Actual source code: aij.c

petsc-3.13.6 2020-09-29
Report Typos and Errors
  1: /*
  2:     Defines the basic matrix operations for the AIJ (compressed row)
  3:   matrix storage format.
  4: */


  7:  #include <../src/mat/impls/aij/seq/aij.h>
  8:  #include <petscblaslapack.h>
  9:  #include <petscbt.h>
 10:  #include <petsc/private/kernels/blocktranspose.h>

 12: PetscErrorCode MatSeqAIJSetTypeFromOptions(Mat A)
 13: {
 14:   PetscErrorCode       ierr;
 15:   PetscBool            flg;
 16:   char                 type[256];

 19:   PetscObjectOptionsBegin((PetscObject)A);
 20:   PetscOptionsFList("-mat_seqaij_type","Matrix SeqAIJ type","MatSeqAIJSetType",MatSeqAIJList,"seqaij",type,256,&flg);
 21:   if (flg) {
 22:     MatSeqAIJSetType(A,type);
 23:   }
 24:   PetscOptionsEnd();
 25:   return(0);
 26: }

 28: PetscErrorCode MatGetColumnNorms_SeqAIJ(Mat A,NormType type,PetscReal *norms)
 29: {
 31:   PetscInt       i,m,n;
 32:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)A->data;

 35:   MatGetSize(A,&m,&n);
 36:   PetscArrayzero(norms,n);
 37:   if (type == NORM_2) {
 38:     for (i=0; i<aij->i[m]; i++) {
 39:       norms[aij->j[i]] += PetscAbsScalar(aij->a[i]*aij->a[i]);
 40:     }
 41:   } else if (type == NORM_1) {
 42:     for (i=0; i<aij->i[m]; i++) {
 43:       norms[aij->j[i]] += PetscAbsScalar(aij->a[i]);
 44:     }
 45:   } else if (type == NORM_INFINITY) {
 46:     for (i=0; i<aij->i[m]; i++) {
 47:       norms[aij->j[i]] = PetscMax(PetscAbsScalar(aij->a[i]),norms[aij->j[i]]);
 48:     }
 49:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Unknown NormType");

 51:   if (type == NORM_2) {
 52:     for (i=0; i<n; i++) norms[i] = PetscSqrtReal(norms[i]);
 53:   }
 54:   return(0);
 55: }

 57: PetscErrorCode MatFindOffBlockDiagonalEntries_SeqAIJ(Mat A,IS *is)
 58: {
 59:   Mat_SeqAIJ      *a  = (Mat_SeqAIJ*)A->data;
 60:   PetscInt        i,m=A->rmap->n,cnt = 0, bs = A->rmap->bs;
 61:   const PetscInt  *jj = a->j,*ii = a->i;
 62:   PetscInt        *rows;
 63:   PetscErrorCode  ierr;

 66:   for (i=0; i<m; i++) {
 67:     if ((ii[i] != ii[i+1]) && ((jj[ii[i]] < bs*(i/bs)) || (jj[ii[i+1]-1] > bs*((i+bs)/bs)-1))) {
 68:       cnt++;
 69:     }
 70:   }
 71:   PetscMalloc1(cnt,&rows);
 72:   cnt  = 0;
 73:   for (i=0; i<m; i++) {
 74:     if ((ii[i] != ii[i+1]) && ((jj[ii[i]] < bs*(i/bs)) || (jj[ii[i+1]-1] > bs*((i+bs)/bs)-1))) {
 75:       rows[cnt] = i;
 76:       cnt++;
 77:     }
 78:   }
 79:   ISCreateGeneral(PETSC_COMM_SELF,cnt,rows,PETSC_OWN_POINTER,is);
 80:   return(0);
 81: }

 83: PetscErrorCode MatFindZeroDiagonals_SeqAIJ_Private(Mat A,PetscInt *nrows,PetscInt **zrows)
 84: {
 85:   Mat_SeqAIJ      *a  = (Mat_SeqAIJ*)A->data;
 86:   const MatScalar *aa = a->a;
 87:   PetscInt        i,m=A->rmap->n,cnt = 0;
 88:   const PetscInt  *ii = a->i,*jj = a->j,*diag;
 89:   PetscInt        *rows;
 90:   PetscErrorCode  ierr;

 93:   MatMarkDiagonal_SeqAIJ(A);
 94:   diag = a->diag;
 95:   for (i=0; i<m; i++) {
 96:     if ((diag[i] >= ii[i+1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) {
 97:       cnt++;
 98:     }
 99:   }
100:   PetscMalloc1(cnt,&rows);
101:   cnt  = 0;
102:   for (i=0; i<m; i++) {
103:     if ((diag[i] >= ii[i+1]) || (jj[diag[i]] != i) || (aa[diag[i]] == 0.0)) {
104:       rows[cnt++] = i;
105:     }
106:   }
107:   *nrows = cnt;
108:   *zrows = rows;
109:   return(0);
110: }

112: PetscErrorCode MatFindZeroDiagonals_SeqAIJ(Mat A,IS *zrows)
113: {
114:   PetscInt       nrows,*rows;

118:   *zrows = NULL;
119:   MatFindZeroDiagonals_SeqAIJ_Private(A,&nrows,&rows);
120:   ISCreateGeneral(PetscObjectComm((PetscObject)A),nrows,rows,PETSC_OWN_POINTER,zrows);
121:   return(0);
122: }

124: PetscErrorCode MatFindNonzeroRows_SeqAIJ(Mat A,IS *keptrows)
125: {
126:   Mat_SeqAIJ      *a = (Mat_SeqAIJ*)A->data;
127:   const MatScalar *aa;
128:   PetscInt        m=A->rmap->n,cnt = 0;
129:   const PetscInt  *ii;
130:   PetscInt        n,i,j,*rows;
131:   PetscErrorCode  ierr;

134:   *keptrows = 0;
135:   ii        = a->i;
136:   for (i=0; i<m; i++) {
137:     n = ii[i+1] - ii[i];
138:     if (!n) {
139:       cnt++;
140:       goto ok1;
141:     }
142:     aa = a->a + ii[i];
143:     for (j=0; j<n; j++) {
144:       if (aa[j] != 0.0) goto ok1;
145:     }
146:     cnt++;
147: ok1:;
148:   }
149:   if (!cnt) return(0);
150:   PetscMalloc1(A->rmap->n-cnt,&rows);
151:   cnt  = 0;
152:   for (i=0; i<m; i++) {
153:     n = ii[i+1] - ii[i];
154:     if (!n) continue;
155:     aa = a->a + ii[i];
156:     for (j=0; j<n; j++) {
157:       if (aa[j] != 0.0) {
158:         rows[cnt++] = i;
159:         break;
160:       }
161:     }
162:   }
163:   ISCreateGeneral(PETSC_COMM_SELF,cnt,rows,PETSC_OWN_POINTER,keptrows);
164:   return(0);
165: }

167: PetscErrorCode  MatDiagonalSet_SeqAIJ(Mat Y,Vec D,InsertMode is)
168: {
169:   PetscErrorCode    ierr;
170:   Mat_SeqAIJ        *aij = (Mat_SeqAIJ*) Y->data;
171:   PetscInt          i,m = Y->rmap->n;
172:   const PetscInt    *diag;
173:   MatScalar         *aa = aij->a;
174:   const PetscScalar *v;
175:   PetscBool         missing;
176: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
177:   PetscBool         inserted = PETSC_FALSE;
178: #endif

181:   if (Y->assembled) {
182:     MatMissingDiagonal_SeqAIJ(Y,&missing,NULL);
183:     if (!missing) {
184:       diag = aij->diag;
185:       VecGetArrayRead(D,&v);
186:       if (is == INSERT_VALUES) {
187: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
188:         inserted = PETSC_TRUE;
189: #endif
190:         for (i=0; i<m; i++) {
191:           aa[diag[i]] = v[i];
192:         }
193:       } else {
194:         for (i=0; i<m; i++) {
195: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
196:           if (v[i] != 0.0) inserted = PETSC_TRUE;
197: #endif
198:           aa[diag[i]] += v[i];
199:         }
200:       }
201: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
202:       if (inserted) Y->offloadmask = PETSC_OFFLOAD_CPU;
203: #endif
204:       VecRestoreArrayRead(D,&v);
205:       return(0);
206:     }
207:     MatSeqAIJInvalidateDiagonal(Y);
208:   }
209:   MatDiagonalSet_Default(Y,D,is);
210:   return(0);
211: }

213: PetscErrorCode MatGetRowIJ_SeqAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *m,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
214: {
215:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
217:   PetscInt       i,ishift;

220:   *m = A->rmap->n;
221:   if (!ia) return(0);
222:   ishift = 0;
223:   if (symmetric && !A->structurally_symmetric) {
224:     MatToSymmetricIJ_SeqAIJ(A->rmap->n,a->i,a->j,PETSC_TRUE,ishift,oshift,(PetscInt**)ia,(PetscInt**)ja);
225:   } else if (oshift == 1) {
226:     PetscInt *tia;
227:     PetscInt nz = a->i[A->rmap->n];
228:     /* malloc space and  add 1 to i and j indices */
229:     PetscMalloc1(A->rmap->n+1,&tia);
230:     for (i=0; i<A->rmap->n+1; i++) tia[i] = a->i[i] + 1;
231:     *ia = tia;
232:     if (ja) {
233:       PetscInt *tja;
234:       PetscMalloc1(nz+1,&tja);
235:       for (i=0; i<nz; i++) tja[i] = a->j[i] + 1;
236:       *ja = tja;
237:     }
238:   } else {
239:     *ia = a->i;
240:     if (ja) *ja = a->j;
241:   }
242:   return(0);
243: }

245: PetscErrorCode MatRestoreRowIJ_SeqAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
246: {

250:   if (!ia) return(0);
251:   if ((symmetric && !A->structurally_symmetric) || oshift == 1) {
252:     PetscFree(*ia);
253:     if (ja) {PetscFree(*ja);}
254:   }
255:   return(0);
256: }

258: PetscErrorCode MatGetColumnIJ_SeqAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *nn,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
259: {
260:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
262:   PetscInt       i,*collengths,*cia,*cja,n = A->cmap->n,m = A->rmap->n;
263:   PetscInt       nz = a->i[m],row,*jj,mr,col;

266:   *nn = n;
267:   if (!ia) return(0);
268:   if (symmetric) {
269:     MatToSymmetricIJ_SeqAIJ(A->rmap->n,a->i,a->j,PETSC_TRUE,0,oshift,(PetscInt**)ia,(PetscInt**)ja);
270:   } else {
271:     PetscCalloc1(n,&collengths);
272:     PetscMalloc1(n+1,&cia);
273:     PetscMalloc1(nz,&cja);
274:     jj   = a->j;
275:     for (i=0; i<nz; i++) {
276:       collengths[jj[i]]++;
277:     }
278:     cia[0] = oshift;
279:     for (i=0; i<n; i++) {
280:       cia[i+1] = cia[i] + collengths[i];
281:     }
282:     PetscArrayzero(collengths,n);
283:     jj   = a->j;
284:     for (row=0; row<m; row++) {
285:       mr = a->i[row+1] - a->i[row];
286:       for (i=0; i<mr; i++) {
287:         col = *jj++;

289:         cja[cia[col] + collengths[col]++ - oshift] = row + oshift;
290:       }
291:     }
292:     PetscFree(collengths);
293:     *ia  = cia; *ja = cja;
294:   }
295:   return(0);
296: }

298: PetscErrorCode MatRestoreColumnIJ_SeqAIJ(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscBool  *done)
299: {

303:   if (!ia) return(0);

305:   PetscFree(*ia);
306:   PetscFree(*ja);
307:   return(0);
308: }

310: /*
311:  MatGetColumnIJ_SeqAIJ_Color() and MatRestoreColumnIJ_SeqAIJ_Color() are customized from
312:  MatGetColumnIJ_SeqAIJ() and MatRestoreColumnIJ_SeqAIJ() by adding an output
313:  spidx[], index of a->a, to be used in MatTransposeColoringCreate_SeqAIJ() and MatFDColoringCreate_SeqXAIJ()
314: */
315: PetscErrorCode MatGetColumnIJ_SeqAIJ_Color(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *nn,const PetscInt *ia[],const PetscInt *ja[],PetscInt *spidx[],PetscBool  *done)
316: {
317:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
319:   PetscInt       i,*collengths,*cia,*cja,n = A->cmap->n,m = A->rmap->n;
320:   PetscInt       nz = a->i[m],row,mr,col,tmp;
321:   PetscInt       *cspidx;
322:   const PetscInt *jj;

325:   *nn = n;
326:   if (!ia) return(0);

328:   PetscCalloc1(n,&collengths);
329:   PetscMalloc1(n+1,&cia);
330:   PetscMalloc1(nz,&cja);
331:   PetscMalloc1(nz,&cspidx);
332:   jj   = a->j;
333:   for (i=0; i<nz; i++) {
334:     collengths[jj[i]]++;
335:   }
336:   cia[0] = oshift;
337:   for (i=0; i<n; i++) {
338:     cia[i+1] = cia[i] + collengths[i];
339:   }
340:   PetscArrayzero(collengths,n);
341:   jj   = a->j;
342:   for (row=0; row<m; row++) {
343:     mr = a->i[row+1] - a->i[row];
344:     for (i=0; i<mr; i++) {
345:       col         = *jj++;
346:       tmp         = cia[col] + collengths[col]++ - oshift;
347:       cspidx[tmp] = a->i[row] + i; /* index of a->j */
348:       cja[tmp]    = row + oshift;
349:     }
350:   }
351:   PetscFree(collengths);
352:   *ia    = cia;
353:   *ja    = cja;
354:   *spidx = cspidx;
355:   return(0);
356: }

358: PetscErrorCode MatRestoreColumnIJ_SeqAIJ_Color(Mat A,PetscInt oshift,PetscBool symmetric,PetscBool inodecompressed,PetscInt *n,const PetscInt *ia[],const PetscInt *ja[],PetscInt *spidx[],PetscBool  *done)
359: {

363:   MatRestoreColumnIJ_SeqAIJ(A,oshift,symmetric,inodecompressed,n,ia,ja,done);
364:   PetscFree(*spidx);
365:   return(0);
366: }

368: PetscErrorCode MatSetValuesRow_SeqAIJ(Mat A,PetscInt row,const PetscScalar v[])
369: {
370:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
371:   PetscInt       *ai = a->i;

375:   PetscArraycpy(a->a+ai[row],v,ai[row+1]-ai[row]);
376: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
377:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && ai[row+1]-ai[row]) A->offloadmask = PETSC_OFFLOAD_CPU;
378: #endif
379:   return(0);
380: }

382: /*
383:     MatSeqAIJSetValuesLocalFast - An optimized version of MatSetValuesLocal() for SeqAIJ matrices with several assumptions

385:       -   a single row of values is set with each call
386:       -   no row or column indices are negative or (in error) larger than the number of rows or columns
387:       -   the values are always added to the matrix, not set
388:       -   no new locations are introduced in the nonzero structure of the matrix

390:      This does NOT assume the global column indices are sorted

392: */

394:  #include <petsc/private/isimpl.h>
395: PetscErrorCode MatSeqAIJSetValuesLocalFast(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode is)
396: {
397:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
398:   PetscInt       low,high,t,row,nrow,i,col,l;
399:   const PetscInt *rp,*ai = a->i,*ailen = a->ilen,*aj = a->j;
400:   PetscInt       lastcol = -1;
401:   MatScalar      *ap,value,*aa = a->a;
402:   const PetscInt *ridx = A->rmap->mapping->indices,*cidx = A->cmap->mapping->indices;

404:   row  = ridx[im[0]];
405:   rp   = aj + ai[row];
406:   ap   = aa + ai[row];
407:   nrow = ailen[row];
408:   low  = 0;
409:   high = nrow;
410:   for (l=0; l<n; l++) { /* loop over added columns */
411:     col = cidx[in[l]];
412:     value = v[l];

414:     if (col <= lastcol) low = 0;
415:     else high = nrow;
416:     lastcol = col;
417:     while (high-low > 5) {
418:       t = (low+high)/2;
419:       if (rp[t] > col) high = t;
420:       else low = t;
421:     }
422:     for (i=low; i<high; i++) {
423:       if (rp[i] == col) {
424:         ap[i] += value;
425:         low = i + 1;
426:         break;
427:       }
428:     }
429:   }
430: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
431:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && m && n) A->offloadmask = PETSC_OFFLOAD_CPU;
432: #endif
433:   return 0;
434: }

436: PetscErrorCode MatSetValues_SeqAIJ(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode is)
437: {
438:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
439:   PetscInt       *rp,k,low,high,t,ii,row,nrow,i,col,l,rmax,N;
440:   PetscInt       *imax = a->imax,*ai = a->i,*ailen = a->ilen;
442:   PetscInt       *aj = a->j,nonew = a->nonew,lastcol = -1;
443:   MatScalar      *ap=NULL,value=0.0,*aa = a->a;
444:   PetscBool      ignorezeroentries = a->ignorezeroentries;
445:   PetscBool      roworiented       = a->roworiented;
446: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
447:   PetscBool      inserted          = PETSC_FALSE;
448: #endif

451:   for (k=0; k<m; k++) { /* loop over added rows */
452:     row = im[k];
453:     if (row < 0) continue;
454: #if defined(PETSC_USE_DEBUG)
455:     if (row >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",row,A->rmap->n-1);
456: #endif
457:     rp   = aj + ai[row];
458:     if (!A->structure_only) ap = aa + ai[row];
459:     rmax = imax[row]; nrow = ailen[row];
460:     low  = 0;
461:     high = nrow;
462:     for (l=0; l<n; l++) { /* loop over added columns */
463:       if (in[l] < 0) continue;
464: #if defined(PETSC_USE_DEBUG)
465:       if (in[l] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",in[l],A->cmap->n-1);
466: #endif
467:       col = in[l];
468:       if (v && !A->structure_only) value = roworiented ? v[l + k*n] : v[k + l*m];
469:       if (!A->structure_only && value == 0.0 && ignorezeroentries && is == ADD_VALUES && row != col) continue;

471:       if (col <= lastcol) low = 0;
472:       else high = nrow;
473:       lastcol = col;
474:       while (high-low > 5) {
475:         t = (low+high)/2;
476:         if (rp[t] > col) high = t;
477:         else low = t;
478:       }
479:       for (i=low; i<high; i++) {
480:         if (rp[i] > col) break;
481:         if (rp[i] == col) {
482:           if (!A->structure_only) {
483:             if (is == ADD_VALUES) {
484:               ap[i] += value;
485:               (void)PetscLogFlops(1.0);
486:             }
487:             else ap[i] = value;
488: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
489:             inserted = PETSC_TRUE;
490: #endif
491:           }
492:           low = i + 1;
493:           goto noinsert;
494:         }
495:       }
496:       if (value == 0.0 && ignorezeroentries && row != col) goto noinsert;
497:       if (nonew == 1) goto noinsert;
498:       if (nonew == -1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero at (%D,%D) in the matrix",row,col);
499:       if (A->structure_only) {
500:         MatSeqXAIJReallocateAIJ_structure_only(A,A->rmap->n,1,nrow,row,col,rmax,ai,aj,rp,imax,nonew,MatScalar);
501:       } else {
502:         MatSeqXAIJReallocateAIJ(A,A->rmap->n,1,nrow,row,col,rmax,aa,ai,aj,rp,ap,imax,nonew,MatScalar);
503:       }
504:       N = nrow++ - 1; a->nz++; high++;
505:       /* shift up all the later entries in this row */
506:       PetscArraymove(rp+i+1,rp+i,N-i+1);
507:       rp[i] = col;
508:       if (!A->structure_only){
509:         PetscArraymove(ap+i+1,ap+i,N-i+1);
510:         ap[i] = value;
511:       }
512:       low = i + 1;
513:       A->nonzerostate++;
514: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
515:       inserted = PETSC_TRUE;
516: #endif
517: noinsert:;
518:     }
519:     ailen[row] = nrow;
520:   }
521: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
522:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && inserted) A->offloadmask = PETSC_OFFLOAD_CPU;
523: #endif
524:   return(0);
525: }

527: PetscErrorCode MatSetValues_SeqAIJ_SortedFull(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],const PetscScalar v[],InsertMode is)
528: {
529:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
530:   PetscInt       *rp,k,row;
531:   PetscInt       *ai = a->i,*ailen = a->ilen;
533:   PetscInt       *aj = a->j;
534:   MatScalar      *aa = a->a,*ap;

537:   for (k=0; k<m; k++) { /* loop over added rows */
538:     row  = im[k];
539:     rp   = aj + ai[row];
540:     ap   = aa + ai[row];
541:     if (!A->was_assembled) {
542:       PetscMemcpy(rp,in,n*sizeof(PetscInt));
543:     }
544:     if (!A->structure_only) {
545:       if (v) {
546:         PetscMemcpy(ap,v,n*sizeof(PetscScalar));
547:         v   += n;
548:       } else {
549:         PetscMemzero(ap,n*sizeof(PetscScalar));
550:       }
551:     }
552:     ailen[row] = n;
553:     a->nz      += n;
554:   }
555: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
556:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED && m && n) A->offloadmask = PETSC_OFFLOAD_CPU;
557: #endif
558:   return(0);
559: }


562: PetscErrorCode MatGetValues_SeqAIJ(Mat A,PetscInt m,const PetscInt im[],PetscInt n,const PetscInt in[],PetscScalar v[])
563: {
564:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
565:   PetscInt   *rp,k,low,high,t,row,nrow,i,col,l,*aj = a->j;
566:   PetscInt   *ai = a->i,*ailen = a->ilen;
567:   MatScalar  *ap,*aa = a->a;

570:   for (k=0; k<m; k++) { /* loop over rows */
571:     row = im[k];
572:     if (row < 0) {v += n; continue;} /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row: %D",row); */
573:     if (row >= A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row too large: row %D max %D",row,A->rmap->n-1);
574:     rp   = aj + ai[row]; ap = aa + ai[row];
575:     nrow = ailen[row];
576:     for (l=0; l<n; l++) { /* loop over columns */
577:       if (in[l] < 0) {v++; continue;} /* SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column: %D",in[l]); */
578:       if (in[l] >= A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column too large: col %D max %D",in[l],A->cmap->n-1);
579:       col  = in[l];
580:       high = nrow; low = 0; /* assume unsorted */
581:       while (high-low > 5) {
582:         t = (low+high)/2;
583:         if (rp[t] > col) high = t;
584:         else low = t;
585:       }
586:       for (i=low; i<high; i++) {
587:         if (rp[i] > col) break;
588:         if (rp[i] == col) {
589:           *v++ = ap[i];
590:           goto finished;
591:         }
592:       }
593:       *v++ = 0.0;
594: finished:;
595:     }
596:   }
597:   return(0);
598: }

600: PetscErrorCode MatView_SeqAIJ_Binary(Mat mat,PetscViewer viewer)
601: {
602:   Mat_SeqAIJ     *A = (Mat_SeqAIJ*)mat->data;
603:   PetscInt       header[4],M,N,m,nz,i;
604:   PetscInt       *rowlens;

608:   PetscViewerSetUp(viewer);

610:   M  = mat->rmap->N;
611:   N  = mat->cmap->N;
612:   m  = mat->rmap->n;
613:   nz = A->nz;

615:   /* write matrix header */
616:   header[0] = MAT_FILE_CLASSID;
617:   header[1] = M; header[2] = N; header[3] = nz;
618:   PetscViewerBinaryWrite(viewer,header,4,PETSC_INT);

620:   /* fill in and store row lengths */
621:   PetscMalloc1(m,&rowlens);
622:   for (i=0; i<m; i++) rowlens[i] = A->i[i+1] - A->i[i];
623:   PetscViewerBinaryWrite(viewer,rowlens,m,PETSC_INT);
624:   PetscFree(rowlens);
625:   /* store column indices */
626:   PetscViewerBinaryWrite(viewer,A->j,nz,PETSC_INT);
627:   /* store nonzero values */
628:   PetscViewerBinaryWrite(viewer,A->a,nz,PETSC_SCALAR);

630:   /* write block size option to the viewer's .info file */
631:   MatView_Binary_BlockSizes(mat,viewer);
632:   return(0);
633: }

635: static PetscErrorCode MatView_SeqAIJ_ASCII_structonly(Mat A,PetscViewer viewer)
636: {
638:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
639:   PetscInt       i,k,m=A->rmap->N;

642:   PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
643:   for (i=0; i<m; i++) {
644:     PetscViewerASCIIPrintf(viewer,"row %D:",i);
645:     for (k=a->i[i]; k<a->i[i+1]; k++) {
646:       PetscViewerASCIIPrintf(viewer," (%D) ",a->j[k]);
647:     }
648:     PetscViewerASCIIPrintf(viewer,"\n");
649:   }
650:   PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
651:   return(0);
652: }

654: extern PetscErrorCode MatSeqAIJFactorInfo_Matlab(Mat,PetscViewer);

656: PetscErrorCode MatView_SeqAIJ_ASCII(Mat A,PetscViewer viewer)
657: {
658:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
659:   PetscErrorCode    ierr;
660:   PetscInt          i,j,m = A->rmap->n;
661:   const char        *name;
662:   PetscViewerFormat format;

665:   if (A->structure_only) {
666:     MatView_SeqAIJ_ASCII_structonly(A,viewer);
667:     return(0);
668:   }

670:   PetscViewerGetFormat(viewer,&format);
671:   if (format == PETSC_VIEWER_ASCII_MATLAB) {
672:     PetscInt nofinalvalue = 0;
673:     if (m && ((a->i[m] == a->i[m-1]) || (a->j[a->nz-1] != A->cmap->n-1))) {
674:       /* Need a dummy value to ensure the dimension of the matrix. */
675:       nofinalvalue = 1;
676:     }
677:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
678:     PetscViewerASCIIPrintf(viewer,"%% Size = %D %D \n",m,A->cmap->n);
679:     PetscViewerASCIIPrintf(viewer,"%% Nonzeros = %D \n",a->nz);
680: #if defined(PETSC_USE_COMPLEX)
681:     PetscViewerASCIIPrintf(viewer,"zzz = zeros(%D,4);\n",a->nz+nofinalvalue);
682: #else
683:     PetscViewerASCIIPrintf(viewer,"zzz = zeros(%D,3);\n",a->nz+nofinalvalue);
684: #endif
685:     PetscViewerASCIIPrintf(viewer,"zzz = [\n");

687:     for (i=0; i<m; i++) {
688:       for (j=a->i[i]; j<a->i[i+1]; j++) {
689: #if defined(PETSC_USE_COMPLEX)
690:         PetscViewerASCIIPrintf(viewer,"%D %D  %18.16e %18.16e\n",i+1,a->j[j]+1,(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
691: #else
692:         PetscViewerASCIIPrintf(viewer,"%D %D  %18.16e\n",i+1,a->j[j]+1,(double)a->a[j]);
693: #endif
694:       }
695:     }
696:     if (nofinalvalue) {
697: #if defined(PETSC_USE_COMPLEX)
698:       PetscViewerASCIIPrintf(viewer,"%D %D  %18.16e %18.16e\n",m,A->cmap->n,0.,0.);
699: #else
700:       PetscViewerASCIIPrintf(viewer,"%D %D  %18.16e\n",m,A->cmap->n,0.0);
701: #endif
702:     }
703:     PetscObjectGetName((PetscObject)A,&name);
704:     PetscViewerASCIIPrintf(viewer,"];\n %s = spconvert(zzz);\n",name);
705:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
706:   } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
707:     return(0);
708:   } else if (format == PETSC_VIEWER_ASCII_COMMON) {
709:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
710:     for (i=0; i<m; i++) {
711:       PetscViewerASCIIPrintf(viewer,"row %D:",i);
712:       for (j=a->i[i]; j<a->i[i+1]; j++) {
713: #if defined(PETSC_USE_COMPLEX)
714:         if (PetscImaginaryPart(a->a[j]) > 0.0 && PetscRealPart(a->a[j]) != 0.0) {
715:           PetscViewerASCIIPrintf(viewer," (%D, %g + %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
716:         } else if (PetscImaginaryPart(a->a[j]) < 0.0 && PetscRealPart(a->a[j]) != 0.0) {
717:           PetscViewerASCIIPrintf(viewer," (%D, %g - %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)-PetscImaginaryPart(a->a[j]));
718:         } else if (PetscRealPart(a->a[j]) != 0.0) {
719:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)PetscRealPart(a->a[j]));
720:         }
721: #else
722:         if (a->a[j] != 0.0) {PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)a->a[j]);}
723: #endif
724:       }
725:       PetscViewerASCIIPrintf(viewer,"\n");
726:     }
727:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
728:   } else if (format == PETSC_VIEWER_ASCII_SYMMODU) {
729:     PetscInt nzd=0,fshift=1,*sptr;
730:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
731:     PetscMalloc1(m+1,&sptr);
732:     for (i=0; i<m; i++) {
733:       sptr[i] = nzd+1;
734:       for (j=a->i[i]; j<a->i[i+1]; j++) {
735:         if (a->j[j] >= i) {
736: #if defined(PETSC_USE_COMPLEX)
737:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) nzd++;
738: #else
739:           if (a->a[j] != 0.0) nzd++;
740: #endif
741:         }
742:       }
743:     }
744:     sptr[m] = nzd+1;
745:     PetscViewerASCIIPrintf(viewer," %D %D\n\n",m,nzd);
746:     for (i=0; i<m+1; i+=6) {
747:       if (i+4<m) {
748:         PetscViewerASCIIPrintf(viewer," %D %D %D %D %D %D\n",sptr[i],sptr[i+1],sptr[i+2],sptr[i+3],sptr[i+4],sptr[i+5]);
749:       } else if (i+3<m) {
750:         PetscViewerASCIIPrintf(viewer," %D %D %D %D %D\n",sptr[i],sptr[i+1],sptr[i+2],sptr[i+3],sptr[i+4]);
751:       } else if (i+2<m) {
752:         PetscViewerASCIIPrintf(viewer," %D %D %D %D\n",sptr[i],sptr[i+1],sptr[i+2],sptr[i+3]);
753:       } else if (i+1<m) {
754:         PetscViewerASCIIPrintf(viewer," %D %D %D\n",sptr[i],sptr[i+1],sptr[i+2]);
755:       } else if (i<m) {
756:         PetscViewerASCIIPrintf(viewer," %D %D\n",sptr[i],sptr[i+1]);
757:       } else {
758:         PetscViewerASCIIPrintf(viewer," %D\n",sptr[i]);
759:       }
760:     }
761:     PetscViewerASCIIPrintf(viewer,"\n");
762:     PetscFree(sptr);
763:     for (i=0; i<m; i++) {
764:       for (j=a->i[i]; j<a->i[i+1]; j++) {
765:         if (a->j[j] >= i) {PetscViewerASCIIPrintf(viewer," %D ",a->j[j]+fshift);}
766:       }
767:       PetscViewerASCIIPrintf(viewer,"\n");
768:     }
769:     PetscViewerASCIIPrintf(viewer,"\n");
770:     for (i=0; i<m; i++) {
771:       for (j=a->i[i]; j<a->i[i+1]; j++) {
772:         if (a->j[j] >= i) {
773: #if defined(PETSC_USE_COMPLEX)
774:           if (PetscImaginaryPart(a->a[j]) != 0.0 || PetscRealPart(a->a[j]) != 0.0) {
775:             PetscViewerASCIIPrintf(viewer," %18.16e %18.16e ",(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
776:           }
777: #else
778:           if (a->a[j] != 0.0) {PetscViewerASCIIPrintf(viewer," %18.16e ",(double)a->a[j]);}
779: #endif
780:         }
781:       }
782:       PetscViewerASCIIPrintf(viewer,"\n");
783:     }
784:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
785:   } else if (format == PETSC_VIEWER_ASCII_DENSE) {
786:     PetscInt    cnt = 0,jcnt;
787:     PetscScalar value;
788: #if defined(PETSC_USE_COMPLEX)
789:     PetscBool   realonly = PETSC_TRUE;

791:     for (i=0; i<a->i[m]; i++) {
792:       if (PetscImaginaryPart(a->a[i]) != 0.0) {
793:         realonly = PETSC_FALSE;
794:         break;
795:       }
796:     }
797: #endif

799:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
800:     for (i=0; i<m; i++) {
801:       jcnt = 0;
802:       for (j=0; j<A->cmap->n; j++) {
803:         if (jcnt < a->i[i+1]-a->i[i] && j == a->j[cnt]) {
804:           value = a->a[cnt++];
805:           jcnt++;
806:         } else {
807:           value = 0.0;
808:         }
809: #if defined(PETSC_USE_COMPLEX)
810:         if (realonly) {
811:           PetscViewerASCIIPrintf(viewer," %7.5e ",(double)PetscRealPart(value));
812:         } else {
813:           PetscViewerASCIIPrintf(viewer," %7.5e+%7.5e i ",(double)PetscRealPart(value),(double)PetscImaginaryPart(value));
814:         }
815: #else
816:         PetscViewerASCIIPrintf(viewer," %7.5e ",(double)value);
817: #endif
818:       }
819:       PetscViewerASCIIPrintf(viewer,"\n");
820:     }
821:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
822:   } else if (format == PETSC_VIEWER_ASCII_MATRIXMARKET) {
823:     PetscInt fshift=1;
824:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
825: #if defined(PETSC_USE_COMPLEX)
826:     PetscViewerASCIIPrintf(viewer,"%%%%MatrixMarket matrix coordinate complex general\n");
827: #else
828:     PetscViewerASCIIPrintf(viewer,"%%%%MatrixMarket matrix coordinate real general\n");
829: #endif
830:     PetscViewerASCIIPrintf(viewer,"%D %D %D\n", m, A->cmap->n, a->nz);
831:     for (i=0; i<m; i++) {
832:       for (j=a->i[i]; j<a->i[i+1]; j++) {
833: #if defined(PETSC_USE_COMPLEX)
834:         PetscViewerASCIIPrintf(viewer,"%D %D %g %g\n", i+fshift,a->j[j]+fshift,(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
835: #else
836:         PetscViewerASCIIPrintf(viewer,"%D %D %g\n", i+fshift, a->j[j]+fshift, (double)a->a[j]);
837: #endif
838:       }
839:     }
840:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
841:   } else {
842:     PetscViewerASCIIUseTabs(viewer,PETSC_FALSE);
843:     if (A->factortype) {
844:       for (i=0; i<m; i++) {
845:         PetscViewerASCIIPrintf(viewer,"row %D:",i);
846:         /* L part */
847:         for (j=a->i[i]; j<a->i[i+1]; j++) {
848: #if defined(PETSC_USE_COMPLEX)
849:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
850:             PetscViewerASCIIPrintf(viewer," (%D, %g + %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
851:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
852:             PetscViewerASCIIPrintf(viewer," (%D, %g - %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)(-PetscImaginaryPart(a->a[j])));
853:           } else {
854:             PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)PetscRealPart(a->a[j]));
855:           }
856: #else
857:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)a->a[j]);
858: #endif
859:         }
860:         /* diagonal */
861:         j = a->diag[i];
862: #if defined(PETSC_USE_COMPLEX)
863:         if (PetscImaginaryPart(a->a[j]) > 0.0) {
864:           PetscViewerASCIIPrintf(viewer," (%D, %g + %g i)",a->j[j],(double)PetscRealPart(1.0/a->a[j]),(double)PetscImaginaryPart(1.0/a->a[j]));
865:         } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
866:           PetscViewerASCIIPrintf(viewer," (%D, %g - %g i)",a->j[j],(double)PetscRealPart(1.0/a->a[j]),(double)(-PetscImaginaryPart(1.0/a->a[j])));
867:         } else {
868:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)PetscRealPart(1.0/a->a[j]));
869:         }
870: #else
871:         PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)(1.0/a->a[j]));
872: #endif

874:         /* U part */
875:         for (j=a->diag[i+1]+1; j<a->diag[i]; j++) {
876: #if defined(PETSC_USE_COMPLEX)
877:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
878:             PetscViewerASCIIPrintf(viewer," (%D, %g + %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
879:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
880:             PetscViewerASCIIPrintf(viewer," (%D, %g - %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)(-PetscImaginaryPart(a->a[j])));
881:           } else {
882:             PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)PetscRealPart(a->a[j]));
883:           }
884: #else
885:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)a->a[j]);
886: #endif
887:         }
888:         PetscViewerASCIIPrintf(viewer,"\n");
889:       }
890:     } else {
891:       for (i=0; i<m; i++) {
892:         PetscViewerASCIIPrintf(viewer,"row %D:",i);
893:         for (j=a->i[i]; j<a->i[i+1]; j++) {
894: #if defined(PETSC_USE_COMPLEX)
895:           if (PetscImaginaryPart(a->a[j]) > 0.0) {
896:             PetscViewerASCIIPrintf(viewer," (%D, %g + %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)PetscImaginaryPart(a->a[j]));
897:           } else if (PetscImaginaryPart(a->a[j]) < 0.0) {
898:             PetscViewerASCIIPrintf(viewer," (%D, %g - %g i)",a->j[j],(double)PetscRealPart(a->a[j]),(double)-PetscImaginaryPart(a->a[j]));
899:           } else {
900:             PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)PetscRealPart(a->a[j]));
901:           }
902: #else
903:           PetscViewerASCIIPrintf(viewer," (%D, %g) ",a->j[j],(double)a->a[j]);
904: #endif
905:         }
906:         PetscViewerASCIIPrintf(viewer,"\n");
907:       }
908:     }
909:     PetscViewerASCIIUseTabs(viewer,PETSC_TRUE);
910:   }
911:   PetscViewerFlush(viewer);
912:   return(0);
913: }

915:  #include <petscdraw.h>
916: PetscErrorCode MatView_SeqAIJ_Draw_Zoom(PetscDraw draw,void *Aa)
917: {
918:   Mat               A  = (Mat) Aa;
919:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
920:   PetscErrorCode    ierr;
921:   PetscInt          i,j,m = A->rmap->n;
922:   int               color;
923:   PetscReal         xl,yl,xr,yr,x_l,x_r,y_l,y_r;
924:   PetscViewer       viewer;
925:   PetscViewerFormat format;

928:   PetscObjectQuery((PetscObject)A,"Zoomviewer",(PetscObject*)&viewer);
929:   PetscViewerGetFormat(viewer,&format);
930:   PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);

932:   /* loop over matrix elements drawing boxes */

934:   if (format != PETSC_VIEWER_DRAW_CONTOUR) {
935:     PetscDrawCollectiveBegin(draw);
936:     /* Blue for negative, Cyan for zero and  Red for positive */
937:     color = PETSC_DRAW_BLUE;
938:     for (i=0; i<m; i++) {
939:       y_l = m - i - 1.0; y_r = y_l + 1.0;
940:       for (j=a->i[i]; j<a->i[i+1]; j++) {
941:         x_l = a->j[j]; x_r = x_l + 1.0;
942:         if (PetscRealPart(a->a[j]) >=  0.) continue;
943:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
944:       }
945:     }
946:     color = PETSC_DRAW_CYAN;
947:     for (i=0; i<m; i++) {
948:       y_l = m - i - 1.0; y_r = y_l + 1.0;
949:       for (j=a->i[i]; j<a->i[i+1]; j++) {
950:         x_l = a->j[j]; x_r = x_l + 1.0;
951:         if (a->a[j] !=  0.) continue;
952:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
953:       }
954:     }
955:     color = PETSC_DRAW_RED;
956:     for (i=0; i<m; i++) {
957:       y_l = m - i - 1.0; y_r = y_l + 1.0;
958:       for (j=a->i[i]; j<a->i[i+1]; j++) {
959:         x_l = a->j[j]; x_r = x_l + 1.0;
960:         if (PetscRealPart(a->a[j]) <=  0.) continue;
961:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
962:       }
963:     }
964:     PetscDrawCollectiveEnd(draw);
965:   } else {
966:     /* use contour shading to indicate magnitude of values */
967:     /* first determine max of all nonzero values */
968:     PetscReal minv = 0.0, maxv = 0.0;
969:     PetscInt  nz = a->nz, count = 0;
970:     PetscDraw popup;

972:     for (i=0; i<nz; i++) {
973:       if (PetscAbsScalar(a->a[i]) > maxv) maxv = PetscAbsScalar(a->a[i]);
974:     }
975:     if (minv >= maxv) maxv = minv + PETSC_SMALL;
976:     PetscDrawGetPopup(draw,&popup);
977:     PetscDrawScalePopup(popup,minv,maxv);

979:     PetscDrawCollectiveBegin(draw);
980:     for (i=0; i<m; i++) {
981:       y_l = m - i - 1.0;
982:       y_r = y_l + 1.0;
983:       for (j=a->i[i]; j<a->i[i+1]; j++) {
984:         x_l = a->j[j];
985:         x_r = x_l + 1.0;
986:         color = PetscDrawRealToColor(PetscAbsScalar(a->a[count]),minv,maxv);
987:         PetscDrawRectangle(draw,x_l,y_l,x_r,y_r,color,color,color,color);
988:         count++;
989:       }
990:     }
991:     PetscDrawCollectiveEnd(draw);
992:   }
993:   return(0);
994: }

996:  #include <petscdraw.h>
997: PetscErrorCode MatView_SeqAIJ_Draw(Mat A,PetscViewer viewer)
998: {
1000:   PetscDraw      draw;
1001:   PetscReal      xr,yr,xl,yl,h,w;
1002:   PetscBool      isnull;

1005:   PetscViewerDrawGetDraw(viewer,0,&draw);
1006:   PetscDrawIsNull(draw,&isnull);
1007:   if (isnull) return(0);

1009:   xr   = A->cmap->n; yr  = A->rmap->n; h = yr/10.0; w = xr/10.0;
1010:   xr  += w;          yr += h;         xl = -w;     yl = -h;
1011:   PetscDrawSetCoordinates(draw,xl,yl,xr,yr);
1012:   PetscObjectCompose((PetscObject)A,"Zoomviewer",(PetscObject)viewer);
1013:   PetscDrawZoom(draw,MatView_SeqAIJ_Draw_Zoom,A);
1014:   PetscObjectCompose((PetscObject)A,"Zoomviewer",NULL);
1015:   PetscDrawSave(draw);
1016:   return(0);
1017: }

1019: PetscErrorCode MatView_SeqAIJ(Mat A,PetscViewer viewer)
1020: {
1022:   PetscBool      iascii,isbinary,isdraw;

1025:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1026:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1027:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1028:   if (iascii) {
1029:     MatView_SeqAIJ_ASCII(A,viewer);
1030:   } else if (isbinary) {
1031:     MatView_SeqAIJ_Binary(A,viewer);
1032:   } else if (isdraw) {
1033:     MatView_SeqAIJ_Draw(A,viewer);
1034:   }
1035:   MatView_SeqAIJ_Inode(A,viewer);
1036:   return(0);
1037: }

1039: PetscErrorCode MatAssemblyEnd_SeqAIJ(Mat A,MatAssemblyType mode)
1040: {
1041:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1043:   PetscInt       fshift = 0,i,*ai = a->i,*aj = a->j,*imax = a->imax;
1044:   PetscInt       m      = A->rmap->n,*ip,N,*ailen = a->ilen,rmax = 0;
1045:   MatScalar      *aa    = a->a,*ap;
1046:   PetscReal      ratio  = 0.6;

1049:   if (mode == MAT_FLUSH_ASSEMBLY) return(0);
1050:   MatSeqAIJInvalidateDiagonal(A);
1051:   if (A->was_assembled && A->ass_nonzerostate == A->nonzerostate) return(0);

1053:   if (m) rmax = ailen[0]; /* determine row with most nonzeros */
1054:   for (i=1; i<m; i++) {
1055:     /* move each row back by the amount of empty slots (fshift) before it*/
1056:     fshift += imax[i-1] - ailen[i-1];
1057:     rmax    = PetscMax(rmax,ailen[i]);
1058:     if (fshift) {
1059:       ip = aj + ai[i];
1060:       ap = aa + ai[i];
1061:       N  = ailen[i];
1062:       PetscArraymove(ip-fshift,ip,N);
1063:       if (!A->structure_only) {
1064:         PetscArraymove(ap-fshift,ap,N);
1065:       }
1066:     }
1067:     ai[i] = ai[i-1] + ailen[i-1];
1068:   }
1069:   if (m) {
1070:     fshift += imax[m-1] - ailen[m-1];
1071:     ai[m]   = ai[m-1] + ailen[m-1];
1072:   }

1074:   /* reset ilen and imax for each row */
1075:   a->nonzerorowcnt = 0;
1076:   if (A->structure_only) {
1077:     PetscFree(a->imax);
1078:     PetscFree(a->ilen);
1079:   } else { /* !A->structure_only */
1080:     for (i=0; i<m; i++) {
1081:       ailen[i] = imax[i] = ai[i+1] - ai[i];
1082:       a->nonzerorowcnt += ((ai[i+1] - ai[i]) > 0);
1083:     }
1084:   }
1085:   a->nz = ai[m];
1086:   if (fshift && a->nounused == -1) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_PLIB, "Unused space detected in matrix: %D X %D, %D unneeded", m, A->cmap->n, fshift);

1088:   MatMarkDiagonal_SeqAIJ(A);
1089:   PetscInfo4(A,"Matrix size: %D X %D; storage space: %D unneeded,%D used\n",m,A->cmap->n,fshift,a->nz);
1090:   PetscInfo1(A,"Number of mallocs during MatSetValues() is %D\n",a->reallocs);
1091:   PetscInfo1(A,"Maximum nonzeros in any row is %D\n",rmax);

1093:   A->info.mallocs    += a->reallocs;
1094:   a->reallocs         = 0;
1095:   A->info.nz_unneeded = (PetscReal)fshift;
1096:   a->rmax             = rmax;

1098:   if (!A->structure_only) {
1099:     MatCheckCompressedRow(A,a->nonzerorowcnt,&a->compressedrow,a->i,m,ratio);
1100:   }
1101:   MatAssemblyEnd_SeqAIJ_Inode(A,mode);
1102:   return(0);
1103: }

1105: PetscErrorCode MatRealPart_SeqAIJ(Mat A)
1106: {
1107:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1108:   PetscInt       i,nz = a->nz;
1109:   MatScalar      *aa = a->a;

1113:   for (i=0; i<nz; i++) aa[i] = PetscRealPart(aa[i]);
1114:   MatSeqAIJInvalidateDiagonal(A);
1115: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1116:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
1117: #endif
1118:   return(0);
1119: }

1121: PetscErrorCode MatImaginaryPart_SeqAIJ(Mat A)
1122: {
1123:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1124:   PetscInt       i,nz = a->nz;
1125:   MatScalar      *aa = a->a;

1129:   for (i=0; i<nz; i++) aa[i] = PetscImaginaryPart(aa[i]);
1130:   MatSeqAIJInvalidateDiagonal(A);
1131: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1132:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
1133: #endif
1134:   return(0);
1135: }

1137: PetscErrorCode MatZeroEntries_SeqAIJ(Mat A)
1138: {
1139:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;

1143:   PetscArrayzero(a->a,a->i[A->rmap->n]);
1144:   MatSeqAIJInvalidateDiagonal(A);
1145: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
1146:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
1147: #endif
1148:   return(0);
1149: }

1151: PetscErrorCode MatDestroy_SeqAIJ(Mat A)
1152: {
1153:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;

1157: #if defined(PETSC_USE_LOG)
1158:   PetscLogObjectState((PetscObject)A,"Rows=%D, Cols=%D, NZ=%D",A->rmap->n,A->cmap->n,a->nz);
1159: #endif
1160:   MatSeqXAIJFreeAIJ(A,&a->a,&a->j,&a->i);
1161:   ISDestroy(&a->row);
1162:   ISDestroy(&a->col);
1163:   PetscFree(a->diag);
1164:   PetscFree(a->ibdiag);
1165:   PetscFree(a->imax);
1166:   PetscFree(a->ilen);
1167:   PetscFree(a->ipre);
1168:   PetscFree3(a->idiag,a->mdiag,a->ssor_work);
1169:   PetscFree(a->solve_work);
1170:   ISDestroy(&a->icol);
1171:   PetscFree(a->saved_values);
1172:   ISColoringDestroy(&a->coloring);
1173:   PetscFree2(a->compressedrow.i,a->compressedrow.rindex);
1174:   PetscFree(a->matmult_abdense);

1176:   MatDestroy_SeqAIJ_Inode(A);
1177:   PetscFree(A->data);

1179:   PetscObjectChangeTypeName((PetscObject)A,0);
1180:   PetscObjectComposeFunction((PetscObject)A,"MatSeqAIJSetColumnIndices_C",NULL);
1181:   PetscObjectComposeFunction((PetscObject)A,"MatStoreValues_C",NULL);
1182:   PetscObjectComposeFunction((PetscObject)A,"MatRetrieveValues_C",NULL);
1183:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqsbaij_C",NULL);
1184:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqbaij_C",NULL);
1185:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqaijperm_C",NULL);

1187: #if defined(PETSC_HAVE_CUDA)
1188:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqaijcusparse_C",NULL);
1189:   PetscObjectComposeFunction((PetscObject)A,"MatSetFromOptions_seqaijcusparse_seqaij_C",NULL);
1190: #endif
1191:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqaijcrl_C",NULL);
1192: #if defined(PETSC_HAVE_ELEMENTAL)
1193:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_elemental_C",NULL);
1194: #endif
1195: #if defined(PETSC_HAVE_HYPRE)
1196:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_hypre_C",NULL);
1197:   PetscObjectComposeFunction((PetscObject)A,"MatProductSetFromOptions_transpose_seqaij_seqaij_C",NULL);
1198: #endif
1199:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqdense_C",NULL);
1200:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_seqsell_C",NULL);
1201:   PetscObjectComposeFunction((PetscObject)A,"MatConvert_seqaij_is_C",NULL);
1202:   PetscObjectComposeFunction((PetscObject)A,"MatIsTranspose_C",NULL);
1203:   PetscObjectComposeFunction((PetscObject)A,"MatSeqAIJSetPreallocation_C",NULL);
1204:   PetscObjectComposeFunction((PetscObject)A,"MatResetPreallocation_C",NULL);
1205:   PetscObjectComposeFunction((PetscObject)A,"MatSeqAIJSetPreallocationCSR_C",NULL);
1206:   PetscObjectComposeFunction((PetscObject)A,"MatReorderForNonzeroDiagonal_C",NULL);
1207:   PetscObjectComposeFunction((PetscObject)A,"MatProductSetFromOptions_is_seqaij_C",NULL);
1208:   PetscObjectComposeFunction((PetscObject)A,"MatProductSetFromOptions_seqdense_seqaij_C",NULL);
1209:   PetscObjectComposeFunction((PetscObject)A,"MatProductSetFromOptions_seqaij_seqaij_C",NULL);
1210:   return(0);
1211: }

1213: PetscErrorCode MatSetOption_SeqAIJ(Mat A,MatOption op,PetscBool flg)
1214: {
1215:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;

1219:   switch (op) {
1220:   case MAT_ROW_ORIENTED:
1221:     a->roworiented = flg;
1222:     break;
1223:   case MAT_KEEP_NONZERO_PATTERN:
1224:     a->keepnonzeropattern = flg;
1225:     break;
1226:   case MAT_NEW_NONZERO_LOCATIONS:
1227:     a->nonew = (flg ? 0 : 1);
1228:     break;
1229:   case MAT_NEW_NONZERO_LOCATION_ERR:
1230:     a->nonew = (flg ? -1 : 0);
1231:     break;
1232:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1233:     a->nonew = (flg ? -2 : 0);
1234:     break;
1235:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1236:     a->nounused = (flg ? -1 : 0);
1237:     break;
1238:   case MAT_IGNORE_ZERO_ENTRIES:
1239:     a->ignorezeroentries = flg;
1240:     break;
1241:   case MAT_SPD:
1242:   case MAT_SYMMETRIC:
1243:   case MAT_STRUCTURALLY_SYMMETRIC:
1244:   case MAT_HERMITIAN:
1245:   case MAT_SYMMETRY_ETERNAL:
1246:   case MAT_STRUCTURE_ONLY:
1247:     /* These options are handled directly by MatSetOption() */
1248:     break;
1249:   case MAT_NEW_DIAGONALS:
1250:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1251:   case MAT_USE_HASH_TABLE:
1252:     PetscInfo1(A,"Option %s ignored\n",MatOptions[op]);
1253:     break;
1254:   case MAT_USE_INODES:
1255:     /* Not an error because MatSetOption_SeqAIJ_Inode handles this one */
1256:     break;
1257:   case MAT_SUBMAT_SINGLEIS:
1258:     A->submat_singleis = flg;
1259:     break;
1260:   case MAT_SORTED_FULL:
1261:     if (flg) A->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;
1262:     else     A->ops->setvalues = MatSetValues_SeqAIJ;
1263:     break;
1264:   default:
1265:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"unknown option %d",op);
1266:   }
1267:   MatSetOption_SeqAIJ_Inode(A,op,flg);
1268:   return(0);
1269: }

1271: PetscErrorCode MatGetDiagonal_SeqAIJ(Mat A,Vec v)
1272: {
1273:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1275:   PetscInt       i,j,n,*ai=a->i,*aj=a->j;
1276:   PetscScalar    *aa=a->a,*x;

1279:   VecGetLocalSize(v,&n);
1280:   if (n != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");

1282:   if (A->factortype == MAT_FACTOR_ILU || A->factortype == MAT_FACTOR_LU) {
1283:     PetscInt *diag=a->diag;
1284:     VecGetArrayWrite(v,&x);
1285:     for (i=0; i<n; i++) x[i] = 1.0/aa[diag[i]];
1286:     VecRestoreArrayWrite(v,&x);
1287:     return(0);
1288:   }

1290:   VecGetArrayWrite(v,&x);
1291:   for (i=0; i<n; i++) {
1292:     x[i] = 0.0;
1293:     for (j=ai[i]; j<ai[i+1]; j++) {
1294:       if (aj[j] == i) {
1295:         x[i] = aa[j];
1296:         break;
1297:       }
1298:     }
1299:   }
1300:   VecRestoreArrayWrite(v,&x);
1301:   return(0);
1302: }

1304:  #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>
1305: PetscErrorCode MatMultTransposeAdd_SeqAIJ(Mat A,Vec xx,Vec zz,Vec yy)
1306: {
1307:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1308:   PetscScalar       *y;
1309:   const PetscScalar *x;
1310:   PetscErrorCode    ierr;
1311:   PetscInt          m = A->rmap->n;
1312: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1313:   const MatScalar   *v;
1314:   PetscScalar       alpha;
1315:   PetscInt          n,i,j;
1316:   const PetscInt    *idx,*ii,*ridx=NULL;
1317:   Mat_CompressedRow cprow    = a->compressedrow;
1318:   PetscBool         usecprow = cprow.use;
1319: #endif

1322:   if (zz != yy) {VecCopy(zz,yy);}
1323:   VecGetArrayRead(xx,&x);
1324:   VecGetArray(yy,&y);

1326: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTTRANSPOSEAIJ)
1327:   fortranmulttransposeaddaij_(&m,x,a->i,a->j,a->a,y);
1328: #else
1329:   if (usecprow) {
1330:     m    = cprow.nrows;
1331:     ii   = cprow.i;
1332:     ridx = cprow.rindex;
1333:   } else {
1334:     ii = a->i;
1335:   }
1336:   for (i=0; i<m; i++) {
1337:     idx = a->j + ii[i];
1338:     v   = a->a + ii[i];
1339:     n   = ii[i+1] - ii[i];
1340:     if (usecprow) {
1341:       alpha = x[ridx[i]];
1342:     } else {
1343:       alpha = x[i];
1344:     }
1345:     for (j=0; j<n; j++) y[idx[j]] += alpha*v[j];
1346:   }
1347: #endif
1348:   PetscLogFlops(2.0*a->nz);
1349:   VecRestoreArrayRead(xx,&x);
1350:   VecRestoreArray(yy,&y);
1351:   return(0);
1352: }

1354: PetscErrorCode MatMultTranspose_SeqAIJ(Mat A,Vec xx,Vec yy)
1355: {

1359:   VecSet(yy,0.0);
1360:   MatMultTransposeAdd_SeqAIJ(A,xx,yy,yy);
1361:   return(0);
1362: }

1364:  #include <../src/mat/impls/aij/seq/ftn-kernels/fmult.h>

1366: PetscErrorCode MatMult_SeqAIJ(Mat A,Vec xx,Vec yy)
1367: {
1368:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1369:   PetscScalar       *y;
1370:   const PetscScalar *x;
1371:   const MatScalar   *aa;
1372:   PetscErrorCode    ierr;
1373:   PetscInt          m=A->rmap->n;
1374:   const PetscInt    *aj,*ii,*ridx=NULL;
1375:   PetscInt          n,i;
1376:   PetscScalar       sum;
1377:   PetscBool         usecprow=a->compressedrow.use;

1379: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1380: #pragma disjoint(*x,*y,*aa)
1381: #endif

1384:   VecGetArrayRead(xx,&x);
1385:   VecGetArray(yy,&y);
1386:   ii   = a->i;
1387:   if (usecprow) { /* use compressed row format */
1388:     PetscArrayzero(y,m);
1389:     m    = a->compressedrow.nrows;
1390:     ii   = a->compressedrow.i;
1391:     ridx = a->compressedrow.rindex;
1392:     for (i=0; i<m; i++) {
1393:       n           = ii[i+1] - ii[i];
1394:       aj          = a->j + ii[i];
1395:       aa          = a->a + ii[i];
1396:       sum         = 0.0;
1397:       PetscSparseDensePlusDot(sum,x,aa,aj,n);
1398:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1399:       y[*ridx++] = sum;
1400:     }
1401:   } else { /* do not use compressed row format */
1402: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJ)
1403:     aj   = a->j;
1404:     aa   = a->a;
1405:     fortranmultaij_(&m,x,ii,aj,aa,y);
1406: #else
1407:     for (i=0; i<m; i++) {
1408:       n           = ii[i+1] - ii[i];
1409:       aj          = a->j + ii[i];
1410:       aa          = a->a + ii[i];
1411:       sum         = 0.0;
1412:       PetscSparseDensePlusDot(sum,x,aa,aj,n);
1413:       y[i] = sum;
1414:     }
1415: #endif
1416:   }
1417:   PetscLogFlops(2.0*a->nz - a->nonzerorowcnt);
1418:   VecRestoreArrayRead(xx,&x);
1419:   VecRestoreArray(yy,&y);
1420:   return(0);
1421: }

1423: PetscErrorCode MatMultMax_SeqAIJ(Mat A,Vec xx,Vec yy)
1424: {
1425:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1426:   PetscScalar       *y;
1427:   const PetscScalar *x;
1428:   const MatScalar   *aa;
1429:   PetscErrorCode    ierr;
1430:   PetscInt          m=A->rmap->n;
1431:   const PetscInt    *aj,*ii,*ridx=NULL;
1432:   PetscInt          n,i,nonzerorow=0;
1433:   PetscScalar       sum;
1434:   PetscBool         usecprow=a->compressedrow.use;

1436: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
1437: #pragma disjoint(*x,*y,*aa)
1438: #endif

1441:   VecGetArrayRead(xx,&x);
1442:   VecGetArray(yy,&y);
1443:   if (usecprow) { /* use compressed row format */
1444:     m    = a->compressedrow.nrows;
1445:     ii   = a->compressedrow.i;
1446:     ridx = a->compressedrow.rindex;
1447:     for (i=0; i<m; i++) {
1448:       n           = ii[i+1] - ii[i];
1449:       aj          = a->j + ii[i];
1450:       aa          = a->a + ii[i];
1451:       sum         = 0.0;
1452:       nonzerorow += (n>0);
1453:       PetscSparseDenseMaxDot(sum,x,aa,aj,n);
1454:       /* for (j=0; j<n; j++) sum += (*aa++)*x[*aj++]; */
1455:       y[*ridx++] = sum;
1456:     }
1457:   } else { /* do not use compressed row format */
1458:     ii = a->i;
1459:     for (i=0; i<m; i++) {
1460:       n           = ii[i+1] - ii[i];
1461:       aj          = a->j + ii[i];
1462:       aa          = a->a + ii[i];
1463:       sum         = 0.0;
1464:       nonzerorow += (n>0);
1465:       PetscSparseDenseMaxDot(sum,x,aa,aj,n);
1466:       y[i] = sum;
1467:     }
1468:   }
1469:   PetscLogFlops(2.0*a->nz - nonzerorow);
1470:   VecRestoreArrayRead(xx,&x);
1471:   VecRestoreArray(yy,&y);
1472:   return(0);
1473: }

1475: PetscErrorCode MatMultAddMax_SeqAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1476: {
1477:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1478:   PetscScalar       *y,*z;
1479:   const PetscScalar *x;
1480:   const MatScalar   *aa;
1481:   PetscErrorCode    ierr;
1482:   PetscInt          m = A->rmap->n,*aj,*ii;
1483:   PetscInt          n,i,*ridx=NULL;
1484:   PetscScalar       sum;
1485:   PetscBool         usecprow=a->compressedrow.use;

1488:   VecGetArrayRead(xx,&x);
1489:   VecGetArrayPair(yy,zz,&y,&z);
1490:   if (usecprow) { /* use compressed row format */
1491:     if (zz != yy) {
1492:       PetscArraycpy(z,y,m);
1493:     }
1494:     m    = a->compressedrow.nrows;
1495:     ii   = a->compressedrow.i;
1496:     ridx = a->compressedrow.rindex;
1497:     for (i=0; i<m; i++) {
1498:       n   = ii[i+1] - ii[i];
1499:       aj  = a->j + ii[i];
1500:       aa  = a->a + ii[i];
1501:       sum = y[*ridx];
1502:       PetscSparseDenseMaxDot(sum,x,aa,aj,n);
1503:       z[*ridx++] = sum;
1504:     }
1505:   } else { /* do not use compressed row format */
1506:     ii = a->i;
1507:     for (i=0; i<m; i++) {
1508:       n   = ii[i+1] - ii[i];
1509:       aj  = a->j + ii[i];
1510:       aa  = a->a + ii[i];
1511:       sum = y[i];
1512:       PetscSparseDenseMaxDot(sum,x,aa,aj,n);
1513:       z[i] = sum;
1514:     }
1515:   }
1516:   PetscLogFlops(2.0*a->nz);
1517:   VecRestoreArrayRead(xx,&x);
1518:   VecRestoreArrayPair(yy,zz,&y,&z);
1519:   return(0);
1520: }

1522:  #include <../src/mat/impls/aij/seq/ftn-kernels/fmultadd.h>
1523: PetscErrorCode MatMultAdd_SeqAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1524: {
1525:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1526:   PetscScalar       *y,*z;
1527:   const PetscScalar *x;
1528:   const MatScalar   *aa;
1529:   PetscErrorCode    ierr;
1530:   const PetscInt    *aj,*ii,*ridx=NULL;
1531:   PetscInt          m = A->rmap->n,n,i;
1532:   PetscScalar       sum;
1533:   PetscBool         usecprow=a->compressedrow.use;

1536:   VecGetArrayRead(xx,&x);
1537:   VecGetArrayPair(yy,zz,&y,&z);
1538:   if (usecprow) { /* use compressed row format */
1539:     if (zz != yy) {
1540:       PetscArraycpy(z,y,m);
1541:     }
1542:     m    = a->compressedrow.nrows;
1543:     ii   = a->compressedrow.i;
1544:     ridx = a->compressedrow.rindex;
1545:     for (i=0; i<m; i++) {
1546:       n   = ii[i+1] - ii[i];
1547:       aj  = a->j + ii[i];
1548:       aa  = a->a + ii[i];
1549:       sum = y[*ridx];
1550:       PetscSparseDensePlusDot(sum,x,aa,aj,n);
1551:       z[*ridx++] = sum;
1552:     }
1553:   } else { /* do not use compressed row format */
1554:     ii = a->i;
1555: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJ)
1556:     aj = a->j;
1557:     aa = a->a;
1558:     fortranmultaddaij_(&m,x,ii,aj,aa,y,z);
1559: #else
1560:     for (i=0; i<m; i++) {
1561:       n   = ii[i+1] - ii[i];
1562:       aj  = a->j + ii[i];
1563:       aa  = a->a + ii[i];
1564:       sum = y[i];
1565:       PetscSparseDensePlusDot(sum,x,aa,aj,n);
1566:       z[i] = sum;
1567:     }
1568: #endif
1569:   }
1570:   PetscLogFlops(2.0*a->nz);
1571:   VecRestoreArrayRead(xx,&x);
1572:   VecRestoreArrayPair(yy,zz,&y,&z);
1573:   return(0);
1574: }

1576: /*
1577:      Adds diagonal pointers to sparse matrix structure.
1578: */
1579: PetscErrorCode MatMarkDiagonal_SeqAIJ(Mat A)
1580: {
1581:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1583:   PetscInt       i,j,m = A->rmap->n;

1586:   if (!a->diag) {
1587:     PetscMalloc1(m,&a->diag);
1588:     PetscLogObjectMemory((PetscObject)A, m*sizeof(PetscInt));
1589:   }
1590:   for (i=0; i<A->rmap->n; i++) {
1591:     a->diag[i] = a->i[i+1];
1592:     for (j=a->i[i]; j<a->i[i+1]; j++) {
1593:       if (a->j[j] == i) {
1594:         a->diag[i] = j;
1595:         break;
1596:       }
1597:     }
1598:   }
1599:   return(0);
1600: }

1602: PetscErrorCode MatShift_SeqAIJ(Mat A,PetscScalar v)
1603: {
1604:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1605:   const PetscInt    *diag = (const PetscInt*)a->diag;
1606:   const PetscInt    *ii = (const PetscInt*) a->i;
1607:   PetscInt          i,*mdiag = NULL;
1608:   PetscErrorCode    ierr;
1609:   PetscInt          cnt = 0; /* how many diagonals are missing */

1612:   if (!A->preallocated || !a->nz) {
1613:     MatSeqAIJSetPreallocation(A,1,NULL);
1614:     MatShift_Basic(A,v);
1615:     return(0);
1616:   }

1618:   if (a->diagonaldense) {
1619:     cnt = 0;
1620:   } else {
1621:     PetscCalloc1(A->rmap->n,&mdiag);
1622:     for (i=0; i<A->rmap->n; i++) {
1623:       if (diag[i] >= ii[i+1]) {
1624:         cnt++;
1625:         mdiag[i] = 1;
1626:       }
1627:     }
1628:   }
1629:   if (!cnt) {
1630:     MatShift_Basic(A,v);
1631:   } else {
1632:     PetscScalar *olda = a->a;  /* preserve pointers to current matrix nonzeros structure and values */
1633:     PetscInt    *oldj = a->j, *oldi = a->i;
1634:     PetscBool   singlemalloc = a->singlemalloc,free_a = a->free_a,free_ij = a->free_ij;

1636:     a->a = NULL;
1637:     a->j = NULL;
1638:     a->i = NULL;
1639:     /* increase the values in imax for each row where a diagonal is being inserted then reallocate the matrix data structures */
1640:     for (i=0; i<A->rmap->n; i++) {
1641:       a->imax[i] += mdiag[i];
1642:       a->imax[i] = PetscMin(a->imax[i],A->cmap->n);
1643:     }
1644:     MatSeqAIJSetPreallocation_SeqAIJ(A,0,a->imax);

1646:     /* copy old values into new matrix data structure */
1647:     for (i=0; i<A->rmap->n; i++) {
1648:       MatSetValues(A,1,&i,a->imax[i] - mdiag[i],&oldj[oldi[i]],&olda[oldi[i]],ADD_VALUES);
1649:       if (i < A->cmap->n) {
1650:         MatSetValue(A,i,i,v,ADD_VALUES);
1651:       }
1652:     }
1653:     MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
1654:     MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
1655:     if (singlemalloc) {
1656:       PetscFree3(olda,oldj,oldi);
1657:     } else {
1658:       if (free_a)  {PetscFree(olda);}
1659:       if (free_ij) {PetscFree(oldj);}
1660:       if (free_ij) {PetscFree(oldi);}
1661:     }
1662:   }
1663:   PetscFree(mdiag);
1664:   a->diagonaldense = PETSC_TRUE;
1665:   return(0);
1666: }

1668: /*
1669:      Checks for missing diagonals
1670: */
1671: PetscErrorCode MatMissingDiagonal_SeqAIJ(Mat A,PetscBool  *missing,PetscInt *d)
1672: {
1673:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
1674:   PetscInt       *diag,*ii = a->i,i;

1678:   *missing = PETSC_FALSE;
1679:   if (A->rmap->n > 0 && !ii) {
1680:     *missing = PETSC_TRUE;
1681:     if (d) *d = 0;
1682:     PetscInfo(A,"Matrix has no entries therefore is missing diagonal\n");
1683:   } else {
1684:     PetscInt n;
1685:     n = PetscMin(A->rmap->n, A->cmap->n);
1686:     diag = a->diag;
1687:     for (i=0; i<n; i++) {
1688:       if (diag[i] >= ii[i+1]) {
1689:         *missing = PETSC_TRUE;
1690:         if (d) *d = i;
1691:         PetscInfo1(A,"Matrix is missing diagonal number %D\n",i);
1692:         break;
1693:       }
1694:     }
1695:   }
1696:   return(0);
1697: }

1699:  #include <petscblaslapack.h>
1700:  #include <petsc/private/kernels/blockinvert.h>

1702: /*
1703:     Note that values is allocated externally by the PC and then passed into this routine
1704: */
1705: PetscErrorCode MatInvertVariableBlockDiagonal_SeqAIJ(Mat A,PetscInt nblocks,const PetscInt *bsizes,PetscScalar *diag)
1706: {
1707:   PetscErrorCode  ierr;
1708:   PetscInt        n = A->rmap->n, i, ncnt = 0, *indx,j,bsizemax = 0,*v_pivots;
1709:   PetscBool       allowzeropivot,zeropivotdetected=PETSC_FALSE;
1710:   const PetscReal shift = 0.0;
1711:   PetscInt        ipvt[5];
1712:   PetscScalar     work[25],*v_work;

1715:   allowzeropivot = PetscNot(A->erroriffailure);
1716:   for (i=0; i<nblocks; i++) ncnt += bsizes[i];
1717:   if (ncnt != n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Total blocksizes %D doesn't match number matrix rows %D",ncnt,n);
1718:   for (i=0; i<nblocks; i++) {
1719:     bsizemax = PetscMax(bsizemax,bsizes[i]);
1720:   }
1721:   PetscMalloc1(bsizemax,&indx);
1722:   if (bsizemax > 7) {
1723:     PetscMalloc2(bsizemax,&v_work,bsizemax,&v_pivots);
1724:   }
1725:   ncnt = 0;
1726:   for (i=0; i<nblocks; i++) {
1727:     for (j=0; j<bsizes[i]; j++) indx[j] = ncnt+j;
1728:     MatGetValues(A,bsizes[i],indx,bsizes[i],indx,diag);
1729:     switch (bsizes[i]) {
1730:     case 1:
1731:       *diag = 1.0/(*diag);
1732:       break;
1733:     case 2:
1734:       PetscKernel_A_gets_inverse_A_2(diag,shift,allowzeropivot,&zeropivotdetected);
1735:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1736:       PetscKernel_A_gets_transpose_A_2(diag);
1737:       break;
1738:     case 3:
1739:       PetscKernel_A_gets_inverse_A_3(diag,shift,allowzeropivot,&zeropivotdetected);
1740:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1741:       PetscKernel_A_gets_transpose_A_3(diag);
1742:       break;
1743:     case 4:
1744:       PetscKernel_A_gets_inverse_A_4(diag,shift,allowzeropivot,&zeropivotdetected);
1745:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1746:       PetscKernel_A_gets_transpose_A_4(diag);
1747:       break;
1748:     case 5:
1749:       PetscKernel_A_gets_inverse_A_5(diag,ipvt,work,shift,allowzeropivot,&zeropivotdetected);
1750:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1751:       PetscKernel_A_gets_transpose_A_5(diag);
1752:       break;
1753:     case 6:
1754:       PetscKernel_A_gets_inverse_A_6(diag,shift,allowzeropivot,&zeropivotdetected);
1755:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1756:       PetscKernel_A_gets_transpose_A_6(diag);
1757:       break;
1758:     case 7:
1759:       PetscKernel_A_gets_inverse_A_7(diag,shift,allowzeropivot,&zeropivotdetected);
1760:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1761:       PetscKernel_A_gets_transpose_A_7(diag);
1762:       break;
1763:     default:
1764:       PetscKernel_A_gets_inverse_A(bsizes[i],diag,v_pivots,v_work,allowzeropivot,&zeropivotdetected);
1765:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1766:       PetscKernel_A_gets_transpose_A_N(diag,bsizes[i]);
1767:     }
1768:     ncnt   += bsizes[i];
1769:     diag += bsizes[i]*bsizes[i];
1770:   }
1771:   if (bsizemax > 7) {
1772:     PetscFree2(v_work,v_pivots);
1773:   }
1774:   PetscFree(indx);
1775:   return(0);
1776: }

1778: /*
1779:    Negative shift indicates do not generate an error if there is a zero diagonal, just invert it anyways
1780: */
1781: PetscErrorCode  MatInvertDiagonal_SeqAIJ(Mat A,PetscScalar omega,PetscScalar fshift)
1782: {
1783:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*) A->data;
1785:   PetscInt       i,*diag,m = A->rmap->n;
1786:   MatScalar      *v = a->a;
1787:   PetscScalar    *idiag,*mdiag;

1790:   if (a->idiagvalid) return(0);
1791:   MatMarkDiagonal_SeqAIJ(A);
1792:   diag = a->diag;
1793:   if (!a->idiag) {
1794:     PetscMalloc3(m,&a->idiag,m,&a->mdiag,m,&a->ssor_work);
1795:     PetscLogObjectMemory((PetscObject)A, 3*m*sizeof(PetscScalar));
1796:     v    = a->a;
1797:   }
1798:   mdiag = a->mdiag;
1799:   idiag = a->idiag;

1801:   if (omega == 1.0 && PetscRealPart(fshift) <= 0.0) {
1802:     for (i=0; i<m; i++) {
1803:       mdiag[i] = v[diag[i]];
1804:       if (!PetscAbsScalar(mdiag[i])) { /* zero diagonal */
1805:         if (PetscRealPart(fshift)) {
1806:           PetscInfo1(A,"Zero diagonal on row %D\n",i);
1807:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1808:           A->factorerror_zeropivot_value = 0.0;
1809:           A->factorerror_zeropivot_row   = i;
1810:         } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Zero diagonal on row %D",i);
1811:       }
1812:       idiag[i] = 1.0/v[diag[i]];
1813:     }
1814:     PetscLogFlops(m);
1815:   } else {
1816:     for (i=0; i<m; i++) {
1817:       mdiag[i] = v[diag[i]];
1818:       idiag[i] = omega/(fshift + v[diag[i]]);
1819:     }
1820:     PetscLogFlops(2.0*m);
1821:   }
1822:   a->idiagvalid = PETSC_TRUE;
1823:   return(0);
1824: }

1826:  #include <../src/mat/impls/aij/seq/ftn-kernels/frelax.h>
1827: PetscErrorCode MatSOR_SeqAIJ(Mat A,Vec bb,PetscReal omega,MatSORType flag,PetscReal fshift,PetscInt its,PetscInt lits,Vec xx)
1828: {
1829:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
1830:   PetscScalar       *x,d,sum,*t,scale;
1831:   const MatScalar   *v,*idiag=0,*mdiag;
1832:   const PetscScalar *b, *bs,*xb, *ts;
1833:   PetscErrorCode    ierr;
1834:   PetscInt          n,m = A->rmap->n,i;
1835:   const PetscInt    *idx,*diag;

1838:   its = its*lits;

1840:   if (fshift != a->fshift || omega != a->omega) a->idiagvalid = PETSC_FALSE; /* must recompute idiag[] */
1841:   if (!a->idiagvalid) {MatInvertDiagonal_SeqAIJ(A,omega,fshift);}
1842:   a->fshift = fshift;
1843:   a->omega  = omega;

1845:   diag  = a->diag;
1846:   t     = a->ssor_work;
1847:   idiag = a->idiag;
1848:   mdiag = a->mdiag;

1850:   VecGetArray(xx,&x);
1851:   VecGetArrayRead(bb,&b);
1852:   /* We count flops by assuming the upper triangular and lower triangular parts have the same number of nonzeros */
1853:   if (flag == SOR_APPLY_UPPER) {
1854:     /* apply (U + D/omega) to the vector */
1855:     bs = b;
1856:     for (i=0; i<m; i++) {
1857:       d   = fshift + mdiag[i];
1858:       n   = a->i[i+1] - diag[i] - 1;
1859:       idx = a->j + diag[i] + 1;
1860:       v   = a->a + diag[i] + 1;
1861:       sum = b[i]*d/omega;
1862:       PetscSparseDensePlusDot(sum,bs,v,idx,n);
1863:       x[i] = sum;
1864:     }
1865:     VecRestoreArray(xx,&x);
1866:     VecRestoreArrayRead(bb,&b);
1867:     PetscLogFlops(a->nz);
1868:     return(0);
1869:   }

1871:   if (flag == SOR_APPLY_LOWER) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"SOR_APPLY_LOWER is not implemented");
1872:   else if (flag & SOR_EISENSTAT) {
1873:     /* Let  A = L + U + D; where L is lower triangular,
1874:     U is upper triangular, E = D/omega; This routine applies

1876:             (L + E)^{-1} A (U + E)^{-1}

1878:     to a vector efficiently using Eisenstat's trick.
1879:     */
1880:     scale = (2.0/omega) - 1.0;

1882:     /*  x = (E + U)^{-1} b */
1883:     for (i=m-1; i>=0; i--) {
1884:       n   = a->i[i+1] - diag[i] - 1;
1885:       idx = a->j + diag[i] + 1;
1886:       v   = a->a + diag[i] + 1;
1887:       sum = b[i];
1888:       PetscSparseDenseMinusDot(sum,x,v,idx,n);
1889:       x[i] = sum*idiag[i];
1890:     }

1892:     /*  t = b - (2*E - D)x */
1893:     v = a->a;
1894:     for (i=0; i<m; i++) t[i] = b[i] - scale*(v[*diag++])*x[i];

1896:     /*  t = (E + L)^{-1}t */
1897:     ts   = t;
1898:     diag = a->diag;
1899:     for (i=0; i<m; i++) {
1900:       n   = diag[i] - a->i[i];
1901:       idx = a->j + a->i[i];
1902:       v   = a->a + a->i[i];
1903:       sum = t[i];
1904:       PetscSparseDenseMinusDot(sum,ts,v,idx,n);
1905:       t[i] = sum*idiag[i];
1906:       /*  x = x + t */
1907:       x[i] += t[i];
1908:     }

1910:     PetscLogFlops(6.0*m-1 + 2.0*a->nz);
1911:     VecRestoreArray(xx,&x);
1912:     VecRestoreArrayRead(bb,&b);
1913:     return(0);
1914:   }
1915:   if (flag & SOR_ZERO_INITIAL_GUESS) {
1916:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1917:       for (i=0; i<m; i++) {
1918:         n   = diag[i] - a->i[i];
1919:         idx = a->j + a->i[i];
1920:         v   = a->a + a->i[i];
1921:         sum = b[i];
1922:         PetscSparseDenseMinusDot(sum,x,v,idx,n);
1923:         t[i] = sum;
1924:         x[i] = sum*idiag[i];
1925:       }
1926:       xb   = t;
1927:       PetscLogFlops(a->nz);
1928:     } else xb = b;
1929:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1930:       for (i=m-1; i>=0; i--) {
1931:         n   = a->i[i+1] - diag[i] - 1;
1932:         idx = a->j + diag[i] + 1;
1933:         v   = a->a + diag[i] + 1;
1934:         sum = xb[i];
1935:         PetscSparseDenseMinusDot(sum,x,v,idx,n);
1936:         if (xb == b) {
1937:           x[i] = sum*idiag[i];
1938:         } else {
1939:           x[i] = (1-omega)*x[i] + sum*idiag[i];  /* omega in idiag */
1940:         }
1941:       }
1942:       PetscLogFlops(a->nz); /* assumes 1/2 in upper */
1943:     }
1944:     its--;
1945:   }
1946:   while (its--) {
1947:     if (flag & SOR_FORWARD_SWEEP || flag & SOR_LOCAL_FORWARD_SWEEP) {
1948:       for (i=0; i<m; i++) {
1949:         /* lower */
1950:         n   = diag[i] - a->i[i];
1951:         idx = a->j + a->i[i];
1952:         v   = a->a + a->i[i];
1953:         sum = b[i];
1954:         PetscSparseDenseMinusDot(sum,x,v,idx,n);
1955:         t[i] = sum;             /* save Section 1.5 Writing Application Codes with PETSc of the lower-triangular part */
1956:         /* upper */
1957:         n   = a->i[i+1] - diag[i] - 1;
1958:         idx = a->j + diag[i] + 1;
1959:         v   = a->a + diag[i] + 1;
1960:         PetscSparseDenseMinusDot(sum,x,v,idx,n);
1961:         x[i] = (1. - omega)*x[i] + sum*idiag[i]; /* omega in idiag */
1962:       }
1963:       xb   = t;
1964:       PetscLogFlops(2.0*a->nz);
1965:     } else xb = b;
1966:     if (flag & SOR_BACKWARD_SWEEP || flag & SOR_LOCAL_BACKWARD_SWEEP) {
1967:       for (i=m-1; i>=0; i--) {
1968:         sum = xb[i];
1969:         if (xb == b) {
1970:           /* whole matrix (no checkpointing available) */
1971:           n   = a->i[i+1] - a->i[i];
1972:           idx = a->j + a->i[i];
1973:           v   = a->a + a->i[i];
1974:           PetscSparseDenseMinusDot(sum,x,v,idx,n);
1975:           x[i] = (1. - omega)*x[i] + (sum + mdiag[i]*x[i])*idiag[i];
1976:         } else { /* lower-triangular part has been saved, so only apply upper-triangular */
1977:           n   = a->i[i+1] - diag[i] - 1;
1978:           idx = a->j + diag[i] + 1;
1979:           v   = a->a + diag[i] + 1;
1980:           PetscSparseDenseMinusDot(sum,x,v,idx,n);
1981:           x[i] = (1. - omega)*x[i] + sum*idiag[i];  /* omega in idiag */
1982:         }
1983:       }
1984:       if (xb == b) {
1985:         PetscLogFlops(2.0*a->nz);
1986:       } else {
1987:         PetscLogFlops(a->nz); /* assumes 1/2 in upper */
1988:       }
1989:     }
1990:   }
1991:   VecRestoreArray(xx,&x);
1992:   VecRestoreArrayRead(bb,&b);
1993:   return(0);
1994: }


1997: PetscErrorCode MatGetInfo_SeqAIJ(Mat A,MatInfoType flag,MatInfo *info)
1998: {
1999:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;

2002:   info->block_size   = 1.0;
2003:   info->nz_allocated = a->maxnz;
2004:   info->nz_used      = a->nz;
2005:   info->nz_unneeded  = (a->maxnz - a->nz);
2006:   info->assemblies   = A->num_ass;
2007:   info->mallocs      = A->info.mallocs;
2008:   info->memory       = ((PetscObject)A)->mem;
2009:   if (A->factortype) {
2010:     info->fill_ratio_given  = A->info.fill_ratio_given;
2011:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2012:     info->factor_mallocs    = A->info.factor_mallocs;
2013:   } else {
2014:     info->fill_ratio_given  = 0;
2015:     info->fill_ratio_needed = 0;
2016:     info->factor_mallocs    = 0;
2017:   }
2018:   return(0);
2019: }

2021: PetscErrorCode MatZeroRows_SeqAIJ(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
2022: {
2023:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
2024:   PetscInt          i,m = A->rmap->n - 1;
2025:   PetscErrorCode    ierr;
2026:   const PetscScalar *xx;
2027:   PetscScalar       *bb;
2028:   PetscInt          d = 0;

2031:   if (x && b) {
2032:     VecGetArrayRead(x,&xx);
2033:     VecGetArray(b,&bb);
2034:     for (i=0; i<N; i++) {
2035:       if (rows[i] < 0 || rows[i] > m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range", rows[i]);
2036:       if (rows[i] >= A->cmap->n) continue;
2037:       bb[rows[i]] = diag*xx[rows[i]];
2038:     }
2039:     VecRestoreArrayRead(x,&xx);
2040:     VecRestoreArray(b,&bb);
2041:   }

2043:   if (a->keepnonzeropattern) {
2044:     for (i=0; i<N; i++) {
2045:       if (rows[i] < 0 || rows[i] > m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range", rows[i]);
2046:       PetscArrayzero(&a->a[a->i[rows[i]]],a->ilen[rows[i]]);
2047:     }
2048:     if (diag != 0.0) {
2049:       for (i=0; i<N; i++) {
2050:         d = rows[i];
2051:         if (rows[i] >= A->cmap->n) continue;
2052:         if (a->diag[d] >= a->i[d+1]) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix is missing diagonal entry in the zeroed row %D",d);
2053:       }
2054:       for (i=0; i<N; i++) {
2055:         if (rows[i] >= A->cmap->n) continue;
2056:         a->a[a->diag[rows[i]]] = diag;
2057:       }
2058:     }
2059:   } else {
2060:     if (diag != 0.0) {
2061:       for (i=0; i<N; i++) {
2062:         if (rows[i] < 0 || rows[i] > m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range", rows[i]);
2063:         if (a->ilen[rows[i]] > 0) {
2064:           if (rows[i] >= A->cmap->n) {
2065:             a->ilen[rows[i]] = 0;
2066:           } else {
2067:             a->ilen[rows[i]]    = 1;
2068:             a->a[a->i[rows[i]]] = diag;
2069:             a->j[a->i[rows[i]]] = rows[i];
2070:           }
2071:         } else if (rows[i] < A->cmap->n) { /* in case row was completely empty */
2072:           MatSetValues_SeqAIJ(A,1,&rows[i],1,&rows[i],&diag,INSERT_VALUES);
2073:         }
2074:       }
2075:     } else {
2076:       for (i=0; i<N; i++) {
2077:         if (rows[i] < 0 || rows[i] > m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range", rows[i]);
2078:         a->ilen[rows[i]] = 0;
2079:       }
2080:     }
2081:     A->nonzerostate++;
2082:   }
2083: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2084:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
2085: #endif
2086:   (*A->ops->assemblyend)(A,MAT_FINAL_ASSEMBLY);
2087:   return(0);
2088: }

2090: PetscErrorCode MatZeroRowsColumns_SeqAIJ(Mat A,PetscInt N,const PetscInt rows[],PetscScalar diag,Vec x,Vec b)
2091: {
2092:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
2093:   PetscInt          i,j,m = A->rmap->n - 1,d = 0;
2094:   PetscErrorCode    ierr;
2095:   PetscBool         missing,*zeroed,vecs = PETSC_FALSE;
2096:   const PetscScalar *xx;
2097:   PetscScalar       *bb;

2100:   if (x && b) {
2101:     VecGetArrayRead(x,&xx);
2102:     VecGetArray(b,&bb);
2103:     vecs = PETSC_TRUE;
2104:   }
2105:   PetscCalloc1(A->rmap->n,&zeroed);
2106:   for (i=0; i<N; i++) {
2107:     if (rows[i] < 0 || rows[i] > m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"row %D out of range", rows[i]);
2108:     PetscArrayzero(&a->a[a->i[rows[i]]],a->ilen[rows[i]]);

2110:     zeroed[rows[i]] = PETSC_TRUE;
2111:   }
2112:   for (i=0; i<A->rmap->n; i++) {
2113:     if (!zeroed[i]) {
2114:       for (j=a->i[i]; j<a->i[i+1]; j++) {
2115:         if (a->j[j] < A->rmap->n && zeroed[a->j[j]]) {
2116:           if (vecs) bb[i] -= a->a[j]*xx[a->j[j]];
2117:           a->a[j] = 0.0;
2118:         }
2119:       }
2120:     } else if (vecs && i < A->cmap->N) bb[i] = diag*xx[i];
2121:   }
2122:   if (x && b) {
2123:     VecRestoreArrayRead(x,&xx);
2124:     VecRestoreArray(b,&bb);
2125:   }
2126:   PetscFree(zeroed);
2127:   if (diag != 0.0) {
2128:     MatMissingDiagonal_SeqAIJ(A,&missing,&d);
2129:     if (missing) {
2130:       for (i=0; i<N; i++) {
2131:         if (rows[i] >= A->cmap->N) continue;
2132:         if (a->nonew && rows[i] >= d) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Matrix is missing diagonal entry in row %D (%D)",d,rows[i]);
2133:         MatSetValues_SeqAIJ(A,1,&rows[i],1,&rows[i],&diag,INSERT_VALUES);
2134:       }
2135:     } else {
2136:       for (i=0; i<N; i++) {
2137:         a->a[a->diag[rows[i]]] = diag;
2138:       }
2139:     }
2140:   }
2141: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2142:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
2143: #endif
2144:   (*A->ops->assemblyend)(A,MAT_FINAL_ASSEMBLY);
2145:   return(0);
2146: }

2148: PetscErrorCode MatGetRow_SeqAIJ(Mat A,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
2149: {
2150:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
2151:   PetscInt   *itmp;

2154:   if (row < 0 || row >= A->rmap->n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Row %D out of range",row);

2156:   *nz = a->i[row+1] - a->i[row];
2157:   if (v) *v = a->a + a->i[row];
2158:   if (idx) {
2159:     itmp = a->j + a->i[row];
2160:     if (*nz) *idx = itmp;
2161:     else *idx = 0;
2162:   }
2163:   return(0);
2164: }

2166: /* remove this function? */
2167: PetscErrorCode MatRestoreRow_SeqAIJ(Mat A,PetscInt row,PetscInt *nz,PetscInt **idx,PetscScalar **v)
2168: {
2170:   return(0);
2171: }

2173: PetscErrorCode MatNorm_SeqAIJ(Mat A,NormType type,PetscReal *nrm)
2174: {
2175:   Mat_SeqAIJ     *a  = (Mat_SeqAIJ*)A->data;
2176:   MatScalar      *v  = a->a;
2177:   PetscReal      sum = 0.0;
2179:   PetscInt       i,j;

2182:   if (type == NORM_FROBENIUS) {
2183: #if defined(PETSC_USE_REAL___FP16)
2184:     PetscBLASInt one = 1,nz = a->nz;
2185:     *nrm = BLASnrm2_(&nz,v,&one);
2186: #else
2187:     for (i=0; i<a->nz; i++) {
2188:       sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
2189:     }
2190:     *nrm = PetscSqrtReal(sum);
2191: #endif
2192:     PetscLogFlops(2.0*a->nz);
2193:   } else if (type == NORM_1) {
2194:     PetscReal *tmp;
2195:     PetscInt  *jj = a->j;
2196:     PetscCalloc1(A->cmap->n+1,&tmp);
2197:     *nrm = 0.0;
2198:     for (j=0; j<a->nz; j++) {
2199:       tmp[*jj++] += PetscAbsScalar(*v);  v++;
2200:     }
2201:     for (j=0; j<A->cmap->n; j++) {
2202:       if (tmp[j] > *nrm) *nrm = tmp[j];
2203:     }
2204:     PetscFree(tmp);
2205:     PetscLogFlops(PetscMax(a->nz-1,0));
2206:   } else if (type == NORM_INFINITY) {
2207:     *nrm = 0.0;
2208:     for (j=0; j<A->rmap->n; j++) {
2209:       v   = a->a + a->i[j];
2210:       sum = 0.0;
2211:       for (i=0; i<a->i[j+1]-a->i[j]; i++) {
2212:         sum += PetscAbsScalar(*v); v++;
2213:       }
2214:       if (sum > *nrm) *nrm = sum;
2215:     }
2216:     PetscLogFlops(PetscMax(a->nz-1,0));
2217:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for two norm");
2218:   return(0);
2219: }

2221: /* Merged from MatGetSymbolicTranspose_SeqAIJ() - replace MatGetSymbolicTranspose_SeqAIJ()? */
2222: PetscErrorCode MatTransposeSymbolic_SeqAIJ(Mat A,Mat *B)
2223: {
2225:   PetscInt       i,j,anzj;
2226:   Mat_SeqAIJ     *a=(Mat_SeqAIJ*)A->data,*b;
2227:   PetscInt       an=A->cmap->N,am=A->rmap->N;
2228:   PetscInt       *ati,*atj,*atfill,*ai=a->i,*aj=a->j;

2231:   /* Allocate space for symbolic transpose info and work array */
2232:   PetscCalloc1(an+1,&ati);
2233:   PetscMalloc1(ai[am],&atj);
2234:   PetscMalloc1(an,&atfill);

2236:   /* Walk through aj and count ## of non-zeros in each row of A^T. */
2237:   /* Note: offset by 1 for fast conversion into csr format. */
2238:   for (i=0;i<ai[am];i++) ati[aj[i]+1] += 1;
2239:   /* Form ati for csr format of A^T. */
2240:   for (i=0;i<an;i++) ati[i+1] += ati[i];

2242:   /* Copy ati into atfill so we have locations of the next free space in atj */
2243:   PetscArraycpy(atfill,ati,an);

2245:   /* Walk through A row-wise and mark nonzero entries of A^T. */
2246:   for (i=0;i<am;i++) {
2247:     anzj = ai[i+1] - ai[i];
2248:     for (j=0;j<anzj;j++) {
2249:       atj[atfill[*aj]] = i;
2250:       atfill[*aj++]   += 1;
2251:     }
2252:   }

2254:   /* Clean up temporary space and complete requests. */
2255:   PetscFree(atfill);
2256:   MatCreateSeqAIJWithArrays(PetscObjectComm((PetscObject)A),an,am,ati,atj,NULL,B);
2257:   MatSetBlockSizes(*B,PetscAbs(A->cmap->bs),PetscAbs(A->rmap->bs));
2258:   MatSetType(*B,((PetscObject)A)->type_name);

2260:   b          = (Mat_SeqAIJ*)((*B)->data);
2261:   b->free_a  = PETSC_FALSE;
2262:   b->free_ij = PETSC_TRUE;
2263:   b->nonew   = 0;
2264:   return(0);
2265: }

2267: PetscErrorCode  MatIsTranspose_SeqAIJ(Mat A,Mat B,PetscReal tol,PetscBool  *f)
2268: {
2269:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*) A->data,*bij = (Mat_SeqAIJ*) B->data;
2270:   PetscInt       *adx,*bdx,*aii,*bii,*aptr,*bptr;
2271:   MatScalar      *va,*vb;
2273:   PetscInt       ma,na,mb,nb, i;

2276:   MatGetSize(A,&ma,&na);
2277:   MatGetSize(B,&mb,&nb);
2278:   if (ma!=nb || na!=mb) {
2279:     *f = PETSC_FALSE;
2280:     return(0);
2281:   }
2282:   aii  = aij->i; bii = bij->i;
2283:   adx  = aij->j; bdx = bij->j;
2284:   va   = aij->a; vb = bij->a;
2285:   PetscMalloc1(ma,&aptr);
2286:   PetscMalloc1(mb,&bptr);
2287:   for (i=0; i<ma; i++) aptr[i] = aii[i];
2288:   for (i=0; i<mb; i++) bptr[i] = bii[i];

2290:   *f = PETSC_TRUE;
2291:   for (i=0; i<ma; i++) {
2292:     while (aptr[i]<aii[i+1]) {
2293:       PetscInt    idc,idr;
2294:       PetscScalar vc,vr;
2295:       /* column/row index/value */
2296:       idc = adx[aptr[i]];
2297:       idr = bdx[bptr[idc]];
2298:       vc  = va[aptr[i]];
2299:       vr  = vb[bptr[idc]];
2300:       if (i!=idr || PetscAbsScalar(vc-vr) > tol) {
2301:         *f = PETSC_FALSE;
2302:         goto done;
2303:       } else {
2304:         aptr[i]++;
2305:         if (B || i!=idc) bptr[idc]++;
2306:       }
2307:     }
2308:   }
2309: done:
2310:   PetscFree(aptr);
2311:   PetscFree(bptr);
2312:   return(0);
2313: }

2315: PetscErrorCode  MatIsHermitianTranspose_SeqAIJ(Mat A,Mat B,PetscReal tol,PetscBool  *f)
2316: {
2317:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*) A->data,*bij = (Mat_SeqAIJ*) B->data;
2318:   PetscInt       *adx,*bdx,*aii,*bii,*aptr,*bptr;
2319:   MatScalar      *va,*vb;
2321:   PetscInt       ma,na,mb,nb, i;

2324:   MatGetSize(A,&ma,&na);
2325:   MatGetSize(B,&mb,&nb);
2326:   if (ma!=nb || na!=mb) {
2327:     *f = PETSC_FALSE;
2328:     return(0);
2329:   }
2330:   aii  = aij->i; bii = bij->i;
2331:   adx  = aij->j; bdx = bij->j;
2332:   va   = aij->a; vb = bij->a;
2333:   PetscMalloc1(ma,&aptr);
2334:   PetscMalloc1(mb,&bptr);
2335:   for (i=0; i<ma; i++) aptr[i] = aii[i];
2336:   for (i=0; i<mb; i++) bptr[i] = bii[i];

2338:   *f = PETSC_TRUE;
2339:   for (i=0; i<ma; i++) {
2340:     while (aptr[i]<aii[i+1]) {
2341:       PetscInt    idc,idr;
2342:       PetscScalar vc,vr;
2343:       /* column/row index/value */
2344:       idc = adx[aptr[i]];
2345:       idr = bdx[bptr[idc]];
2346:       vc  = va[aptr[i]];
2347:       vr  = vb[bptr[idc]];
2348:       if (i!=idr || PetscAbsScalar(vc-PetscConj(vr)) > tol) {
2349:         *f = PETSC_FALSE;
2350:         goto done;
2351:       } else {
2352:         aptr[i]++;
2353:         if (B || i!=idc) bptr[idc]++;
2354:       }
2355:     }
2356:   }
2357: done:
2358:   PetscFree(aptr);
2359:   PetscFree(bptr);
2360:   return(0);
2361: }

2363: PetscErrorCode MatIsSymmetric_SeqAIJ(Mat A,PetscReal tol,PetscBool  *f)
2364: {

2368:   MatIsTranspose_SeqAIJ(A,A,tol,f);
2369:   return(0);
2370: }

2372: PetscErrorCode MatIsHermitian_SeqAIJ(Mat A,PetscReal tol,PetscBool  *f)
2373: {

2377:   MatIsHermitianTranspose_SeqAIJ(A,A,tol,f);
2378:   return(0);
2379: }

2381: PetscErrorCode MatDiagonalScale_SeqAIJ(Mat A,Vec ll,Vec rr)
2382: {
2383:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
2384:   const PetscScalar *l,*r;
2385:   PetscScalar       x;
2386:   MatScalar         *v;
2387:   PetscErrorCode    ierr;
2388:   PetscInt          i,j,m = A->rmap->n,n = A->cmap->n,M,nz = a->nz;
2389:   const PetscInt    *jj;

2392:   if (ll) {
2393:     /* The local size is used so that VecMPI can be passed to this routine
2394:        by MatDiagonalScale_MPIAIJ */
2395:     VecGetLocalSize(ll,&m);
2396:     if (m != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Left scaling vector wrong length");
2397:     VecGetArrayRead(ll,&l);
2398:     v    = a->a;
2399:     for (i=0; i<m; i++) {
2400:       x = l[i];
2401:       M = a->i[i+1] - a->i[i];
2402:       for (j=0; j<M; j++) (*v++) *= x;
2403:     }
2404:     VecRestoreArrayRead(ll,&l);
2405:     PetscLogFlops(nz);
2406:   }
2407:   if (rr) {
2408:     VecGetLocalSize(rr,&n);
2409:     if (n != A->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Right scaling vector wrong length");
2410:     VecGetArrayRead(rr,&r);
2411:     v    = a->a; jj = a->j;
2412:     for (i=0; i<nz; i++) (*v++) *= r[*jj++];
2413:     VecRestoreArrayRead(rr,&r);
2414:     PetscLogFlops(nz);
2415:   }
2416:   MatSeqAIJInvalidateDiagonal(A);
2417: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2418:   if (A->offloadmask != PETSC_OFFLOAD_UNALLOCATED) A->offloadmask = PETSC_OFFLOAD_CPU;
2419: #endif
2420:   return(0);
2421: }

2423: PetscErrorCode MatCreateSubMatrix_SeqAIJ(Mat A,IS isrow,IS iscol,PetscInt csize,MatReuse scall,Mat *B)
2424: {
2425:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data,*c;
2427:   PetscInt       *smap,i,k,kstart,kend,oldcols = A->cmap->n,*lens;
2428:   PetscInt       row,mat_i,*mat_j,tcol,first,step,*mat_ilen,sum,lensi;
2429:   const PetscInt *irow,*icol;
2430:   PetscInt       nrows,ncols;
2431:   PetscInt       *starts,*j_new,*i_new,*aj = a->j,*ai = a->i,ii,*ailen = a->ilen;
2432:   MatScalar      *a_new,*mat_a;
2433:   Mat            C;
2434:   PetscBool      stride;


2438:   ISGetIndices(isrow,&irow);
2439:   ISGetLocalSize(isrow,&nrows);
2440:   ISGetLocalSize(iscol,&ncols);

2442:   PetscObjectTypeCompare((PetscObject)iscol,ISSTRIDE,&stride);
2443:   if (stride) {
2444:     ISStrideGetInfo(iscol,&first,&step);
2445:   } else {
2446:     first = 0;
2447:     step  = 0;
2448:   }
2449:   if (stride && step == 1) {
2450:     /* special case of contiguous rows */
2451:     PetscMalloc2(nrows,&lens,nrows,&starts);
2452:     /* loop over new rows determining lens and starting points */
2453:     for (i=0; i<nrows; i++) {
2454:       kstart = ai[irow[i]];
2455:       kend   = kstart + ailen[irow[i]];
2456:       starts[i] = kstart;
2457:       for (k=kstart; k<kend; k++) {
2458:         if (aj[k] >= first) {
2459:           starts[i] = k;
2460:           break;
2461:         }
2462:       }
2463:       sum = 0;
2464:       while (k < kend) {
2465:         if (aj[k++] >= first+ncols) break;
2466:         sum++;
2467:       }
2468:       lens[i] = sum;
2469:     }
2470:     /* create submatrix */
2471:     if (scall == MAT_REUSE_MATRIX) {
2472:       PetscInt n_cols,n_rows;
2473:       MatGetSize(*B,&n_rows,&n_cols);
2474:       if (n_rows != nrows || n_cols != ncols) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Reused submatrix wrong size");
2475:       MatZeroEntries(*B);
2476:       C    = *B;
2477:     } else {
2478:       PetscInt rbs,cbs;
2479:       MatCreate(PetscObjectComm((PetscObject)A),&C);
2480:       MatSetSizes(C,nrows,ncols,PETSC_DETERMINE,PETSC_DETERMINE);
2481:       ISGetBlockSize(isrow,&rbs);
2482:       ISGetBlockSize(iscol,&cbs);
2483:       MatSetBlockSizes(C,rbs,cbs);
2484:       MatSetType(C,((PetscObject)A)->type_name);
2485:       MatSeqAIJSetPreallocation_SeqAIJ(C,0,lens);
2486:     }
2487:     c = (Mat_SeqAIJ*)C->data;

2489:     /* loop over rows inserting into submatrix */
2490:     a_new = c->a;
2491:     j_new = c->j;
2492:     i_new = c->i;

2494:     for (i=0; i<nrows; i++) {
2495:       ii    = starts[i];
2496:       lensi = lens[i];
2497:       for (k=0; k<lensi; k++) {
2498:         *j_new++ = aj[ii+k] - first;
2499:       }
2500:       PetscArraycpy(a_new,a->a + starts[i],lensi);
2501:       a_new     += lensi;
2502:       i_new[i+1] = i_new[i] + lensi;
2503:       c->ilen[i] = lensi;
2504:     }
2505:     PetscFree2(lens,starts);
2506:   } else {
2507:     ISGetIndices(iscol,&icol);
2508:     PetscCalloc1(oldcols,&smap);
2509:     PetscMalloc1(1+nrows,&lens);
2510:     for (i=0; i<ncols; i++) {
2511: #if defined(PETSC_USE_DEBUG)
2512:       if (icol[i] >= oldcols) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Requesting column beyond largest column icol[%D] %D >= A->cmap->n %D",i,icol[i],oldcols);
2513: #endif
2514:       smap[icol[i]] = i+1;
2515:     }

2517:     /* determine lens of each row */
2518:     for (i=0; i<nrows; i++) {
2519:       kstart  = ai[irow[i]];
2520:       kend    = kstart + a->ilen[irow[i]];
2521:       lens[i] = 0;
2522:       for (k=kstart; k<kend; k++) {
2523:         if (smap[aj[k]]) {
2524:           lens[i]++;
2525:         }
2526:       }
2527:     }
2528:     /* Create and fill new matrix */
2529:     if (scall == MAT_REUSE_MATRIX) {
2530:       PetscBool equal;

2532:       c = (Mat_SeqAIJ*)((*B)->data);
2533:       if ((*B)->rmap->n  != nrows || (*B)->cmap->n != ncols) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Cannot reuse matrix. wrong size");
2534:       PetscArraycmp(c->ilen,lens,(*B)->rmap->n,&equal);
2535:       if (!equal) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Cannot reuse matrix. wrong no of nonzeros");
2536:       PetscArrayzero(c->ilen,(*B)->rmap->n);
2537:       C    = *B;
2538:     } else {
2539:       PetscInt rbs,cbs;
2540:       MatCreate(PetscObjectComm((PetscObject)A),&C);
2541:       MatSetSizes(C,nrows,ncols,PETSC_DETERMINE,PETSC_DETERMINE);
2542:       ISGetBlockSize(isrow,&rbs);
2543:       ISGetBlockSize(iscol,&cbs);
2544:       MatSetBlockSizes(C,rbs,cbs);
2545:       MatSetType(C,((PetscObject)A)->type_name);
2546:       MatSeqAIJSetPreallocation_SeqAIJ(C,0,lens);
2547:     }
2548:     c = (Mat_SeqAIJ*)(C->data);
2549:     for (i=0; i<nrows; i++) {
2550:       row      = irow[i];
2551:       kstart   = ai[row];
2552:       kend     = kstart + a->ilen[row];
2553:       mat_i    = c->i[i];
2554:       mat_j    = c->j + mat_i;
2555:       mat_a    = c->a + mat_i;
2556:       mat_ilen = c->ilen + i;
2557:       for (k=kstart; k<kend; k++) {
2558:         if ((tcol=smap[a->j[k]])) {
2559:           *mat_j++ = tcol - 1;
2560:           *mat_a++ = a->a[k];
2561:           (*mat_ilen)++;

2563:         }
2564:       }
2565:     }
2566:     /* Free work space */
2567:     ISRestoreIndices(iscol,&icol);
2568:     PetscFree(smap);
2569:     PetscFree(lens);
2570:     /* sort */
2571:     for (i = 0; i < nrows; i++) {
2572:       PetscInt ilen;

2574:       mat_i = c->i[i];
2575:       mat_j = c->j + mat_i;
2576:       mat_a = c->a + mat_i;
2577:       ilen  = c->ilen[i];
2578:       PetscSortIntWithScalarArray(ilen,mat_j,mat_a);
2579:     }
2580:   }
2581: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2582:   MatBindToCPU(C,A->boundtocpu);
2583: #endif
2584:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
2585:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

2587:   ISRestoreIndices(isrow,&irow);
2588:   *B   = C;
2589:   return(0);
2590: }

2592: PetscErrorCode  MatGetMultiProcBlock_SeqAIJ(Mat mat,MPI_Comm subComm,MatReuse scall,Mat *subMat)
2593: {
2595:   Mat            B;

2598:   if (scall == MAT_INITIAL_MATRIX) {
2599:     MatCreate(subComm,&B);
2600:     MatSetSizes(B,mat->rmap->n,mat->cmap->n,mat->rmap->n,mat->cmap->n);
2601:     MatSetBlockSizesFromMats(B,mat,mat);
2602:     MatSetType(B,MATSEQAIJ);
2603:     MatDuplicateNoCreate_SeqAIJ(B,mat,MAT_COPY_VALUES,PETSC_TRUE);
2604:     *subMat = B;
2605:   } else {
2606:     MatCopy_SeqAIJ(mat,*subMat,SAME_NONZERO_PATTERN);
2607:   }
2608:   return(0);
2609: }

2611: PetscErrorCode MatILUFactor_SeqAIJ(Mat inA,IS row,IS col,const MatFactorInfo *info)
2612: {
2613:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)inA->data;
2615:   Mat            outA;
2616:   PetscBool      row_identity,col_identity;

2619:   if (info->levels != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Only levels=0 supported for in-place ilu");

2621:   ISIdentity(row,&row_identity);
2622:   ISIdentity(col,&col_identity);

2624:   outA             = inA;
2625:   outA->factortype = MAT_FACTOR_LU;
2626:   PetscFree(inA->solvertype);
2627:   PetscStrallocpy(MATSOLVERPETSC,&inA->solvertype);

2629:   PetscObjectReference((PetscObject)row);
2630:   ISDestroy(&a->row);

2632:   a->row = row;

2634:   PetscObjectReference((PetscObject)col);
2635:   ISDestroy(&a->col);

2637:   a->col = col;

2639:   /* Create the inverse permutation so that it can be used in MatLUFactorNumeric() */
2640:   ISDestroy(&a->icol);
2641:   ISInvertPermutation(col,PETSC_DECIDE,&a->icol);
2642:   PetscLogObjectParent((PetscObject)inA,(PetscObject)a->icol);

2644:   if (!a->solve_work) { /* this matrix may have been factored before */
2645:     PetscMalloc1(inA->rmap->n+1,&a->solve_work);
2646:     PetscLogObjectMemory((PetscObject)inA, (inA->rmap->n+1)*sizeof(PetscScalar));
2647:   }

2649:   MatMarkDiagonal_SeqAIJ(inA);
2650:   if (row_identity && col_identity) {
2651:     MatLUFactorNumeric_SeqAIJ_inplace(outA,inA,info);
2652:   } else {
2653:     MatLUFactorNumeric_SeqAIJ_InplaceWithPerm(outA,inA,info);
2654:   }
2655:   return(0);
2656: }

2658: PetscErrorCode MatScale_SeqAIJ(Mat inA,PetscScalar alpha)
2659: {
2660:   Mat_SeqAIJ     *a     = (Mat_SeqAIJ*)inA->data;
2661:   PetscScalar    oalpha = alpha;
2663:   PetscBLASInt   one = 1,bnz;

2666:   PetscBLASIntCast(a->nz,&bnz);
2667:   PetscStackCallBLAS("BLASscal",BLASscal_(&bnz,&oalpha,a->a,&one));
2668:   PetscLogFlops(a->nz);
2669:   MatSeqAIJInvalidateDiagonal(inA);
2670: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2671:   if (inA->offloadmask != PETSC_OFFLOAD_UNALLOCATED) inA->offloadmask = PETSC_OFFLOAD_CPU;
2672: #endif
2673:   return(0);
2674: }

2676: PetscErrorCode MatDestroySubMatrix_Private(Mat_SubSppt *submatj)
2677: {
2679:   PetscInt       i;

2682:   if (!submatj->id) { /* delete data that are linked only to submats[id=0] */
2683:     PetscFree4(submatj->sbuf1,submatj->ptr,submatj->tmp,submatj->ctr);

2685:     for (i=0; i<submatj->nrqr; ++i) {
2686:       PetscFree(submatj->sbuf2[i]);
2687:     }
2688:     PetscFree3(submatj->sbuf2,submatj->req_size,submatj->req_source1);

2690:     if (submatj->rbuf1) {
2691:       PetscFree(submatj->rbuf1[0]);
2692:       PetscFree(submatj->rbuf1);
2693:     }

2695:     for (i=0; i<submatj->nrqs; ++i) {
2696:       PetscFree(submatj->rbuf3[i]);
2697:     }
2698:     PetscFree3(submatj->req_source2,submatj->rbuf2,submatj->rbuf3);
2699:     PetscFree(submatj->pa);
2700:   }

2702: #if defined(PETSC_USE_CTABLE)
2703:   PetscTableDestroy((PetscTable*)&submatj->rmap);
2704:   if (submatj->cmap_loc) {PetscFree(submatj->cmap_loc);}
2705:   PetscFree(submatj->rmap_loc);
2706: #else
2707:   PetscFree(submatj->rmap);
2708: #endif

2710:   if (!submatj->allcolumns) {
2711: #if defined(PETSC_USE_CTABLE)
2712:     PetscTableDestroy((PetscTable*)&submatj->cmap);
2713: #else
2714:     PetscFree(submatj->cmap);
2715: #endif
2716:   }
2717:   PetscFree(submatj->row2proc);

2719:   PetscFree(submatj);
2720:   return(0);
2721: }

2723: PetscErrorCode MatDestroySubMatrix_SeqAIJ(Mat C)
2724: {
2726:   Mat_SeqAIJ     *c = (Mat_SeqAIJ*)C->data;
2727:   Mat_SubSppt    *submatj = c->submatis1;

2730:   (*submatj->destroy)(C);
2731:   MatDestroySubMatrix_Private(submatj);
2732:   return(0);
2733: }

2735: PetscErrorCode MatDestroySubMatrices_SeqAIJ(PetscInt n,Mat *mat[])
2736: {
2738:   PetscInt       i;
2739:   Mat            C;
2740:   Mat_SeqAIJ     *c;
2741:   Mat_SubSppt    *submatj;

2744:   for (i=0; i<n; i++) {
2745:     C       = (*mat)[i];
2746:     c       = (Mat_SeqAIJ*)C->data;
2747:     submatj = c->submatis1;
2748:     if (submatj) {
2749:       if (--((PetscObject)C)->refct <= 0) {
2750:         (*submatj->destroy)(C);
2751:         MatDestroySubMatrix_Private(submatj);
2752:         PetscFree(C->defaultvectype);
2753:         PetscLayoutDestroy(&C->rmap);
2754:         PetscLayoutDestroy(&C->cmap);
2755:         PetscHeaderDestroy(&C);
2756:       }
2757:     } else {
2758:       MatDestroy(&C);
2759:     }
2760:   }

2762:   /* Destroy Dummy submatrices created for reuse */
2763:   MatDestroySubMatrices_Dummy(n,mat);

2765:   PetscFree(*mat);
2766:   return(0);
2767: }

2769: PetscErrorCode MatCreateSubMatrices_SeqAIJ(Mat A,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *B[])
2770: {
2772:   PetscInt       i;

2775:   if (scall == MAT_INITIAL_MATRIX) {
2776:     PetscCalloc1(n+1,B);
2777:   }

2779:   for (i=0; i<n; i++) {
2780:     MatCreateSubMatrix_SeqAIJ(A,irow[i],icol[i],PETSC_DECIDE,scall,&(*B)[i]);
2781:   }
2782:   return(0);
2783: }

2785: PetscErrorCode MatIncreaseOverlap_SeqAIJ(Mat A,PetscInt is_max,IS is[],PetscInt ov)
2786: {
2787:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
2789:   PetscInt       row,i,j,k,l,m,n,*nidx,isz,val;
2790:   const PetscInt *idx;
2791:   PetscInt       start,end,*ai,*aj;
2792:   PetscBT        table;

2795:   m  = A->rmap->n;
2796:   ai = a->i;
2797:   aj = a->j;

2799:   if (ov < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"illegal negative overlap value used");

2801:   PetscMalloc1(m+1,&nidx);
2802:   PetscBTCreate(m,&table);

2804:   for (i=0; i<is_max; i++) {
2805:     /* Initialize the two local arrays */
2806:     isz  = 0;
2807:     PetscBTMemzero(m,table);

2809:     /* Extract the indices, assume there can be duplicate entries */
2810:     ISGetIndices(is[i],&idx);
2811:     ISGetLocalSize(is[i],&n);

2813:     /* Enter these into the temp arrays. I.e., mark table[row], enter row into new index */
2814:     for (j=0; j<n; ++j) {
2815:       if (!PetscBTLookupSet(table,idx[j])) nidx[isz++] = idx[j];
2816:     }
2817:     ISRestoreIndices(is[i],&idx);
2818:     ISDestroy(&is[i]);

2820:     k = 0;
2821:     for (j=0; j<ov; j++) { /* for each overlap */
2822:       n = isz;
2823:       for (; k<n; k++) { /* do only those rows in nidx[k], which are not done yet */
2824:         row   = nidx[k];
2825:         start = ai[row];
2826:         end   = ai[row+1];
2827:         for (l = start; l<end; l++) {
2828:           val = aj[l];
2829:           if (!PetscBTLookupSet(table,val)) nidx[isz++] = val;
2830:         }
2831:       }
2832:     }
2833:     ISCreateGeneral(PETSC_COMM_SELF,isz,nidx,PETSC_COPY_VALUES,(is+i));
2834:   }
2835:   PetscBTDestroy(&table);
2836:   PetscFree(nidx);
2837:   return(0);
2838: }

2840: /* -------------------------------------------------------------- */
2841: PetscErrorCode MatPermute_SeqAIJ(Mat A,IS rowp,IS colp,Mat *B)
2842: {
2843:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
2845:   PetscInt       i,nz = 0,m = A->rmap->n,n = A->cmap->n;
2846:   const PetscInt *row,*col;
2847:   PetscInt       *cnew,j,*lens;
2848:   IS             icolp,irowp;
2849:   PetscInt       *cwork = NULL;
2850:   PetscScalar    *vwork = NULL;

2853:   ISInvertPermutation(rowp,PETSC_DECIDE,&irowp);
2854:   ISGetIndices(irowp,&row);
2855:   ISInvertPermutation(colp,PETSC_DECIDE,&icolp);
2856:   ISGetIndices(icolp,&col);

2858:   /* determine lengths of permuted rows */
2859:   PetscMalloc1(m+1,&lens);
2860:   for (i=0; i<m; i++) lens[row[i]] = a->i[i+1] - a->i[i];
2861:   MatCreate(PetscObjectComm((PetscObject)A),B);
2862:   MatSetSizes(*B,m,n,m,n);
2863:   MatSetBlockSizesFromMats(*B,A,A);
2864:   MatSetType(*B,((PetscObject)A)->type_name);
2865:   MatSeqAIJSetPreallocation_SeqAIJ(*B,0,lens);
2866:   PetscFree(lens);

2868:   PetscMalloc1(n,&cnew);
2869:   for (i=0; i<m; i++) {
2870:     MatGetRow_SeqAIJ(A,i,&nz,&cwork,&vwork);
2871:     for (j=0; j<nz; j++) cnew[j] = col[cwork[j]];
2872:     MatSetValues_SeqAIJ(*B,1,&row[i],nz,cnew,vwork,INSERT_VALUES);
2873:     MatRestoreRow_SeqAIJ(A,i,&nz,&cwork,&vwork);
2874:   }
2875:   PetscFree(cnew);

2877:   (*B)->assembled = PETSC_FALSE;

2879: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2880:   MatBindToCPU(*B,A->boundtocpu);
2881: #endif
2882:   MatAssemblyBegin(*B,MAT_FINAL_ASSEMBLY);
2883:   MatAssemblyEnd(*B,MAT_FINAL_ASSEMBLY);
2884:   ISRestoreIndices(irowp,&row);
2885:   ISRestoreIndices(icolp,&col);
2886:   ISDestroy(&irowp);
2887:   ISDestroy(&icolp);
2888:   if (rowp == colp) {
2889:     if (A->symmetric) {
2890:       MatSetOption(*B,MAT_SYMMETRIC,PETSC_TRUE);
2891:     }
2892:     if (A->hermitian) {
2893:       MatSetOption(*B,MAT_HERMITIAN,PETSC_TRUE);
2894:     }
2895:   }
2896:   return(0);
2897: }

2899: PetscErrorCode MatCopy_SeqAIJ(Mat A,Mat B,MatStructure str)
2900: {

2904:   /* If the two matrices have the same copy implementation, use fast copy. */
2905:   if (str == SAME_NONZERO_PATTERN && (A->ops->copy == B->ops->copy)) {
2906:     Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
2907:     Mat_SeqAIJ *b = (Mat_SeqAIJ*)B->data;

2909:     if (a->i[A->rmap->n] != b->i[B->rmap->n]) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Number of nonzeros in two matrices are different %D != %D",a->i[A->rmap->n],b->i[B->rmap->n]);
2910:     PetscArraycpy(b->a,a->a,a->i[A->rmap->n]);
2911:     PetscObjectStateIncrease((PetscObject)B);
2912:   } else {
2913:     MatCopy_Basic(A,B,str);
2914:   }
2915:   return(0);
2916: }

2918: PetscErrorCode MatSetUp_SeqAIJ(Mat A)
2919: {

2923:   MatSeqAIJSetPreallocation_SeqAIJ(A,PETSC_DEFAULT,0);
2924:   return(0);
2925: }

2927: PETSC_INTERN PetscErrorCode MatSeqAIJGetArray_SeqAIJ(Mat A,PetscScalar *array[])
2928: {
2929:   Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;

2932:   *array = a->a;
2933:   return(0);
2934: }

2936: PETSC_INTERN PetscErrorCode MatSeqAIJRestoreArray_SeqAIJ(Mat A,PetscScalar *array[])
2937: {
2939:   *array = NULL;
2940:   return(0);
2941: }

2943: /*
2944:    Computes the number of nonzeros per row needed for preallocation when X and Y
2945:    have different nonzero structure.
2946: */
2947: PetscErrorCode MatAXPYGetPreallocation_SeqX_private(PetscInt m,const PetscInt *xi,const PetscInt *xj,const PetscInt *yi,const PetscInt *yj,PetscInt *nnz)
2948: {
2949:   PetscInt       i,j,k,nzx,nzy;

2952:   /* Set the number of nonzeros in the new matrix */
2953:   for (i=0; i<m; i++) {
2954:     const PetscInt *xjj = xj+xi[i],*yjj = yj+yi[i];
2955:     nzx = xi[i+1] - xi[i];
2956:     nzy = yi[i+1] - yi[i];
2957:     nnz[i] = 0;
2958:     for (j=0,k=0; j<nzx; j++) {                   /* Point in X */
2959:       for (; k<nzy && yjj[k]<xjj[j]; k++) nnz[i]++; /* Catch up to X */
2960:       if (k<nzy && yjj[k]==xjj[j]) k++;             /* Skip duplicate */
2961:       nnz[i]++;
2962:     }
2963:     for (; k<nzy; k++) nnz[i]++;
2964:   }
2965:   return(0);
2966: }

2968: PetscErrorCode MatAXPYGetPreallocation_SeqAIJ(Mat Y,Mat X,PetscInt *nnz)
2969: {
2970:   PetscInt       m = Y->rmap->N;
2971:   Mat_SeqAIJ     *x = (Mat_SeqAIJ*)X->data;
2972:   Mat_SeqAIJ     *y = (Mat_SeqAIJ*)Y->data;

2976:   /* Set the number of nonzeros in the new matrix */
2977:   MatAXPYGetPreallocation_SeqX_private(m,x->i,x->j,y->i,y->j,nnz);
2978:   return(0);
2979: }

2981: PetscErrorCode MatAXPY_SeqAIJ(Mat Y,PetscScalar a,Mat X,MatStructure str)
2982: {
2984:   Mat_SeqAIJ     *x = (Mat_SeqAIJ*)X->data,*y = (Mat_SeqAIJ*)Y->data;
2985:   PetscBLASInt   one=1,bnz;

2988:   PetscBLASIntCast(x->nz,&bnz);
2989:   if (str == SAME_NONZERO_PATTERN) {
2990:     PetscScalar alpha = a;
2991:     PetscStackCallBLAS("BLASaxpy",BLASaxpy_(&bnz,&alpha,x->a,&one,y->a,&one));
2992:     MatSeqAIJInvalidateDiagonal(Y);
2993:     PetscObjectStateIncrease((PetscObject)Y);
2994:     /* the MatAXPY_Basic* subroutines calls MatAssembly, so the matrix on the GPU
2995:        will be updated */
2996: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
2997:     if (Y->offloadmask != PETSC_OFFLOAD_UNALLOCATED) {
2998:       Y->offloadmask = PETSC_OFFLOAD_CPU;
2999:     }
3000: #endif
3001:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
3002:     MatAXPY_Basic(Y,a,X,str);
3003:   } else {
3004:     Mat      B;
3005:     PetscInt *nnz;
3006:     PetscMalloc1(Y->rmap->N,&nnz);
3007:     MatCreate(PetscObjectComm((PetscObject)Y),&B);
3008:     PetscObjectSetName((PetscObject)B,((PetscObject)Y)->name);
3009:     MatSetSizes(B,Y->rmap->n,Y->cmap->n,Y->rmap->N,Y->cmap->N);
3010:     MatSetBlockSizesFromMats(B,Y,Y);
3011:     MatSetType(B,(MatType) ((PetscObject)Y)->type_name);
3012:     MatAXPYGetPreallocation_SeqAIJ(Y,X,nnz);
3013:     MatSeqAIJSetPreallocation(B,0,nnz);
3014:     MatAXPY_BasicWithPreallocation(B,Y,a,X,str);
3015:     MatHeaderReplace(Y,&B);
3016:     PetscFree(nnz);
3017:   }
3018:   return(0);
3019: }

3021: PetscErrorCode  MatConjugate_SeqAIJ(Mat mat)
3022: {
3023: #if defined(PETSC_USE_COMPLEX)
3024:   Mat_SeqAIJ  *aij = (Mat_SeqAIJ*)mat->data;
3025:   PetscInt    i,nz;
3026:   PetscScalar *a;

3029:   nz = aij->nz;
3030:   a  = aij->a;
3031:   for (i=0; i<nz; i++) a[i] = PetscConj(a[i]);
3032: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA)
3033:   if (mat->offloadmask != PETSC_OFFLOAD_UNALLOCATED) mat->offloadmask = PETSC_OFFLOAD_CPU;
3034: #endif
3035: #else
3037: #endif
3038:   return(0);
3039: }

3041: PetscErrorCode MatGetRowMaxAbs_SeqAIJ(Mat A,Vec v,PetscInt idx[])
3042: {
3043:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
3045:   PetscInt       i,j,m = A->rmap->n,*ai,*aj,ncols,n;
3046:   PetscReal      atmp;
3047:   PetscScalar    *x;
3048:   MatScalar      *aa;

3051:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3052:   aa = a->a;
3053:   ai = a->i;
3054:   aj = a->j;

3056:   VecSet(v,0.0);
3057:   VecGetArray(v,&x);
3058:   VecGetLocalSize(v,&n);
3059:   if (n != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
3060:   for (i=0; i<m; i++) {
3061:     ncols = ai[1] - ai[0]; ai++;
3062:     x[i]  = 0.0;
3063:     for (j=0; j<ncols; j++) {
3064:       atmp = PetscAbsScalar(*aa);
3065:       if (PetscAbsScalar(x[i]) < atmp) {x[i] = atmp; if (idx) idx[i] = *aj;}
3066:       aa++; aj++;
3067:     }
3068:   }
3069:   VecRestoreArray(v,&x);
3070:   return(0);
3071: }

3073: PetscErrorCode MatGetRowMax_SeqAIJ(Mat A,Vec v,PetscInt idx[])
3074: {
3075:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
3077:   PetscInt       i,j,m = A->rmap->n,*ai,*aj,ncols,n;
3078:   PetscScalar    *x;
3079:   MatScalar      *aa;

3082:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3083:   aa = a->a;
3084:   ai = a->i;
3085:   aj = a->j;

3087:   VecSet(v,0.0);
3088:   VecGetArray(v,&x);
3089:   VecGetLocalSize(v,&n);
3090:   if (n != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
3091:   for (i=0; i<m; i++) {
3092:     ncols = ai[1] - ai[0]; ai++;
3093:     if (ncols == A->cmap->n) { /* row is dense */
3094:       x[i] = *aa; if (idx) idx[i] = 0;
3095:     } else {  /* row is sparse so already KNOW maximum is 0.0 or higher */
3096:       x[i] = 0.0;
3097:       if (idx) {
3098:         idx[i] = 0; /* in case ncols is zero */
3099:         for (j=0;j<ncols;j++) { /* find first implicit 0.0 in the row */
3100:           if (aj[j] > j) {
3101:             idx[i] = j;
3102:             break;
3103:           }
3104:         }
3105:       }
3106:     }
3107:     for (j=0; j<ncols; j++) {
3108:       if (PetscRealPart(x[i]) < PetscRealPart(*aa)) {x[i] = *aa; if (idx) idx[i] = *aj;}
3109:       aa++; aj++;
3110:     }
3111:   }
3112:   VecRestoreArray(v,&x);
3113:   return(0);
3114: }

3116: PetscErrorCode MatGetRowMinAbs_SeqAIJ(Mat A,Vec v,PetscInt idx[])
3117: {
3118:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
3120:   PetscInt       i,j,m = A->rmap->n,*ai,*aj,ncols,n;
3121:   PetscReal      atmp;
3122:   PetscScalar    *x;
3123:   MatScalar      *aa;

3126:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3127:   aa = a->a;
3128:   ai = a->i;
3129:   aj = a->j;

3131:   VecSet(v,0.0);
3132:   VecGetArray(v,&x);
3133:   VecGetLocalSize(v,&n);
3134:   if (n != A->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector, %D vs. %D rows", A->rmap->n, n);
3135:   for (i=0; i<m; i++) {
3136:     ncols = ai[1] - ai[0]; ai++;
3137:     if (ncols) {
3138:       /* Get first nonzero */
3139:       for (j = 0; j < ncols; j++) {
3140:         atmp = PetscAbsScalar(aa[j]);
3141:         if (atmp > 1.0e-12) {
3142:           x[i] = atmp;
3143:           if (idx) idx[i] = aj[j];
3144:           break;
3145:         }
3146:       }
3147:       if (j == ncols) {x[i] = PetscAbsScalar(*aa); if (idx) idx[i] = *aj;}
3148:     } else {
3149:       x[i] = 0.0; if (idx) idx[i] = 0;
3150:     }
3151:     for (j = 0; j < ncols; j++) {
3152:       atmp = PetscAbsScalar(*aa);
3153:       if (atmp > 1.0e-12 && PetscAbsScalar(x[i]) > atmp) {x[i] = atmp; if (idx) idx[i] = *aj;}
3154:       aa++; aj++;
3155:     }
3156:   }
3157:   VecRestoreArray(v,&x);
3158:   return(0);
3159: }

3161: PetscErrorCode MatGetRowMin_SeqAIJ(Mat A,Vec v,PetscInt idx[])
3162: {
3163:   Mat_SeqAIJ      *a = (Mat_SeqAIJ*)A->data;
3164:   PetscErrorCode  ierr;
3165:   PetscInt        i,j,m = A->rmap->n,ncols,n;
3166:   const PetscInt  *ai,*aj;
3167:   PetscScalar     *x;
3168:   const MatScalar *aa;

3171:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3172:   aa = a->a;
3173:   ai = a->i;
3174:   aj = a->j;

3176:   VecSet(v,0.0);
3177:   VecGetArray(v,&x);
3178:   VecGetLocalSize(v,&n);
3179:   if (n != A->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
3180:   for (i=0; i<m; i++) {
3181:     ncols = ai[1] - ai[0]; ai++;
3182:     if (ncols == A->cmap->n) { /* row is dense */
3183:       x[i] = *aa; if (idx) idx[i] = 0;
3184:     } else {  /* row is sparse so already KNOW minimum is 0.0 or lower */
3185:       x[i] = 0.0;
3186:       if (idx) {   /* find first implicit 0.0 in the row */
3187:         idx[i] = 0; /* in case ncols is zero */
3188:         for (j=0; j<ncols; j++) {
3189:           if (aj[j] > j) {
3190:             idx[i] = j;
3191:             break;
3192:           }
3193:         }
3194:       }
3195:     }
3196:     for (j=0; j<ncols; j++) {
3197:       if (PetscRealPart(x[i]) > PetscRealPart(*aa)) {x[i] = *aa; if (idx) idx[i] = *aj;}
3198:       aa++; aj++;
3199:     }
3200:   }
3201:   VecRestoreArray(v,&x);
3202:   return(0);
3203: }

3205: PetscErrorCode MatInvertBlockDiagonal_SeqAIJ(Mat A,const PetscScalar **values)
3206: {
3207:   Mat_SeqAIJ      *a = (Mat_SeqAIJ*) A->data;
3208:   PetscErrorCode  ierr;
3209:   PetscInt        i,bs = PetscAbs(A->rmap->bs),mbs = A->rmap->n/bs,ipvt[5],bs2 = bs*bs,*v_pivots,ij[7],*IJ,j;
3210:   MatScalar       *diag,work[25],*v_work;
3211:   const PetscReal shift = 0.0;
3212:   PetscBool       allowzeropivot,zeropivotdetected=PETSC_FALSE;

3215:   allowzeropivot = PetscNot(A->erroriffailure);
3216:   if (a->ibdiagvalid) {
3217:     if (values) *values = a->ibdiag;
3218:     return(0);
3219:   }
3220:   MatMarkDiagonal_SeqAIJ(A);
3221:   if (!a->ibdiag) {
3222:     PetscMalloc1(bs2*mbs,&a->ibdiag);
3223:     PetscLogObjectMemory((PetscObject)A,bs2*mbs*sizeof(PetscScalar));
3224:   }
3225:   diag = a->ibdiag;
3226:   if (values) *values = a->ibdiag;
3227:   /* factor and invert each block */
3228:   switch (bs) {
3229:   case 1:
3230:     for (i=0; i<mbs; i++) {
3231:       MatGetValues(A,1,&i,1,&i,diag+i);
3232:       if (PetscAbsScalar(diag[i] + shift) < PETSC_MACHINE_EPSILON) {
3233:         if (allowzeropivot) {
3234:           A->factorerrortype             = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3235:           A->factorerror_zeropivot_value = PetscAbsScalar(diag[i]);
3236:           A->factorerror_zeropivot_row   = i;
3237:           PetscInfo3(A,"Zero pivot, row %D pivot %g tolerance %g\n",i,(double)PetscAbsScalar(diag[i]),(double)PETSC_MACHINE_EPSILON);
3238:         } else SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot, row %D pivot %g tolerance %g",i,(double)PetscAbsScalar(diag[i]),(double)PETSC_MACHINE_EPSILON);
3239:       }
3240:       diag[i] = (PetscScalar)1.0 / (diag[i] + shift);
3241:     }
3242:     break;
3243:   case 2:
3244:     for (i=0; i<mbs; i++) {
3245:       ij[0] = 2*i; ij[1] = 2*i + 1;
3246:       MatGetValues(A,2,ij,2,ij,diag);
3247:       PetscKernel_A_gets_inverse_A_2(diag,shift,allowzeropivot,&zeropivotdetected);
3248:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3249:       PetscKernel_A_gets_transpose_A_2(diag);
3250:       diag += 4;
3251:     }
3252:     break;
3253:   case 3:
3254:     for (i=0; i<mbs; i++) {
3255:       ij[0] = 3*i; ij[1] = 3*i + 1; ij[2] = 3*i + 2;
3256:       MatGetValues(A,3,ij,3,ij,diag);
3257:       PetscKernel_A_gets_inverse_A_3(diag,shift,allowzeropivot,&zeropivotdetected);
3258:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3259:       PetscKernel_A_gets_transpose_A_3(diag);
3260:       diag += 9;
3261:     }
3262:     break;
3263:   case 4:
3264:     for (i=0; i<mbs; i++) {
3265:       ij[0] = 4*i; ij[1] = 4*i + 1; ij[2] = 4*i + 2; ij[3] = 4*i + 3;
3266:       MatGetValues(A,4,ij,4,ij,diag);
3267:       PetscKernel_A_gets_inverse_A_4(diag,shift,allowzeropivot,&zeropivotdetected);
3268:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3269:       PetscKernel_A_gets_transpose_A_4(diag);
3270:       diag += 16;
3271:     }
3272:     break;
3273:   case 5:
3274:     for (i=0; i<mbs; i++) {
3275:       ij[0] = 5*i; ij[1] = 5*i + 1; ij[2] = 5*i + 2; ij[3] = 5*i + 3; ij[4] = 5*i + 4;
3276:       MatGetValues(A,5,ij,5,ij,diag);
3277:       PetscKernel_A_gets_inverse_A_5(diag,ipvt,work,shift,allowzeropivot,&zeropivotdetected);
3278:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3279:       PetscKernel_A_gets_transpose_A_5(diag);
3280:       diag += 25;
3281:     }
3282:     break;
3283:   case 6:
3284:     for (i=0; i<mbs; i++) {
3285:       ij[0] = 6*i; ij[1] = 6*i + 1; ij[2] = 6*i + 2; ij[3] = 6*i + 3; ij[4] = 6*i + 4; ij[5] = 6*i + 5;
3286:       MatGetValues(A,6,ij,6,ij,diag);
3287:       PetscKernel_A_gets_inverse_A_6(diag,shift,allowzeropivot,&zeropivotdetected);
3288:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3289:       PetscKernel_A_gets_transpose_A_6(diag);
3290:       diag += 36;
3291:     }
3292:     break;
3293:   case 7:
3294:     for (i=0; i<mbs; i++) {
3295:       ij[0] = 7*i; ij[1] = 7*i + 1; ij[2] = 7*i + 2; ij[3] = 7*i + 3; ij[4] = 7*i + 4; ij[5] = 7*i + 5; ij[5] = 7*i + 6;
3296:       MatGetValues(A,7,ij,7,ij,diag);
3297:       PetscKernel_A_gets_inverse_A_7(diag,shift,allowzeropivot,&zeropivotdetected);
3298:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3299:       PetscKernel_A_gets_transpose_A_7(diag);
3300:       diag += 49;
3301:     }
3302:     break;
3303:   default:
3304:     PetscMalloc3(bs,&v_work,bs,&v_pivots,bs,&IJ);
3305:     for (i=0; i<mbs; i++) {
3306:       for (j=0; j<bs; j++) {
3307:         IJ[j] = bs*i + j;
3308:       }
3309:       MatGetValues(A,bs,IJ,bs,IJ,diag);
3310:       PetscKernel_A_gets_inverse_A(bs,diag,v_pivots,v_work,allowzeropivot,&zeropivotdetected);
3311:       if (zeropivotdetected) A->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
3312:       PetscKernel_A_gets_transpose_A_N(diag,bs);
3313:       diag += bs2;
3314:     }
3315:     PetscFree3(v_work,v_pivots,IJ);
3316:   }
3317:   a->ibdiagvalid = PETSC_TRUE;
3318:   return(0);
3319: }

3321: static PetscErrorCode  MatSetRandom_SeqAIJ(Mat x,PetscRandom rctx)
3322: {
3324:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)x->data;
3325:   PetscScalar    a;
3326:   PetscInt       m,n,i,j,col;

3329:   if (!x->assembled) {
3330:     MatGetSize(x,&m,&n);
3331:     for (i=0; i<m; i++) {
3332:       for (j=0; j<aij->imax[i]; j++) {
3333:         PetscRandomGetValue(rctx,&a);
3334:         col  = (PetscInt)(n*PetscRealPart(a));
3335:         MatSetValues(x,1,&i,1,&col,&a,ADD_VALUES);
3336:       }
3337:     }
3338:   } else {
3339:     for (i=0; i<aij->nz; i++) {PetscRandomGetValue(rctx,aij->a+i);}
3340:   }
3341:   MatAssemblyBegin(x,MAT_FINAL_ASSEMBLY);
3342:   MatAssemblyEnd(x,MAT_FINAL_ASSEMBLY);
3343:   return(0);
3344: }

3346: /* Like MatSetRandom_SeqAIJ, but do not set values on columns in range of [low, high) */
3347: PetscErrorCode  MatSetRandomSkipColumnRange_SeqAIJ_Private(Mat x,PetscInt low,PetscInt high,PetscRandom rctx)
3348: {
3350:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)x->data;
3351:   PetscScalar    a;
3352:   PetscInt       m,n,i,j,col,nskip;

3355:   nskip = high - low;
3356:   MatGetSize(x,&m,&n);
3357:   n    -= nskip; /* shrink number of columns where nonzeros can be set */
3358:   for (i=0; i<m; i++) {
3359:     for (j=0; j<aij->imax[i]; j++) {
3360:       PetscRandomGetValue(rctx,&a);
3361:       col  = (PetscInt)(n*PetscRealPart(a));
3362:       if (col >= low) col += nskip; /* shift col rightward to skip the hole */
3363:       MatSetValues(x,1,&i,1,&col,&a,ADD_VALUES);
3364:     }
3365:   }
3366:   MatAssemblyBegin(x,MAT_FINAL_ASSEMBLY);
3367:   MatAssemblyEnd(x,MAT_FINAL_ASSEMBLY);
3368:   return(0);
3369: }


3372: /* -------------------------------------------------------------------*/
3373: static struct _MatOps MatOps_Values = { MatSetValues_SeqAIJ,
3374:                                         MatGetRow_SeqAIJ,
3375:                                         MatRestoreRow_SeqAIJ,
3376:                                         MatMult_SeqAIJ,
3377:                                 /*  4*/ MatMultAdd_SeqAIJ,
3378:                                         MatMultTranspose_SeqAIJ,
3379:                                         MatMultTransposeAdd_SeqAIJ,
3380:                                         0,
3381:                                         0,
3382:                                         0,
3383:                                 /* 10*/ 0,
3384:                                         MatLUFactor_SeqAIJ,
3385:                                         0,
3386:                                         MatSOR_SeqAIJ,
3387:                                         MatTranspose_SeqAIJ,
3388:                                 /*1 5*/ MatGetInfo_SeqAIJ,
3389:                                         MatEqual_SeqAIJ,
3390:                                         MatGetDiagonal_SeqAIJ,
3391:                                         MatDiagonalScale_SeqAIJ,
3392:                                         MatNorm_SeqAIJ,
3393:                                 /* 20*/ 0,
3394:                                         MatAssemblyEnd_SeqAIJ,
3395:                                         MatSetOption_SeqAIJ,
3396:                                         MatZeroEntries_SeqAIJ,
3397:                                 /* 24*/ MatZeroRows_SeqAIJ,
3398:                                         0,
3399:                                         0,
3400:                                         0,
3401:                                         0,
3402:                                 /* 29*/ MatSetUp_SeqAIJ,
3403:                                         0,
3404:                                         0,
3405:                                         0,
3406:                                         0,
3407:                                 /* 34*/ MatDuplicate_SeqAIJ,
3408:                                         0,
3409:                                         0,
3410:                                         MatILUFactor_SeqAIJ,
3411:                                         0,
3412:                                 /* 39*/ MatAXPY_SeqAIJ,
3413:                                         MatCreateSubMatrices_SeqAIJ,
3414:                                         MatIncreaseOverlap_SeqAIJ,
3415:                                         MatGetValues_SeqAIJ,
3416:                                         MatCopy_SeqAIJ,
3417:                                 /* 44*/ MatGetRowMax_SeqAIJ,
3418:                                         MatScale_SeqAIJ,
3419:                                         MatShift_SeqAIJ,
3420:                                         MatDiagonalSet_SeqAIJ,
3421:                                         MatZeroRowsColumns_SeqAIJ,
3422:                                 /* 49*/ MatSetRandom_SeqAIJ,
3423:                                         MatGetRowIJ_SeqAIJ,
3424:                                         MatRestoreRowIJ_SeqAIJ,
3425:                                         MatGetColumnIJ_SeqAIJ,
3426:                                         MatRestoreColumnIJ_SeqAIJ,
3427:                                 /* 54*/ MatFDColoringCreate_SeqXAIJ,
3428:                                         0,
3429:                                         0,
3430:                                         MatPermute_SeqAIJ,
3431:                                         0,
3432:                                 /* 59*/ 0,
3433:                                         MatDestroy_SeqAIJ,
3434:                                         MatView_SeqAIJ,
3435:                                         0,
3436:                                         0,
3437:                                 /* 64*/ 0,
3438:                                         MatMatMatMultNumeric_SeqAIJ_SeqAIJ_SeqAIJ,
3439:                                         0,
3440:                                         0,
3441:                                         0,
3442:                                 /* 69*/ MatGetRowMaxAbs_SeqAIJ,
3443:                                         MatGetRowMinAbs_SeqAIJ,
3444:                                         0,
3445:                                         0,
3446:                                         0,
3447:                                 /* 74*/ 0,
3448:                                         MatFDColoringApply_AIJ,
3449:                                         0,
3450:                                         0,
3451:                                         0,
3452:                                 /* 79*/ MatFindZeroDiagonals_SeqAIJ,
3453:                                         0,
3454:                                         0,
3455:                                         0,
3456:                                         MatLoad_SeqAIJ,
3457:                                 /* 84*/ MatIsSymmetric_SeqAIJ,
3458:                                         MatIsHermitian_SeqAIJ,
3459:                                         0,
3460:                                         0,
3461:                                         0,
3462:                                 /* 89*/ 0,
3463:                                         0,
3464:                                         MatMatMultNumeric_SeqAIJ_SeqAIJ,
3465:                                         0,
3466:                                         0,
3467:                                 /* 94*/ MatPtAPNumeric_SeqAIJ_SeqAIJ_SparseAxpy,
3468:                                         0,
3469:                                         0,
3470:                                         MatMatTransposeMultNumeric_SeqAIJ_SeqAIJ,
3471:                                         0,
3472:                                 /* 99*/ MatProductSetFromOptions_SeqAIJ,
3473:                                         0,
3474:                                         0,
3475:                                         MatConjugate_SeqAIJ,
3476:                                         0,
3477:                                 /*104*/ MatSetValuesRow_SeqAIJ,
3478:                                         MatRealPart_SeqAIJ,
3479:                                         MatImaginaryPart_SeqAIJ,
3480:                                         0,
3481:                                         0,
3482:                                 /*109*/ MatMatSolve_SeqAIJ,
3483:                                         0,
3484:                                         MatGetRowMin_SeqAIJ,
3485:                                         0,
3486:                                         MatMissingDiagonal_SeqAIJ,
3487:                                 /*114*/ 0,
3488:                                         0,
3489:                                         0,
3490:                                         0,
3491:                                         0,
3492:                                 /*119*/ 0,
3493:                                         0,
3494:                                         0,
3495:                                         0,
3496:                                         MatGetMultiProcBlock_SeqAIJ,
3497:                                 /*124*/ MatFindNonzeroRows_SeqAIJ,
3498:                                         MatGetColumnNorms_SeqAIJ,
3499:                                         MatInvertBlockDiagonal_SeqAIJ,
3500:                                         MatInvertVariableBlockDiagonal_SeqAIJ,
3501:                                         0,
3502:                                 /*129*/ 0,
3503:                                         0,
3504:                                         0,
3505:                                         MatTransposeMatMultNumeric_SeqAIJ_SeqAIJ,
3506:                                         MatTransposeColoringCreate_SeqAIJ,
3507:                                 /*134*/ MatTransColoringApplySpToDen_SeqAIJ,
3508:                                         MatTransColoringApplyDenToSp_SeqAIJ,
3509:                                         0,
3510:                                         0,
3511:                                         MatRARtNumeric_SeqAIJ_SeqAIJ,
3512:                                  /*139*/0,
3513:                                         0,
3514:                                         0,
3515:                                         MatFDColoringSetUp_SeqXAIJ,
3516:                                         MatFindOffBlockDiagonalEntries_SeqAIJ,
3517:                                         MatCreateMPIMatConcatenateSeqMat_SeqAIJ,
3518:                                  /*145*/MatDestroySubMatrices_SeqAIJ,
3519:                                         0,
3520:                                         0
3521: };

3523: PetscErrorCode  MatSeqAIJSetColumnIndices_SeqAIJ(Mat mat,PetscInt *indices)
3524: {
3525:   Mat_SeqAIJ *aij = (Mat_SeqAIJ*)mat->data;
3526:   PetscInt   i,nz,n;

3529:   nz = aij->maxnz;
3530:   n  = mat->rmap->n;
3531:   for (i=0; i<nz; i++) {
3532:     aij->j[i] = indices[i];
3533:   }
3534:   aij->nz = nz;
3535:   for (i=0; i<n; i++) {
3536:     aij->ilen[i] = aij->imax[i];
3537:   }
3538:   return(0);
3539: }

3541: /*
3542:  * When a sparse matrix has many zero columns, we should compact them out to save the space
3543:  * This happens in MatPtAPSymbolic_MPIAIJ_MPIAIJ_scalable()
3544:  * */
3545: PetscErrorCode  MatSeqAIJCompactOutExtraColumns_SeqAIJ(Mat mat, ISLocalToGlobalMapping *mapping)
3546: {
3547:   Mat_SeqAIJ *aij = (Mat_SeqAIJ*)mat->data;
3548:   PetscTable         gid1_lid1;
3549:   PetscTablePosition tpos;
3550:   PetscInt           gid,lid,i,j,ncols,ec;
3551:   PetscInt           *garray;
3552:   PetscErrorCode  ierr;

3557:   /* use a table */
3558:   PetscTableCreate(mat->rmap->n,mat->cmap->N+1,&gid1_lid1);
3559:   ec = 0;
3560:   for (i=0; i<mat->rmap->n; i++) {
3561:     ncols = aij->i[i+1] - aij->i[i];
3562:     for (j=0; j<ncols; j++) {
3563:       PetscInt data,gid1 = aij->j[aij->i[i] + j] + 1;
3564:       PetscTableFind(gid1_lid1,gid1,&data);
3565:       if (!data) {
3566:         /* one based table */
3567:         PetscTableAdd(gid1_lid1,gid1,++ec,INSERT_VALUES);
3568:       }
3569:     }
3570:   }
3571:   /* form array of columns we need */
3572:   PetscMalloc1(ec+1,&garray);
3573:   PetscTableGetHeadPosition(gid1_lid1,&tpos);
3574:   while (tpos) {
3575:     PetscTableGetNext(gid1_lid1,&tpos,&gid,&lid);
3576:     gid--;
3577:     lid--;
3578:     garray[lid] = gid;
3579:   }
3580:   PetscSortInt(ec,garray); /* sort, and rebuild */
3581:   PetscTableRemoveAll(gid1_lid1);
3582:   for (i=0; i<ec; i++) {
3583:     PetscTableAdd(gid1_lid1,garray[i]+1,i+1,INSERT_VALUES);
3584:   }
3585:   /* compact out the extra columns in B */
3586:   for (i=0; i<mat->rmap->n; i++) {
3587:         ncols = aij->i[i+1] - aij->i[i];
3588:     for (j=0; j<ncols; j++) {
3589:       PetscInt gid1 = aij->j[aij->i[i] + j] + 1;
3590:       PetscTableFind(gid1_lid1,gid1,&lid);
3591:       lid--;
3592:       aij->j[aij->i[i] + j] = lid;
3593:     }
3594:   }
3595:   PetscLayoutDestroy(&mat->cmap);
3596:   PetscLayoutCreateFromSizes(PetscObjectComm((PetscObject)mat),ec,ec,1,&mat->cmap);
3597:   PetscTableDestroy(&gid1_lid1);
3598:   ISLocalToGlobalMappingCreate(PETSC_COMM_SELF,mat->cmap->bs,mat->cmap->n,garray,PETSC_OWN_POINTER,mapping);
3599:   ISLocalToGlobalMappingSetType(*mapping,ISLOCALTOGLOBALMAPPINGHASH);
3600:   return(0);
3601: }

3603: /*@
3604:     MatSeqAIJSetColumnIndices - Set the column indices for all the rows
3605:        in the matrix.

3607:   Input Parameters:
3608: +  mat - the SeqAIJ matrix
3609: -  indices - the column indices

3611:   Level: advanced

3613:   Notes:
3614:     This can be called if you have precomputed the nonzero structure of the
3615:   matrix and want to provide it to the matrix object to improve the performance
3616:   of the MatSetValues() operation.

3618:     You MUST have set the correct numbers of nonzeros per row in the call to
3619:   MatCreateSeqAIJ(), and the columns indices MUST be sorted.

3621:     MUST be called before any calls to MatSetValues();

3623:     The indices should start with zero, not one.

3625: @*/
3626: PetscErrorCode  MatSeqAIJSetColumnIndices(Mat mat,PetscInt *indices)
3627: {

3633:   PetscUseMethod(mat,"MatSeqAIJSetColumnIndices_C",(Mat,PetscInt*),(mat,indices));
3634:   return(0);
3635: }

3637: /* ----------------------------------------------------------------------------------------*/

3639: PetscErrorCode  MatStoreValues_SeqAIJ(Mat mat)
3640: {
3641:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)mat->data;
3643:   size_t         nz = aij->i[mat->rmap->n];

3646:   if (!aij->nonew) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");

3648:   /* allocate space for values if not already there */
3649:   if (!aij->saved_values) {
3650:     PetscMalloc1(nz+1,&aij->saved_values);
3651:     PetscLogObjectMemory((PetscObject)mat,(nz+1)*sizeof(PetscScalar));
3652:   }

3654:   /* copy values over */
3655:   PetscArraycpy(aij->saved_values,aij->a,nz);
3656:   return(0);
3657: }

3659: /*@
3660:     MatStoreValues - Stashes a copy of the matrix values; this allows, for
3661:        example, reuse of the linear part of a Jacobian, while recomputing the
3662:        nonlinear portion.

3664:    Collect on Mat

3666:   Input Parameters:
3667: .  mat - the matrix (currently only AIJ matrices support this option)

3669:   Level: advanced

3671:   Common Usage, with SNESSolve():
3672: $    Create Jacobian matrix
3673: $    Set linear terms into matrix
3674: $    Apply boundary conditions to matrix, at this time matrix must have
3675: $      final nonzero structure (i.e. setting the nonlinear terms and applying
3676: $      boundary conditions again will not change the nonzero structure
3677: $    MatSetOption(mat,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);
3678: $    MatStoreValues(mat);
3679: $    Call SNESSetJacobian() with matrix
3680: $    In your Jacobian routine
3681: $      MatRetrieveValues(mat);
3682: $      Set nonlinear terms in matrix

3684:   Common Usage without SNESSolve(), i.e. when you handle nonlinear solve yourself:
3685: $    // build linear portion of Jacobian
3686: $    MatSetOption(mat,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);
3687: $    MatStoreValues(mat);
3688: $    loop over nonlinear iterations
3689: $       MatRetrieveValues(mat);
3690: $       // call MatSetValues(mat,...) to set nonliner portion of Jacobian
3691: $       // call MatAssemblyBegin/End() on matrix
3692: $       Solve linear system with Jacobian
3693: $    endloop

3695:   Notes:
3696:     Matrix must already be assemblied before calling this routine
3697:     Must set the matrix option MatSetOption(mat,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE); before
3698:     calling this routine.

3700:     When this is called multiple times it overwrites the previous set of stored values
3701:     and does not allocated additional space.

3703: .seealso: MatRetrieveValues()

3705: @*/
3706: PetscErrorCode  MatStoreValues(Mat mat)
3707: {

3712:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3713:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3714:   PetscUseMethod(mat,"MatStoreValues_C",(Mat),(mat));
3715:   return(0);
3716: }

3718: PetscErrorCode  MatRetrieveValues_SeqAIJ(Mat mat)
3719: {
3720:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)mat->data;
3722:   PetscInt       nz = aij->i[mat->rmap->n];

3725:   if (!aij->nonew) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatSetOption(A,MAT_NEW_NONZERO_LOCATIONS,PETSC_FALSE);first");
3726:   if (!aij->saved_values) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ORDER,"Must call MatStoreValues(A);first");
3727:   /* copy values over */
3728:   PetscArraycpy(aij->a,aij->saved_values,nz);
3729:   return(0);
3730: }

3732: /*@
3733:     MatRetrieveValues - Retrieves the copy of the matrix values; this allows, for
3734:        example, reuse of the linear part of a Jacobian, while recomputing the
3735:        nonlinear portion.

3737:    Collect on Mat

3739:   Input Parameters:
3740: .  mat - the matrix (currently only AIJ matrices support this option)

3742:   Level: advanced

3744: .seealso: MatStoreValues()

3746: @*/
3747: PetscErrorCode  MatRetrieveValues(Mat mat)
3748: {

3753:   if (!mat->assembled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
3754:   if (mat->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
3755:   PetscUseMethod(mat,"MatRetrieveValues_C",(Mat),(mat));
3756:   return(0);
3757: }


3760: /* --------------------------------------------------------------------------------*/
3761: /*@C
3762:    MatCreateSeqAIJ - Creates a sparse matrix in AIJ (compressed row) format
3763:    (the default parallel PETSc format).  For good matrix assembly performance
3764:    the user should preallocate the matrix storage by setting the parameter nz
3765:    (or the array nnz).  By setting these parameters accurately, performance
3766:    during matrix assembly can be increased by more than a factor of 50.

3768:    Collective

3770:    Input Parameters:
3771: +  comm - MPI communicator, set to PETSC_COMM_SELF
3772: .  m - number of rows
3773: .  n - number of columns
3774: .  nz - number of nonzeros per row (same for all rows)
3775: -  nnz - array containing the number of nonzeros in the various rows
3776:          (possibly different for each row) or NULL

3778:    Output Parameter:
3779: .  A - the matrix

3781:    It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions(),
3782:    MatXXXXSetPreallocation() paradigm instead of this routine directly.
3783:    [MatXXXXSetPreallocation() is, for example, MatSeqAIJSetPreallocation]

3785:    Notes:
3786:    If nnz is given then nz is ignored

3788:    The AIJ format (also called the Yale sparse matrix format or
3789:    compressed row storage), is fully compatible with standard Fortran 77
3790:    storage.  That is, the stored row and column indices can begin at
3791:    either one (as in Fortran) or zero.  See the users' manual for details.

3793:    Specify the preallocated storage with either nz or nnz (not both).
3794:    Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory
3795:    allocation.  For large problems you MUST preallocate memory or you
3796:    will get TERRIBLE performance, see the users' manual chapter on matrices.

3798:    By default, this format uses inodes (identical nodes) when possible, to
3799:    improve numerical efficiency of matrix-vector products and solves. We
3800:    search for consecutive rows with the same nonzero structure, thereby
3801:    reusing matrix information to achieve increased efficiency.

3803:    Options Database Keys:
3804: +  -mat_no_inode  - Do not use inodes
3805: -  -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3807:    Level: intermediate

3809: .seealso: MatCreate(), MatCreateAIJ(), MatSetValues(), MatSeqAIJSetColumnIndices(), MatCreateSeqAIJWithArrays()

3811: @*/
3812: PetscErrorCode  MatCreateSeqAIJ(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt nz,const PetscInt nnz[],Mat *A)
3813: {

3817:   MatCreate(comm,A);
3818:   MatSetSizes(*A,m,n,m,n);
3819:   MatSetType(*A,MATSEQAIJ);
3820:   MatSeqAIJSetPreallocation_SeqAIJ(*A,nz,nnz);
3821:   return(0);
3822: }

3824: /*@C
3825:    MatSeqAIJSetPreallocation - For good matrix assembly performance
3826:    the user should preallocate the matrix storage by setting the parameter nz
3827:    (or the array nnz).  By setting these parameters accurately, performance
3828:    during matrix assembly can be increased by more than a factor of 50.

3830:    Collective

3832:    Input Parameters:
3833: +  B - The matrix
3834: .  nz - number of nonzeros per row (same for all rows)
3835: -  nnz - array containing the number of nonzeros in the various rows
3836:          (possibly different for each row) or NULL

3838:    Notes:
3839:      If nnz is given then nz is ignored

3841:     The AIJ format (also called the Yale sparse matrix format or
3842:    compressed row storage), is fully compatible with standard Fortran 77
3843:    storage.  That is, the stored row and column indices can begin at
3844:    either one (as in Fortran) or zero.  See the users' manual for details.

3846:    Specify the preallocated storage with either nz or nnz (not both).
3847:    Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory
3848:    allocation.  For large problems you MUST preallocate memory or you
3849:    will get TERRIBLE performance, see the users' manual chapter on matrices.

3851:    You can call MatGetInfo() to get information on how effective the preallocation was;
3852:    for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
3853:    You can also run with the option -info and look for messages with the string
3854:    malloc in them to see if additional memory allocation was needed.

3856:    Developers: Use nz of MAT_SKIP_ALLOCATION to not allocate any space for the matrix
3857:    entries or columns indices

3859:    By default, this format uses inodes (identical nodes) when possible, to
3860:    improve numerical efficiency of matrix-vector products and solves. We
3861:    search for consecutive rows with the same nonzero structure, thereby
3862:    reusing matrix information to achieve increased efficiency.

3864:    Options Database Keys:
3865: +  -mat_no_inode  - Do not use inodes
3866: -  -mat_inode_limit <limit> - Sets inode limit (max limit=5)

3868:    Level: intermediate

3870: .seealso: MatCreate(), MatCreateAIJ(), MatSetValues(), MatSeqAIJSetColumnIndices(), MatCreateSeqAIJWithArrays(), MatGetInfo()

3872: @*/
3873: PetscErrorCode  MatSeqAIJSetPreallocation(Mat B,PetscInt nz,const PetscInt nnz[])
3874: {

3880:   PetscTryMethod(B,"MatSeqAIJSetPreallocation_C",(Mat,PetscInt,const PetscInt[]),(B,nz,nnz));
3881:   return(0);
3882: }

3884: PetscErrorCode  MatSeqAIJSetPreallocation_SeqAIJ(Mat B,PetscInt nz,const PetscInt *nnz)
3885: {
3886:   Mat_SeqAIJ     *b;
3887:   PetscBool      skipallocation = PETSC_FALSE,realalloc = PETSC_FALSE;
3889:   PetscInt       i;

3892:   if (nz >= 0 || nnz) realalloc = PETSC_TRUE;
3893:   if (nz == MAT_SKIP_ALLOCATION) {
3894:     skipallocation = PETSC_TRUE;
3895:     nz             = 0;
3896:   }
3897:   PetscLayoutSetUp(B->rmap);
3898:   PetscLayoutSetUp(B->cmap);

3900:   if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
3901:   if (nz < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nz cannot be less than 0: value %D",nz);
3902: #if defined(PETSC_USE_DEBUG)
3903:   if (nnz) {
3904:     for (i=0; i<B->rmap->n; i++) {
3905:       if (nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be less than 0: local row %D value %D",i,nnz[i]);
3906:       if (nnz[i] > B->cmap->n) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be greater than row length: local row %D value %d rowlength %D",i,nnz[i],B->cmap->n);
3907:     }
3908:   }
3909: #endif

3911:   B->preallocated = PETSC_TRUE;

3913:   b = (Mat_SeqAIJ*)B->data;

3915:   if (!skipallocation) {
3916:     if (!b->imax) {
3917:       PetscMalloc1(B->rmap->n,&b->imax);
3918:       PetscLogObjectMemory((PetscObject)B,B->rmap->n*sizeof(PetscInt));
3919:     }
3920:     if (!b->ilen) {
3921:       /* b->ilen will count nonzeros in each row so far. */
3922:       PetscCalloc1(B->rmap->n,&b->ilen);
3923:       PetscLogObjectMemory((PetscObject)B,B->rmap->n*sizeof(PetscInt));
3924:     } else {
3925:       PetscMemzero(b->ilen,B->rmap->n*sizeof(PetscInt));
3926:     }
3927:     if (!b->ipre) {
3928:       PetscMalloc1(B->rmap->n,&b->ipre);
3929:       PetscLogObjectMemory((PetscObject)B,B->rmap->n*sizeof(PetscInt));
3930:     }
3931:     if (!nnz) {
3932:       if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 10;
3933:       else if (nz < 0) nz = 1;
3934:       nz = PetscMin(nz,B->cmap->n);
3935:       for (i=0; i<B->rmap->n; i++) b->imax[i] = nz;
3936:       nz = nz*B->rmap->n;
3937:     } else {
3938:       PetscInt64 nz64 = 0;
3939:       for (i=0; i<B->rmap->n; i++) {b->imax[i] = nnz[i]; nz64 += nnz[i];}
3940:       PetscIntCast(nz64,&nz);
3941:     }

3943:     /* allocate the matrix space */
3944:     /* FIXME: should B's old memory be unlogged? */
3945:     MatSeqXAIJFreeAIJ(B,&b->a,&b->j,&b->i);
3946:     if (B->structure_only) {
3947:       PetscMalloc1(nz,&b->j);
3948:       PetscMalloc1(B->rmap->n+1,&b->i);
3949:       PetscLogObjectMemory((PetscObject)B,(B->rmap->n+1)*sizeof(PetscInt)+nz*sizeof(PetscInt));
3950:     } else {
3951:       PetscMalloc3(nz,&b->a,nz,&b->j,B->rmap->n+1,&b->i);
3952:       PetscLogObjectMemory((PetscObject)B,(B->rmap->n+1)*sizeof(PetscInt)+nz*(sizeof(PetscScalar)+sizeof(PetscInt)));
3953:     }
3954:     b->i[0] = 0;
3955:     for (i=1; i<B->rmap->n+1; i++) {
3956:       b->i[i] = b->i[i-1] + b->imax[i-1];
3957:     }
3958:     if (B->structure_only) {
3959:       b->singlemalloc = PETSC_FALSE;
3960:       b->free_a       = PETSC_FALSE;
3961:     } else {
3962:       b->singlemalloc = PETSC_TRUE;
3963:       b->free_a       = PETSC_TRUE;
3964:     }
3965:     b->free_ij      = PETSC_TRUE;
3966:   } else {
3967:     b->free_a  = PETSC_FALSE;
3968:     b->free_ij = PETSC_FALSE;
3969:   }

3971:   if (b->ipre && nnz != b->ipre  && b->imax) {
3972:     /* reserve user-requested sparsity */
3973:     PetscArraycpy(b->ipre,b->imax,B->rmap->n);
3974:   }


3977:   b->nz               = 0;
3978:   b->maxnz            = nz;
3979:   B->info.nz_unneeded = (double)b->maxnz;
3980:   if (realalloc) {
3981:     MatSetOption(B,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);
3982:   }
3983:   B->was_assembled = PETSC_FALSE;
3984:   B->assembled     = PETSC_FALSE;
3985:   return(0);
3986: }


3989: PetscErrorCode MatResetPreallocation_SeqAIJ(Mat A)
3990: {
3991:   Mat_SeqAIJ     *a;
3992:   PetscInt       i;


3998:   /* Check local size. If zero, then return */
3999:   if (!A->rmap->n) return(0);

4001:   a = (Mat_SeqAIJ*)A->data;
4002:   /* if no saved info, we error out */
4003:   if (!a->ipre) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"No saved preallocation info \n");

4005:   if (!a->i || !a->j || !a->a || !a->imax || !a->ilen) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"Memory info is incomplete, and can not reset preallocation \n");

4007:   PetscArraycpy(a->imax,a->ipre,A->rmap->n);
4008:   PetscArrayzero(a->ilen,A->rmap->n);
4009:   a->i[0] = 0;
4010:   for (i=1; i<A->rmap->n+1; i++) {
4011:     a->i[i] = a->i[i-1] + a->imax[i-1];
4012:   }
4013:   A->preallocated     = PETSC_TRUE;
4014:   a->nz               = 0;
4015:   a->maxnz            = a->i[A->rmap->n];
4016:   A->info.nz_unneeded = (double)a->maxnz;
4017:   A->was_assembled    = PETSC_FALSE;
4018:   A->assembled        = PETSC_FALSE;
4019:   return(0);
4020: }

4022: /*@
4023:    MatSeqAIJSetPreallocationCSR - Allocates memory for a sparse sequential matrix in AIJ format.

4025:    Input Parameters:
4026: +  B - the matrix
4027: .  i - the indices into j for the start of each row (starts with zero)
4028: .  j - the column indices for each row (starts with zero) these must be sorted for each row
4029: -  v - optional values in the matrix

4031:    Level: developer

4033:    The i,j,v values are COPIED with this routine; to avoid the copy use MatCreateSeqAIJWithArrays()

4035: .seealso: MatCreate(), MatCreateSeqAIJ(), MatSetValues(), MatSeqAIJSetPreallocation(), MatCreateSeqAIJ(), MATSEQAIJ
4036: @*/
4037: PetscErrorCode MatSeqAIJSetPreallocationCSR(Mat B,const PetscInt i[],const PetscInt j[],const PetscScalar v[])
4038: {

4044:   PetscTryMethod(B,"MatSeqAIJSetPreallocationCSR_C",(Mat,const PetscInt[],const PetscInt[],const PetscScalar[]),(B,i,j,v));
4045:   return(0);
4046: }

4048: PetscErrorCode  MatSeqAIJSetPreallocationCSR_SeqAIJ(Mat B,const PetscInt Ii[],const PetscInt J[],const PetscScalar v[])
4049: {
4050:   PetscInt       i;
4051:   PetscInt       m,n;
4052:   PetscInt       nz;
4053:   PetscInt       *nnz, nz_max = 0;

4057:   if (Ii[0]) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE, "Ii[0] must be 0 it is %D", Ii[0]);

4059:   PetscLayoutSetUp(B->rmap);
4060:   PetscLayoutSetUp(B->cmap);

4062:   MatGetSize(B, &m, &n);
4063:   PetscMalloc1(m+1, &nnz);
4064:   for (i = 0; i < m; i++) {
4065:     nz     = Ii[i+1]- Ii[i];
4066:     nz_max = PetscMax(nz_max, nz);
4067:     if (nz < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE, "Local row %D has a negative number of columns %D", i, nnz);
4068:     nnz[i] = nz;
4069:   }
4070:   MatSeqAIJSetPreallocation(B, 0, nnz);
4071:   PetscFree(nnz);

4073:   for (i = 0; i < m; i++) {
4074:     MatSetValues_SeqAIJ(B, 1, &i, Ii[i+1] - Ii[i], J+Ii[i], v ? v + Ii[i] : NULL, INSERT_VALUES);
4075:   }

4077:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
4078:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);

4080:   MatSetOption(B,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
4081:   return(0);
4082: }

4084:  #include <../src/mat/impls/dense/seq/dense.h>
4085:  #include <petsc/private/kernels/petscaxpy.h>

4087: /*
4088:     Computes (B'*A')' since computing B*A directly is untenable

4090:                n                       p                          p
4091:         (              )       (              )         (                  )
4092:       m (      A       )  *  n (       B      )   =   m (         C        )
4093:         (              )       (              )         (                  )

4095: */
4096: PetscErrorCode MatMatMultNumeric_SeqDense_SeqAIJ(Mat A,Mat B,Mat C)
4097: {
4098:   PetscErrorCode    ierr;
4099:   Mat_SeqDense      *sub_a = (Mat_SeqDense*)A->data;
4100:   Mat_SeqAIJ        *sub_b = (Mat_SeqAIJ*)B->data;
4101:   Mat_SeqDense      *sub_c = (Mat_SeqDense*)C->data;
4102:   PetscInt          i,n,m,q,p;
4103:   const PetscInt    *ii,*idx;
4104:   const PetscScalar *b,*a,*a_q;
4105:   PetscScalar       *c,*c_q;

4108:   m    = A->rmap->n;
4109:   n    = A->cmap->n;
4110:   p    = B->cmap->n;
4111:   a    = sub_a->v;
4112:   b    = sub_b->a;
4113:   c    = sub_c->v;
4114:   PetscArrayzero(c,m*p);

4116:   ii  = sub_b->i;
4117:   idx = sub_b->j;
4118:   for (i=0; i<n; i++) {
4119:     q = ii[i+1] - ii[i];
4120:     while (q-->0) {
4121:       c_q = c + m*(*idx);
4122:       a_q = a + m*i;
4123:       PetscKernelAXPY(c_q,*b,a_q,m);
4124:       idx++;
4125:       b++;
4126:     }
4127:   }
4128:   return(0);
4129: }

4131: PetscErrorCode MatMatMultSymbolic_SeqDense_SeqAIJ(Mat A,Mat B,PetscReal fill,Mat C)
4132: {
4134:   PetscInt       m=A->rmap->n,n=B->cmap->n;

4137:   if (A->cmap->n != B->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"A->cmap->n %D != B->rmap->n %D\n",A->cmap->n,B->rmap->n);
4138:   MatSetSizes(C,m,n,m,n);
4139:   MatSetBlockSizesFromMats(C,A,B);
4140:   MatSetType(C,MATSEQDENSE);
4141:   MatSeqDenseSetPreallocation(C,NULL);

4143:   C->ops->matmultnumeric = MatMatMultNumeric_SeqDense_SeqAIJ;
4144:   return(0);
4145: }

4147: /* ----------------------------------------------------------------*/
4148: /*MC
4149:    MATSEQAIJ - MATSEQAIJ = "seqaij" - A matrix type to be used for sequential sparse matrices,
4150:    based on compressed sparse row format.

4152:    Options Database Keys:
4153: . -mat_type seqaij - sets the matrix type to "seqaij" during a call to MatSetFromOptions()

4155:    Level: beginner

4157:    Notes:
4158:     MatSetValues() may be called for this matrix type with a NULL argument for the numerical values,
4159:     in this case the values associated with the rows and columns one passes in are set to zero
4160:     in the matrix

4162:     MatSetOptions(,MAT_STRUCTURE_ONLY,PETSC_TRUE) may be called for this matrix type. In this no
4163:     space is allocated for the nonzero entries and any entries passed with MatSetValues() are ignored

4165:   Developer Notes:
4166:     It would be nice if all matrix formats supported passing NULL in for the numerical values

4168: .seealso: MatCreateSeqAIJ(), MatSetFromOptions(), MatSetType(), MatCreate(), MatType
4169: M*/

4171: /*MC
4172:    MATAIJ - MATAIJ = "aij" - A matrix type to be used for sparse matrices.

4174:    This matrix type is identical to MATSEQAIJ when constructed with a single process communicator,
4175:    and MATMPIAIJ otherwise.  As a result, for single process communicators,
4176:   MatSeqAIJSetPreallocation is supported, and similarly MatMPIAIJSetPreallocation() is supported
4177:   for communicators controlling multiple processes.  It is recommended that you call both of
4178:   the above preallocation routines for simplicity.

4180:    Options Database Keys:
4181: . -mat_type aij - sets the matrix type to "aij" during a call to MatSetFromOptions()

4183:   Developer Notes:
4184:     Subclasses include MATAIJCUSPARSE, MATAIJPERM, MATAIJSELL, MATAIJMKL, MATAIJCRL, and also automatically switches over to use inodes when
4185:    enough exist.

4187:   Level: beginner

4189: .seealso: MatCreateAIJ(), MatCreateSeqAIJ(), MATSEQAIJ,MATMPIAIJ
4190: M*/

4192: /*MC
4193:    MATAIJCRL - MATAIJCRL = "aijcrl" - A matrix type to be used for sparse matrices.

4195:    This matrix type is identical to MATSEQAIJCRL when constructed with a single process communicator,
4196:    and MATMPIAIJCRL otherwise.  As a result, for single process communicators,
4197:    MatSeqAIJSetPreallocation() is supported, and similarly MatMPIAIJSetPreallocation() is supported
4198:   for communicators controlling multiple processes.  It is recommended that you call both of
4199:   the above preallocation routines for simplicity.

4201:    Options Database Keys:
4202: . -mat_type aijcrl - sets the matrix type to "aijcrl" during a call to MatSetFromOptions()

4204:   Level: beginner

4206: .seealso: MatCreateMPIAIJCRL,MATSEQAIJCRL,MATMPIAIJCRL, MATSEQAIJCRL, MATMPIAIJCRL
4207: M*/

4209: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCRL(Mat,MatType,MatReuse,Mat*);
4210: #if defined(PETSC_HAVE_ELEMENTAL)
4211: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_Elemental(Mat,MatType,MatReuse,Mat*);
4212: #endif
4213: #if defined(PETSC_HAVE_HYPRE)
4214: PETSC_INTERN PetscErrorCode MatConvert_AIJ_HYPRE(Mat A,MatType,MatReuse,Mat*);
4215: #endif
4216: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqDense(Mat,MatType,MatReuse,Mat*);

4218: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqSELL(Mat,MatType,MatReuse,Mat*);
4219: PETSC_INTERN PetscErrorCode MatConvert_XAIJ_IS(Mat,MatType,MatReuse,Mat*);
4220: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_IS_XAIJ(Mat);

4222: /*@C
4223:    MatSeqAIJGetArray - gives read/write access to the array where the data for a MATSEQAIJ matrix is stored

4225:    Not Collective

4227:    Input Parameter:
4228: .  mat - a MATSEQAIJ matrix

4230:    Output Parameter:
4231: .   array - pointer to the data

4233:    Level: intermediate

4235: .seealso: MatSeqAIJRestoreArray(), MatSeqAIJGetArrayF90()
4236: @*/
4237: PetscErrorCode  MatSeqAIJGetArray(Mat A,PetscScalar **array)
4238: {

4242:   PetscUseMethod(A,"MatSeqAIJGetArray_C",(Mat,PetscScalar**),(A,array));
4243:   return(0);
4244: }

4246: /*@C
4247:    MatSeqAIJGetArrayRead - gives read-only access to the array where the data for a MATSEQAIJ matrix is stored

4249:    Not Collective

4251:    Input Parameter:
4252: .  mat - a MATSEQAIJ matrix

4254:    Output Parameter:
4255: .   array - pointer to the data

4257:    Level: intermediate

4259: .seealso: MatSeqAIJGetArray(), MatSeqAIJRestoreArrayRead()
4260: @*/
4261: PetscErrorCode  MatSeqAIJGetArrayRead(Mat A,const PetscScalar **array)
4262: {
4263: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4264:   PetscOffloadMask oval;
4265: #endif

4269: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4270:   oval = A->offloadmask;
4271: #endif
4272:   MatSeqAIJGetArray(A,(PetscScalar**)array);
4273: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4274:   if (oval == PETSC_OFFLOAD_GPU || oval == PETSC_OFFLOAD_BOTH) A->offloadmask = PETSC_OFFLOAD_BOTH;
4275: #endif
4276:   return(0);
4277: }

4279: /*@C
4280:    MatSeqAIJRestoreArrayRead - restore the read-only access array obtained from MatSeqAIJGetArrayRead

4282:    Not Collective

4284:    Input Parameter:
4285: .  mat - a MATSEQAIJ matrix

4287:    Output Parameter:
4288: .   array - pointer to the data

4290:    Level: intermediate

4292: .seealso: MatSeqAIJGetArray(), MatSeqAIJGetArrayRead()
4293: @*/
4294: PetscErrorCode  MatSeqAIJRestoreArrayRead(Mat A,const PetscScalar **array)
4295: {
4296: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4297:   PetscOffloadMask oval;
4298: #endif

4302: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4303:   oval = A->offloadmask;
4304: #endif
4305:   MatSeqAIJRestoreArray(A,(PetscScalar**)array);
4306: #if defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_VIENNACL)
4307:   A->offloadmask = oval;
4308: #endif
4309:   return(0);
4310: }

4312: /*@C
4313:    MatSeqAIJGetMaxRowNonzeros - returns the maximum number of nonzeros in any row

4315:    Not Collective

4317:    Input Parameter:
4318: .  mat - a MATSEQAIJ matrix

4320:    Output Parameter:
4321: .   nz - the maximum number of nonzeros in any row

4323:    Level: intermediate

4325: .seealso: MatSeqAIJRestoreArray(), MatSeqAIJGetArrayF90()
4326: @*/
4327: PetscErrorCode  MatSeqAIJGetMaxRowNonzeros(Mat A,PetscInt *nz)
4328: {
4329:   Mat_SeqAIJ     *aij = (Mat_SeqAIJ*)A->data;

4332:   *nz = aij->rmax;
4333:   return(0);
4334: }

4336: /*@C
4337:    MatSeqAIJRestoreArray - returns access to the array where the data for a MATSEQAIJ matrix is stored obtained by MatSeqAIJGetArray()

4339:    Not Collective

4341:    Input Parameters:
4342: +  mat - a MATSEQAIJ matrix
4343: -  array - pointer to the data

4345:    Level: intermediate

4347: .seealso: MatSeqAIJGetArray(), MatSeqAIJRestoreArrayF90()
4348: @*/
4349: PetscErrorCode  MatSeqAIJRestoreArray(Mat A,PetscScalar **array)
4350: {

4354:   PetscUseMethod(A,"MatSeqAIJRestoreArray_C",(Mat,PetscScalar**),(A,array));
4355:   return(0);
4356: }

4358: #if defined(PETSC_HAVE_CUDA)
4359: PETSC_EXTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJCUSPARSE(Mat);
4360: #endif

4362: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJ(Mat B)
4363: {
4364:   Mat_SeqAIJ     *b;
4366:   PetscMPIInt    size;

4369:   MPI_Comm_size(PetscObjectComm((PetscObject)B),&size);
4370:   if (size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Comm must be of size 1");

4372:   PetscNewLog(B,&b);

4374:   B->data = (void*)b;

4376:   PetscMemcpy(B->ops,&MatOps_Values,sizeof(struct _MatOps));
4377:   if (B->sortedfull) B->ops->setvalues = MatSetValues_SeqAIJ_SortedFull;

4379:   b->row                = 0;
4380:   b->col                = 0;
4381:   b->icol               = 0;
4382:   b->reallocs           = 0;
4383:   b->ignorezeroentries  = PETSC_FALSE;
4384:   b->roworiented        = PETSC_TRUE;
4385:   b->nonew              = 0;
4386:   b->diag               = 0;
4387:   b->solve_work         = 0;
4388:   B->spptr              = 0;
4389:   b->saved_values       = 0;
4390:   b->idiag              = 0;
4391:   b->mdiag              = 0;
4392:   b->ssor_work          = 0;
4393:   b->omega              = 1.0;
4394:   b->fshift             = 0.0;
4395:   b->idiagvalid         = PETSC_FALSE;
4396:   b->ibdiagvalid        = PETSC_FALSE;
4397:   b->keepnonzeropattern = PETSC_FALSE;

4399:   PetscObjectChangeTypeName((PetscObject)B,MATSEQAIJ);
4400:   PetscObjectComposeFunction((PetscObject)B,"MatSeqAIJGetArray_C",MatSeqAIJGetArray_SeqAIJ);
4401:   PetscObjectComposeFunction((PetscObject)B,"MatSeqAIJRestoreArray_C",MatSeqAIJRestoreArray_SeqAIJ);

4403: #if defined(PETSC_HAVE_MATLAB_ENGINE)
4404:   PetscObjectComposeFunction((PetscObject)B,"PetscMatlabEnginePut_C",MatlabEnginePut_SeqAIJ);
4405:   PetscObjectComposeFunction((PetscObject)B,"PetscMatlabEngineGet_C",MatlabEngineGet_SeqAIJ);
4406: #endif

4408:   PetscObjectComposeFunction((PetscObject)B,"MatSeqAIJSetColumnIndices_C",MatSeqAIJSetColumnIndices_SeqAIJ);
4409:   PetscObjectComposeFunction((PetscObject)B,"MatStoreValues_C",MatStoreValues_SeqAIJ);
4410:   PetscObjectComposeFunction((PetscObject)B,"MatRetrieveValues_C",MatRetrieveValues_SeqAIJ);
4411:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqsbaij_C",MatConvert_SeqAIJ_SeqSBAIJ);
4412:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqbaij_C",MatConvert_SeqAIJ_SeqBAIJ);
4413:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqaijperm_C",MatConvert_SeqAIJ_SeqAIJPERM);
4414:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqaijsell_C",MatConvert_SeqAIJ_SeqAIJSELL);
4415: #if defined(PETSC_HAVE_MKL_SPARSE)
4416:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqaijmkl_C",MatConvert_SeqAIJ_SeqAIJMKL);
4417: #endif
4418: #if defined(PETSC_HAVE_CUDA)
4419:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqaijcusparse_C",MatConvert_SeqAIJ_SeqAIJCUSPARSE);
4420:   PetscObjectComposeFunction((PetscObject)B,"MatProductSetFromOptions_seqaijcusparse_seqaij_C",MatProductSetFromOptions_SeqAIJ);
4421: #endif
4422:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqaijcrl_C",MatConvert_SeqAIJ_SeqAIJCRL);
4423: #if defined(PETSC_HAVE_ELEMENTAL)
4424:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_elemental_C",MatConvert_SeqAIJ_Elemental);
4425: #endif
4426: #if defined(PETSC_HAVE_HYPRE)
4427:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_hypre_C",MatConvert_AIJ_HYPRE);
4428:   PetscObjectComposeFunction((PetscObject)B,"MatProductSetFromOptions_transpose_seqaij_seqaij_C",MatProductSetFromOptions_Transpose_AIJ_AIJ);
4429: #endif
4430:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqdense_C",MatConvert_SeqAIJ_SeqDense);
4431:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_seqsell_C",MatConvert_SeqAIJ_SeqSELL);
4432:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaij_is_C",MatConvert_XAIJ_IS);
4433:   PetscObjectComposeFunction((PetscObject)B,"MatIsTranspose_C",MatIsTranspose_SeqAIJ);
4434:   PetscObjectComposeFunction((PetscObject)B,"MatIsHermitianTranspose_C",MatIsTranspose_SeqAIJ);
4435:   PetscObjectComposeFunction((PetscObject)B,"MatSeqAIJSetPreallocation_C",MatSeqAIJSetPreallocation_SeqAIJ);
4436:   PetscObjectComposeFunction((PetscObject)B,"MatResetPreallocation_C",MatResetPreallocation_SeqAIJ);
4437:   PetscObjectComposeFunction((PetscObject)B,"MatSeqAIJSetPreallocationCSR_C",MatSeqAIJSetPreallocationCSR_SeqAIJ);
4438:   PetscObjectComposeFunction((PetscObject)B,"MatReorderForNonzeroDiagonal_C",MatReorderForNonzeroDiagonal_SeqAIJ);
4439:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqdense_seqaij_C",MatMatMultSymbolic_SeqDense_SeqAIJ);
4440:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqdense_seqaij_C",MatMatMultNumeric_SeqDense_SeqAIJ);
4441:   PetscObjectComposeFunction((PetscObject)B,"MatProductSetFromOptions_is_seqaij_C",MatProductSetFromOptions_IS_XAIJ);
4442:   PetscObjectComposeFunction((PetscObject)B,"MatProductSetFromOptions_seqdense_seqaij_C",MatProductSetFromOptions_SeqDense_SeqAIJ);
4443:   PetscObjectComposeFunction((PetscObject)B,"MatProductSetFromOptions_seqaij_seqaij_C",MatProductSetFromOptions_SeqAIJ);
4444:   MatCreate_SeqAIJ_Inode(B);
4445:   PetscObjectChangeTypeName((PetscObject)B,MATSEQAIJ);
4446:   MatSeqAIJSetTypeFromOptions(B);  /* this allows changing the matrix subtype to say MATSEQAIJPERM */
4447:   return(0);
4448: }

4450: /*
4451:     Given a matrix generated with MatGetFactor() duplicates all the information in A into B
4452: */
4453: PetscErrorCode MatDuplicateNoCreate_SeqAIJ(Mat C,Mat A,MatDuplicateOption cpvalues,PetscBool mallocmatspace)
4454: {
4455:   Mat_SeqAIJ     *c,*a = (Mat_SeqAIJ*)A->data;
4457:   PetscInt       m = A->rmap->n,i;

4460:   c = (Mat_SeqAIJ*)C->data;

4462:   C->factortype = A->factortype;
4463:   c->row        = 0;
4464:   c->col        = 0;
4465:   c->icol       = 0;
4466:   c->reallocs   = 0;

4468:   C->assembled = PETSC_TRUE;

4470:   PetscLayoutReference(A->rmap,&C->rmap);
4471:   PetscLayoutReference(A->cmap,&C->cmap);

4473:   PetscMalloc1(m,&c->imax);
4474:   PetscMemcpy(c->imax,a->imax,m*sizeof(PetscInt));
4475:   PetscMalloc1(m,&c->ilen);
4476:   PetscMemcpy(c->ilen,a->ilen,m*sizeof(PetscInt));
4477:   PetscLogObjectMemory((PetscObject)C, 2*m*sizeof(PetscInt));

4479:   /* allocate the matrix space */
4480:   if (mallocmatspace) {
4481:     PetscMalloc3(a->i[m],&c->a,a->i[m],&c->j,m+1,&c->i);
4482:     PetscLogObjectMemory((PetscObject)C, a->i[m]*(sizeof(PetscScalar)+sizeof(PetscInt))+(m+1)*sizeof(PetscInt));

4484:     c->singlemalloc = PETSC_TRUE;

4486:     PetscArraycpy(c->i,a->i,m+1);
4487:     if (m > 0) {
4488:       PetscArraycpy(c->j,a->j,a->i[m]);
4489:       if (cpvalues == MAT_COPY_VALUES) {
4490:         PetscArraycpy(c->a,a->a,a->i[m]);
4491:       } else {
4492:         PetscArrayzero(c->a,a->i[m]);
4493:       }
4494:     }
4495:   }

4497:   c->ignorezeroentries = a->ignorezeroentries;
4498:   c->roworiented       = a->roworiented;
4499:   c->nonew             = a->nonew;
4500:   if (a->diag) {
4501:     PetscMalloc1(m+1,&c->diag);
4502:     PetscMemcpy(c->diag,a->diag,m*sizeof(PetscInt));
4503:     PetscLogObjectMemory((PetscObject)C,(m+1)*sizeof(PetscInt));
4504:   } else c->diag = NULL;

4506:   c->solve_work         = 0;
4507:   c->saved_values       = 0;
4508:   c->idiag              = 0;
4509:   c->ssor_work          = 0;
4510:   c->keepnonzeropattern = a->keepnonzeropattern;
4511:   c->free_a             = PETSC_TRUE;
4512:   c->free_ij            = PETSC_TRUE;

4514:   c->rmax         = a->rmax;
4515:   c->nz           = a->nz;
4516:   c->maxnz        = a->nz;       /* Since we allocate exactly the right amount */
4517:   C->preallocated = PETSC_TRUE;

4519:   c->compressedrow.use   = a->compressedrow.use;
4520:   c->compressedrow.nrows = a->compressedrow.nrows;
4521:   if (a->compressedrow.use) {
4522:     i    = a->compressedrow.nrows;
4523:     PetscMalloc2(i+1,&c->compressedrow.i,i,&c->compressedrow.rindex);
4524:     PetscArraycpy(c->compressedrow.i,a->compressedrow.i,i+1);
4525:     PetscArraycpy(c->compressedrow.rindex,a->compressedrow.rindex,i);
4526:   } else {
4527:     c->compressedrow.use    = PETSC_FALSE;
4528:     c->compressedrow.i      = NULL;
4529:     c->compressedrow.rindex = NULL;
4530:   }
4531:   c->nonzerorowcnt = a->nonzerorowcnt;
4532:   C->nonzerostate  = A->nonzerostate;

4534:   MatDuplicate_SeqAIJ_Inode(A,cpvalues,&C);
4535:   PetscFunctionListDuplicate(((PetscObject)A)->qlist,&((PetscObject)C)->qlist);
4536:   return(0);
4537: }

4539: PetscErrorCode MatDuplicate_SeqAIJ(Mat A,MatDuplicateOption cpvalues,Mat *B)
4540: {

4544:   MatCreate(PetscObjectComm((PetscObject)A),B);
4545:   MatSetSizes(*B,A->rmap->n,A->cmap->n,A->rmap->n,A->cmap->n);
4546:   if (!(A->rmap->n % A->rmap->bs) && !(A->cmap->n % A->cmap->bs)) {
4547:     MatSetBlockSizesFromMats(*B,A,A);
4548:   }
4549:   MatSetType(*B,((PetscObject)A)->type_name);
4550:   MatDuplicateNoCreate_SeqAIJ(*B,A,cpvalues,PETSC_TRUE);
4551:   return(0);
4552: }

4554: PetscErrorCode MatLoad_SeqAIJ(Mat newMat, PetscViewer viewer)
4555: {
4556:   PetscBool      isbinary, ishdf5;

4562:   /* force binary viewer to load .info file if it has not yet done so */
4563:   PetscViewerSetUp(viewer);
4564:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
4565:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,  &ishdf5);
4566:   if (isbinary) {
4567:     MatLoad_SeqAIJ_Binary(newMat,viewer);
4568:   } else if (ishdf5) {
4569: #if defined(PETSC_HAVE_HDF5)
4570:     MatLoad_AIJ_HDF5(newMat,viewer);
4571: #else
4572:     SETERRQ(PetscObjectComm((PetscObject)newMat),PETSC_ERR_SUP,"HDF5 not supported in this build.\nPlease reconfigure using --download-hdf5");
4573: #endif
4574:   } else {
4575:     SETERRQ2(PetscObjectComm((PetscObject)newMat),PETSC_ERR_SUP,"Viewer type %s not yet supported for reading %s matrices",((PetscObject)viewer)->type_name,((PetscObject)newMat)->type_name);
4576:   }
4577:   return(0);
4578: }

4580: PetscErrorCode MatLoad_SeqAIJ_Binary(Mat mat, PetscViewer viewer)
4581: {
4582:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)mat->data;
4584:   PetscInt       header[4],*rowlens,M,N,nz,sum,rows,cols,i;

4587:   PetscViewerSetUp(viewer);

4589:   /* read in matrix header */
4590:   PetscViewerBinaryRead(viewer,header,4,NULL,PETSC_INT);
4591:   if (header[0] != MAT_FILE_CLASSID) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"Not a matrix object in file");
4592:   M = header[1]; N = header[2]; nz = header[3];
4593:   if (M < 0) SETERRQ1(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Matrix row size (%D) in file is negative",M);
4594:   if (N < 0) SETERRQ1(PetscObjectComm((PetscObject)viewer),PETSC_ERR_FILE_UNEXPECTED,"Matrix column size (%D) in file is negative",N);
4595:   if (nz < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"Matrix stored in special format on disk, cannot load as SeqAIJ");

4597:   /* set block sizes from the viewer's .info file */
4598:   MatLoad_Binary_BlockSizes(mat,viewer);
4599:   /* set local and global sizes if not set already */
4600:   if (mat->rmap->n < 0) mat->rmap->n = M;
4601:   if (mat->cmap->n < 0) mat->cmap->n = N;
4602:   if (mat->rmap->N < 0) mat->rmap->N = M;
4603:   if (mat->cmap->N < 0) mat->cmap->N = N;
4604:   PetscLayoutSetUp(mat->rmap);
4605:   PetscLayoutSetUp(mat->cmap);

4607:   /* check if the matrix sizes are correct */
4608:   MatGetSize(mat,&rows,&cols);
4609:   if (M != rows || N != cols) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different sizes (%D, %D) than the input matrix (%D, %D)",M,N,rows,cols);

4611:   /* read in row lengths */
4612:   PetscMalloc1(M,&rowlens);
4613:   PetscViewerBinaryRead(viewer,rowlens,M,NULL,PETSC_INT);
4614:   /* check if sum(rowlens) is same as nz */
4615:   sum = 0; for (i=0; i<M; i++) sum += rowlens[i];
4616:   if (sum != nz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED,"Inconsistent matrix data in file: nonzeros = %D, sum-row-lengths = %D\n",nz,sum);
4617:   /* preallocate and check sizes */
4618:   MatSeqAIJSetPreallocation_SeqAIJ(mat,0,rowlens);
4619:   MatGetSize(mat,&rows,&cols);
4620:   if (M != rows || N != cols) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_FILE_UNEXPECTED, "Matrix in file of different length (%D, %D) than the input matrix (%D, %D)",M,N,rows,cols);
4621:   /* store row lengths */
4622:   PetscArraycpy(a->ilen,rowlens,M);
4623:   PetscFree(rowlens);

4625:   /* fill in "i" row pointers */
4626:   a->i[0] = 0; for (i=0; i<M; i++) a->i[i+1] = a->i[i] + a->ilen[i];
4627:   /* read in "j" column indices */
4628:   PetscViewerBinaryRead(viewer,a->j,nz,NULL,PETSC_INT);
4629:   /* read in "a" nonzero values */
4630:   PetscViewerBinaryRead(viewer,a->a,nz,NULL,PETSC_SCALAR);

4632:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
4633:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
4634:   return(0);
4635: }

4637: PetscErrorCode MatEqual_SeqAIJ(Mat A,Mat B,PetscBool * flg)
4638: {
4639:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data,*b = (Mat_SeqAIJ*)B->data;
4641: #if defined(PETSC_USE_COMPLEX)
4642:   PetscInt k;
4643: #endif

4646:   /* If the  matrix dimensions are not equal,or no of nonzeros */
4647:   if ((A->rmap->n != B->rmap->n) || (A->cmap->n != B->cmap->n) ||(a->nz != b->nz)) {
4648:     *flg = PETSC_FALSE;
4649:     return(0);
4650:   }

4652:   /* if the a->i are the same */
4653:   PetscArraycmp(a->i,b->i,A->rmap->n+1,flg);
4654:   if (!*flg) return(0);

4656:   /* if a->j are the same */
4657:   PetscArraycmp(a->j,b->j,a->nz,flg);
4658:   if (!*flg) return(0);

4660:   /* if a->a are the same */
4661: #if defined(PETSC_USE_COMPLEX)
4662:   for (k=0; k<a->nz; k++) {
4663:     if (PetscRealPart(a->a[k]) != PetscRealPart(b->a[k]) || PetscImaginaryPart(a->a[k]) != PetscImaginaryPart(b->a[k])) {
4664:       *flg = PETSC_FALSE;
4665:       return(0);
4666:     }
4667:   }
4668: #else
4669:   PetscArraycmp(a->a,b->a,a->nz,flg);
4670: #endif
4671:   return(0);
4672: }

4674: /*@
4675:      MatCreateSeqAIJWithArrays - Creates an sequential AIJ matrix using matrix elements (in CSR format)
4676:               provided by the user.

4678:       Collective

4680:    Input Parameters:
4681: +   comm - must be an MPI communicator of size 1
4682: .   m - number of rows
4683: .   n - number of columns
4684: .   i - row indices; that is i[0] = 0, i[row] = i[row-1] + number of elements in that row of the matrix
4685: .   j - column indices
4686: -   a - matrix values

4688:    Output Parameter:
4689: .   mat - the matrix

4691:    Level: intermediate

4693:    Notes:
4694:        The i, j, and a arrays are not copied by this routine, the user must free these arrays
4695:     once the matrix is destroyed and not before

4697:        You cannot set new nonzero locations into this matrix, that will generate an error.

4699:        The i and j indices are 0 based

4701:        The format which is used for the sparse matrix input, is equivalent to a
4702:     row-major ordering.. i.e for the following matrix, the input data expected is
4703:     as shown

4705: $        1 0 0
4706: $        2 0 3
4707: $        4 5 6
4708: $
4709: $        i =  {0,1,3,6}  [size = nrow+1  = 3+1]
4710: $        j =  {0,0,2,0,1,2}  [size = 6]; values must be sorted for each row
4711: $        v =  {1,2,3,4,5,6}  [size = 6]


4714: .seealso: MatCreate(), MatCreateAIJ(), MatCreateSeqAIJ(), MatCreateMPIAIJWithArrays(), MatMPIAIJSetPreallocationCSR()

4716: @*/
4717: PetscErrorCode  MatCreateSeqAIJWithArrays(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt i[],PetscInt j[],PetscScalar a[],Mat *mat)
4718: {
4720:   PetscInt       ii;
4721:   Mat_SeqAIJ     *aij;
4722: #if defined(PETSC_USE_DEBUG)
4723:   PetscInt jj;
4724: #endif

4727:   if (m > 0 && i[0]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"i (row indices) must start with 0");
4728:   MatCreate(comm,mat);
4729:   MatSetSizes(*mat,m,n,m,n);
4730:   /* MatSetBlockSizes(*mat,,); */
4731:   MatSetType(*mat,MATSEQAIJ);
4732:   MatSeqAIJSetPreallocation_SeqAIJ(*mat,MAT_SKIP_ALLOCATION,0);
4733:   aij  = (Mat_SeqAIJ*)(*mat)->data;
4734:   PetscMalloc1(m,&aij->imax);
4735:   PetscMalloc1(m,&aij->ilen);

4737:   aij->i            = i;
4738:   aij->j            = j;
4739:   aij->a            = a;
4740:   aij->singlemalloc = PETSC_FALSE;
4741:   aij->nonew        = -1;             /*this indicates that inserting a new value in the matrix that generates a new nonzero is an error*/
4742:   aij->free_a       = PETSC_FALSE;
4743:   aij->free_ij      = PETSC_FALSE;

4745:   for (ii=0; ii<m; ii++) {
4746:     aij->ilen[ii] = aij->imax[ii] = i[ii+1] - i[ii];
4747: #if defined(PETSC_USE_DEBUG)
4748:     if (i[ii+1] - i[ii] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative row length in i (row indices) row = %D length = %D",ii,i[ii+1] - i[ii]);
4749:     for (jj=i[ii]+1; jj<i[ii+1]; jj++) {
4750:       if (j[jj] < j[jj-1]) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column entry number %D (actual column %D) in row %D is not sorted",jj-i[ii],j[jj],ii);
4751:       if (j[jj] == j[jj-1]) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column entry number %D (actual column %D) in row %D is identical to previous entry",jj-i[ii],j[jj],ii);
4752:     }
4753: #endif
4754:   }
4755: #if defined(PETSC_USE_DEBUG)
4756:   for (ii=0; ii<aij->i[m]; ii++) {
4757:     if (j[ii] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative column index at location = %D index = %D",ii,j[ii]);
4758:     if (j[ii] > n - 1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Column index to large at location = %D index = %D",ii,j[ii]);
4759:   }
4760: #endif

4762:   MatAssemblyBegin(*mat,MAT_FINAL_ASSEMBLY);
4763:   MatAssemblyEnd(*mat,MAT_FINAL_ASSEMBLY);
4764:   return(0);
4765: }
4766: /*@C
4767:      MatCreateSeqAIJFromTriple - Creates an sequential AIJ matrix using matrix elements (in COO format)
4768:               provided by the user.

4770:       Collective

4772:    Input Parameters:
4773: +   comm - must be an MPI communicator of size 1
4774: .   m   - number of rows
4775: .   n   - number of columns
4776: .   i   - row indices
4777: .   j   - column indices
4778: .   a   - matrix values
4779: .   nz  - number of nonzeros
4780: -   idx - 0 or 1 based

4782:    Output Parameter:
4783: .   mat - the matrix

4785:    Level: intermediate

4787:    Notes:
4788:        The i and j indices are 0 based

4790:        The format which is used for the sparse matrix input, is equivalent to a
4791:     row-major ordering.. i.e for the following matrix, the input data expected is
4792:     as shown:

4794:         1 0 0
4795:         2 0 3
4796:         4 5 6

4798:         i =  {0,1,1,2,2,2}
4799:         j =  {0,0,2,0,1,2}
4800:         v =  {1,2,3,4,5,6}


4803: .seealso: MatCreate(), MatCreateAIJ(), MatCreateSeqAIJ(), MatCreateSeqAIJWithArrays(), MatMPIAIJSetPreallocationCSR()

4805: @*/
4806: PetscErrorCode  MatCreateSeqAIJFromTriple(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt i[],PetscInt j[],PetscScalar a[],Mat *mat,PetscInt nz,PetscBool idx)
4807: {
4809:   PetscInt       ii, *nnz, one = 1,row,col;


4813:   PetscCalloc1(m,&nnz);
4814:   for (ii = 0; ii < nz; ii++) {
4815:     nnz[i[ii] - !!idx] += 1;
4816:   }
4817:   MatCreate(comm,mat);
4818:   MatSetSizes(*mat,m,n,m,n);
4819:   MatSetType(*mat,MATSEQAIJ);
4820:   MatSeqAIJSetPreallocation_SeqAIJ(*mat,0,nnz);
4821:   for (ii = 0; ii < nz; ii++) {
4822:     if (idx) {
4823:       row = i[ii] - 1;
4824:       col = j[ii] - 1;
4825:     } else {
4826:       row = i[ii];
4827:       col = j[ii];
4828:     }
4829:     MatSetValues(*mat,one,&row,one,&col,&a[ii],ADD_VALUES);
4830:   }
4831:   MatAssemblyBegin(*mat,MAT_FINAL_ASSEMBLY);
4832:   MatAssemblyEnd(*mat,MAT_FINAL_ASSEMBLY);
4833:   PetscFree(nnz);
4834:   return(0);
4835: }

4837: PetscErrorCode MatSeqAIJInvalidateDiagonal(Mat A)
4838: {
4839:   Mat_SeqAIJ     *a=(Mat_SeqAIJ*)A->data;

4843:   a->idiagvalid  = PETSC_FALSE;
4844:   a->ibdiagvalid = PETSC_FALSE;

4846:   MatSeqAIJInvalidateDiagonal_Inode(A);
4847:   return(0);
4848: }

4850: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_SeqAIJ(MPI_Comm comm,Mat inmat,PetscInt n,MatReuse scall,Mat *outmat)
4851: {
4853:   PetscMPIInt    size;

4856:   MPI_Comm_size(comm,&size);
4857:   if (size == 1) {
4858:     if (scall == MAT_INITIAL_MATRIX) {
4859:       MatDuplicate(inmat,MAT_COPY_VALUES,outmat);
4860:     } else {
4861:       MatCopy(inmat,*outmat,SAME_NONZERO_PATTERN);
4862:     }
4863:   } else {
4864:     MatCreateMPIMatConcatenateSeqMat_MPIAIJ(comm,inmat,n,scall,outmat);
4865:   }
4866:   return(0);
4867: }

4869: /*
4870:  Permute A into C's *local* index space using rowemb,colemb.
4871:  The embedding are supposed to be injections and the above implies that the range of rowemb is a subset
4872:  of [0,m), colemb is in [0,n).
4873:  If pattern == DIFFERENT_NONZERO_PATTERN, C is preallocated according to A.
4874:  */
4875: PetscErrorCode MatSetSeqMat_SeqAIJ(Mat C,IS rowemb,IS colemb,MatStructure pattern,Mat B)
4876: {
4877:   /* If making this function public, change the error returned in this function away from _PLIB. */
4879:   Mat_SeqAIJ     *Baij;
4880:   PetscBool      seqaij;
4881:   PetscInt       m,n,*nz,i,j,count;
4882:   PetscScalar    v;
4883:   const PetscInt *rowindices,*colindices;

4886:   if (!B) return(0);
4887:   /* Check to make sure the target matrix (and embeddings) are compatible with C and each other. */
4888:   PetscObjectBaseTypeCompare((PetscObject)B,MATSEQAIJ,&seqaij);
4889:   if (!seqaij) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Input matrix is of wrong type");
4890:   if (rowemb) {
4891:     ISGetLocalSize(rowemb,&m);
4892:     if (m != B->rmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Row IS of size %D is incompatible with matrix row size %D",m,B->rmap->n);
4893:   } else {
4894:     if (C->rmap->n != B->rmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Input matrix is row-incompatible with the target matrix");
4895:   }
4896:   if (colemb) {
4897:     ISGetLocalSize(colemb,&n);
4898:     if (n != B->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Diag col IS of size %D is incompatible with input matrix col size %D",n,B->cmap->n);
4899:   } else {
4900:     if (C->cmap->n != B->cmap->n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Input matrix is col-incompatible with the target matrix");
4901:   }

4903:   Baij = (Mat_SeqAIJ*)(B->data);
4904:   if (pattern == DIFFERENT_NONZERO_PATTERN) {
4905:     PetscMalloc1(B->rmap->n,&nz);
4906:     for (i=0; i<B->rmap->n; i++) {
4907:       nz[i] = Baij->i[i+1] - Baij->i[i];
4908:     }
4909:     MatSeqAIJSetPreallocation(C,0,nz);
4910:     PetscFree(nz);
4911:   }
4912:   if (pattern == SUBSET_NONZERO_PATTERN) {
4913:     MatZeroEntries(C);
4914:   }
4915:   count = 0;
4916:   rowindices = NULL;
4917:   colindices = NULL;
4918:   if (rowemb) {
4919:     ISGetIndices(rowemb,&rowindices);
4920:   }
4921:   if (colemb) {
4922:     ISGetIndices(colemb,&colindices);
4923:   }
4924:   for (i=0; i<B->rmap->n; i++) {
4925:     PetscInt row;
4926:     row = i;
4927:     if (rowindices) row = rowindices[i];
4928:     for (j=Baij->i[i]; j<Baij->i[i+1]; j++) {
4929:       PetscInt col;
4930:       col  = Baij->j[count];
4931:       if (colindices) col = colindices[col];
4932:       v    = Baij->a[count];
4933:       MatSetValues(C,1,&row,1,&col,&v,INSERT_VALUES);
4934:       ++count;
4935:     }
4936:   }
4937:   /* FIXME: set C's nonzerostate correctly. */
4938:   /* Assembly for C is necessary. */
4939:   C->preallocated = PETSC_TRUE;
4940:   C->assembled     = PETSC_TRUE;
4941:   C->was_assembled = PETSC_FALSE;
4942:   return(0);
4943: }

4945: PetscFunctionList MatSeqAIJList = NULL;

4947: /*@C
4948:    MatSeqAIJSetType - Converts a MATSEQAIJ matrix to a subtype

4950:    Collective on Mat

4952:    Input Parameters:
4953: +  mat      - the matrix object
4954: -  matype   - matrix type

4956:    Options Database Key:
4957: .  -mat_seqai_type  <method> - for example seqaijcrl


4960:   Level: intermediate

4962: .seealso: PCSetType(), VecSetType(), MatCreate(), MatType, Mat
4963: @*/
4964: PetscErrorCode  MatSeqAIJSetType(Mat mat, MatType matype)
4965: {
4966:   PetscErrorCode ierr,(*r)(Mat,MatType,MatReuse,Mat*);
4967:   PetscBool      sametype;

4971:   PetscObjectTypeCompare((PetscObject)mat,matype,&sametype);
4972:   if (sametype) return(0);

4974:    PetscFunctionListFind(MatSeqAIJList,matype,&r);
4975:   if (!r) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown Mat type given: %s",matype);
4976:   (*r)(mat,matype,MAT_INPLACE_MATRIX,&mat);
4977:   return(0);
4978: }


4981: /*@C
4982:   MatSeqAIJRegister -  - Adds a new sub-matrix type for sequential AIJ matrices

4984:    Not Collective

4986:    Input Parameters:
4987: +  name - name of a new user-defined matrix type, for example MATSEQAIJCRL
4988: -  function - routine to convert to subtype

4990:    Notes:
4991:    MatSeqAIJRegister() may be called multiple times to add several user-defined solvers.


4994:    Then, your matrix can be chosen with the procedural interface at runtime via the option
4995: $     -mat_seqaij_type my_mat

4997:    Level: advanced

4999: .seealso: MatSeqAIJRegisterAll()


5002:   Level: advanced
5003: @*/
5004: PetscErrorCode  MatSeqAIJRegister(const char sname[],PetscErrorCode (*function)(Mat,MatType,MatReuse,Mat *))
5005: {

5009:   MatInitializePackage();
5010:   PetscFunctionListAdd(&MatSeqAIJList,sname,function);
5011:   return(0);
5012: }

5014: PetscBool MatSeqAIJRegisterAllCalled = PETSC_FALSE;

5016: /*@C
5017:   MatSeqAIJRegisterAll - Registers all of the matrix subtypes of SeqAIJ

5019:   Not Collective

5021:   Level: advanced

5023:   Developers Note: CUSP and CUSPARSE do not yet support the  MatConvert_SeqAIJ..() paradigm and thus cannot be registered here

5025: .seealso:  MatRegisterAll(), MatSeqAIJRegister()
5026: @*/
5027: PetscErrorCode  MatSeqAIJRegisterAll(void)
5028: {

5032:   if (MatSeqAIJRegisterAllCalled) return(0);
5033:   MatSeqAIJRegisterAllCalled = PETSC_TRUE;

5035:   MatSeqAIJRegister(MATSEQAIJCRL,      MatConvert_SeqAIJ_SeqAIJCRL);
5036:   MatSeqAIJRegister(MATSEQAIJPERM,     MatConvert_SeqAIJ_SeqAIJPERM);
5037:   MatSeqAIJRegister(MATSEQAIJSELL,     MatConvert_SeqAIJ_SeqAIJSELL);
5038: #if defined(PETSC_HAVE_MKL_SPARSE)
5039:   MatSeqAIJRegister(MATSEQAIJMKL,      MatConvert_SeqAIJ_SeqAIJMKL);
5040: #endif
5041: #if defined(PETSC_HAVE_VIENNACL) && defined(PETSC_HAVE_VIENNACL_NO_CUDA)
5042:   MatSeqAIJRegister(MATMPIAIJVIENNACL, MatConvert_SeqAIJ_SeqAIJViennaCL);
5043: #endif
5044:   return(0);
5045: }

5047: /*
5048:     Special version for direct calls from Fortran
5049: */
5050:  #include <petsc/private/fortranimpl.h>
5051: #if defined(PETSC_HAVE_FORTRAN_CAPS)
5052: #define matsetvaluesseqaij_ MATSETVALUESSEQAIJ
5053: #elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
5054: #define matsetvaluesseqaij_ matsetvaluesseqaij
5055: #endif

5057: /* Change these macros so can be used in void function */
5058: #undef CHKERRQ
5059: #define CHKERRQ(ierr) CHKERRABORT(PetscObjectComm((PetscObject)A),ierr)
5060: #undef SETERRQ2
5061: #define SETERRQ2(comm,ierr,b,c,d) CHKERRABORT(comm,ierr)
5062: #undef SETERRQ3
5063: #define SETERRQ3(comm,ierr,b,c,d,e) CHKERRABORT(comm,ierr)

5065: PETSC_EXTERN void matsetvaluesseqaij_(Mat *AA,PetscInt *mm,const PetscInt im[],PetscInt *nn,const PetscInt in[],const PetscScalar v[],InsertMode *isis, PetscErrorCode *_ierr)
5066: {
5067:   Mat            A  = *AA;
5068:   PetscInt       m  = *mm, n = *nn;
5069:   InsertMode     is = *isis;
5070:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;
5071:   PetscInt       *rp,k,low,high,t,ii,row,nrow,i,col,l,rmax,N;
5072:   PetscInt       *imax,*ai,*ailen;
5074:   PetscInt       *aj,nonew = a->nonew,lastcol = -1;
5075:   MatScalar      *ap,value,*aa;
5076:   PetscBool      ignorezeroentries = a->ignorezeroentries;
5077:   PetscBool      roworiented       = a->roworiented;

5080:   MatCheckPreallocated(A,1);
5081:   imax  = a->imax;
5082:   ai    = a->i;
5083:   ailen = a->ilen;
5084:   aj    = a->j;
5085:   aa    = a->a;

5087:   for (k=0; k<m; k++) { /* loop over added rows */
5088:     row = im[k];
5089:     if (row < 0) continue;
5090: #if defined(PETSC_USE_DEBUG)
5091:     if (row >= A->rmap->n) SETERRABORT(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Row too large");
5092: #endif
5093:     rp   = aj + ai[row]; ap = aa + ai[row];
5094:     rmax = imax[row]; nrow = ailen[row];
5095:     low  = 0;
5096:     high = nrow;
5097:     for (l=0; l<n; l++) { /* loop over added columns */
5098:       if (in[l] < 0) continue;
5099: #if defined(PETSC_USE_DEBUG)
5100:       if (in[l] >= A->cmap->n) SETERRABORT(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Column too large");
5101: #endif
5102:       col = in[l];
5103:       if (roworiented) value = v[l + k*n];
5104:       else value = v[k + l*m];

5106:       if (value == 0.0 && ignorezeroentries && (is == ADD_VALUES)) continue;

5108:       if (col <= lastcol) low = 0;
5109:       else high = nrow;
5110:       lastcol = col;
5111:       while (high-low > 5) {
5112:         t = (low+high)/2;
5113:         if (rp[t] > col) high = t;
5114:         else             low  = t;
5115:       }
5116:       for (i=low; i<high; i++) {
5117:         if (rp[i] > col) break;
5118:         if (rp[i] == col) {
5119:           if (is == ADD_VALUES) ap[i] += value;
5120:           else                  ap[i] = value;
5121:           goto noinsert;
5122:         }
5123:       }
5124:       if (value == 0.0 && ignorezeroentries) goto noinsert;
5125:       if (nonew == 1) goto noinsert;
5126:       if (nonew == -1) SETERRABORT(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_OUTOFRANGE,"Inserting a new nonzero in the matrix");
5127:       MatSeqXAIJReallocateAIJ(A,A->rmap->n,1,nrow,row,col,rmax,aa,ai,aj,rp,ap,imax,nonew,MatScalar);
5128:       N = nrow++ - 1; a->nz++; high++;
5129:       /* shift up all the later entries in this row */
5130:       for (ii=N; ii>=i; ii--) {
5131:         rp[ii+1] = rp[ii];
5132:         ap[ii+1] = ap[ii];
5133:       }
5134:       rp[i] = col;
5135:       ap[i] = value;
5136:       A->nonzerostate++;
5137: noinsert:;
5138:       low = i + 1;
5139:     }
5140:     ailen[row] = nrow;
5141:   }
5142:   PetscFunctionReturnVoid();
5143: }