coloring->columns,*colorforcol=coloring->colorforcol,ncolors=coloring->ncolors;

1719:   btval_den=btdense->v;
1720:   PetscArrayzero(btval_den,m*n);
1721:   for (k=0; k<ncolors; k++) {
1722:     ncolumns = coloring->ncolumns[k];
1723:     for (l=0; l<ncolumns; l++) { /* insert a row of B to a column of Btdense */
1724:       col   = *(columns + colorforcol[k] + l);
1725:       btcol = bj + bi[col];
1726:       btval = ba + bi[col];
1727:       anz   = bi[col+1] - bi[col];
1728:       for (j=0; j<anz; j++) {
1729:         brow            = btcol[j];
1730:         btval_den[brow] = btval[j];
1731:       }
1732:     }
1733:     btval_den += m;
1734:   }
1735:   return(0);
1736: }

1738: PetscErrorCode MatTransColoringApplyDenToSp_SeqAIJ(MatTransposeColoring matcoloring,Mat Cden,Mat Csp)
1739: {
1740:   PetscErrorCode    ierr;
1741:   Mat_SeqAIJ        *csp = (Mat_SeqAIJ*)Csp->data;
1742:   const PetscScalar *ca_den,*ca_den_ptr;
1743:   PetscScalar       *ca=csp->a;
1744:   PetscInt          k,l,m=Cden->rmap->n,ncolors=matcoloring->ncolors;
1745:   PetscInt          brows=matcoloring->brows,*den2sp=matcoloring->den2sp;
1746:   PetscInt          nrows,*row,*idx;
1747:   PetscInt          *rows=matcoloring->rows,*colorforrow=matcoloring->colorforrow;

1750:   MatDenseGetArrayRead(Cden,&ca_den);

1752:   if (brows > 0) {
1753:     PetscInt *lstart,row_end,row_start;
1754:     lstart = matcoloring->lstart;
1755:     PetscArrayzero(lstart,ncolors);

1757:     row_end = brows;
1758:     if (row_end > m) row_end = m;
1759:     for (row_start=0; row_start<m; row_start+=brows) { /* loop over row blocks of Csp */
1760:       ca_den_ptr = ca_den;
1761:       for (k=0; k<ncolors; k++) { /* loop over colors (columns of Cden) */
1762:         nrows = matcoloring->nrows[k];
1763:         row   = rows  + colorforrow[k];
1764:         idx   = den2sp + colorforrow[k];
1765:         for (l=lstart[k]; l<nrows; l++) {
1766:           if (row[l] >= row_end) {
1767:             lstart[k] = l;
1768:             break;
1769:           } else {
1770:             ca[idx[l]] = ca_den_ptr[row[l]];
1771:           }
1772:         }
1773:         ca_den_ptr += m;
1774:       }
1775:       row_end += brows;
1776:       if (row_end > m) row_end = m;
1777:     }
1778:   } else { /* non-blocked impl: loop over columns of Csp - slow if Csp is large */
1779:     ca_den_ptr = ca_den;
1780:     for (k=0; k<ncolors; k++) {
1781:       nrows = matcoloring->nrows[k];
1782:       row   = rows  + colorforrow[k];
1783:       idx   = den2sp + colorforrow[k];
1784:       for (l=0; l<nrows; l++) {
1785:         ca[idx[l]] = ca_den_ptr[row[l]];
1786:       }
1787:       ca_den_ptr += m;
1788:     }
1789:   }

1791:   MatDenseRestoreArrayRead(Cden,&ca_den);
1792: #if defined(PETSC_USE_INFO)
1793:   if (matcoloring->brows > 0) {
1794:     PetscInfo1(Csp,"Loop over %D row blocks for den2sp\n",brows);
1795:   } else {
1796:     PetscInfo(Csp,"Loop over colors/columns of Cden, inefficient for large sparse matrix product \n");
1797:   }
1798: #endif
1799:   return(0);
1800: }

1802: PetscErrorCode MatTransposeColoringCreate_SeqAIJ(Mat mat,ISColoring iscoloring,MatTransposeColoring c)
1803: {
1805:   PetscInt       i,n,nrows,Nbs,j,k,m,ncols,col,cm;
1806:   const PetscInt *is,*ci,*cj,*row_idx;
1807:   PetscInt       nis = iscoloring->n,*rowhit,bs = 1;
1808:   IS             *isa;
1809:   Mat_SeqAIJ     *csp = (Mat_SeqAIJ*)mat->data;
1810:   PetscInt       *colorforrow,*rows,*rows_i,*idxhit,*spidx,*den2sp,*den2sp_i;
1811:   PetscInt       *colorforcol,*columns,*columns_i,brows;
1812:   PetscBool      flg;

1815:   ISColoringGetIS(iscoloring,PETSC_USE_POINTER,PETSC_IGNORE,&isa);

1817:   /* bs >1 is not being tested yet! */
1818:   Nbs       = mat->cmap->N/bs;
1819:   c->M      = mat->rmap->N/bs;  /* set total rows, columns and local rows */
1820:   c->N      = Nbs;
1821:   c->m      = c->M;
1822:   c->rstart = 0;
1823:   c->brows  = 100;

1825:   c->ncolors = nis;
1826:   PetscMalloc3(nis,&c->ncolumns,nis,&c->nrows,nis+1,&colorforrow);
1827:   PetscMalloc1(csp->nz+1,&rows);
1828:   PetscMalloc1(csp->nz+1,&den2sp);

1830:   brows = c->brows;
1831:   PetscOptionsGetInt(NULL,NULL,"-matden2sp_brows",&brows,&flg);
1832:   if (flg) c->brows = brows;
1833:   if (brows > 0) {
1834:     PetscMalloc1(nis+1,&c->lstart);
1835:   }

1837:   colorforrow[0] = 0;
1838:   rows_i         = rows;
1839:   den2sp_i       = den2sp;

1841:   PetscMalloc1(nis+1,&colorforcol);
1842:   PetscMalloc1(Nbs+1,&columns);

1844:   colorforcol[0] = 0;
1845:   columns_i      = columns;

1847:   /* get column-wise storage of mat */
1848:   MatGetColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);

1850:   cm   = c->m;
1851:   PetscMalloc1(cm+1,&rowhit);
1852:   PetscMalloc1(cm+1,&idxhit);
1853:   for (i=0; i<nis; i++) { /* loop over color */
1854:     ISGetLocalSize(isa[i],&n);
1855:     ISGetIndices(isa[i],&is);

1857:     c->ncolumns[i] = n;
1858:     if (n) {
1859:       PetscArraycpy(columns_i,is,n);
1860:     }
1861:     colorforcol[i+1] = colorforcol[i] + n;
1862:     columns_i       += n;

1864:     /* fast, crude version requires O(N*N) work */
1865:     PetscArrayzero(rowhit,cm);

1867:     for (j=0; j<n; j++) { /* loop over columns*/
1868:       col     = is[j];
1869:       row_idx = cj + ci[col];
1870:       m       = ci[col+1] - ci[col];
1871:       for (k=0; k<m; k++) { /* loop over columns marking them in rowhit */
1872:         idxhit[*row_idx]   = spidx[ci[col] + k];
1873:         rowhit[*row_idx++] = col + 1;
1874:       }
1875:     }
1876:     /* count the number of hits */
1877:     nrows = 0;
1878:     for (j=0; j<cm; j++) {
1879:       if (rowhit[j]) nrows++;
1880:     }
1881:     c->nrows[i]      = nrows;
1882:     colorforrow[i+1] = colorforrow[i] + nrows;

1884:     nrows = 0;
1885:     for (j=0; j<cm; j++) { /* loop over rows */
1886:       if (rowhit[j]) {
1887:         rows_i[nrows]   = j;
1888:         den2sp_i[nrows] = idxhit[j];
1889:         nrows++;
1890:       }
1891:     }
1892:     den2sp_i += nrows;

1894:     ISRestoreIndices(isa[i],&is);
1895:     rows_i += nrows;
1896:   }
1897:   MatRestoreColumnIJ_SeqAIJ_Color(mat,0,PETSC_FALSE,PETSC_FALSE,&ncols,&ci,&cj,&spidx,NULL);
1898:   PetscFree(rowhit);
1899:   ISColoringRestoreIS(iscoloring,PETSC_USE_POINTER,&isa);
1900:   if (csp->nz != colorforrow[nis]) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"csp->nz %d != colorforrow[nis] %d",csp->nz,colorforrow[nis]);

1902:   c->colorforrow = colorforrow;
1903:   c->rows        = rows;
1904:   c->den2sp      = den2sp;
1905:   c->colorforcol = colorforcol;
1906:   c->columns     = columns;

1908:   PetscFree(idxhit);
1909:   return(0);
1910: }

1912: /* --------------------------------------------------------------- */
1913: static PetscErrorCode MatProductNumeric_AtB_SeqAIJ_SeqAIJ(Mat C)
1914: {
1916:   Mat_Product    *product = C->product;
1917:   Mat            A=product->A,B=product->B;

1920:   if (C->ops->mattransposemultnumeric) {
1921:     /* Alg: "outerproduct" */
1922:     (*C->ops->mattransposemultnumeric)(A,B,C);
1923:   } else {
1924:     /* Alg: "matmatmult" -- C = At*B */
1925:     Mat_MatTransMatMult *atb = (Mat_MatTransMatMult *)product->data;
1926:     Mat                 At;

1928:     if (!atb) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Missing product struct");
1929:     At = atb->At;
1930:     if (atb->updateAt && At) { /* At is computed in MatTransposeMatMultSymbolic_SeqAIJ_SeqAIJ() */
1931:       MatTranspose_SeqAIJ(A,MAT_REUSE_MATRIX,&At);
1932:     }
1933:     MatMatMultNumeric_SeqAIJ_SeqAIJ(At ? At : A,B,C);
1934:     atb->updateAt = PETSC_TRUE;
1935:   }
1936:   return(0);
1937: }

1939: static PetscErrorCode MatProductSymbolic_AtB_SeqAIJ_SeqAIJ(Mat C)
1940: {
1942:   Mat_Product    *product = C->product;
1943:   Mat            A=product->A,B=product->B;
1944:   PetscReal      fill=product->fill;

1947:   MatTransposeMatMultSymbolic_SeqAIJ_SeqAIJ(A,B,fill,C);

1949:   C->ops->productnumeric = MatProductNumeric_AtB_SeqAIJ_SeqAIJ;
1950:   return(0);
1951: }

1953: /* --------------------------------------------------------------- */
1954: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_AB(Mat C)
1955: {
1957:   Mat_Product    *product = C->product;
1958:   PetscInt       alg = 0; /* default algorithm */
1959:   PetscBool      flg = PETSC_FALSE;
1960: #if !defined(PETSC_HAVE_HYPRE)
1961:   const char     *algTypes[7] = {"sorted","scalable","scalable_fast","heap","btheap","llcondensed","rowmerge"};
1962:   PetscInt       nalg = 7;
1963: #else
1964:   const char     *algTypes[8] = {"sorted","scalable","scalable_fast","heap","btheap","llcondensed","rowmerge","hypre"};
1965:   PetscInt       nalg = 8;
1966: #endif

1969:   /* Set default algorithm */
1970:   PetscStrcmp(C->product->alg,"default",&flg);
1971:   if (flg) {
1972:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
1973:   }

1975:   /* Get runtime option */
1976:   if (product->api_user) {
1977:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatMatMult","Mat");
1978:     PetscOptionsEList("-matmatmult_via","Algorithmic approach","MatMatMult",algTypes,nalg,algTypes[0],&alg,&flg);
1979:     PetscOptionsEnd();
1980:   } else {
1981:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_AB","Mat");
1982:     PetscOptionsEList("-matproduct_ab_via","Algorithmic approach","MatProduct_AB",algTypes,nalg,algTypes[0],&alg,&flg);
1983:     PetscOptionsEnd();
1984:   }
1985:   if (flg) {
1986:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
1987:   }

1989:   C->ops->productsymbolic = MatProductSymbolic_AB;
1990:   C->ops->matmultsymbolic = MatMatMultSymbolic_SeqAIJ_SeqAIJ;
1991:   return(0);
1992: }

1994: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_AtB(Mat C)
1995: {
1997:   Mat_Product    *product = C->product;
1998:   PetscInt       alg = 0; /* default algorithm */
1999:   PetscBool      flg = PETSC_FALSE;
2000:   const char     *algTypes[3] = {"default","at*b","outerproduct"};
2001:   PetscInt       nalg = 3;

2004:   /* Get runtime option */
2005:   if (product->api_user) {
2006:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatTransposeMatMult","Mat");
2007:     PetscOptionsEList("-mattransposematmult_via","Algorithmic approach","MatTransposeMatMult",algTypes,nalg,algTypes[alg],&alg,&flg);
2008:     PetscOptionsEnd();
2009:   } else {
2010:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_AtB","Mat");
2011:     PetscOptionsEList("-matproduct_atb_via","Algorithmic approach","MatProduct_AtB",algTypes,nalg,algTypes[alg],&alg,&flg);
2012:     PetscOptionsEnd();
2013:   }
2014:   if (flg) {
2015:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2016:   }

2018:   C->ops->productsymbolic = MatProductSymbolic_AtB_SeqAIJ_SeqAIJ;
2019:   return(0);
2020: }

2022: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_ABt(Mat C)
2023: {
2025:   Mat_Product    *product = C->product;
2026:   PetscInt       alg = 0; /* default algorithm */
2027:   PetscBool      flg = PETSC_FALSE;
2028:   const char     *algTypes[2] = {"default","color"};
2029:   PetscInt       nalg = 2;

2032:   /* Set default algorithm */
2033:   PetscStrcmp(C->product->alg,"default",&flg);
2034:   if (!flg) {
2035:     alg = 1;
2036:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2037:   }

2039:   /* Get runtime option */
2040:   if (product->api_user) {
2041:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatMatTransposeMult","Mat");
2042:     PetscOptionsEList("-matmattransmult_via","Algorithmic approach","MatMatTransposeMult",algTypes,nalg,algTypes[alg],&alg,&flg);
2043:     PetscOptionsEnd();
2044:   } else {
2045:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_ABt","Mat");
2046:     PetscOptionsEList("-matproduct_abt_via","Algorithmic approach","MatProduct_ABt",algTypes,nalg,algTypes[alg],&alg,&flg);
2047:     PetscOptionsEnd();
2048:   }
2049:   if (flg) {
2050:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2051:   }

2053:   C->ops->mattransposemultsymbolic = MatMatTransposeMultSymbolic_SeqAIJ_SeqAIJ;
2054:   C->ops->productsymbolic          = MatProductSymbolic_ABt;
2055:   return(0);
2056: }

2058: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_PtAP(Mat C)
2059: {
2061:   Mat_Product    *product = C->product;
2062:   PetscBool      flg = PETSC_FALSE;
2063:   PetscInt       alg = 0; /* default algorithm -- alg=1 should be default!!! */
2064: #if !defined(PETSC_HAVE_HYPRE)
2065:   const char      *algTypes[2] = {"scalable","rap"};
2066:   PetscInt        nalg = 2;
2067: #else
2068:   const char      *algTypes[3] = {"scalable","rap","hypre"};
2069:   PetscInt        nalg = 3;
2070: #endif

2073:   /* Set default algorithm */
2074:   PetscStrcmp(product->alg,"default",&flg);
2075:   if (flg) {
2076:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2077:   }

2079:   /* Get runtime option */
2080:   if (product->api_user) {
2081:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatPtAP","Mat");
2082:     PetscOptionsEList("-matptap_via","Algorithmic approach","MatPtAP",algTypes,nalg,algTypes[0],&alg,&flg);
2083:     PetscOptionsEnd();
2084:   } else {
2085:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_PtAP","Mat");
2086:     PetscOptionsEList("-matproduct_ptap_via","Algorithmic approach","MatProduct_PtAP",algTypes,nalg,algTypes[0],&alg,&flg);
2087:     PetscOptionsEnd();
2088:   }
2089:   if (flg) {
2090:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2091:   }

2093:   C->ops->productsymbolic = MatProductSymbolic_PtAP_SeqAIJ_SeqAIJ;
2094:   return(0);
2095: }

2097: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_RARt(Mat C)
2098: {
2100:   Mat_Product    *product = C->product;
2101:   PetscBool      flg = PETSC_FALSE;
2102:   PetscInt       alg = 0; /* default algorithm */
2103:   const char     *algTypes[3] = {"r*a*rt","r*art","coloring_rart"};
2104:   PetscInt        nalg = 3;

2107:   /* Set default algorithm */
2108:   PetscStrcmp(product->alg,"default",&flg);
2109:   if (flg) {
2110:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2111:   }

2113:   /* Get runtime option */
2114:   if (product->api_user) {
2115:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatRARt","Mat");
2116:     PetscOptionsEList("-matrart_via","Algorithmic approach","MatRARt",algTypes,nalg,algTypes[0],&alg,&flg);
2117:     PetscOptionsEnd();
2118:   } else {
2119:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_RARt","Mat");
2120:     PetscOptionsEList("-matproduct_rart_via","Algorithmic approach","MatProduct_RARt",algTypes,nalg,algTypes[0],&alg,&flg);
2121:     PetscOptionsEnd();
2122:   }
2123:   if (flg) {
2124:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2125:   }

2127:   C->ops->productsymbolic = MatProductSymbolic_RARt_SeqAIJ_SeqAIJ;
2128:   return(0);
2129: }

2131: /* ABC = A*B*C = A*(B*C); ABC's algorithm must be chosen from AB's algorithm */
2132: static PetscErrorCode MatProductSetFromOptions_SeqAIJ_ABC(Mat C)
2133: {
2135:   Mat_Product    *product = C->product;
2136:   PetscInt       alg = 0; /* default algorithm */
2137:   PetscBool      flg = PETSC_FALSE;
2138:   const char     *algTypes[7] = {"sorted","scalable","scalable_fast","heap","btheap","llcondensed","rowmerge"};
2139:   PetscInt       nalg = 7;

2142:   /* Set default algorithm */
2143:   PetscStrcmp(product->alg,"default",&flg);
2144:   if (flg) {
2145:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2146:   }

2148:   /* Get runtime option */
2149:   if (product->api_user) {
2150:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatMatMatMult","Mat");
2151:     PetscOptionsEList("-matmatmatmult_via","Algorithmic approach","MatMatMatMult",algTypes,nalg,algTypes[alg],&alg,&flg);
2152:     PetscOptionsEnd();
2153:   } else {
2154:     PetscOptionsBegin(PetscObjectComm((PetscObject)C),((PetscObject)C)->prefix,"MatProduct_ABC","Mat");
2155:     PetscOptionsEList("-matproduct_abc_via","Algorithmic approach","MatProduct_ABC",algTypes,nalg,algTypes[alg],&alg,&flg);
2156:     PetscOptionsEnd();
2157:   }
2158:   if (flg) {
2159:     MatProductSetAlgorithm(C,(MatProductAlgorithm)algTypes[alg]);
2160:   }

2162:   C->ops->matmatmultsymbolic = MatMatMatMultSymbolic_SeqAIJ_SeqAIJ_SeqAIJ;
2163:   C->ops->productsymbolic    = MatProductSymbolic_ABC;
2164:   return(0);
2165: }

2167: PetscErrorCode MatProductSetFromOptions_SeqAIJ(Mat C)
2168: {
2170:   Mat_Product    *product = C->product;

2173:   switch (product->type) {
2174:   case MATPRODUCT_AB:
2175:     MatProductSetFromOptions_SeqAIJ_AB(C);
2176:     break;
2177:   case MATPRODUCT_AtB:
2178:     MatProductSetFromOptions_SeqAIJ_AtB(C);
2179:     break;
2180:   case MATPRODUCT_ABt:
2181:     MatProductSetFromOptions_SeqAIJ_ABt(C);
2182:     break;
2183:   case MATPRODUCT_PtAP:
2184:     MatProductSetFromOptions_SeqAIJ_PtAP(C);
2185:     break;
2186:   case MATPRODUCT_RARt:
2187:     MatProductSetFromOptions_SeqAIJ_RARt(C);
2188:     break;
2189:   case MATPRODUCT_ABC:
2190:     MatProductSetFromOptions_SeqAIJ_ABC(C);
2191:     break;
2192:   default:
2193:     break;
2194:   }
2195:   return(0);
2196: }