Actual source code: plexfem.c

petsc-3.12.5 2020-03-29
Report Typos and Errors
  1:  #include <petsc/private/dmpleximpl.h>
  2:  #include <petscsf.h>

  4:  #include <petsc/private/hashsetij.h>
  5:  #include <petsc/private/petscfeimpl.h>
  6:  #include <petsc/private/petscfvimpl.h>

  8: static PetscErrorCode DMPlexConvertPlex(DM dm, DM *plex, PetscBool copy)
  9: {
 10:   PetscBool      isPlex;

 14:   PetscObjectTypeCompare((PetscObject) dm, DMPLEX, &isPlex);
 15:   if (isPlex) {
 16:     *plex = dm;
 17:     PetscObjectReference((PetscObject) dm);
 18:   } else {
 19:     PetscObjectQuery((PetscObject) dm, "dm_plex", (PetscObject *) plex);
 20:     if (!*plex) {
 21:       DMConvert(dm,DMPLEX,plex);
 22:       PetscObjectCompose((PetscObject) dm, "dm_plex", (PetscObject) *plex);
 23:       if (copy) {
 24:         const char *comps[3] = {"A", "dmAux"};
 25:         PetscObject obj;
 26:         PetscInt    i;

 28:         {
 29:           /* Run the subdomain hook (this will copy the DMSNES/DMTS) */
 30:           DMSubDomainHookLink link;
 31:           for (link = dm->subdomainhook; link; link = link->next) {
 32:             if (link->ddhook) {(*link->ddhook)(dm, *plex, link->ctx);}
 33:           }
 34:         }
 35:         for (i = 0; i < 3; i++) {
 36:           PetscObjectQuery((PetscObject) dm, comps[i], &obj);
 37:           PetscObjectCompose((PetscObject) *plex, comps[i], obj);
 38:         }
 39:       }
 40:     } else {
 41:       PetscObjectReference((PetscObject) *plex);
 42:     }
 43:   }
 44:   return(0);
 45: }

 47: static PetscErrorCode PetscContainerUserDestroy_PetscFEGeom (void *ctx)
 48: {
 49:   PetscFEGeom *geom = (PetscFEGeom *) ctx;

 53:   PetscFEGeomDestroy(&geom);
 54:   return(0);
 55: }

 57: static PetscErrorCode DMPlexGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 58: {
 59:   char            composeStr[33] = {0};
 60:   PetscObjectId   id;
 61:   PetscContainer  container;
 62:   PetscErrorCode  ierr;

 65:   PetscObjectGetId((PetscObject)quad,&id);
 66:   PetscSNPrintf(composeStr, 32, "DMPlexGetFEGeom_%x\n", id);
 67:   PetscObjectQuery((PetscObject) pointIS, composeStr, (PetscObject *) &container);
 68:   if (container) {
 69:     PetscContainerGetPointer(container, (void **) geom);
 70:   } else {
 71:     DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom);
 72:     PetscContainerCreate(PETSC_COMM_SELF,&container);
 73:     PetscContainerSetPointer(container, (void *) *geom);
 74:     PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom);
 75:     PetscObjectCompose((PetscObject) pointIS, composeStr, (PetscObject) container);
 76:     PetscContainerDestroy(&container);
 77:   }
 78:   return(0);
 79: }

 81: static PetscErrorCode DMPlexRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
 82: {
 84:   *geom = NULL;
 85:   return(0);
 86: }

 88: /*@
 89:   DMPlexGetScale - Get the scale for the specified fundamental unit

 91:   Not collective

 93:   Input Arguments:
 94: + dm   - the DM
 95: - unit - The SI unit

 97:   Output Argument:
 98: . scale - The value used to scale all quantities with this unit

100:   Level: advanced

102: .seealso: DMPlexSetScale(), PetscUnit
103: @*/
104: PetscErrorCode DMPlexGetScale(DM dm, PetscUnit unit, PetscReal *scale)
105: {
106:   DM_Plex *mesh = (DM_Plex*) dm->data;

111:   *scale = mesh->scale[unit];
112:   return(0);
113: }

115: /*@
116:   DMPlexSetScale - Set the scale for the specified fundamental unit

118:   Not collective

120:   Input Arguments:
121: + dm   - the DM
122: . unit - The SI unit
123: - scale - The value used to scale all quantities with this unit

125:   Level: advanced

127: .seealso: DMPlexGetScale(), PetscUnit
128: @*/
129: PetscErrorCode DMPlexSetScale(DM dm, PetscUnit unit, PetscReal scale)
130: {
131:   DM_Plex *mesh = (DM_Plex*) dm->data;

135:   mesh->scale[unit] = scale;
136:   return(0);
137: }

139: static PetscErrorCode DMPlexProjectRigidBody_Private(PetscInt dim, PetscReal t, const PetscReal X[], PetscInt Nf, PetscScalar *mode, void *ctx)
140: {
141:   const PetscInt eps[3][3][3] = {{{0, 0, 0}, {0, 0, 1}, {0, -1, 0}}, {{0, 0, -1}, {0, 0, 0}, {1, 0, 0}}, {{0, 1, 0}, {-1, 0, 0}, {0, 0, 0}}};
142:   PetscInt *ctxInt  = (PetscInt *) ctx;
143:   PetscInt  dim2    = ctxInt[0];
144:   PetscInt  d       = ctxInt[1];
145:   PetscInt  i, j, k = dim > 2 ? d - dim : d;

148:   if (dim != dim2) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Input dimension %D does not match context dimension %D", dim, dim2);
149:   for (i = 0; i < dim; i++) mode[i] = 0.;
150:   if (d < dim) {
151:     mode[d] = 1.; /* Translation along axis d */
152:   } else {
153:     for (i = 0; i < dim; i++) {
154:       for (j = 0; j < dim; j++) {
155:         mode[j] += eps[i][j][k]*X[i]; /* Rotation about axis d */
156:       }
157:     }
158:   }
159:   return(0);
160: }

162: /*@
163:   DMPlexCreateRigidBody - For the default global section, create rigid body modes by function space interpolation

165:   Collective on dm

167:   Input Arguments:
168: . dm - the DM

170:   Output Argument:
171: . sp - the null space

173:   Note: This is necessary to provide a suitable coarse space for algebraic multigrid

175:   Level: advanced

177: .seealso: MatNullSpaceCreate(), PCGAMG
178: @*/
179: PetscErrorCode DMPlexCreateRigidBody(DM dm, MatNullSpace *sp)
180: {
181:   MPI_Comm       comm;
182:   Vec            mode[6];
183:   PetscSection   section, globalSection;
184:   PetscInt       dim, dimEmbed, n, m, mmin, d, i, j;

188:   PetscObjectGetComm((PetscObject)dm,&comm);
189:   DMGetDimension(dm, &dim);
190:   DMGetCoordinateDim(dm, &dimEmbed);
191:   if (dim == 1) {
192:     MatNullSpaceCreate(comm, PETSC_TRUE, 0, NULL, sp);
193:     return(0);
194:   }
195:   DMGetLocalSection(dm, &section);
196:   DMGetGlobalSection(dm, &globalSection);
197:   PetscSectionGetConstrainedStorageSize(globalSection, &n);
198:   m    = (dim*(dim+1))/2;
199:   VecCreate(comm, &mode[0]);
200:   VecSetSizes(mode[0], n, PETSC_DETERMINE);
201:   VecSetUp(mode[0]);
202:   VecGetSize(mode[0], &n);
203:   mmin = PetscMin(m, n);
204:   for (i = 1; i < m; ++i) {VecDuplicate(mode[0], &mode[i]);}
205:   for (d = 0; d < m; d++) {
206:     PetscInt         ctx[2];
207:     PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
208:     void            *voidctx = (void *) (&ctx[0]);

210:     ctx[0] = dimEmbed;
211:     ctx[1] = d;
212:     DMProjectFunction(dm, 0.0, &func, &voidctx, INSERT_VALUES, mode[d]);
213:   }
214:   /* Orthonormalize system */
215:   for (i = 0; i < mmin; ++i) {
216:     PetscScalar dots[6];

218:     VecNormalize(mode[i], NULL);
219:     VecMDot(mode[i], mmin-i-1, mode+i+1, dots+i+1);
220:     for (j = i+1; j < mmin; ++j) {
221:       dots[j] *= -1.0;
222:       VecAXPY(mode[j], dots[j], mode[i]);
223:     }
224:   }
225:   MatNullSpaceCreate(comm, PETSC_FALSE, mmin, mode, sp);
226:   for (i = 0; i < m; ++i) {VecDestroy(&mode[i]);}
227:   return(0);
228: }

230: /*@
231:   DMPlexCreateRigidBodies - For the default global section, create rigid body modes by function space interpolation

233:   Collective on dm

235:   Input Arguments:
236: + dm    - the DM
237: . nb    - The number of bodies
238: . label - The DMLabel marking each domain
239: . nids  - The number of ids per body
240: - ids   - An array of the label ids in sequence for each domain

242:   Output Argument:
243: . sp - the null space

245:   Note: This is necessary to provide a suitable coarse space for algebraic multigrid

247:   Level: advanced

249: .seealso: MatNullSpaceCreate()
250: @*/
251: PetscErrorCode DMPlexCreateRigidBodies(DM dm, PetscInt nb, DMLabel label, const PetscInt nids[], const PetscInt ids[], MatNullSpace *sp)
252: {
253:   MPI_Comm       comm;
254:   PetscSection   section, globalSection;
255:   Vec           *mode;
256:   PetscScalar   *dots;
257:   PetscInt       dim, dimEmbed, n, m, b, d, i, j, off;

261:   PetscObjectGetComm((PetscObject)dm,&comm);
262:   DMGetDimension(dm, &dim);
263:   DMGetCoordinateDim(dm, &dimEmbed);
264:   DMGetLocalSection(dm, &section);
265:   DMGetGlobalSection(dm, &globalSection);
266:   PetscSectionGetConstrainedStorageSize(globalSection, &n);
267:   m    = nb * (dim*(dim+1))/2;
268:   PetscMalloc2(m, &mode, m, &dots);
269:   VecCreate(comm, &mode[0]);
270:   VecSetSizes(mode[0], n, PETSC_DETERMINE);
271:   VecSetUp(mode[0]);
272:   for (i = 1; i < m; ++i) {VecDuplicate(mode[0], &mode[i]);}
273:   for (b = 0, off = 0; b < nb; ++b) {
274:     for (d = 0; d < m/nb; ++d) {
275:       PetscInt         ctx[2];
276:       PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal *, PetscInt, PetscScalar *, void *) = DMPlexProjectRigidBody_Private;
277:       void            *voidctx = (void *) (&ctx[0]);

279:       ctx[0] = dimEmbed;
280:       ctx[1] = d;
281:       DMProjectFunctionLabel(dm, 0.0, label, nids[b], &ids[off], 0, NULL, &func, &voidctx, INSERT_VALUES, mode[d]);
282:       off   += nids[b];
283:     }
284:   }
285:   /* Orthonormalize system */
286:   for (i = 0; i < m; ++i) {
287:     PetscScalar dots[6];

289:     VecNormalize(mode[i], NULL);
290:     VecMDot(mode[i], m-i-1, mode+i+1, dots+i+1);
291:     for (j = i+1; j < m; ++j) {
292:       dots[j] *= -1.0;
293:       VecAXPY(mode[j], dots[j], mode[i]);
294:     }
295:   }
296:   MatNullSpaceCreate(comm, PETSC_FALSE, m, mode, sp);
297:   for (i = 0; i< m; ++i) {VecDestroy(&mode[i]);}
298:   PetscFree2(mode, dots);
299:   return(0);
300: }

302: /*@
303:   DMPlexSetMaxProjectionHeight - In DMPlexProjectXXXLocal() functions, the projected values of a basis function's dofs
304:   are computed by associating the basis function with one of the mesh points in its transitively-closed support, and
305:   evaluating the dual space basis of that point.  A basis function is associated with the point in its
306:   transitively-closed support whose mesh height is highest (w.r.t. DAG height), but not greater than the maximum
307:   projection height, which is set with this function.  By default, the maximum projection height is zero, which means
308:   that only mesh cells are used to project basis functions.  A height of one, for example, evaluates a cell-interior
309:   basis functions using its cells dual space basis, but all other basis functions with the dual space basis of a face.

311:   Input Parameters:
312: + dm - the DMPlex object
313: - height - the maximum projection height >= 0

315:   Level: advanced

317: .seealso: DMPlexGetMaxProjectionHeight(), DMProjectFunctionLocal(), DMProjectFunctionLabelLocal()
318: @*/
319: PetscErrorCode DMPlexSetMaxProjectionHeight(DM dm, PetscInt height)
320: {
321:   DM_Plex *plex = (DM_Plex *) dm->data;

325:   plex->maxProjectionHeight = height;
326:   return(0);
327: }

329: /*@
330:   DMPlexGetMaxProjectionHeight - Get the maximum height (w.r.t. DAG) of mesh points used to evaluate dual bases in
331:   DMPlexProjectXXXLocal() functions.

333:   Input Parameters:
334: . dm - the DMPlex object

336:   Output Parameters:
337: . height - the maximum projection height

339:   Level: intermediate

341: .seealso: DMPlexSetMaxProjectionHeight(), DMProjectFunctionLocal(), DMProjectFunctionLabelLocal()
342: @*/
343: PetscErrorCode DMPlexGetMaxProjectionHeight(DM dm, PetscInt *height)
344: {
345:   DM_Plex *plex = (DM_Plex *) dm->data;

349:   *height = plex->maxProjectionHeight;
350:   return(0);
351: }

353: typedef struct {
354:   PetscReal    alpha; /* The first Euler angle, and in 2D the only one */
355:   PetscReal    beta;  /* The second Euler angle */
356:   PetscReal    gamma; /* The third Euler angle */
357:   PetscInt     dim;   /* The dimension of R */
358:   PetscScalar *R;     /* The rotation matrix, transforming a vector in the local basis to the global basis */
359:   PetscScalar *RT;    /* The transposed rotation matrix, transforming a vector in the global basis to the local basis */
360: } RotCtx;

362: /*
363:   Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
364:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
365:   $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
366:   $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
367:   $ The XYZ system rotates a third time about the z axis by gamma.
368: */
369: static PetscErrorCode DMPlexBasisTransformSetUp_Rotation_Internal(DM dm, void *ctx)
370: {
371:   RotCtx        *rc  = (RotCtx *) ctx;
372:   PetscInt       dim = rc->dim;
373:   PetscReal      c1, s1, c2, s2, c3, s3;

377:   PetscMalloc2(PetscSqr(dim), &rc->R, PetscSqr(dim), &rc->RT);
378:   switch (dim) {
379:   case 2:
380:     c1 = PetscCosReal(rc->alpha);s1 = PetscSinReal(rc->alpha);
381:     rc->R[0] =  c1;rc->R[1] = s1;
382:     rc->R[2] = -s1;rc->R[3] = c1;
383:     PetscArraycpy(rc->RT, rc->R, PetscSqr(dim));
384:     DMPlex_Transpose2D_Internal(rc->RT);break;
385:     break;
386:   case 3:
387:     c1 = PetscCosReal(rc->alpha);s1 = PetscSinReal(rc->alpha);
388:     c2 = PetscCosReal(rc->beta); s2 = PetscSinReal(rc->beta);
389:     c3 = PetscCosReal(rc->gamma);s3 = PetscSinReal(rc->gamma);
390:     rc->R[0] =  c1*c3 - c2*s1*s3;rc->R[1] =  c3*s1    + c1*c2*s3;rc->R[2] = s2*s3;
391:     rc->R[3] = -c1*s3 - c2*c3*s1;rc->R[4] =  c1*c2*c3 - s1*s3;   rc->R[5] = c3*s2;
392:     rc->R[6] =  s1*s2;           rc->R[7] = -c1*s2;              rc->R[8] = c2;
393:     PetscArraycpy(rc->RT, rc->R, PetscSqr(dim));
394:     DMPlex_Transpose3D_Internal(rc->RT);break;
395:     break;
396:   default: SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_OUTOFRANGE, "Dimension %D not supported", dim);
397:   }
398:   return(0);
399: }

401: static PetscErrorCode DMPlexBasisTransformDestroy_Rotation_Internal(DM dm, void *ctx)
402: {
403:   RotCtx        *rc = (RotCtx *) ctx;

407:   PetscFree2(rc->R, rc->RT);
408:   PetscFree(rc);
409:   return(0);
410: }

412: static PetscErrorCode DMPlexBasisTransformGetMatrix_Rotation_Internal(DM dm, const PetscReal x[], PetscBool l2g, const PetscScalar **A, void *ctx)
413: {
414:   RotCtx *rc = (RotCtx *) ctx;

418:   if (l2g) {*A = rc->R;}
419:   else     {*A = rc->RT;}
420:   return(0);
421: }

423: PetscErrorCode DMPlexBasisTransformApplyReal_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscReal *y, PetscReal *z, void *ctx)
424: {

428:   #if defined(PETSC_USE_COMPLEX)
429:   switch (dim) {
430:     case 2:
431:     {
432:       PetscScalar yt[2], zt[2];

434:       yt[0] = y[0]; yt[1] = y[1];
435:       DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx);
436:       z[0] = PetscRealPart(zt[0]); z[1] = PetscRealPart(zt[1]);
437:     }
438:     break;
439:     case 3:
440:     {
441:       PetscScalar yt[3], zt[3];

443:       yt[0] = y[0]; yt[1] = y[1]; yt[2] = y[2];
444:       DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, yt, zt, ctx);
445:       z[0] = PetscRealPart(zt[0]); z[1] = PetscRealPart(zt[1]); z[2] = PetscRealPart(zt[2]);
446:     }
447:     break;
448:   }
449:   #else
450:   DMPlexBasisTransformApply_Internal(dm, x, l2g, dim, y, z, ctx);
451:   #endif
452:   return(0);
453: }

455: PetscErrorCode DMPlexBasisTransformApply_Internal(DM dm, const PetscReal x[], PetscBool l2g, PetscInt dim, const PetscScalar *y, PetscScalar *z, void *ctx)
456: {
457:   const PetscScalar *A;
458:   PetscErrorCode     ierr;

461:   (*dm->transformGetMatrix)(dm, x, l2g, &A, ctx);
462:   switch (dim) {
463:   case 2: DMPlex_Mult2D_Internal(A, 1, y, z);break;
464:   case 3: DMPlex_Mult3D_Internal(A, 1, y, z);break;
465:   }
466:   return(0);
467: }

469: static PetscErrorCode DMPlexBasisTransformField_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscInt f, PetscBool l2g, PetscScalar *a)
470: {
471:   PetscSection       ts;
472:   const PetscScalar *ta, *tva;
473:   PetscInt           dof;
474:   PetscErrorCode     ierr;

477:   DMGetLocalSection(tdm, &ts);
478:   PetscSectionGetFieldDof(ts, p, f, &dof);
479:   VecGetArrayRead(tv, &ta);
480:   DMPlexPointLocalFieldRead(tdm, p, f, ta, (void *) &tva);
481:   if (l2g) {
482:     switch (dof) {
483:     case 4: DMPlex_Mult2D_Internal(tva, 1, a, a);break;
484:     case 9: DMPlex_Mult3D_Internal(tva, 1, a, a);break;
485:     }
486:   } else {
487:     switch (dof) {
488:     case 4: DMPlex_MultTranspose2D_Internal(tva, 1, a, a);break;
489:     case 9: DMPlex_MultTranspose3D_Internal(tva, 1, a, a);break;
490:     }
491:   }
492:   VecRestoreArrayRead(tv, &ta);
493:   return(0);
494: }

496: static PetscErrorCode DMPlexBasisTransformFieldTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt pf, PetscInt f, PetscInt pg, PetscInt g, PetscBool l2g, PetscInt lda, PetscScalar *a)
497: {
498:   PetscSection       s, ts;
499:   const PetscScalar *ta, *tvaf, *tvag;
500:   PetscInt           fdof, gdof, fpdof, gpdof;
501:   PetscErrorCode     ierr;

504:   DMGetLocalSection(dm, &s);
505:   DMGetLocalSection(tdm, &ts);
506:   PetscSectionGetFieldDof(s, pf, f, &fpdof);
507:   PetscSectionGetFieldDof(s, pg, g, &gpdof);
508:   PetscSectionGetFieldDof(ts, pf, f, &fdof);
509:   PetscSectionGetFieldDof(ts, pg, g, &gdof);
510:   VecGetArrayRead(tv, &ta);
511:   DMPlexPointLocalFieldRead(tdm, pf, f, ta, (void *) &tvaf);
512:   DMPlexPointLocalFieldRead(tdm, pg, g, ta, (void *) &tvag);
513:   if (l2g) {
514:     switch (fdof) {
515:     case 4: DMPlex_MatMult2D_Internal(tvaf, gpdof, lda, a, a);break;
516:     case 9: DMPlex_MatMult3D_Internal(tvaf, gpdof, lda, a, a);break;
517:     }
518:     switch (gdof) {
519:     case 4: DMPlex_MatMultTransposeLeft2D_Internal(tvag, fpdof, lda, a, a);break;
520:     case 9: DMPlex_MatMultTransposeLeft3D_Internal(tvag, fpdof, lda, a, a);break;
521:     }
522:   } else {
523:     switch (fdof) {
524:     case 4: DMPlex_MatMultTranspose2D_Internal(tvaf, gpdof, lda, a, a);break;
525:     case 9: DMPlex_MatMultTranspose3D_Internal(tvaf, gpdof, lda, a, a);break;
526:     }
527:     switch (gdof) {
528:     case 4: DMPlex_MatMultLeft2D_Internal(tvag, fpdof, lda, a, a);break;
529:     case 9: DMPlex_MatMultLeft3D_Internal(tvag, fpdof, lda, a, a);break;
530:     }
531:   }
532:   VecRestoreArrayRead(tv, &ta);
533:   return(0);
534: }

536: PetscErrorCode DMPlexBasisTransformPoint_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool fieldActive[], PetscBool l2g, PetscScalar *a)
537: {
538:   PetscSection    s;
539:   PetscSection    clSection;
540:   IS              clPoints;
541:   const PetscInt *clp;
542:   PetscInt       *points = NULL;
543:   PetscInt        Nf, f, Np, cp, dof, d = 0;
544:   PetscErrorCode  ierr;

547:   DMGetLocalSection(dm, &s);
548:   PetscSectionGetNumFields(s, &Nf);
549:   DMPlexGetCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp);
550:   for (f = 0; f < Nf; ++f) {
551:     for (cp = 0; cp < Np*2; cp += 2) {
552:       PetscSectionGetFieldDof(s, points[cp], f, &dof);
553:       if (!dof) continue;
554:       if (fieldActive[f]) {DMPlexBasisTransformField_Internal(dm, tdm, tv, points[cp], f, l2g, &a[d]);}
555:       d += dof;
556:     }
557:   }
558:   DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp);
559:   return(0);
560: }

562: PetscErrorCode DMPlexBasisTransformPointTensor_Internal(DM dm, DM tdm, Vec tv, PetscInt p, PetscBool l2g, PetscInt lda, PetscScalar *a)
563: {
564:   PetscSection    s;
565:   PetscSection    clSection;
566:   IS              clPoints;
567:   const PetscInt *clp;
568:   PetscInt       *points = NULL;
569:   PetscInt        Nf, f, g, Np, cpf, cpg, fdof, gdof, r, c = 0;
570:   PetscErrorCode  ierr;

573:   DMGetLocalSection(dm, &s);
574:   PetscSectionGetNumFields(s, &Nf);
575:   DMPlexGetCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp);
576:   for (f = 0, r = 0; f < Nf; ++f) {
577:     for (cpf = 0; cpf < Np*2; cpf += 2) {
578:       PetscSectionGetFieldDof(s, points[cpf], f, &fdof);
579:       for (g = 0, c = 0; g < Nf; ++g) {
580:         for (cpg = 0; cpg < Np*2; cpg += 2) {
581:           PetscSectionGetFieldDof(s, points[cpg], g, &gdof);
582:           DMPlexBasisTransformFieldTensor_Internal(dm, tdm, tv, points[cpf], f, points[cpg], g, l2g, lda, &a[r*lda+c]);
583:           c += gdof;
584:         }
585:       }
586:       if (c != lda) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of columns %D should be %D", c, lda);
587:       r += fdof;
588:     }
589:   }
590:   if (r != lda) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Invalid number of rows %D should be %D", c, lda);
591:   DMPlexRestoreCompressedClosure(dm, s, p, &Np, &points, &clSection, &clPoints, &clp);
592:   return(0);
593: }

595: static PetscErrorCode DMPlexBasisTransform_Internal(DM dm, Vec lv, PetscBool l2g)
596: {
597:   DM                 tdm;
598:   Vec                tv;
599:   PetscSection       ts, s;
600:   const PetscScalar *ta;
601:   PetscScalar       *a, *va;
602:   PetscInt           pStart, pEnd, p, Nf, f;
603:   PetscErrorCode     ierr;

606:   DMGetBasisTransformDM_Internal(dm, &tdm);
607:   DMGetBasisTransformVec_Internal(dm, &tv);
608:   DMGetLocalSection(tdm, &ts);
609:   DMGetLocalSection(dm, &s);
610:   PetscSectionGetChart(s, &pStart, &pEnd);
611:   PetscSectionGetNumFields(s, &Nf);
612:   VecGetArray(lv, &a);
613:   VecGetArrayRead(tv, &ta);
614:   for (p = pStart; p < pEnd; ++p) {
615:     for (f = 0; f < Nf; ++f) {
616:       DMPlexPointLocalFieldRef(dm, p, f, a, (void *) &va);
617:       DMPlexBasisTransformField_Internal(dm, tdm, tv, p, f, l2g, va);
618:     }
619:   }
620:   VecRestoreArray(lv, &a);
621:   VecRestoreArrayRead(tv, &ta);
622:   return(0);
623: }

625: /*@
626:   DMPlexGlobalToLocalBasis - Transform the values in the given local vector from the global basis to the local basis

628:   Input Parameters:
629: + dm - The DM
630: - lv - A local vector with values in the global basis

632:   Output Parameters:
633: . lv - A local vector with values in the local basis

635:   Note: This method is only intended to be called inside DMGlobalToLocal(). It is unlikely that a user will have a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

637:   Level: developer

639: .seealso: DMPlexLocalToGlobalBasis(), DMGetLocalSection()
640: @*/
641: PetscErrorCode DMPlexGlobalToLocalBasis(DM dm, Vec lv)
642: {

648:   DMPlexBasisTransform_Internal(dm, lv, PETSC_FALSE);
649:   return(0);
650: }

652: /*@
653:   DMPlexLocalToGlobalBasis - Transform the values in the given local vector from the local basis to the global basis

655:   Input Parameters:
656: + dm - The DM
657: - lv - A local vector with values in the local basis

659:   Output Parameters:
660: . lv - A local vector with values in the global basis

662:   Note: This method is only intended to be called inside DMGlobalToLocal(). It is unlikely that a user would want a local vector full of coefficients for the global basis unless they are reimplementing GlobalToLocal.

664:   Level: developer

666: .seealso: DMPlexGlobalToLocalBasis(), DMGetLocalSection()
667: @*/
668: PetscErrorCode DMPlexLocalToGlobalBasis(DM dm, Vec lv)
669: {

675:   DMPlexBasisTransform_Internal(dm, lv, PETSC_TRUE);
676:   return(0);
677: }

679: /*@
680:   DMPlexCreateBasisRotation - Create an internal transformation from the global basis, used to specify boundary conditions
681:     and global solutions, to a local basis, appropriate for discretization integrals and assembly.

683:   Input Parameters:
684: + dm    - The DM
685: . alpha - The first Euler angle, and in 2D the only one
686: . beta  - The second Euler angle
687: . gamma - The third Euler angle

689:   Note: Following https://en.wikipedia.org/wiki/Euler_angles, we will specify Euler angles by extrinsic rotations, meaning that
690:   we rotate with respect to a fixed initial coordinate system, the local basis (x-y-z). The global basis (X-Y-Z) is reached as follows:
691:   $ The XYZ system rotates about the z axis by alpha. The X axis is now at angle alpha with respect to the x axis.
692:   $ The XYZ system rotates again about the x axis by beta. The Z axis is now at angle beta with respect to the z axis.
693:   $ The XYZ system rotates a third time about the z axis by gamma.

695:   Level: developer

697: .seealso: DMPlexGlobalToLocalBasis(), DMPlexLocalToGlobalBasis()
698: @*/
699: PetscErrorCode DMPlexCreateBasisRotation(DM dm, PetscReal alpha, PetscReal beta, PetscReal gamma)
700: {
701:   RotCtx        *rc;
702:   PetscInt       cdim;

705:   DMGetCoordinateDim(dm, &cdim);
706:   PetscMalloc1(1, &rc);
707:   dm->transformCtx       = rc;
708:   dm->transformSetUp     = DMPlexBasisTransformSetUp_Rotation_Internal;
709:   dm->transformDestroy   = DMPlexBasisTransformDestroy_Rotation_Internal;
710:   dm->transformGetMatrix = DMPlexBasisTransformGetMatrix_Rotation_Internal;
711:   rc->dim   = cdim;
712:   rc->alpha = alpha;
713:   rc->beta  = beta;
714:   rc->gamma = gamma;
715:   (*dm->transformSetUp)(dm, dm->transformCtx);
716:   DMConstructBasisTransform_Internal(dm);
717:   return(0);
718: }

720: /*@C
721:   DMPlexInsertBoundaryValuesEssential - Insert boundary values into a local vector

723:   Input Parameters:
724: + dm     - The DM, with a PetscDS that matches the problem being constrained
725: . time   - The time
726: . field  - The field to constrain
727: . Nc     - The number of constrained field components, or 0 for all components
728: . comps  - An array of constrained component numbers, or NULL for all components
729: . label  - The DMLabel defining constrained points
730: . numids - The number of DMLabel ids for constrained points
731: . ids    - An array of ids for constrained points
732: . func   - A pointwise function giving boundary values
733: - ctx    - An optional user context for bcFunc

735:   Output Parameter:
736: . locX   - A local vector to receives the boundary values

738:   Level: developer

740: .seealso: DMPlexInsertBoundaryValuesEssentialField(), DMAddBoundary()
741: @*/
742: PetscErrorCode DMPlexInsertBoundaryValuesEssential(DM dm, PetscReal time, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[], PetscErrorCode (*func)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *), void *ctx, Vec locX)
743: {
744:   PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal x[], PetscInt, PetscScalar *u, void *ctx);
745:   void            **ctxs;
746:   PetscInt          numFields;
747:   PetscErrorCode    ierr;

750:   DMGetNumFields(dm, &numFields);
751:   PetscCalloc2(numFields,&funcs,numFields,&ctxs);
752:   funcs[field] = func;
753:   ctxs[field]  = ctx;
754:   DMProjectFunctionLabelLocal(dm, time, label, numids, ids, Nc, comps, funcs, ctxs, INSERT_BC_VALUES, locX);
755:   PetscFree2(funcs,ctxs);
756:   return(0);
757: }

759: /*@C
760:   DMPlexInsertBoundaryValuesEssentialField - Insert boundary values into a local vector

762:   Input Parameters:
763: + dm     - The DM, with a PetscDS that matches the problem being constrained
764: . time   - The time
765: . locU   - A local vector with the input solution values
766: . field  - The field to constrain
767: . Nc     - The number of constrained field components, or 0 for all components
768: . comps  - An array of constrained component numbers, or NULL for all components
769: . label  - The DMLabel defining constrained points
770: . numids - The number of DMLabel ids for constrained points
771: . ids    - An array of ids for constrained points
772: . func   - A pointwise function giving boundary values
773: - ctx    - An optional user context for bcFunc

775:   Output Parameter:
776: . locX   - A local vector to receives the boundary values

778:   Level: developer

780: .seealso: DMPlexInsertBoundaryValuesEssential(), DMAddBoundary()
781: @*/
782: PetscErrorCode DMPlexInsertBoundaryValuesEssentialField(DM dm, PetscReal time, Vec locU, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[],
783:                                                         void (*func)(PetscInt, PetscInt, PetscInt,
784:                                                                      const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
785:                                                                      const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
786:                                                                      PetscReal, const PetscReal[], PetscInt, const PetscScalar[],
787:                                                                      PetscScalar[]),
788:                                                         void *ctx, Vec locX)
789: {
790:   void (**funcs)(PetscInt, PetscInt, PetscInt,
791:                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
792:                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
793:                  PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
794:   void            **ctxs;
795:   PetscInt          numFields;
796:   PetscErrorCode    ierr;

799:   DMGetNumFields(dm, &numFields);
800:   PetscCalloc2(numFields,&funcs,numFields,&ctxs);
801:   funcs[field] = func;
802:   ctxs[field]  = ctx;
803:   DMProjectFieldLabelLocal(dm, time, label, numids, ids, Nc, comps, locU, funcs, INSERT_BC_VALUES, locX);
804:   PetscFree2(funcs,ctxs);
805:   return(0);
806: }

808: /*@C
809:   DMPlexInsertBoundaryValuesRiemann - Insert boundary values into a local vector

811:   Input Parameters:
812: + dm     - The DM, with a PetscDS that matches the problem being constrained
813: . time   - The time
814: . faceGeometry - A vector with the FVM face geometry information
815: . cellGeometry - A vector with the FVM cell geometry information
816: . Grad         - A vector with the FVM cell gradient information
817: . field  - The field to constrain
818: . Nc     - The number of constrained field components, or 0 for all components
819: . comps  - An array of constrained component numbers, or NULL for all components
820: . label  - The DMLabel defining constrained points
821: . numids - The number of DMLabel ids for constrained points
822: . ids    - An array of ids for constrained points
823: . func   - A pointwise function giving boundary values
824: - ctx    - An optional user context for bcFunc

826:   Output Parameter:
827: . locX   - A local vector to receives the boundary values

829:   Note: This implementation currently ignores the numcomps/comps argument from DMAddBoundary()

831:   Level: developer

833: .seealso: DMPlexInsertBoundaryValuesEssential(), DMPlexInsertBoundaryValuesEssentialField(), DMAddBoundary()
834: @*/
835: PetscErrorCode DMPlexInsertBoundaryValuesRiemann(DM dm, PetscReal time, Vec faceGeometry, Vec cellGeometry, Vec Grad, PetscInt field, PetscInt Nc, const PetscInt comps[], DMLabel label, PetscInt numids, const PetscInt ids[],
836:                                                  PetscErrorCode (*func)(PetscReal,const PetscReal*,const PetscReal*,const PetscScalar*,PetscScalar*,void*), void *ctx, Vec locX)
837: {
838:   PetscDS            prob;
839:   PetscSF            sf;
840:   DM                 dmFace, dmCell, dmGrad;
841:   const PetscScalar *facegeom, *cellgeom = NULL, *grad;
842:   const PetscInt    *leaves;
843:   PetscScalar       *x, *fx;
844:   PetscInt           dim, nleaves, loc, fStart, fEnd, pdim, i;
845:   PetscErrorCode     ierr, ierru = 0;

848:   DMGetPointSF(dm, &sf);
849:   PetscSFGetGraph(sf, NULL, &nleaves, &leaves, NULL);
850:   nleaves = PetscMax(0, nleaves);
851:   DMGetDimension(dm, &dim);
852:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
853:   DMGetDS(dm, &prob);
854:   VecGetDM(faceGeometry, &dmFace);
855:   VecGetArrayRead(faceGeometry, &facegeom);
856:   if (cellGeometry) {
857:     VecGetDM(cellGeometry, &dmCell);
858:     VecGetArrayRead(cellGeometry, &cellgeom);
859:   }
860:   if (Grad) {
861:     PetscFV fv;

863:     PetscDSGetDiscretization(prob, field, (PetscObject *) &fv);
864:     VecGetDM(Grad, &dmGrad);
865:     VecGetArrayRead(Grad, &grad);
866:     PetscFVGetNumComponents(fv, &pdim);
867:     DMGetWorkArray(dm, pdim, MPIU_SCALAR, &fx);
868:   }
869:   VecGetArray(locX, &x);
870:   for (i = 0; i < numids; ++i) {
871:     IS              faceIS;
872:     const PetscInt *faces;
873:     PetscInt        numFaces, f;

875:     DMLabelGetStratumIS(label, ids[i], &faceIS);
876:     if (!faceIS) continue; /* No points with that id on this process */
877:     ISGetLocalSize(faceIS, &numFaces);
878:     ISGetIndices(faceIS, &faces);
879:     for (f = 0; f < numFaces; ++f) {
880:       const PetscInt         face = faces[f], *cells;
881:       PetscFVFaceGeom        *fg;

883:       if ((face < fStart) || (face >= fEnd)) continue; /* Refinement adds non-faces to labels */
884:       PetscFindInt(face, nleaves, (PetscInt *) leaves, &loc);
885:       if (loc >= 0) continue;
886:       DMPlexPointLocalRead(dmFace, face, facegeom, &fg);
887:       DMPlexGetSupport(dm, face, &cells);
888:       if (Grad) {
889:         PetscFVCellGeom       *cg;
890:         PetscScalar           *cx, *cgrad;
891:         PetscScalar           *xG;
892:         PetscReal              dx[3];
893:         PetscInt               d;

895:         DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cg);
896:         DMPlexPointLocalRead(dm, cells[0], x, &cx);
897:         DMPlexPointLocalRead(dmGrad, cells[0], grad, &cgrad);
898:         DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG);
899:         DMPlex_WaxpyD_Internal(dim, -1, cg->centroid, fg->centroid, dx);
900:         for (d = 0; d < pdim; ++d) fx[d] = cx[d] + DMPlex_DotD_Internal(dim, &cgrad[d*dim], dx);
901:         ierru = (*func)(time, fg->centroid, fg->normal, fx, xG, ctx);
902:         if (ierru) {
903:           ISRestoreIndices(faceIS, &faces);
904:           ISDestroy(&faceIS);
905:           goto cleanup;
906:         }
907:       } else {
908:         PetscScalar       *xI;
909:         PetscScalar       *xG;

911:         DMPlexPointLocalRead(dm, cells[0], x, &xI);
912:         DMPlexPointLocalFieldRef(dm, cells[1], field, x, &xG);
913:         ierru = (*func)(time, fg->centroid, fg->normal, xI, xG, ctx);
914:         if (ierru) {
915:           ISRestoreIndices(faceIS, &faces);
916:           ISDestroy(&faceIS);
917:           goto cleanup;
918:         }
919:       }
920:     }
921:     ISRestoreIndices(faceIS, &faces);
922:     ISDestroy(&faceIS);
923:   }
924:   cleanup:
925:   VecRestoreArray(locX, &x);
926:   if (Grad) {
927:     DMRestoreWorkArray(dm, pdim, MPIU_SCALAR, &fx);
928:     VecRestoreArrayRead(Grad, &grad);
929:   }
930:   if (cellGeometry) {VecRestoreArrayRead(cellGeometry, &cellgeom);}
931:   VecRestoreArrayRead(faceGeometry, &facegeom);
932:   CHKERRQ(ierru);
933:   return(0);
934: }

936: PetscErrorCode DMPlexInsertBoundaryValues_Plex(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
937: {
938:   PetscDS        prob;
939:   PetscInt       numBd, b;

943:   DMGetDS(dm, &prob);
944:   PetscDSGetNumBoundary(prob, &numBd);
945:   for (b = 0; b < numBd; ++b) {
946:     DMBoundaryConditionType type;
947:     const char             *name, *labelname;
948:     DMLabel                 label;
949:     PetscInt                field, Nc;
950:     const PetscInt         *comps;
951:     PetscObject             obj;
952:     PetscClassId            id;
953:     void                    (*func)(void);
954:     PetscInt                numids;
955:     const PetscInt         *ids;
956:     void                   *ctx;

958:     DMGetBoundary(dm, b, &type, &name, &labelname, &field, &Nc, &comps, &func, &numids, &ids, &ctx);
959:     if (insertEssential != (type & DM_BC_ESSENTIAL)) continue;
960:     DMGetLabel(dm, labelname, &label);
961:     if (!label) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_WRONGSTATE, "Label %s for boundary condition %s does not exist in the DM", labelname, name);
962:     DMGetField(dm, field, NULL, &obj);
963:     PetscObjectGetClassId(obj, &id);
964:     if (id == PETSCFE_CLASSID) {
965:       switch (type) {
966:         /* for FEM, there is no insertion to be done for non-essential boundary conditions */
967:       case DM_BC_ESSENTIAL:
968:         DMPlexLabelAddCells(dm,label);
969:         DMPlexInsertBoundaryValuesEssential(dm, time, field, Nc, comps, label, numids, ids, (PetscErrorCode (*)(PetscInt, PetscReal, const PetscReal[], PetscInt, PetscScalar *, void *)) func, ctx, locX);
970:         DMPlexLabelClearCells(dm,label);
971:         break;
972:       case DM_BC_ESSENTIAL_FIELD:
973:         DMPlexLabelAddCells(dm,label);
974:         DMPlexInsertBoundaryValuesEssentialField(dm, time, locX, field, Nc, comps, label, numids, ids,
975:                                                         (void (*)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
976:                                                                   const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
977:                                                                   PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[])) func, ctx, locX);
978:         DMPlexLabelClearCells(dm,label);
979:         break;
980:       default: break;
981:       }
982:     } else if (id == PETSCFV_CLASSID) {
983:       if (!faceGeomFVM) continue;
984:       DMPlexInsertBoundaryValuesRiemann(dm, time, faceGeomFVM, cellGeomFVM, gradFVM, field, Nc, comps, label, numids, ids,
985:                                                (PetscErrorCode (*)(PetscReal,const PetscReal*,const PetscReal*,const PetscScalar*,PetscScalar*,void*)) func, ctx, locX);
986:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
987:   }
988:   return(0);
989: }

991: /*@
992:   DMPlexInsertBoundaryValues - Puts coefficients which represent boundary values into the local solution vector

994:   Input Parameters:
995: + dm - The DM
996: . insertEssential - Should I insert essential (e.g. Dirichlet) or inessential (e.g. Neumann) boundary conditions
997: . time - The time
998: . faceGeomFVM - Face geometry data for FV discretizations
999: . cellGeomFVM - Cell geometry data for FV discretizations
1000: - gradFVM - Gradient reconstruction data for FV discretizations

1002:   Output Parameters:
1003: . locX - Solution updated with boundary values

1005:   Level: developer

1007: .seealso: DMProjectFunctionLabelLocal()
1008: @*/
1009: PetscErrorCode DMPlexInsertBoundaryValues(DM dm, PetscBool insertEssential, Vec locX, PetscReal time, Vec faceGeomFVM, Vec cellGeomFVM, Vec gradFVM)
1010: {

1019:   PetscTryMethod(dm,"DMPlexInsertBoundaryValues_C",(DM,PetscBool,Vec,PetscReal,Vec,Vec,Vec),(dm,insertEssential,locX,time,faceGeomFVM,cellGeomFVM,gradFVM));
1020:   return(0);
1021: }

1023: PetscErrorCode DMComputeL2Diff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1024: {
1025:   Vec              localX;
1026:   PetscErrorCode   ierr;

1029:   DMGetLocalVector(dm, &localX);
1030:   DMPlexInsertBoundaryValues(dm, PETSC_TRUE, localX, time, NULL, NULL, NULL);
1031:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
1032:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
1033:   DMPlexComputeL2DiffLocal(dm, time, funcs, ctxs, localX, diff);
1034:   DMRestoreLocalVector(dm, &localX);
1035:   return(0);
1036: }

1038: /*@C
1039:   DMComputeL2DiffLocal - This function computes the L_2 difference between a function u and an FEM interpolant solution u_h.

1041:   Collective on dm

1043:   Input Parameters:
1044: + dm     - The DM
1045: . time   - The time
1046: . funcs  - The functions to evaluate for each field component
1047: . ctxs   - Optional array of contexts to pass to each function, or NULL.
1048: - localX - The coefficient vector u_h, a local vector

1050:   Output Parameter:
1051: . diff - The diff ||u - u_h||_2

1053:   Level: developer

1055: .seealso: DMProjectFunction(), DMComputeL2FieldDiff(), DMComputeL2GradientDiff()
1056: @*/
1057: PetscErrorCode DMPlexComputeL2DiffLocal(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec localX, PetscReal *diff)
1058: {
1059:   const PetscInt   debug = ((DM_Plex*)dm->data)->printL2;
1060:   DM               tdm;
1061:   Vec              tv;
1062:   PetscSection     section;
1063:   PetscQuadrature  quad;
1064:   PetscFEGeom      fegeom;
1065:   PetscScalar     *funcVal, *interpolant;
1066:   PetscReal       *coords, *gcoords;
1067:   PetscReal        localDiff = 0.0;
1068:   const PetscReal *quadWeights;
1069:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cellHeight, cStart, cEnd, cEndInterior, c, field, fieldOffset;
1070:   PetscBool        transform;
1071:   PetscErrorCode   ierr;

1074:   DMGetDimension(dm, &dim);
1075:   DMGetCoordinateDim(dm, &coordDim);
1076:   fegeom.dimEmbed = coordDim;
1077:   DMGetLocalSection(dm, &section);
1078:   PetscSectionGetNumFields(section, &numFields);
1079:   DMGetBasisTransformDM_Internal(dm, &tdm);
1080:   DMGetBasisTransformVec_Internal(dm, &tv);
1081:   DMHasBasisTransform(dm, &transform);
1082:   for (field = 0; field < numFields; ++field) {
1083:     PetscObject  obj;
1084:     PetscClassId id;
1085:     PetscInt     Nc;

1087:     DMGetField(dm, field, NULL, &obj);
1088:     PetscObjectGetClassId(obj, &id);
1089:     if (id == PETSCFE_CLASSID) {
1090:       PetscFE fe = (PetscFE) obj;

1092:       PetscFEGetQuadrature(fe, &quad);
1093:       PetscFEGetNumComponents(fe, &Nc);
1094:     } else if (id == PETSCFV_CLASSID) {
1095:       PetscFV fv = (PetscFV) obj;

1097:       PetscFVGetQuadrature(fv, &quad);
1098:       PetscFVGetNumComponents(fv, &Nc);
1099:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1100:     numComponents += Nc;
1101:   }
1102:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights);
1103:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1104:   PetscMalloc6(numComponents,&funcVal,numComponents,&interpolant,coordDim*Nq,&coords,Nq,&fegeom.detJ,coordDim*coordDim*Nq,&fegeom.J,coordDim*coordDim*Nq,&fegeom.invJ);
1105:   DMPlexGetVTKCellHeight(dm, &cellHeight);
1106:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
1107:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1108:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1109:   for (c = cStart; c < cEnd; ++c) {
1110:     PetscScalar *x = NULL;
1111:     PetscReal    elemDiff = 0.0;
1112:     PetscInt     qc = 0;

1114:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ);
1115:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

1117:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1118:       PetscObject  obj;
1119:       PetscClassId id;
1120:       void * const ctx = ctxs ? ctxs[field] : NULL;
1121:       PetscInt     Nb, Nc, q, fc;

1123:       DMGetField(dm, field, NULL, &obj);
1124:       PetscObjectGetClassId(obj, &id);
1125:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
1126:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
1127:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1128:       if (debug) {
1129:         char title[1024];
1130:         PetscSNPrintf(title, 1023, "Solution for Field %D", field);
1131:         DMPrintCellVector(c, title, Nb, &x[fieldOffset]);
1132:       }
1133:       for (q = 0; q < Nq; ++q) {
1134:         PetscFEGeom qgeom;

1136:         qgeom.dimEmbed = fegeom.dimEmbed;
1137:         qgeom.J        = &fegeom.J[q*coordDim*coordDim];
1138:         qgeom.invJ     = &fegeom.invJ[q*coordDim*coordDim];
1139:         qgeom.detJ     = &fegeom.detJ[q];
1140:         if (fegeom.detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, point %D", (double)fegeom.detJ[q], c, q);
1141:         if (transform) {
1142:           gcoords = &coords[coordDim*Nq];
1143:           DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim*q], PETSC_TRUE, coordDim, &coords[coordDim*q], gcoords, dm->transformCtx);
1144:         } else {
1145:           gcoords = &coords[coordDim*q];
1146:         }
1147:         (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1148:         if (ierr) {
1149:           PetscErrorCode ierr2;
1150:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
1151:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
1152:           ierr2 = PetscFree6(funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);CHKERRQ(ierr2);
1153: 
1154:         }
1155:         if (transform) {DMPlexBasisTransformApply_Internal(dm, &coords[coordDim*q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx);}
1156:         if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], &qgeom, q, interpolant);}
1157:         else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
1158:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1159:         for (fc = 0; fc < Nc; ++fc) {
1160:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
1161:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %D field %D,%D diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q]));}
1162:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q];
1163:         }
1164:       }
1165:       fieldOffset += Nb;
1166:       qc += Nc;
1167:     }
1168:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
1169:     if (debug) {PetscPrintf(PETSC_COMM_SELF, "  elem %D diff %g\n", c, (double)elemDiff);}
1170:     localDiff += elemDiff;
1171:   }
1172:   PetscFree6(funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);
1173:   MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
1174:   *diff = PetscSqrtReal(*diff);
1175:   return(0);
1176: }

1178: PetscErrorCode DMComputeL2GradientDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, const PetscReal n[], PetscReal *diff)
1179: {
1180:   const PetscInt   debug = ((DM_Plex*)dm->data)->printL2;
1181:   DM               tdm;
1182:   PetscSection     section;
1183:   PetscQuadrature  quad;
1184:   Vec              localX, tv;
1185:   PetscScalar     *funcVal, *interpolant;
1186:   const PetscReal *quadWeights;
1187:   PetscFEGeom      fegeom;
1188:   PetscReal       *coords, *gcoords;
1189:   PetscReal        localDiff = 0.0;
1190:   PetscInt         dim, coordDim, qNc = 0, Nq = 0, numFields, numComponents = 0, cStart, cEnd, cEndInterior, c, field, fieldOffset;
1191:   PetscBool        transform;
1192:   PetscErrorCode   ierr;

1195:   DMGetDimension(dm, &dim);
1196:   DMGetCoordinateDim(dm, &coordDim);
1197:   fegeom.dimEmbed = coordDim;
1198:   DMGetLocalSection(dm, &section);
1199:   PetscSectionGetNumFields(section, &numFields);
1200:   DMGetLocalVector(dm, &localX);
1201:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
1202:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
1203:   DMGetBasisTransformDM_Internal(dm, &tdm);
1204:   DMGetBasisTransformVec_Internal(dm, &tv);
1205:   DMHasBasisTransform(dm, &transform);
1206:   for (field = 0; field < numFields; ++field) {
1207:     PetscFE  fe;
1208:     PetscInt Nc;

1210:     DMGetField(dm, field, NULL, (PetscObject *) &fe);
1211:     PetscFEGetQuadrature(fe, &quad);
1212:     PetscFEGetNumComponents(fe, &Nc);
1213:     numComponents += Nc;
1214:   }
1215:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, NULL, &quadWeights);
1216:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1217:   /* DMProjectFunctionLocal(dm, fe, funcs, INSERT_BC_VALUES, localX); */
1218:   PetscMalloc6(numComponents,&funcVal,coordDim*Nq,&coords,coordDim*coordDim*Nq,&fegeom.J,coordDim*coordDim*Nq,&fegeom.invJ,numComponents*coordDim,&interpolant,Nq,&fegeom.detJ);
1219:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
1220:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1221:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1222:   for (c = cStart; c < cEnd; ++c) {
1223:     PetscScalar *x = NULL;
1224:     PetscReal    elemDiff = 0.0;
1225:     PetscInt     qc = 0;

1227:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ);
1228:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

1230:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1231:       PetscFE          fe;
1232:       void * const     ctx = ctxs ? ctxs[field] : NULL;
1233:       PetscInt         Nb, Nc, q, fc;

1235:       DMGetField(dm, field, NULL, (PetscObject *) &fe);
1236:       PetscFEGetDimension(fe, &Nb);
1237:       PetscFEGetNumComponents(fe, &Nc);
1238:       if (debug) {
1239:         char title[1024];
1240:         PetscSNPrintf(title, 1023, "Solution for Field %D", field);
1241:         DMPrintCellVector(c, title, Nb, &x[fieldOffset]);
1242:       }
1243:       for (q = 0; q < Nq; ++q) {
1244:         PetscFEGeom qgeom;

1246:         qgeom.dimEmbed = fegeom.dimEmbed;
1247:         qgeom.J        = &fegeom.J[q*coordDim*coordDim];
1248:         qgeom.invJ     = &fegeom.invJ[q*coordDim*coordDim];
1249:         qgeom.detJ     = &fegeom.detJ[q];
1250:         if (fegeom.detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", (double)fegeom.detJ[q], c, q);
1251:         if (transform) {
1252:           gcoords = &coords[coordDim*Nq];
1253:           DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim*q], PETSC_TRUE, coordDim, &coords[coordDim*q], gcoords, dm->transformCtx);
1254:         } else {
1255:           gcoords = &coords[coordDim*q];
1256:         }
1257:         (*funcs[field])(coordDim, time, gcoords, n, Nc, funcVal, ctx);
1258:         if (ierr) {
1259:           PetscErrorCode ierr2;
1260:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
1261:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
1262:           ierr2 = PetscFree6(funcVal,coords,fegeom.J,fegeom.invJ,interpolant,fegeom.detJ);CHKERRQ(ierr2);
1263: 
1264:         }
1265:         if (transform) {DMPlexBasisTransformApply_Internal(dm, &coords[coordDim*q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx);}
1266:         PetscFEInterpolateGradient_Static(fe, &x[fieldOffset], &qgeom, q, interpolant);
1267:         /* Overwrite with the dot product if the normal is given */
1268:         if (n) {
1269:           for (fc = 0; fc < Nc; ++fc) {
1270:             PetscScalar sum = 0.0;
1271:             PetscInt    d;
1272:             for (d = 0; d < dim; ++d) sum += interpolant[fc*dim+d]*n[d];
1273:             interpolant[fc] = sum;
1274:           }
1275:         }
1276:         for (fc = 0; fc < Nc; ++fc) {
1277:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
1278:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %D fieldDer %D,%D diff %g\n", c, field, fc, (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q]));}
1279:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q];
1280:         }
1281:       }
1282:       fieldOffset += Nb;
1283:       qc          += Nc;
1284:     }
1285:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
1286:     if (debug) {PetscPrintf(PETSC_COMM_SELF, "  elem %D diff %g\n", c, (double)elemDiff);}
1287:     localDiff += elemDiff;
1288:   }
1289:   PetscFree6(funcVal,coords,fegeom.J,fegeom.invJ,interpolant,fegeom.detJ);
1290:   DMRestoreLocalVector(dm, &localX);
1291:   MPIU_Allreduce(&localDiff, diff, 1, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
1292:   *diff = PetscSqrtReal(*diff);
1293:   return(0);
1294: }

1296: PetscErrorCode DMComputeL2FieldDiff_Plex(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, PetscReal *diff)
1297: {
1298:   const PetscInt   debug = ((DM_Plex*)dm->data)->printL2;
1299:   DM               tdm;
1300:   PetscSection     section;
1301:   PetscQuadrature  quad;
1302:   Vec              localX, tv;
1303:   PetscFEGeom      fegeom;
1304:   PetscScalar     *funcVal, *interpolant;
1305:   PetscReal       *coords, *gcoords;
1306:   PetscReal       *localDiff;
1307:   const PetscReal *quadPoints, *quadWeights;
1308:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, c, field, fieldOffset;
1309:   PetscBool        transform;
1310:   PetscErrorCode   ierr;

1313:   DMGetDimension(dm, &dim);
1314:   DMGetCoordinateDim(dm, &coordDim);
1315:   DMGetLocalSection(dm, &section);
1316:   PetscSectionGetNumFields(section, &numFields);
1317:   DMGetLocalVector(dm, &localX);
1318:   VecSet(localX, 0.0);
1319:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
1320:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
1321:   DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX);
1322:   DMGetBasisTransformDM_Internal(dm, &tdm);
1323:   DMGetBasisTransformVec_Internal(dm, &tv);
1324:   DMHasBasisTransform(dm, &transform);
1325:   for (field = 0; field < numFields; ++field) {
1326:     PetscObject  obj;
1327:     PetscClassId id;
1328:     PetscInt     Nc;

1330:     DMGetField(dm, field, NULL, &obj);
1331:     PetscObjectGetClassId(obj, &id);
1332:     if (id == PETSCFE_CLASSID) {
1333:       PetscFE fe = (PetscFE) obj;

1335:       PetscFEGetQuadrature(fe, &quad);
1336:       PetscFEGetNumComponents(fe, &Nc);
1337:     } else if (id == PETSCFV_CLASSID) {
1338:       PetscFV fv = (PetscFV) obj;

1340:       PetscFVGetQuadrature(fv, &quad);
1341:       PetscFVGetNumComponents(fv, &Nc);
1342:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1343:     numComponents += Nc;
1344:   }
1345:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
1346:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1347:   PetscCalloc7(numFields,&localDiff,numComponents,&funcVal,numComponents,&interpolant,coordDim*(Nq+1),&coords,Nq,&fegeom.detJ,coordDim*coordDim*Nq,&fegeom.J,coordDim*coordDim*Nq,&fegeom.invJ);
1348:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
1349:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1350:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1351:   for (c = cStart; c < cEnd; ++c) {
1352:     PetscScalar *x = NULL;
1353:     PetscInt     qc = 0;

1355:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ);
1356:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

1358:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1359:       PetscObject  obj;
1360:       PetscClassId id;
1361:       void * const ctx = ctxs ? ctxs[field] : NULL;
1362:       PetscInt     Nb, Nc, q, fc;

1364:       PetscReal       elemDiff = 0.0;

1366:       DMGetField(dm, field, NULL, &obj);
1367:       PetscObjectGetClassId(obj, &id);
1368:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
1369:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
1370:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1371:       if (debug) {
1372:         char title[1024];
1373:         PetscSNPrintf(title, 1023, "Solution for Field %D", field);
1374:         DMPrintCellVector(c, title, Nb, &x[fieldOffset]);
1375:       }
1376:       for (q = 0; q < Nq; ++q) {
1377:         PetscFEGeom qgeom;

1379:         qgeom.dimEmbed = fegeom.dimEmbed;
1380:         qgeom.J        = &fegeom.J[q*coordDim*coordDim];
1381:         qgeom.invJ     = &fegeom.invJ[q*coordDim*coordDim];
1382:         qgeom.detJ     = &fegeom.detJ[q];
1383:         if (fegeom.detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature point %D", (double)fegeom.detJ[q], c, q);
1384:         if (transform) {
1385:           gcoords = &coords[coordDim*Nq];
1386:           DMPlexBasisTransformApplyReal_Internal(dm, &coords[coordDim*q], PETSC_TRUE, coordDim, &coords[coordDim*q], gcoords, dm->transformCtx);
1387:         } else {
1388:           gcoords = &coords[coordDim*q];
1389:         }
1390:         (*funcs[field])(coordDim, time, gcoords, Nc, funcVal, ctx);
1391:         if (ierr) {
1392:           PetscErrorCode ierr2;
1393:           ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
1394:           ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
1395:           ierr2 = PetscFree7(localDiff,funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);CHKERRQ(ierr2);
1396: 
1397:         }
1398:         if (transform) {DMPlexBasisTransformApply_Internal(dm, &coords[coordDim*q], PETSC_FALSE, Nc, funcVal, funcVal, dm->transformCtx);}
1399:         if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], &qgeom, q, interpolant);}
1400:         else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
1401:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1402:         for (fc = 0; fc < Nc; ++fc) {
1403:           const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
1404:           if (debug) {PetscPrintf(PETSC_COMM_SELF, "    elem %D field %D,%D point %g %g %g diff %g\n", c, field, fc, (double)(coordDim > 0 ? coords[coordDim*q] : 0.), (double)(coordDim > 1 ? coords[coordDim*q+1] : 0.),(double)(coordDim > 2 ? coords[coordDim*q+2] : 0.), (double)(PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q]));}
1405:           elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q];
1406:         }
1407:       }
1408:       fieldOffset += Nb;
1409:       qc          += Nc;
1410:       localDiff[field] += elemDiff;
1411:       if (debug) {PetscPrintf(PETSC_COMM_SELF, "  elem %D field %D cum diff %g\n", c, field, (double)localDiff[field]);}
1412:     }
1413:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
1414:   }
1415:   DMRestoreLocalVector(dm, &localX);
1416:   MPIU_Allreduce(localDiff, diff, numFields, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)dm));
1417:   for (field = 0; field < numFields; ++field) diff[field] = PetscSqrtReal(diff[field]);
1418:   PetscFree7(localDiff,funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);
1419:   return(0);
1420: }

1422: /*@C
1423:   DMPlexComputeL2DiffVec - This function computes the cellwise L_2 difference between a function u and an FEM interpolant solution u_h, and stores it in a Vec.

1425:   Collective on dm

1427:   Input Parameters:
1428: + dm    - The DM
1429: . time  - The time
1430: . funcs - The functions to evaluate for each field component: NULL means that component does not contribute to error calculation
1431: . ctxs  - Optional array of contexts to pass to each function, or NULL.
1432: - X     - The coefficient vector u_h

1434:   Output Parameter:
1435: . D - A Vec which holds the difference ||u - u_h||_2 for each cell

1437:   Level: developer

1439: .seealso: DMProjectFunction(), DMComputeL2Diff(), DMPlexComputeL2FieldDiff(), DMComputeL2GradientDiff()
1440: @*/
1441: PetscErrorCode DMPlexComputeL2DiffVec(DM dm, PetscReal time, PetscErrorCode (**funcs)(PetscInt, PetscReal, const PetscReal [], PetscInt, PetscScalar *, void *), void **ctxs, Vec X, Vec D)
1442: {
1443:   PetscSection     section;
1444:   PetscQuadrature  quad;
1445:   Vec              localX;
1446:   PetscFEGeom      fegeom;
1447:   PetscScalar     *funcVal, *interpolant;
1448:   PetscReal       *coords;
1449:   const PetscReal *quadPoints, *quadWeights;
1450:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, c, field, fieldOffset;
1451:   PetscErrorCode   ierr;

1454:   VecSet(D, 0.0);
1455:   DMGetDimension(dm, &dim);
1456:   DMGetCoordinateDim(dm, &coordDim);
1457:   DMGetLocalSection(dm, &section);
1458:   PetscSectionGetNumFields(section, &numFields);
1459:   DMGetLocalVector(dm, &localX);
1460:   DMProjectFunctionLocal(dm, time, funcs, ctxs, INSERT_BC_VALUES, localX);
1461:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, localX);
1462:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, localX);
1463:   for (field = 0; field < numFields; ++field) {
1464:     PetscObject  obj;
1465:     PetscClassId id;
1466:     PetscInt     Nc;

1468:     DMGetField(dm, field, NULL, &obj);
1469:     PetscObjectGetClassId(obj, &id);
1470:     if (id == PETSCFE_CLASSID) {
1471:       PetscFE fe = (PetscFE) obj;

1473:       PetscFEGetQuadrature(fe, &quad);
1474:       PetscFEGetNumComponents(fe, &Nc);
1475:     } else if (id == PETSCFV_CLASSID) {
1476:       PetscFV fv = (PetscFV) obj;

1478:       PetscFVGetQuadrature(fv, &quad);
1479:       PetscFVGetNumComponents(fv, &Nc);
1480:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1481:     numComponents += Nc;
1482:   }
1483:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
1484:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1485:   PetscMalloc6(numComponents,&funcVal,numComponents,&interpolant,coordDim*Nq,&coords,Nq,&fegeom.detJ,coordDim*coordDim*Nq,&fegeom.J,coordDim*coordDim*Nq,&fegeom.invJ);
1486:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
1487:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1488:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1489:   for (c = cStart; c < cEnd; ++c) {
1490:     PetscScalar *x = NULL;
1491:     PetscScalar  elemDiff = 0.0;
1492:     PetscInt     qc = 0;

1494:     DMPlexComputeCellGeometryFEM(dm, c, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ);
1495:     DMPlexVecGetClosure(dm, NULL, localX, c, NULL, &x);

1497:     for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1498:       PetscObject  obj;
1499:       PetscClassId id;
1500:       void * const ctx = ctxs ? ctxs[field] : NULL;
1501:       PetscInt     Nb, Nc, q, fc;

1503:       DMGetField(dm, field, NULL, &obj);
1504:       PetscObjectGetClassId(obj, &id);
1505:       if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
1506:       else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
1507:       else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1508:       if (funcs[field]) {
1509:         for (q = 0; q < Nq; ++q) {
1510:           PetscFEGeom qgeom;

1512:           qgeom.dimEmbed = fegeom.dimEmbed;
1513:           qgeom.J        = &fegeom.J[q*coordDim*coordDim];
1514:           qgeom.invJ     = &fegeom.invJ[q*coordDim*coordDim];
1515:           qgeom.detJ     = &fegeom.detJ[q];
1516:           if (fegeom.detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", (double)fegeom.detJ[q], c, q);
1517:           (*funcs[field])(coordDim, time, &coords[q*coordDim], Nc, funcVal, ctx);
1518:           if (ierr) {
1519:             PetscErrorCode ierr2;
1520:             ierr2 = DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);CHKERRQ(ierr2);
1521:             ierr2 = PetscFree6(funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);CHKERRQ(ierr2);
1522:             ierr2 = DMRestoreLocalVector(dm, &localX);CHKERRQ(ierr2);
1523: 
1524:           }
1525:           if (id == PETSCFE_CLASSID)      {PetscFEInterpolate_Static((PetscFE) obj, &x[fieldOffset], &qgeom, q, interpolant);}
1526:           else if (id == PETSCFV_CLASSID) {PetscFVInterpolate_Static((PetscFV) obj, &x[fieldOffset], q, interpolant);}
1527:           else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1528:           for (fc = 0; fc < Nc; ++fc) {
1529:             const PetscReal wt = quadWeights[q*qNc+(qNc == 1 ? 0 : qc+fc)];
1530:             elemDiff += PetscSqr(PetscRealPart(interpolant[fc] - funcVal[fc]))*wt*fegeom.detJ[q];
1531:           }
1532:         }
1533:       }
1534:       fieldOffset += Nb;
1535:       qc          += Nc;
1536:     }
1537:     DMPlexVecRestoreClosure(dm, NULL, localX, c, NULL, &x);
1538:     VecSetValue(D, c - cStart, elemDiff, INSERT_VALUES);
1539:   }
1540:   PetscFree6(funcVal,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);
1541:   DMRestoreLocalVector(dm, &localX);
1542:   VecSqrtAbs(D);
1543:   return(0);
1544: }

1546: /*@C
1547:   DMPlexComputeGradientClementInterpolant - This function computes the L2 projection of the cellwise gradient of a function u onto P1, and stores it in a Vec.

1549:   Collective on dm

1551:   Input Parameters:
1552: + dm - The DM
1553: - LocX  - The coefficient vector u_h

1555:   Output Parameter:
1556: . locC - A Vec which holds the Clement interpolant of the gradient

1558:   Notes:
1559:     Add citation to (Clement, 1975) and definition of the interpolant
1560:   \nabla u_h(v_i) = \sum_{T_i \in support(v_i)} |T_i| \nabla u_h(T_i) / \sum_{T_i \in support(v_i)} |T_i| where |T_i| is the cell volume

1562:   Level: developer

1564: .seealso: DMProjectFunction(), DMComputeL2Diff(), DMPlexComputeL2FieldDiff(), DMComputeL2GradientDiff()
1565: @*/
1566: PetscErrorCode DMPlexComputeGradientClementInterpolant(DM dm, Vec locX, Vec locC)
1567: {
1568:   DM_Plex         *mesh  = (DM_Plex *) dm->data;
1569:   PetscInt         debug = mesh->printFEM;
1570:   DM               dmC;
1571:   PetscSection     section;
1572:   PetscQuadrature  quad;
1573:   PetscScalar     *interpolant, *gradsum;
1574:   PetscFEGeom      fegeom;
1575:   PetscReal       *coords;
1576:   const PetscReal *quadPoints, *quadWeights;
1577:   PetscInt         dim, coordDim, numFields, numComponents = 0, qNc, Nq, cStart, cEnd, cEndInterior, vStart, vEnd, v, field, fieldOffset;
1578:   PetscErrorCode   ierr;

1581:   VecGetDM(locC, &dmC);
1582:   VecSet(locC, 0.0);
1583:   DMGetDimension(dm, &dim);
1584:   DMGetCoordinateDim(dm, &coordDim);
1585:   fegeom.dimEmbed = coordDim;
1586:   DMGetLocalSection(dm, &section);
1587:   PetscSectionGetNumFields(section, &numFields);
1588:   for (field = 0; field < numFields; ++field) {
1589:     PetscObject  obj;
1590:     PetscClassId id;
1591:     PetscInt     Nc;

1593:     DMGetField(dm, field, NULL, &obj);
1594:     PetscObjectGetClassId(obj, &id);
1595:     if (id == PETSCFE_CLASSID) {
1596:       PetscFE fe = (PetscFE) obj;

1598:       PetscFEGetQuadrature(fe, &quad);
1599:       PetscFEGetNumComponents(fe, &Nc);
1600:     } else if (id == PETSCFV_CLASSID) {
1601:       PetscFV fv = (PetscFV) obj;

1603:       PetscFVGetQuadrature(fv, &quad);
1604:       PetscFVGetNumComponents(fv, &Nc);
1605:     } else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1606:     numComponents += Nc;
1607:   }
1608:   PetscQuadratureGetData(quad, NULL, &qNc, &Nq, &quadPoints, &quadWeights);
1609:   if ((qNc != 1) && (qNc != numComponents)) SETERRQ2(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_SIZ, "Quadrature components %D != %D field components", qNc, numComponents);
1610:   PetscMalloc6(coordDim*numComponents*2,&gradsum,coordDim*numComponents,&interpolant,coordDim*Nq,&coords,Nq,&fegeom.detJ,coordDim*coordDim*Nq,&fegeom.J,coordDim*coordDim*Nq,&fegeom.invJ);
1611:   DMPlexGetDepthStratum(dm, 0, &vStart, &vEnd);
1612:   DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
1613:   DMPlexGetHybridBounds(dm, &cEndInterior, NULL, NULL, NULL);
1614:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
1615:   for (v = vStart; v < vEnd; ++v) {
1616:     PetscScalar volsum = 0.0;
1617:     PetscInt   *star = NULL;
1618:     PetscInt    starSize, st, d, fc;

1620:     PetscArrayzero(gradsum, coordDim*numComponents);
1621:     DMPlexGetTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);
1622:     for (st = 0; st < starSize*2; st += 2) {
1623:       const PetscInt cell = star[st];
1624:       PetscScalar   *grad = &gradsum[coordDim*numComponents];
1625:       PetscScalar   *x    = NULL;
1626:       PetscReal      vol  = 0.0;

1628:       if ((cell < cStart) || (cell >= cEnd)) continue;
1629:       DMPlexComputeCellGeometryFEM(dm, cell, quad, coords, fegeom.J, fegeom.invJ, fegeom.detJ);
1630:       DMPlexVecGetClosure(dm, NULL, locX, cell, NULL, &x);
1631:       for (field = 0, fieldOffset = 0; field < numFields; ++field) {
1632:         PetscObject  obj;
1633:         PetscClassId id;
1634:         PetscInt     Nb, Nc, q, qc = 0;

1636:         PetscArrayzero(grad, coordDim*numComponents);
1637:         DMGetField(dm, field, NULL, &obj);
1638:         PetscObjectGetClassId(obj, &id);
1639:         if (id == PETSCFE_CLASSID)      {PetscFEGetNumComponents((PetscFE) obj, &Nc);PetscFEGetDimension((PetscFE) obj, &Nb);}
1640:         else if (id == PETSCFV_CLASSID) {PetscFVGetNumComponents((PetscFV) obj, &Nc);Nb = 1;}
1641:         else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1642:         for (q = 0; q < Nq; ++q) {
1643:           PetscFEGeom qgeom;

1645:           qgeom.dimEmbed = fegeom.dimEmbed;
1646:           qgeom.J        = &fegeom.J[q*coordDim*coordDim];
1647:           qgeom.invJ     = &fegeom.invJ[q*coordDim*coordDim];
1648:           qgeom.detJ     = &fegeom.detJ[q];
1649:           if (fegeom.detJ[q] <= 0.0) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Invalid determinant %g for element %D, quadrature points %D", (double)fegeom.detJ[q], cell, q);
1650:           if (ierr) {
1651:             PetscErrorCode ierr2;
1652:             ierr2 = DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x);CHKERRQ(ierr2);
1653:             ierr2 = DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);CHKERRQ(ierr2);
1654:             ierr2 = PetscFree6(gradsum,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);CHKERRQ(ierr2);
1655: 
1656:           }
1657:           if (id == PETSCFE_CLASSID)      {PetscFEInterpolateGradient_Static((PetscFE) obj, &x[fieldOffset], &qgeom, q, interpolant);}
1658:           else SETERRQ1(PetscObjectComm((PetscObject)dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", field);
1659:           for (fc = 0; fc < Nc; ++fc) {
1660:             const PetscReal wt = quadWeights[q*qNc+qc+fc];

1662:             for (d = 0; d < coordDim; ++d) grad[fc*coordDim+d] += interpolant[fc*dim+d]*wt*fegeom.detJ[q];
1663:           }
1664:           vol += quadWeights[q*qNc]*fegeom.detJ[q];
1665:         }
1666:         fieldOffset += Nb;
1667:         qc          += Nc;
1668:       }
1669:       DMPlexVecRestoreClosure(dm, NULL, locX, cell, NULL, &x);
1670:       for (fc = 0; fc < numComponents; ++fc) {
1671:         for (d = 0; d < coordDim; ++d) {
1672:           gradsum[fc*coordDim+d] += grad[fc*coordDim+d];
1673:         }
1674:       }
1675:       volsum += vol;
1676:       if (debug) {
1677:         PetscPrintf(PETSC_COMM_SELF, "Cell %D gradient: [", cell);
1678:         for (fc = 0; fc < numComponents; ++fc) {
1679:           for (d = 0; d < coordDim; ++d) {
1680:             if (fc || d > 0) {PetscPrintf(PETSC_COMM_SELF, ", ");}
1681:             PetscPrintf(PETSC_COMM_SELF, "%g", (double)PetscRealPart(grad[fc*coordDim+d]));
1682:           }
1683:         }
1684:         PetscPrintf(PETSC_COMM_SELF, "]\n");
1685:       }
1686:     }
1687:     for (fc = 0; fc < numComponents; ++fc) {
1688:       for (d = 0; d < coordDim; ++d) gradsum[fc*coordDim+d] /= volsum;
1689:     }
1690:     DMPlexRestoreTransitiveClosure(dm, v, PETSC_FALSE, &starSize, &star);
1691:     DMPlexVecSetClosure(dmC, NULL, locC, v, gradsum, INSERT_VALUES);
1692:   }
1693:   PetscFree6(gradsum,interpolant,coords,fegeom.detJ,fegeom.J,fegeom.invJ);
1694:   return(0);
1695: }

1697: static PetscErrorCode DMPlexComputeIntegral_Internal(DM dm, Vec X, PetscInt cStart, PetscInt cEnd, PetscScalar *cintegral, void *user)
1698: {
1699:   DM                 dmAux = NULL;
1700:   PetscDS            prob,    probAux = NULL;
1701:   PetscSection       section, sectionAux;
1702:   Vec                locX,    locA;
1703:   PetscInt           dim, numCells = cEnd - cStart, c, f;
1704:   PetscBool          useFVM = PETSC_FALSE;
1705:   /* DS */
1706:   PetscInt           Nf,    totDim,    *uOff, *uOff_x, numConstants;
1707:   PetscInt           NfAux, totDimAux, *aOff;
1708:   PetscScalar       *u, *a;
1709:   const PetscScalar *constants;
1710:   /* Geometry */
1711:   PetscFEGeom       *cgeomFEM;
1712:   DM                 dmGrad;
1713:   PetscQuadrature    affineQuad = NULL;
1714:   Vec                cellGeometryFVM = NULL, faceGeometryFVM = NULL, locGrad = NULL;
1715:   PetscFVCellGeom   *cgeomFVM;
1716:   const PetscScalar *lgrad;
1717:   PetscInt           maxDegree;
1718:   DMField            coordField;
1719:   IS                 cellIS;
1720:   PetscErrorCode     ierr;

1723:   DMGetDS(dm, &prob);
1724:   DMGetDimension(dm, &dim);
1725:   DMGetLocalSection(dm, &section);
1726:   PetscSectionGetNumFields(section, &Nf);
1727:   /* Determine which discretizations we have */
1728:   for (f = 0; f < Nf; ++f) {
1729:     PetscObject  obj;
1730:     PetscClassId id;

1732:     PetscDSGetDiscretization(prob, f, &obj);
1733:     PetscObjectGetClassId(obj, &id);
1734:     if (id == PETSCFV_CLASSID) useFVM = PETSC_TRUE;
1735:   }
1736:   /* Get local solution with boundary values */
1737:   DMGetLocalVector(dm, &locX);
1738:   DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL);
1739:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX);
1740:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX);
1741:   /* Read DS information */
1742:   PetscDSGetTotalDimension(prob, &totDim);
1743:   PetscDSGetComponentOffsets(prob, &uOff);
1744:   PetscDSGetComponentDerivativeOffsets(prob, &uOff_x);
1745:   ISCreateStride(PETSC_COMM_SELF,numCells,cStart,1,&cellIS);
1746:   PetscDSGetConstants(prob, &numConstants, &constants);
1747:   /* Read Auxiliary DS information */
1748:   PetscObjectQuery((PetscObject) dm, "dmAux", (PetscObject *) &dmAux);
1749:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &locA);
1750:   if (dmAux) {
1751:     DMGetDS(dmAux, &probAux);
1752:     PetscDSGetNumFields(probAux, &NfAux);
1753:     DMGetLocalSection(dmAux, &sectionAux);
1754:     PetscDSGetTotalDimension(probAux, &totDimAux);
1755:     PetscDSGetComponentOffsets(probAux, &aOff);
1756:   }
1757:   /* Allocate data  arrays */
1758:   PetscCalloc1(numCells*totDim, &u);
1759:   if (dmAux) {PetscMalloc1(numCells*totDimAux, &a);}
1760:   /* Read out geometry */
1761:   DMGetCoordinateField(dm,&coordField);
1762:   DMFieldGetDegree(coordField,cellIS,NULL,&maxDegree);
1763:   if (maxDegree <= 1) {
1764:     DMFieldCreateDefaultQuadrature(coordField,cellIS,&affineQuad);
1765:     if (affineQuad) {
1766:       DMFieldCreateFEGeom(coordField,cellIS,affineQuad,PETSC_FALSE,&cgeomFEM);
1767:     }
1768:   }
1769:   if (useFVM) {
1770:     PetscFV   fv = NULL;
1771:     Vec       grad;
1772:     PetscInt  fStart, fEnd;
1773:     PetscBool compGrad;

1775:     for (f = 0; f < Nf; ++f) {
1776:       PetscObject  obj;
1777:       PetscClassId id;

1779:       PetscDSGetDiscretization(prob, f, &obj);
1780:       PetscObjectGetClassId(obj, &id);
1781:       if (id == PETSCFV_CLASSID) {fv = (PetscFV) obj; break;}
1782:     }
1783:     PetscFVGetComputeGradients(fv, &compGrad);
1784:     PetscFVSetComputeGradients(fv, PETSC_TRUE);
1785:     DMPlexComputeGeometryFVM(dm, &cellGeometryFVM, &faceGeometryFVM);
1786:     DMPlexComputeGradientFVM(dm, fv, faceGeometryFVM, cellGeometryFVM, &dmGrad);
1787:     PetscFVSetComputeGradients(fv, compGrad);
1788:     VecGetArrayRead(cellGeometryFVM, (const PetscScalar **) &cgeomFVM);
1789:     /* Reconstruct and limit cell gradients */
1790:     DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
1791:     DMGetGlobalVector(dmGrad, &grad);
1792:     DMPlexReconstructGradients_Internal(dm, fv, fStart, fEnd, faceGeometryFVM, cellGeometryFVM, locX, grad);
1793:     /* Communicate gradient values */
1794:     DMGetLocalVector(dmGrad, &locGrad);
1795:     DMGlobalToLocalBegin(dmGrad, grad, INSERT_VALUES, locGrad);
1796:     DMGlobalToLocalEnd(dmGrad, grad, INSERT_VALUES, locGrad);
1797:     DMRestoreGlobalVector(dmGrad, &grad);
1798:     /* Handle non-essential (e.g. outflow) boundary values */
1799:     DMPlexInsertBoundaryValues(dm, PETSC_FALSE, locX, 0.0, faceGeometryFVM, cellGeometryFVM, locGrad);
1800:     VecGetArrayRead(locGrad, &lgrad);
1801:   }
1802:   /* Read out data from inputs */
1803:   for (c = cStart; c < cEnd; ++c) {
1804:     PetscScalar *x = NULL;
1805:     PetscInt     i;

1807:     DMPlexVecGetClosure(dm, section, locX, c, NULL, &x);
1808:     for (i = 0; i < totDim; ++i) u[c*totDim+i] = x[i];
1809:     DMPlexVecRestoreClosure(dm, section, locX, c, NULL, &x);
1810:     if (dmAux) {
1811:       DMPlexVecGetClosure(dmAux, sectionAux, locA, c, NULL, &x);
1812:       for (i = 0; i < totDimAux; ++i) a[c*totDimAux+i] = x[i];
1813:       DMPlexVecRestoreClosure(dmAux, sectionAux, locA, c, NULL, &x);
1814:     }
1815:   }
1816:   /* Do integration for each field */
1817:   for (f = 0; f < Nf; ++f) {
1818:     PetscObject  obj;
1819:     PetscClassId id;
1820:     PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

1822:     PetscDSGetDiscretization(prob, f, &obj);
1823:     PetscObjectGetClassId(obj, &id);
1824:     if (id == PETSCFE_CLASSID) {
1825:       PetscFE         fe = (PetscFE) obj;
1826:       PetscQuadrature q;
1827:       PetscFEGeom     *chunkGeom = NULL;
1828:       PetscInt        Nq, Nb;

1830:       PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches);
1831:       PetscFEGetQuadrature(fe, &q);
1832:       PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL);
1833:       PetscFEGetDimension(fe, &Nb);
1834:       blockSize = Nb*Nq;
1835:       batchSize = numBlocks * blockSize;
1836:       PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches);
1837:       numChunks = numCells / (numBatches*batchSize);
1838:       Ne        = numChunks*numBatches*batchSize;
1839:       Nr        = numCells % (numBatches*batchSize);
1840:       offset    = numCells - Nr;
1841:       if (!affineQuad) {
1842:         DMFieldCreateFEGeom(coordField,cellIS,q,PETSC_FALSE,&cgeomFEM);
1843:       }
1844:       PetscFEGeomGetChunk(cgeomFEM,0,offset,&chunkGeom);
1845:       PetscFEIntegrate(prob, f, Ne, chunkGeom, u, probAux, a, cintegral);
1846:       PetscFEGeomGetChunk(cgeomFEM,offset,numCells,&chunkGeom);
1847:       PetscFEIntegrate(prob, f, Nr, chunkGeom, &u[offset*totDim], probAux, &a[offset*totDimAux], &cintegral[offset*Nf]);
1848:       PetscFEGeomRestoreChunk(cgeomFEM,offset,numCells,&chunkGeom);
1849:       if (!affineQuad) {
1850:         PetscFEGeomDestroy(&cgeomFEM);
1851:       }
1852:     } else if (id == PETSCFV_CLASSID) {
1853:       PetscInt       foff;
1854:       PetscPointFunc obj_func;
1855:       PetscScalar    lint;

1857:       PetscDSGetObjective(prob, f, &obj_func);
1858:       PetscDSGetFieldOffset(prob, f, &foff);
1859:       if (obj_func) {
1860:         for (c = 0; c < numCells; ++c) {
1861:           PetscScalar *u_x;

1863:           DMPlexPointLocalRead(dmGrad, c, lgrad, &u_x);
1864:           obj_func(dim, Nf, NfAux, uOff, uOff_x, &u[totDim*c+foff], NULL, u_x, aOff, NULL, &a[totDimAux*c], NULL, NULL, 0.0, cgeomFVM[c].centroid, numConstants, constants, &lint);
1865:           cintegral[c*Nf+f] += PetscRealPart(lint)*cgeomFVM[c].volume;
1866:         }
1867:       }
1868:     } else SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", f);
1869:   }
1870:   /* Cleanup data arrays */
1871:   if (useFVM) {
1872:     VecRestoreArrayRead(locGrad, &lgrad);
1873:     VecRestoreArrayRead(cellGeometryFVM, (const PetscScalar **) &cgeomFVM);
1874:     DMRestoreLocalVector(dmGrad, &locGrad);
1875:     VecDestroy(&faceGeometryFVM);
1876:     VecDestroy(&cellGeometryFVM);
1877:     DMDestroy(&dmGrad);
1878:   }
1879:   if (dmAux) {PetscFree(a);}
1880:   PetscFree(u);
1881:   /* Cleanup */
1882:   if (affineQuad) {
1883:     PetscFEGeomDestroy(&cgeomFEM);
1884:   }
1885:   PetscQuadratureDestroy(&affineQuad);
1886:   ISDestroy(&cellIS);
1887:   DMRestoreLocalVector(dm, &locX);
1888:   return(0);
1889: }

1891: /*@
1892:   DMPlexComputeIntegralFEM - Form the integral over the domain from the global input X using pointwise functions specified by the user

1894:   Input Parameters:
1895: + dm - The mesh
1896: . X  - Global input vector
1897: - user - The user context

1899:   Output Parameter:
1900: . integral - Integral for each field

1902:   Level: developer

1904: .seealso: DMPlexComputeResidualFEM()
1905: @*/
1906: PetscErrorCode DMPlexComputeIntegralFEM(DM dm, Vec X, PetscScalar *integral, void *user)
1907: {
1908:   DM_Plex       *mesh = (DM_Plex *) dm->data;
1909:   PetscScalar   *cintegral, *lintegral;
1910:   PetscInt       Nf, f, cellHeight, cStart, cEnd, cEndInterior[4], cell;

1917:   PetscLogEventBegin(DMPLEX_IntegralFEM,dm,0,0,0);
1918:   DMGetNumFields(dm, &Nf);
1919:   DMPlexGetVTKCellHeight(dm, &cellHeight);
1920:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
1921:   DMPlexGetHybridBounds(dm, &cEndInterior[0], &cEndInterior[1], &cEndInterior[2], &cEndInterior[3]);
1922:   cEnd = cEndInterior[cellHeight] < 0 ? cEnd : cEndInterior[cellHeight];
1923:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
1924:   PetscCalloc2(Nf, &lintegral, (cEnd-cStart)*Nf, &cintegral);
1925:   DMPlexComputeIntegral_Internal(dm, X, cStart, cEnd, cintegral, user);
1926:   /* Sum up values */
1927:   for (cell = cStart; cell < cEnd; ++cell) {
1928:     const PetscInt c = cell - cStart;

1930:     if (mesh->printFEM > 1) {DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c*Nf]);}
1931:     for (f = 0; f < Nf; ++f) lintegral[f] += cintegral[c*Nf+f];
1932:   }
1933:   MPIU_Allreduce(lintegral, integral, Nf, MPIU_SCALAR, MPIU_SUM, PetscObjectComm((PetscObject) dm));
1934:   if (mesh->printFEM) {
1935:     PetscPrintf(PetscObjectComm((PetscObject) dm), "Integral:");
1936:     for (f = 0; f < Nf; ++f) {PetscPrintf(PetscObjectComm((PetscObject) dm), " %g", (double) PetscRealPart(integral[f]));}
1937:     PetscPrintf(PetscObjectComm((PetscObject) dm), "\n");
1938:   }
1939:   PetscFree2(lintegral, cintegral);
1940:   PetscLogEventEnd(DMPLEX_IntegralFEM,dm,0,0,0);
1941:   return(0);
1942: }

1944: /*@
1945:   DMPlexComputeCellwiseIntegralFEM - Form the vector of cellwise integrals F from the global input X using pointwise functions specified by the user

1947:   Input Parameters:
1948: + dm - The mesh
1949: . X  - Global input vector
1950: - user - The user context

1952:   Output Parameter:
1953: . integral - Cellwise integrals for each field

1955:   Level: developer

1957: .seealso: DMPlexComputeResidualFEM()
1958: @*/
1959: PetscErrorCode DMPlexComputeCellwiseIntegralFEM(DM dm, Vec X, Vec F, void *user)
1960: {
1961:   DM_Plex       *mesh = (DM_Plex *) dm->data;
1962:   DM             dmF;
1963:   PetscSection   sectionF;
1964:   PetscScalar   *cintegral, *af;
1965:   PetscInt       Nf, f, cellHeight, cStart, cEnd, cEndInterior[4], cell;

1972:   PetscLogEventBegin(DMPLEX_IntegralFEM,dm,0,0,0);
1973:   DMGetNumFields(dm, &Nf);
1974:   DMPlexGetVTKCellHeight(dm, &cellHeight);
1975:   DMPlexGetHeightStratum(dm, cellHeight, &cStart, &cEnd);
1976:   DMPlexGetHybridBounds(dm, &cEndInterior[0], &cEndInterior[1], &cEndInterior[2], &cEndInterior[3]);
1977:   cEnd = cEndInterior[cellHeight] < 0 ? cEnd : cEndInterior[cellHeight];
1978:   /* TODO Introduce a loop over large chunks (right now this is a single chunk) */
1979:   PetscCalloc1((cEnd-cStart)*Nf, &cintegral);
1980:   DMPlexComputeIntegral_Internal(dm, X, cStart, cEnd, cintegral, user);
1981:   /* Put values in F*/
1982:   VecGetDM(F, &dmF);
1983:   DMGetLocalSection(dmF, &sectionF);
1984:   VecGetArray(F, &af);
1985:   for (cell = cStart; cell < cEnd; ++cell) {
1986:     const PetscInt c = cell - cStart;
1987:     PetscInt       dof, off;

1989:     if (mesh->printFEM > 1) {DMPrintCellVector(cell, "Cell Integral", Nf, &cintegral[c*Nf]);}
1990:     PetscSectionGetDof(sectionF, cell, &dof);
1991:     PetscSectionGetOffset(sectionF, cell, &off);
1992:     if (dof != Nf) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "The number of cell dofs %D != %D", dof, Nf);
1993:     for (f = 0; f < Nf; ++f) af[off+f] = cintegral[c*Nf+f];
1994:   }
1995:   VecRestoreArray(F, &af);
1996:   PetscFree(cintegral);
1997:   PetscLogEventEnd(DMPLEX_IntegralFEM,dm,0,0,0);
1998:   return(0);
1999: }

2001: static PetscErrorCode DMPlexComputeBdIntegral_Internal(DM dm, Vec locX, IS pointIS,
2002:                                                        void (*func)(PetscInt, PetscInt, PetscInt,
2003:                                                                     const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
2004:                                                                     const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
2005:                                                                     PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]),
2006:                                                        PetscScalar *fintegral, void *user)
2007: {
2008:   DM                 plex = NULL, plexA = NULL;
2009:   PetscDS            prob, probAux = NULL;
2010:   PetscSection       section, sectionAux = NULL;
2011:   Vec                locA = NULL;
2012:   DMField            coordField;
2013:   PetscInt           Nf,        totDim,        *uOff, *uOff_x;
2014:   PetscInt           NfAux = 0, totDimAux = 0, *aOff = NULL;
2015:   PetscScalar       *u, *a = NULL;
2016:   const PetscScalar *constants;
2017:   PetscInt           numConstants, f;
2018:   PetscErrorCode     ierr;

2021:   DMGetCoordinateField(dm, &coordField);
2022:   DMConvert(dm, DMPLEX, &plex);
2023:   DMGetDS(dm, &prob);
2024:   DMGetLocalSection(dm, &section);
2025:   PetscSectionGetNumFields(section, &Nf);
2026:   /* Determine which discretizations we have */
2027:   for (f = 0; f < Nf; ++f) {
2028:     PetscObject  obj;
2029:     PetscClassId id;

2031:     PetscDSGetDiscretization(prob, f, &obj);
2032:     PetscObjectGetClassId(obj, &id);
2033:     if (id == PETSCFV_CLASSID) SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_SUP, "Not supported for FVM (field %D)", f);
2034:   }
2035:   /* Read DS information */
2036:   PetscDSGetTotalDimension(prob, &totDim);
2037:   PetscDSGetComponentOffsets(prob, &uOff);
2038:   PetscDSGetComponentDerivativeOffsets(prob, &uOff_x);
2039:   PetscDSGetConstants(prob, &numConstants, &constants);
2040:   /* Read Auxiliary DS information */
2041:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &locA);
2042:   if (locA) {
2043:     DM dmAux;

2045:     VecGetDM(locA, &dmAux);
2046:     DMConvert(dmAux, DMPLEX, &plexA);
2047:     DMGetDS(dmAux, &probAux);
2048:     PetscDSGetNumFields(probAux, &NfAux);
2049:     DMGetLocalSection(dmAux, &sectionAux);
2050:     PetscDSGetTotalDimension(probAux, &totDimAux);
2051:     PetscDSGetComponentOffsets(probAux, &aOff);
2052:   }
2053:   /* Integrate over points */
2054:   {
2055:     PetscFEGeom    *fgeom, *chunkGeom = NULL;
2056:     PetscInt        maxDegree;
2057:     PetscQuadrature qGeom = NULL;
2058:     const PetscInt *points;
2059:     PetscInt        numFaces, face, Nq, field;
2060:     PetscInt        numChunks, chunkSize, chunk, Nr, offset;

2062:     ISGetLocalSize(pointIS, &numFaces);
2063:     ISGetIndices(pointIS, &points);
2064:     PetscCalloc2(numFaces*totDim, &u, locA ? numFaces*totDimAux : 0, &a);
2065:     DMFieldGetDegree(coordField, pointIS, NULL, &maxDegree);
2066:     for (field = 0; field < Nf; ++field) {
2067:       PetscFE fe;

2069:       PetscDSGetDiscretization(prob, field, (PetscObject *) &fe);
2070:       if (maxDegree <= 1) {DMFieldCreateDefaultQuadrature(coordField, pointIS, &qGeom);}
2071:       if (!qGeom) {
2072:         PetscFEGetFaceQuadrature(fe, &qGeom);
2073:         PetscObjectReference((PetscObject) qGeom);
2074:       }
2075:       PetscQuadratureGetData(qGeom, NULL, NULL, &Nq, NULL, NULL);
2076:       DMPlexGetFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom);
2077:       for (face = 0; face < numFaces; ++face) {
2078:         const PetscInt point = points[face], *support, *cone;
2079:         PetscScalar    *x    = NULL;
2080:         PetscInt       i, coneSize, faceLoc;

2082:         DMPlexGetSupport(dm, point, &support);
2083:         DMPlexGetConeSize(dm, support[0], &coneSize);
2084:         DMPlexGetCone(dm, support[0], &cone);
2085:         for (faceLoc = 0; faceLoc < coneSize; ++faceLoc) if (cone[faceLoc] == point) break;
2086:         if (faceLoc == coneSize) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %D in cone of support[0] %D", face, support[0]);
2087:         fgeom->face[face][0] = faceLoc;
2088:         DMPlexVecGetClosure(plex, section, locX, support[0], NULL, &x);
2089:         for (i = 0; i < totDim; ++i) u[face*totDim+i] = x[i];
2090:         DMPlexVecRestoreClosure(plex, section, locX, support[0], NULL, &x);
2091:         if (locA) {
2092:           PetscInt subp;
2093:           DMPlexGetSubpoint(plexA, support[0], &subp);
2094:           DMPlexVecGetClosure(plexA, sectionAux, locA, subp, NULL, &x);
2095:           for (i = 0; i < totDimAux; ++i) a[f*totDimAux+i] = x[i];
2096:           DMPlexVecRestoreClosure(plexA, sectionAux, locA, subp, NULL, &x);
2097:         }
2098:       }
2099:       /* Get blocking */
2100:       {
2101:         PetscQuadrature q;
2102:         PetscInt        numBatches, batchSize, numBlocks, blockSize;
2103:         PetscInt        Nq, Nb;

2105:         PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches);
2106:         PetscFEGetQuadrature(fe, &q);
2107:         PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL);
2108:         PetscFEGetDimension(fe, &Nb);
2109:         blockSize = Nb*Nq;
2110:         batchSize = numBlocks * blockSize;
2111:         chunkSize = numBatches*batchSize;
2112:         PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches);
2113:         numChunks = numFaces / chunkSize;
2114:         Nr        = numFaces % chunkSize;
2115:         offset    = numFaces - Nr;
2116:       }
2117:       /* Do integration for each field */
2118:       for (chunk = 0; chunk < numChunks; ++chunk) {
2119:         PetscFEGeomGetChunk(fgeom, chunk*chunkSize, (chunk+1)*chunkSize, &chunkGeom);
2120:         PetscFEIntegrateBd(prob, field, func, chunkSize, chunkGeom, u, probAux, a, fintegral);
2121:         PetscFEGeomRestoreChunk(fgeom, 0, offset, &chunkGeom);
2122:       }
2123:       PetscFEGeomGetChunk(fgeom, offset, numFaces, &chunkGeom);
2124:       PetscFEIntegrateBd(prob, field, func, Nr, chunkGeom, &u[offset*totDim], probAux, a ? &a[offset*totDimAux] : NULL, &fintegral[offset*Nf]);
2125:       PetscFEGeomRestoreChunk(fgeom, offset, numFaces, &chunkGeom);
2126:       /* Cleanup data arrays */
2127:       DMPlexRestoreFEGeom(coordField, pointIS, qGeom, PETSC_TRUE, &fgeom);
2128:       PetscQuadratureDestroy(&qGeom);
2129:       PetscFree2(u, a);
2130:       ISRestoreIndices(pointIS, &points);
2131:     }
2132:   }
2133:   if (plex)  {DMDestroy(&plex);}
2134:   if (plexA) {DMDestroy(&plexA);}
2135:   return(0);
2136: }

2138: /*@
2139:   DMPlexComputeBdIntegral - Form the integral over the specified boundary from the global input X using pointwise functions specified by the user

2141:   Input Parameters:
2142: + dm      - The mesh
2143: . X       - Global input vector
2144: . label   - The boundary DMLabel
2145: . numVals - The number of label values to use, or PETSC_DETERMINE for all values
2146: . vals    - The label values to use, or PETSC_NULL for all values
2147: . func    = The function to integrate along the boundary
2148: - user    - The user context

2150:   Output Parameter:
2151: . integral - Integral for each field

2153:   Level: developer

2155: .seealso: DMPlexComputeIntegralFEM(), DMPlexComputeBdResidualFEM()
2156: @*/
2157: PetscErrorCode DMPlexComputeBdIntegral(DM dm, Vec X, DMLabel label, PetscInt numVals, const PetscInt vals[],
2158:                                        void (*func)(PetscInt, PetscInt, PetscInt,
2159:                                                     const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
2160:                                                     const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
2161:                                                     PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]),
2162:                                        PetscScalar *integral, void *user)
2163: {
2164:   Vec            locX;
2165:   PetscSection   section;
2166:   DMLabel        depthLabel;
2167:   IS             facetIS;
2168:   PetscInt       dim, Nf, f, v;

2177:   PetscLogEventBegin(DMPLEX_IntegralFEM,dm,0,0,0);
2178:   DMPlexGetDepthLabel(dm, &depthLabel);
2179:   DMGetDimension(dm, &dim);
2180:   DMLabelGetStratumIS(depthLabel, dim-1, &facetIS);
2181:   DMGetLocalSection(dm, &section);
2182:   PetscSectionGetNumFields(section, &Nf);
2183:   /* Get local solution with boundary values */
2184:   DMGetLocalVector(dm, &locX);
2185:   DMPlexInsertBoundaryValues(dm, PETSC_TRUE, locX, 0.0, NULL, NULL, NULL);
2186:   DMGlobalToLocalBegin(dm, X, INSERT_VALUES, locX);
2187:   DMGlobalToLocalEnd(dm, X, INSERT_VALUES, locX);
2188:   /* Loop over label values */
2189:   PetscArrayzero(integral, Nf);
2190:   for (v = 0; v < numVals; ++v) {
2191:     IS           pointIS;
2192:     PetscInt     numFaces, face;
2193:     PetscScalar *fintegral;

2195:     DMLabelGetStratumIS(label, vals[v], &pointIS);
2196:     if (!pointIS) continue; /* No points with that id on this process */
2197:     {
2198:       IS isectIS;

2200:       /* TODO: Special cases of ISIntersect where it is quick to check a priori if one is a superset of the other */
2201:       ISIntersect_Caching_Internal(facetIS, pointIS, &isectIS);
2202:       ISDestroy(&pointIS);
2203:       pointIS = isectIS;
2204:     }
2205:     ISGetLocalSize(pointIS, &numFaces);
2206:     PetscCalloc1(numFaces*Nf, &fintegral);
2207:     DMPlexComputeBdIntegral_Internal(dm, locX, pointIS, func, fintegral, user);
2208:     /* Sum point contributions into integral */
2209:     for (f = 0; f < Nf; ++f) for (face = 0; face < numFaces; ++face) integral[f] += fintegral[face*Nf+f];
2210:     PetscFree(fintegral);
2211:     ISDestroy(&pointIS);
2212:   }
2213:   DMRestoreLocalVector(dm, &locX);
2214:   ISDestroy(&facetIS);
2215:   PetscLogEventEnd(DMPLEX_IntegralFEM,dm,0,0,0);
2216:   return(0);
2217: }

2219: /*@
2220:   DMPlexComputeInterpolatorNested - Form the local portion of the interpolation matrix I from the coarse DM to the uniformly refined DM.

2222:   Input Parameters:
2223: + dmf  - The fine mesh
2224: . dmc  - The coarse mesh
2225: - user - The user context

2227:   Output Parameter:
2228: . In  - The interpolation matrix

2230:   Level: developer

2232: .seealso: DMPlexComputeInterpolatorGeneral(), DMPlexComputeJacobianFEM()
2233: @*/
2234: PetscErrorCode DMPlexComputeInterpolatorNested(DM dmc, DM dmf, Mat In, void *user)
2235: {
2236:   DM_Plex          *mesh  = (DM_Plex *) dmc->data;
2237:   const char       *name  = "Interpolator";
2238:   PetscDS           prob;
2239:   PetscFE          *feRef;
2240:   PetscFV          *fvRef;
2241:   PetscSection      fsection, fglobalSection;
2242:   PetscSection      csection, cglobalSection;
2243:   PetscScalar      *elemMat;
2244:   PetscInt          dim, Nf, f, fieldI, fieldJ, offsetI, offsetJ, cStart, cEnd, cEndInterior, c;
2245:   PetscInt          cTotDim, rTotDim = 0;
2246:   PetscErrorCode    ierr;

2249:   PetscLogEventBegin(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
2250:   DMGetDimension(dmf, &dim);
2251:   DMGetLocalSection(dmf, &fsection);
2252:   DMGetGlobalSection(dmf, &fglobalSection);
2253:   DMGetLocalSection(dmc, &csection);
2254:   DMGetGlobalSection(dmc, &cglobalSection);
2255:   PetscSectionGetNumFields(fsection, &Nf);
2256:   DMPlexGetHeightStratum(dmc, 0, &cStart, &cEnd);
2257:   DMPlexGetHybridBounds(dmc, &cEndInterior, NULL, NULL, NULL);
2258:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
2259:   DMGetDS(dmf, &prob);
2260:   PetscCalloc2(Nf,&feRef,Nf,&fvRef);
2261:   for (f = 0; f < Nf; ++f) {
2262:     PetscObject  obj;
2263:     PetscClassId id;
2264:     PetscInt     rNb = 0, Nc = 0;

2266:     PetscDSGetDiscretization(prob, f, &obj);
2267:     PetscObjectGetClassId(obj, &id);
2268:     if (id == PETSCFE_CLASSID) {
2269:       PetscFE fe = (PetscFE) obj;

2271:       PetscFERefine(fe, &feRef[f]);
2272:       PetscFEGetDimension(feRef[f], &rNb);
2273:       PetscFEGetNumComponents(fe, &Nc);
2274:     } else if (id == PETSCFV_CLASSID) {
2275:       PetscFV        fv = (PetscFV) obj;
2276:       PetscDualSpace Q;

2278:       PetscFVRefine(fv, &fvRef[f]);
2279:       PetscFVGetDualSpace(fvRef[f], &Q);
2280:       PetscDualSpaceGetDimension(Q, &rNb);
2281:       PetscFVGetNumComponents(fv, &Nc);
2282:     }
2283:     rTotDim += rNb;
2284:   }
2285:   PetscDSGetTotalDimension(prob, &cTotDim);
2286:   PetscMalloc1(rTotDim*cTotDim,&elemMat);
2287:   PetscArrayzero(elemMat, rTotDim*cTotDim);
2288:   for (fieldI = 0, offsetI = 0; fieldI < Nf; ++fieldI) {
2289:     PetscDualSpace   Qref;
2290:     PetscQuadrature  f;
2291:     const PetscReal *qpoints, *qweights;
2292:     PetscReal       *points;
2293:     PetscInt         npoints = 0, Nc, Np, fpdim, i, k, p, d;

2295:     /* Compose points from all dual basis functionals */
2296:     if (feRef[fieldI]) {
2297:       PetscFEGetDualSpace(feRef[fieldI], &Qref);
2298:       PetscFEGetNumComponents(feRef[fieldI], &Nc);
2299:     } else {
2300:       PetscFVGetDualSpace(fvRef[fieldI], &Qref);
2301:       PetscFVGetNumComponents(fvRef[fieldI], &Nc);
2302:     }
2303:     PetscDualSpaceGetDimension(Qref, &fpdim);
2304:     for (i = 0; i < fpdim; ++i) {
2305:       PetscDualSpaceGetFunctional(Qref, i, &f);
2306:       PetscQuadratureGetData(f, NULL, NULL, &Np, NULL, NULL);
2307:       npoints += Np;
2308:     }
2309:     PetscMalloc1(npoints*dim,&points);
2310:     for (i = 0, k = 0; i < fpdim; ++i) {
2311:       PetscDualSpaceGetFunctional(Qref, i, &f);
2312:       PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL);
2313:       for (p = 0; p < Np; ++p, ++k) for (d = 0; d < dim; ++d) points[k*dim+d] = qpoints[p*dim+d];
2314:     }

2316:     for (fieldJ = 0, offsetJ = 0; fieldJ < Nf; ++fieldJ) {
2317:       PetscObject  obj;
2318:       PetscClassId id;
2319:       PetscReal   *B;
2320:       PetscInt     NcJ = 0, cpdim = 0, j, qNc;

2322:       PetscDSGetDiscretization(prob, fieldJ, &obj);
2323:       PetscObjectGetClassId(obj, &id);
2324:       if (id == PETSCFE_CLASSID) {
2325:         PetscFE fe = (PetscFE) obj;

2327:         /* Evaluate basis at points */
2328:         PetscFEGetNumComponents(fe, &NcJ);
2329:         PetscFEGetDimension(fe, &cpdim);
2330:         /* For now, fields only interpolate themselves */
2331:         if (fieldI == fieldJ) {
2332:           if (Nc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %D does not match coarse field %D", Nc, NcJ);
2333:           PetscFEGetTabulation(fe, npoints, points, &B, NULL, NULL);
2334:           for (i = 0, k = 0; i < fpdim; ++i) {
2335:             PetscDualSpaceGetFunctional(Qref, i, &f);
2336:             PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights);
2337:             if (qNc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, NcJ);
2338:             for (p = 0; p < Np; ++p, ++k) {
2339:               for (j = 0; j < cpdim; ++j) {
2340:                 /*
2341:                    cTotDim:            Total columns in element interpolation matrix, sum of number of dual basis functionals in each field
2342:                    offsetI, offsetJ:   Offsets into the larger element interpolation matrix for different fields
2343:                    fpdim, i, cpdim, j: Dofs for fine and coarse grids, correspond to dual space basis functionals
2344:                    qNC, Nc, Ncj, c:    Number of components in this field
2345:                    Np, p:              Number of quad points in the fine grid functional i
2346:                    k:                  i*Np + p, overall point number for the interpolation
2347:                 */
2348:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i)*cTotDim + offsetJ + j] += B[k*cpdim*NcJ+j*Nc+c]*qweights[p*qNc+c];
2349:               }
2350:             }
2351:           }
2352:           PetscFERestoreTabulation(fe, npoints, points, &B, NULL, NULL);
2353:         }
2354:       } else if (id == PETSCFV_CLASSID) {
2355:         PetscFV        fv = (PetscFV) obj;

2357:         /* Evaluate constant function at points */
2358:         PetscFVGetNumComponents(fv, &NcJ);
2359:         cpdim = 1;
2360:         /* For now, fields only interpolate themselves */
2361:         if (fieldI == fieldJ) {
2362:           if (Nc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %D does not match coarse field %D", Nc, NcJ);
2363:           for (i = 0, k = 0; i < fpdim; ++i) {
2364:             PetscDualSpaceGetFunctional(Qref, i, &f);
2365:             PetscQuadratureGetData(f, NULL, &qNc, &Np, NULL, &qweights);
2366:             if (qNc != NcJ) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, NcJ);
2367:             for (p = 0; p < Np; ++p, ++k) {
2368:               for (j = 0; j < cpdim; ++j) {
2369:                 for (c = 0; c < Nc; ++c) elemMat[(offsetI + i)*cTotDim + offsetJ + j] += 1.0*qweights[p*qNc+c];
2370:               }
2371:             }
2372:           }
2373:         }
2374:       }
2375:       offsetJ += cpdim;
2376:     }
2377:     offsetI += fpdim;
2378:     PetscFree(points);
2379:   }
2380:   if (mesh->printFEM > 1) {DMPrintCellMatrix(0, name, rTotDim, cTotDim, elemMat);}
2381:   /* Preallocate matrix */
2382:   {
2383:     Mat          preallocator;
2384:     PetscScalar *vals;
2385:     PetscInt    *cellCIndices, *cellFIndices;
2386:     PetscInt     locRows, locCols, cell;

2388:     MatGetLocalSize(In, &locRows, &locCols);
2389:     MatCreate(PetscObjectComm((PetscObject) In), &preallocator);
2390:     MatSetType(preallocator, MATPREALLOCATOR);
2391:     MatSetSizes(preallocator, locRows, locCols, PETSC_DETERMINE, PETSC_DETERMINE);
2392:     MatSetUp(preallocator);
2393:     PetscCalloc3(rTotDim*cTotDim, &vals,cTotDim,&cellCIndices,rTotDim,&cellFIndices);
2394:     for (cell = cStart; cell < cEnd; ++cell) {
2395:       DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, cell, cellCIndices, cellFIndices);
2396:       MatSetValues(preallocator, rTotDim, cellFIndices, cTotDim, cellCIndices, vals, INSERT_VALUES);
2397:     }
2398:     PetscFree3(vals,cellCIndices,cellFIndices);
2399:     MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY);
2400:     MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY);
2401:     MatPreallocatorPreallocate(preallocator, PETSC_TRUE, In);
2402:     MatDestroy(&preallocator);
2403:   }
2404:   /* Fill matrix */
2405:   MatZeroEntries(In);
2406:   for (c = cStart; c < cEnd; ++c) {
2407:     DMPlexMatSetClosureRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, In, c, elemMat, INSERT_VALUES);
2408:   }
2409:   for (f = 0; f < Nf; ++f) {PetscFEDestroy(&feRef[f]);}
2410:   PetscFree2(feRef,fvRef);
2411:   PetscFree(elemMat);
2412:   MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY);
2413:   MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY);
2414:   if (mesh->printFEM) {
2415:     PetscPrintf(PetscObjectComm((PetscObject)In), "%s:\n", name);
2416:     MatChop(In, 1.0e-10);
2417:     MatView(In, NULL);
2418:   }
2419:   PetscLogEventEnd(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
2420:   return(0);
2421: }

2423: PetscErrorCode DMPlexComputeMassMatrixNested(DM dmc, DM dmf, Mat mass, void *user)
2424: {
2425:   SETERRQ(PetscObjectComm((PetscObject) dmc), PETSC_ERR_SUP, "Laziness");
2426: }

2428: /*@
2429:   DMPlexComputeInterpolatorGeneral - Form the local portion of the interpolation matrix I from the coarse DM to a non-nested fine DM.

2431:   Input Parameters:
2432: + dmf  - The fine mesh
2433: . dmc  - The coarse mesh
2434: - user - The user context

2436:   Output Parameter:
2437: . In  - The interpolation matrix

2439:   Level: developer

2441: .seealso: DMPlexComputeInterpolatorNested(), DMPlexComputeJacobianFEM()
2442: @*/
2443: PetscErrorCode DMPlexComputeInterpolatorGeneral(DM dmc, DM dmf, Mat In, void *user)
2444: {
2445:   DM_Plex       *mesh = (DM_Plex *) dmf->data;
2446:   const char    *name = "Interpolator";
2447:   PetscDS        prob;
2448:   PetscSection   fsection, csection, globalFSection, globalCSection;
2449:   PetscHSetIJ    ht;
2450:   PetscLayout    rLayout;
2451:   PetscInt      *dnz, *onz;
2452:   PetscInt       locRows, rStart, rEnd;
2453:   PetscReal     *x, *v0, *J, *invJ, detJ;
2454:   PetscReal     *v0c, *Jc, *invJc, detJc;
2455:   PetscScalar   *elemMat;
2456:   PetscInt       dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

2460:   PetscLogEventBegin(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
2461:   DMGetCoordinateDim(dmc, &dim);
2462:   DMGetDS(dmc, &prob);
2463:   PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL);
2464:   PetscDSGetNumFields(prob, &Nf);
2465:   PetscMalloc3(dim,&v0,dim*dim,&J,dim*dim,&invJ);
2466:   PetscMalloc3(dim,&v0c,dim*dim,&Jc,dim*dim,&invJc);
2467:   DMGetLocalSection(dmf, &fsection);
2468:   DMGetGlobalSection(dmf, &globalFSection);
2469:   DMGetLocalSection(dmc, &csection);
2470:   DMGetGlobalSection(dmc, &globalCSection);
2471:   DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd);
2472:   PetscDSGetTotalDimension(prob, &totDim);
2473:   PetscMalloc1(totDim, &elemMat);

2475:   MatGetLocalSize(In, &locRows, NULL);
2476:   PetscLayoutCreate(PetscObjectComm((PetscObject) In), &rLayout);
2477:   PetscLayoutSetLocalSize(rLayout, locRows);
2478:   PetscLayoutSetBlockSize(rLayout, 1);
2479:   PetscLayoutSetUp(rLayout);
2480:   PetscLayoutGetRange(rLayout, &rStart, &rEnd);
2481:   PetscLayoutDestroy(&rLayout);
2482:   PetscCalloc2(locRows,&dnz,locRows,&onz);
2483:   PetscHSetIJCreate(&ht);
2484:   for (field = 0; field < Nf; ++field) {
2485:     PetscObject      obj;
2486:     PetscClassId     id;
2487:     PetscDualSpace   Q = NULL;
2488:     PetscQuadrature  f;
2489:     const PetscReal *qpoints;
2490:     PetscInt         Nc, Np, fpdim, i, d;

2492:     PetscDSGetDiscretization(prob, field, &obj);
2493:     PetscObjectGetClassId(obj, &id);
2494:     if (id == PETSCFE_CLASSID) {
2495:       PetscFE fe = (PetscFE) obj;

2497:       PetscFEGetDualSpace(fe, &Q);
2498:       PetscFEGetNumComponents(fe, &Nc);
2499:     } else if (id == PETSCFV_CLASSID) {
2500:       PetscFV fv = (PetscFV) obj;

2502:       PetscFVGetDualSpace(fv, &Q);
2503:       Nc   = 1;
2504:     }
2505:     PetscDualSpaceGetDimension(Q, &fpdim);
2506:     /* For each fine grid cell */
2507:     for (cell = cStart; cell < cEnd; ++cell) {
2508:       PetscInt *findices,   *cindices;
2509:       PetscInt  numFIndices, numCIndices;

2511:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2512:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
2513:       if (numFIndices != fpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %D != %D dual basis vecs", numFIndices, fpdim);
2514:       for (i = 0; i < fpdim; ++i) {
2515:         Vec             pointVec;
2516:         PetscScalar    *pV;
2517:         PetscSF         coarseCellSF = NULL;
2518:         const PetscSFNode *coarseCells;
2519:         PetscInt        numCoarseCells, q, c;

2521:         /* Get points from the dual basis functional quadrature */
2522:         PetscDualSpaceGetFunctional(Q, i, &f);
2523:         PetscQuadratureGetData(f, NULL, NULL, &Np, &qpoints, NULL);
2524:         VecCreateSeq(PETSC_COMM_SELF, Np*dim, &pointVec);
2525:         VecSetBlockSize(pointVec, dim);
2526:         VecGetArray(pointVec, &pV);
2527:         for (q = 0; q < Np; ++q) {
2528:           const PetscReal xi0[3] = {-1., -1., -1.};

2530:           /* Transform point to real space */
2531:           CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q*dim], x);
2532:           for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
2533:         }
2534:         VecRestoreArray(pointVec, &pV);
2535:         /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
2536:         /* OPT: Pack all quad points from fine cell */
2537:         DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
2538:         PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view");
2539:         /* Update preallocation info */
2540:         PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
2541:         if (numCoarseCells != Np) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
2542:         {
2543:           PetscHashIJKey key;
2544:           PetscBool      missing;

2546:           key.i = findices[i];
2547:           if (key.i >= 0) {
2548:             /* Get indices for coarse elements */
2549:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
2550:               DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2551:               for (c = 0; c < numCIndices; ++c) {
2552:                 key.j = cindices[c];
2553:                 if (key.j < 0) continue;
2554:                 PetscHSetIJQueryAdd(ht, key, &missing);
2555:                 if (missing) {
2556:                   if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i-rStart];
2557:                   else                                     ++onz[key.i-rStart];
2558:                 }
2559:               }
2560:               DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2561:             }
2562:           }
2563:         }
2564:         PetscSFDestroy(&coarseCellSF);
2565:         VecDestroy(&pointVec);
2566:       }
2567:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2568:     }
2569:   }
2570:   PetscHSetIJDestroy(&ht);
2571:   MatXAIJSetPreallocation(In, 1, dnz, onz, NULL, NULL);
2572:   MatSetOption(In, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);
2573:   PetscFree2(dnz,onz);
2574:   for (field = 0; field < Nf; ++field) {
2575:     PetscObject      obj;
2576:     PetscClassId     id;
2577:     PetscDualSpace   Q = NULL;
2578:     PetscQuadrature  f;
2579:     const PetscReal *qpoints, *qweights;
2580:     PetscInt         Nc, qNc, Np, fpdim, i, d;

2582:     PetscDSGetDiscretization(prob, field, &obj);
2583:     PetscObjectGetClassId(obj, &id);
2584:     if (id == PETSCFE_CLASSID) {
2585:       PetscFE fe = (PetscFE) obj;

2587:       PetscFEGetDualSpace(fe, &Q);
2588:       PetscFEGetNumComponents(fe, &Nc);
2589:     } else if (id == PETSCFV_CLASSID) {
2590:       PetscFV fv = (PetscFV) obj;

2592:       PetscFVGetDualSpace(fv, &Q);
2593:       Nc   = 1;
2594:     } else SETERRQ1(PetscObjectComm((PetscObject)dmc),PETSC_ERR_ARG_WRONG,"Unknown discretization type for field %D",field);
2595:     PetscDualSpaceGetDimension(Q, &fpdim);
2596:     /* For each fine grid cell */
2597:     for (cell = cStart; cell < cEnd; ++cell) {
2598:       PetscInt *findices,   *cindices;
2599:       PetscInt  numFIndices, numCIndices;

2601:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2602:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
2603:       if (numFIndices != fpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of fine indices %D != %D dual basis vecs", numFIndices, fpdim);
2604:       for (i = 0; i < fpdim; ++i) {
2605:         Vec             pointVec;
2606:         PetscScalar    *pV;
2607:         PetscSF         coarseCellSF = NULL;
2608:         const PetscSFNode *coarseCells;
2609:         PetscInt        numCoarseCells, cpdim, q, c, j;

2611:         /* Get points from the dual basis functional quadrature */
2612:         PetscDualSpaceGetFunctional(Q, i, &f);
2613:         PetscQuadratureGetData(f, NULL, &qNc, &Np, &qpoints, &qweights);
2614:         if (qNc != Nc) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in quadrature %D does not match coarse field %D", qNc, Nc);
2615:         VecCreateSeq(PETSC_COMM_SELF, Np*dim, &pointVec);
2616:         VecSetBlockSize(pointVec, dim);
2617:         VecGetArray(pointVec, &pV);
2618:         for (q = 0; q < Np; ++q) {
2619:           const PetscReal xi0[3] = {-1., -1., -1.};

2621:           /* Transform point to real space */
2622:           CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q*dim], x);
2623:           for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
2624:         }
2625:         VecRestoreArray(pointVec, &pV);
2626:         /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
2627:         /* OPT: Read this out from preallocation information */
2628:         DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
2629:         /* Update preallocation info */
2630:         PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
2631:         if (numCoarseCells != Np) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
2632:         VecGetArray(pointVec, &pV);
2633:         for (ccell = 0; ccell < numCoarseCells; ++ccell) {
2634:           PetscReal pVReal[3];
2635:           const PetscReal xi0[3] = {-1., -1., -1.};

2637:           DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2638:           /* Transform points from real space to coarse reference space */
2639:           DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc);
2640:           for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell*dim+d]);
2641:           CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

2643:           if (id == PETSCFE_CLASSID) {
2644:             PetscFE    fe = (PetscFE) obj;
2645:             PetscReal *B;

2647:             /* Evaluate coarse basis on contained point */
2648:             PetscFEGetDimension(fe, &cpdim);
2649:             PetscFEGetTabulation(fe, 1, x, &B, NULL, NULL);
2650:             PetscArrayzero(elemMat, cpdim);
2651:             /* Get elemMat entries by multiplying by weight */
2652:             for (j = 0; j < cpdim; ++j) {
2653:               for (c = 0; c < Nc; ++c) elemMat[j] += B[j*Nc + c]*qweights[ccell*qNc + c];
2654:             }
2655:             PetscFERestoreTabulation(fe, 1, x, &B, NULL, NULL);
2656:           } else {
2657:             cpdim = 1;
2658:             for (j = 0; j < cpdim; ++j) {
2659:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0*qweights[ccell*qNc + c];
2660:             }
2661:           }
2662:           /* Update interpolator */
2663:           if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
2664:           if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
2665:           MatSetValues(In, 1, &findices[i], numCIndices, cindices, elemMat, INSERT_VALUES);
2666:           DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2667:         }
2668:         VecRestoreArray(pointVec, &pV);
2669:         PetscSFDestroy(&coarseCellSF);
2670:         VecDestroy(&pointVec);
2671:       }
2672:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2673:     }
2674:   }
2675:   PetscFree3(v0,J,invJ);
2676:   PetscFree3(v0c,Jc,invJc);
2677:   PetscFree(elemMat);
2678:   MatAssemblyBegin(In, MAT_FINAL_ASSEMBLY);
2679:   MatAssemblyEnd(In, MAT_FINAL_ASSEMBLY);
2680:   PetscLogEventEnd(DMPLEX_InterpolatorFEM,dmc,dmf,0,0);
2681:   return(0);
2682: }

2684: /*@
2685:   DMPlexComputeMassMatrixGeneral - Form the local portion of the mass matrix M from the coarse DM to a non-nested fine DM.

2687:   Input Parameters:
2688: + dmf  - The fine mesh
2689: . dmc  - The coarse mesh
2690: - user - The user context

2692:   Output Parameter:
2693: . mass  - The mass matrix

2695:   Level: developer

2697: .seealso: DMPlexComputeMassMatrixNested(), DMPlexComputeInterpolatorNested(), DMPlexComputeInterpolatorGeneral(), DMPlexComputeJacobianFEM()
2698: @*/
2699: PetscErrorCode DMPlexComputeMassMatrixGeneral(DM dmc, DM dmf, Mat mass, void *user)
2700: {
2701:   DM_Plex       *mesh = (DM_Plex *) dmf->data;
2702:   const char    *name = "Mass Matrix";
2703:   PetscDS        prob;
2704:   PetscSection   fsection, csection, globalFSection, globalCSection;
2705:   PetscHSetIJ    ht;
2706:   PetscLayout    rLayout;
2707:   PetscInt      *dnz, *onz;
2708:   PetscInt       locRows, rStart, rEnd;
2709:   PetscReal     *x, *v0, *J, *invJ, detJ;
2710:   PetscReal     *v0c, *Jc, *invJc, detJc;
2711:   PetscScalar   *elemMat;
2712:   PetscInt       dim, Nf, field, totDim, cStart, cEnd, cell, ccell;

2716:   DMGetCoordinateDim(dmc, &dim);
2717:   DMGetDS(dmc, &prob);
2718:   PetscDSGetWorkspace(prob, &x, NULL, NULL, NULL, NULL);
2719:   PetscDSGetNumFields(prob, &Nf);
2720:   PetscMalloc3(dim,&v0,dim*dim,&J,dim*dim,&invJ);
2721:   PetscMalloc3(dim,&v0c,dim*dim,&Jc,dim*dim,&invJc);
2722:   DMGetLocalSection(dmf, &fsection);
2723:   DMGetGlobalSection(dmf, &globalFSection);
2724:   DMGetLocalSection(dmc, &csection);
2725:   DMGetGlobalSection(dmc, &globalCSection);
2726:   DMPlexGetHeightStratum(dmf, 0, &cStart, &cEnd);
2727:   PetscDSGetTotalDimension(prob, &totDim);
2728:   PetscMalloc1(totDim, &elemMat);

2730:   MatGetLocalSize(mass, &locRows, NULL);
2731:   PetscLayoutCreate(PetscObjectComm((PetscObject) mass), &rLayout);
2732:   PetscLayoutSetLocalSize(rLayout, locRows);
2733:   PetscLayoutSetBlockSize(rLayout, 1);
2734:   PetscLayoutSetUp(rLayout);
2735:   PetscLayoutGetRange(rLayout, &rStart, &rEnd);
2736:   PetscLayoutDestroy(&rLayout);
2737:   PetscCalloc2(locRows,&dnz,locRows,&onz);
2738:   PetscHSetIJCreate(&ht);
2739:   for (field = 0; field < Nf; ++field) {
2740:     PetscObject      obj;
2741:     PetscClassId     id;
2742:     PetscQuadrature  quad;
2743:     const PetscReal *qpoints;
2744:     PetscInt         Nq, Nc, i, d;

2746:     PetscDSGetDiscretization(prob, field, &obj);
2747:     PetscObjectGetClassId(obj, &id);
2748:     if (id == PETSCFE_CLASSID) {PetscFEGetQuadrature((PetscFE) obj, &quad);}
2749:     else                       {PetscFVGetQuadrature((PetscFV) obj, &quad);}
2750:     PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, NULL);
2751:     /* For each fine grid cell */
2752:     for (cell = cStart; cell < cEnd; ++cell) {
2753:       Vec                pointVec;
2754:       PetscScalar       *pV;
2755:       PetscSF            coarseCellSF = NULL;
2756:       const PetscSFNode *coarseCells;
2757:       PetscInt           numCoarseCells, q, c;
2758:       PetscInt          *findices,   *cindices;
2759:       PetscInt           numFIndices, numCIndices;

2761:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2762:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
2763:       /* Get points from the quadrature */
2764:       VecCreateSeq(PETSC_COMM_SELF, Nq*dim, &pointVec);
2765:       VecSetBlockSize(pointVec, dim);
2766:       VecGetArray(pointVec, &pV);
2767:       for (q = 0; q < Nq; ++q) {
2768:         const PetscReal xi0[3] = {-1., -1., -1.};

2770:         /* Transform point to real space */
2771:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q*dim], x);
2772:         for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
2773:       }
2774:       VecRestoreArray(pointVec, &pV);
2775:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
2776:       DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
2777:       PetscSFViewFromOptions(coarseCellSF, NULL, "-interp_sf_view");
2778:       /* Update preallocation info */
2779:       PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
2780:       if (numCoarseCells != Nq) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
2781:       {
2782:         PetscHashIJKey key;
2783:         PetscBool      missing;

2785:         for (i = 0; i < numFIndices; ++i) {
2786:           key.i = findices[i];
2787:           if (key.i >= 0) {
2788:             /* Get indices for coarse elements */
2789:             for (ccell = 0; ccell < numCoarseCells; ++ccell) {
2790:               DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2791:               for (c = 0; c < numCIndices; ++c) {
2792:                 key.j = cindices[c];
2793:                 if (key.j < 0) continue;
2794:                 PetscHSetIJQueryAdd(ht, key, &missing);
2795:                 if (missing) {
2796:                   if ((key.j >= rStart) && (key.j < rEnd)) ++dnz[key.i-rStart];
2797:                   else                                     ++onz[key.i-rStart];
2798:                 }
2799:               }
2800:               DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2801:             }
2802:           }
2803:         }
2804:       }
2805:       PetscSFDestroy(&coarseCellSF);
2806:       VecDestroy(&pointVec);
2807:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2808:     }
2809:   }
2810:   PetscHSetIJDestroy(&ht);
2811:   MatXAIJSetPreallocation(mass, 1, dnz, onz, NULL, NULL);
2812:   MatSetOption(mass, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);
2813:   PetscFree2(dnz,onz);
2814:   for (field = 0; field < Nf; ++field) {
2815:     PetscObject      obj;
2816:     PetscClassId     id;
2817:     PetscQuadrature  quad;
2818:     PetscReal       *Bfine;
2819:     const PetscReal *qpoints, *qweights;
2820:     PetscInt         Nq, Nc, i, d;

2822:     PetscDSGetDiscretization(prob, field, &obj);
2823:     PetscObjectGetClassId(obj, &id);
2824:     if (id == PETSCFE_CLASSID) {PetscFEGetQuadrature((PetscFE) obj, &quad);PetscFEGetDefaultTabulation((PetscFE) obj, &Bfine, NULL, NULL);}
2825:     else                       {PetscFVGetQuadrature((PetscFV) obj, &quad);}
2826:     PetscQuadratureGetData(quad, NULL, &Nc, &Nq, &qpoints, &qweights);
2827:     /* For each fine grid cell */
2828:     for (cell = cStart; cell < cEnd; ++cell) {
2829:       Vec                pointVec;
2830:       PetscScalar       *pV;
2831:       PetscSF            coarseCellSF = NULL;
2832:       const PetscSFNode *coarseCells;
2833:       PetscInt           numCoarseCells, cpdim, q, c, j;
2834:       PetscInt          *findices,   *cindices;
2835:       PetscInt           numFIndices, numCIndices;

2837:       DMPlexGetClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2838:       DMPlexComputeCellGeometryFEM(dmf, cell, NULL, v0, J, invJ, &detJ);
2839:       /* Get points from the quadrature */
2840:       VecCreateSeq(PETSC_COMM_SELF, Nq*dim, &pointVec);
2841:       VecSetBlockSize(pointVec, dim);
2842:       VecGetArray(pointVec, &pV);
2843:       for (q = 0; q < Nq; ++q) {
2844:         const PetscReal xi0[3] = {-1., -1., -1.};

2846:         /* Transform point to real space */
2847:         CoordinatesRefToReal(dim, dim, xi0, v0, J, &qpoints[q*dim], x);
2848:         for (d = 0; d < dim; ++d) pV[q*dim+d] = x[d];
2849:       }
2850:       VecRestoreArray(pointVec, &pV);
2851:       /* Get set of coarse cells that overlap points (would like to group points by coarse cell) */
2852:       DMLocatePoints(dmc, pointVec, DM_POINTLOCATION_NEAREST, &coarseCellSF);
2853:       /* Update matrix */
2854:       PetscSFGetGraph(coarseCellSF, NULL, &numCoarseCells, NULL, &coarseCells);
2855:       if (numCoarseCells != Nq) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Not all closure points located");
2856:       VecGetArray(pointVec, &pV);
2857:       for (ccell = 0; ccell < numCoarseCells; ++ccell) {
2858:         PetscReal pVReal[3];
2859:         const PetscReal xi0[3] = {-1., -1., -1.};


2862:         DMPlexGetClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2863:         /* Transform points from real space to coarse reference space */
2864:         DMPlexComputeCellGeometryFEM(dmc, coarseCells[ccell].index, NULL, v0c, Jc, invJc, &detJc);
2865:         for (d = 0; d < dim; ++d) pVReal[d] = PetscRealPart(pV[ccell*dim+d]);
2866:         CoordinatesRealToRef(dim, dim, xi0, v0c, invJc, pVReal, x);

2868:         if (id == PETSCFE_CLASSID) {
2869:           PetscFE    fe = (PetscFE) obj;
2870:           PetscReal *B;

2872:           /* Evaluate coarse basis on contained point */
2873:           PetscFEGetDimension(fe, &cpdim);
2874:           PetscFEGetTabulation(fe, 1, x, &B, NULL, NULL);
2875:           /* Get elemMat entries by multiplying by weight */
2876:           for (i = 0; i < numFIndices; ++i) {
2877:             PetscArrayzero(elemMat, cpdim);
2878:             for (j = 0; j < cpdim; ++j) {
2879:               for (c = 0; c < Nc; ++c) elemMat[j] += B[j*Nc + c]*Bfine[(ccell*numFIndices + i)*Nc + c]*qweights[ccell*Nc + c]*detJ;
2880:             }
2881:             /* Update interpolator */
2882:             if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
2883:             if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
2884:             MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES);
2885:           }
2886:           PetscFERestoreTabulation(fe, 1, x, &B, NULL, NULL);
2887:         } else {
2888:           cpdim = 1;
2889:           for (i = 0; i < numFIndices; ++i) {
2890:             PetscArrayzero(elemMat, cpdim);
2891:             for (j = 0; j < cpdim; ++j) {
2892:               for (c = 0; c < Nc; ++c) elemMat[j] += 1.0*1.0*qweights[ccell*Nc + c]*detJ;
2893:             }
2894:             /* Update interpolator */
2895:             if (mesh->printFEM > 1) {DMPrintCellMatrix(cell, name, 1, numCIndices, elemMat);}
2896:             PetscPrintf(PETSC_COMM_SELF, "Nq: %D %D Nf: %D %D Nc: %D %D\n", ccell, Nq, i, numFIndices, j, numCIndices);
2897:             if (numCIndices != cpdim) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Number of element matrix columns %D != %D", numCIndices, cpdim);
2898:             MatSetValues(mass, 1, &findices[i], numCIndices, cindices, elemMat, ADD_VALUES);
2899:           }
2900:         }
2901:         DMPlexRestoreClosureIndices(dmc, csection, globalCSection, coarseCells[ccell].index, &numCIndices, &cindices, NULL);
2902:       }
2903:       VecRestoreArray(pointVec, &pV);
2904:       PetscSFDestroy(&coarseCellSF);
2905:       VecDestroy(&pointVec);
2906:       DMPlexRestoreClosureIndices(dmf, fsection, globalFSection, cell, &numFIndices, &findices, NULL);
2907:     }
2908:   }
2909:   PetscFree3(v0,J,invJ);
2910:   PetscFree3(v0c,Jc,invJc);
2911:   PetscFree(elemMat);
2912:   MatAssemblyBegin(mass, MAT_FINAL_ASSEMBLY);
2913:   MatAssemblyEnd(mass, MAT_FINAL_ASSEMBLY);
2914:   return(0);
2915: }

2917: /*@
2918:   DMPlexComputeInjectorFEM - Compute a mapping from coarse unknowns to fine unknowns

2920:   Input Parameters:
2921: + dmc  - The coarse mesh
2922: - dmf  - The fine mesh
2923: - user - The user context

2925:   Output Parameter:
2926: . sc   - The mapping

2928:   Level: developer

2930: .seealso: DMPlexComputeInterpolatorNested(), DMPlexComputeJacobianFEM()
2931: @*/
2932: PetscErrorCode DMPlexComputeInjectorFEM(DM dmc, DM dmf, VecScatter *sc, void *user)
2933: {
2934:   PetscDS        prob;
2935:   PetscFE       *feRef;
2936:   PetscFV       *fvRef;
2937:   Vec            fv, cv;
2938:   IS             fis, cis;
2939:   PetscSection   fsection, fglobalSection, csection, cglobalSection;
2940:   PetscInt      *cmap, *cellCIndices, *cellFIndices, *cindices, *findices;
2941:   PetscInt       cTotDim, fTotDim = 0, Nf, f, field, cStart, cEnd, cEndInterior, c, dim, d, startC, endC, offsetC, offsetF, m;
2942:   PetscBool     *needAvg;

2946:   PetscLogEventBegin(DMPLEX_InjectorFEM,dmc,dmf,0,0);
2947:   DMGetDimension(dmf, &dim);
2948:   DMGetLocalSection(dmf, &fsection);
2949:   DMGetGlobalSection(dmf, &fglobalSection);
2950:   DMGetLocalSection(dmc, &csection);
2951:   DMGetGlobalSection(dmc, &cglobalSection);
2952:   PetscSectionGetNumFields(fsection, &Nf);
2953:   DMPlexGetHeightStratum(dmc, 0, &cStart, &cEnd);
2954:   DMPlexGetHybridBounds(dmc, &cEndInterior, NULL, NULL, NULL);
2955:   cEnd = cEndInterior < 0 ? cEnd : cEndInterior;
2956:   DMGetDS(dmc, &prob);
2957:   PetscCalloc3(Nf,&feRef,Nf,&fvRef,Nf,&needAvg);
2958:   for (f = 0; f < Nf; ++f) {
2959:     PetscObject  obj;
2960:     PetscClassId id;
2961:     PetscInt     fNb = 0, Nc = 0;

2963:     PetscDSGetDiscretization(prob, f, &obj);
2964:     PetscObjectGetClassId(obj, &id);
2965:     if (id == PETSCFE_CLASSID) {
2966:       PetscFE    fe = (PetscFE) obj;
2967:       PetscSpace sp;
2968:       PetscInt   maxDegree;

2970:       PetscFERefine(fe, &feRef[f]);
2971:       PetscFEGetDimension(feRef[f], &fNb);
2972:       PetscFEGetNumComponents(fe, &Nc);
2973:       PetscFEGetBasisSpace(fe, &sp);
2974:       PetscSpaceGetDegree(sp, NULL, &maxDegree);
2975:       if (!maxDegree) needAvg[f] = PETSC_TRUE;
2976:     } else if (id == PETSCFV_CLASSID) {
2977:       PetscFV        fv = (PetscFV) obj;
2978:       PetscDualSpace Q;

2980:       PetscFVRefine(fv, &fvRef[f]);
2981:       PetscFVGetDualSpace(fvRef[f], &Q);
2982:       PetscDualSpaceGetDimension(Q, &fNb);
2983:       PetscFVGetNumComponents(fv, &Nc);
2984:       needAvg[f] = PETSC_TRUE;
2985:     }
2986:     fTotDim += fNb;
2987:   }
2988:   PetscDSGetTotalDimension(prob, &cTotDim);
2989:   PetscMalloc1(cTotDim,&cmap);
2990:   for (field = 0, offsetC = 0, offsetF = 0; field < Nf; ++field) {
2991:     PetscFE        feC;
2992:     PetscFV        fvC;
2993:     PetscDualSpace QF, QC;
2994:     PetscInt       order = -1, NcF, NcC, fpdim, cpdim;

2996:     if (feRef[field]) {
2997:       PetscDSGetDiscretization(prob, field, (PetscObject *) &feC);
2998:       PetscFEGetNumComponents(feC, &NcC);
2999:       PetscFEGetNumComponents(feRef[field], &NcF);
3000:       PetscFEGetDualSpace(feRef[field], &QF);
3001:       PetscDualSpaceGetOrder(QF, &order);
3002:       PetscDualSpaceGetDimension(QF, &fpdim);
3003:       PetscFEGetDualSpace(feC, &QC);
3004:       PetscDualSpaceGetDimension(QC, &cpdim);
3005:     } else {
3006:       PetscDSGetDiscretization(prob, field, (PetscObject *) &fvC);
3007:       PetscFVGetNumComponents(fvC, &NcC);
3008:       PetscFVGetNumComponents(fvRef[field], &NcF);
3009:       PetscFVGetDualSpace(fvRef[field], &QF);
3010:       PetscDualSpaceGetDimension(QF, &fpdim);
3011:       PetscFVGetDualSpace(fvC, &QC);
3012:       PetscDualSpaceGetDimension(QC, &cpdim);
3013:     }
3014:     if (NcF != NcC) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of components in fine space field %D does not match coarse field %D", NcF, NcC);
3015:     for (c = 0; c < cpdim; ++c) {
3016:       PetscQuadrature  cfunc;
3017:       const PetscReal *cqpoints, *cqweights;
3018:       PetscInt         NqcC, NpC;
3019:       PetscBool        found = PETSC_FALSE;

3021:       PetscDualSpaceGetFunctional(QC, c, &cfunc);
3022:       PetscQuadratureGetData(cfunc, NULL, &NqcC, &NpC, &cqpoints, &cqweights);
3023:       if (NqcC != NcC) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %D must match number of field components %D", NqcC, NcC);
3024:       if (NpC != 1 && feRef[field]) SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Do not know how to do injection for moments");
3025:       for (f = 0; f < fpdim; ++f) {
3026:         PetscQuadrature  ffunc;
3027:         const PetscReal *fqpoints, *fqweights;
3028:         PetscReal        sum = 0.0;
3029:         PetscInt         NqcF, NpF;

3031:         PetscDualSpaceGetFunctional(QF, f, &ffunc);
3032:         PetscQuadratureGetData(ffunc, NULL, &NqcF, &NpF, &fqpoints, &fqweights);
3033:         if (NqcF != NcF) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Number of quadrature components %D must match number of field components %D", NqcF, NcF);
3034:         if (NpC != NpF) continue;
3035:         for (d = 0; d < dim; ++d) sum += PetscAbsReal(cqpoints[d] - fqpoints[d]);
3036:         if (sum > 1.0e-9) continue;
3037:         for (d = 0; d < NcC; ++d) sum += PetscAbsReal(cqweights[d]*fqweights[d]);
3038:         if (sum < 1.0e-9) continue;
3039:         cmap[offsetC+c] = offsetF+f;
3040:         found = PETSC_TRUE;
3041:         break;
3042:       }
3043:       if (!found) {
3044:         /* TODO We really want the average here, but some asshole put VecScatter in the interface */
3045:         if (fvRef[field] || (feRef[field] && order == 0)) {
3046:           cmap[offsetC+c] = offsetF+0;
3047:         } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Could not locate matching functional for injection");
3048:       }
3049:     }
3050:     offsetC += cpdim;
3051:     offsetF += fpdim;
3052:   }
3053:   for (f = 0; f < Nf; ++f) {PetscFEDestroy(&feRef[f]);PetscFVDestroy(&fvRef[f]);}
3054:   PetscFree3(feRef,fvRef,needAvg);

3056:   DMGetGlobalVector(dmf, &fv);
3057:   DMGetGlobalVector(dmc, &cv);
3058:   VecGetOwnershipRange(cv, &startC, &endC);
3059:   PetscSectionGetConstrainedStorageSize(cglobalSection, &m);
3060:   PetscMalloc2(cTotDim,&cellCIndices,fTotDim,&cellFIndices);
3061:   PetscMalloc1(m,&cindices);
3062:   PetscMalloc1(m,&findices);
3063:   for (d = 0; d < m; ++d) cindices[d] = findices[d] = -1;
3064:   for (c = cStart; c < cEnd; ++c) {
3065:     DMPlexMatGetClosureIndicesRefined(dmf, fsection, fglobalSection, dmc, csection, cglobalSection, c, cellCIndices, cellFIndices);
3066:     for (d = 0; d < cTotDim; ++d) {
3067:       if ((cellCIndices[d] < startC) || (cellCIndices[d] >= endC)) continue;
3068:       if ((findices[cellCIndices[d]-startC] >= 0) && (findices[cellCIndices[d]-startC] != cellFIndices[cmap[d]])) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Coarse dof %D maps to both %D and %D", cindices[cellCIndices[d]-startC], findices[cellCIndices[d]-startC], cellFIndices[cmap[d]]);
3069:       cindices[cellCIndices[d]-startC] = cellCIndices[d];
3070:       findices[cellCIndices[d]-startC] = cellFIndices[cmap[d]];
3071:     }
3072:   }
3073:   PetscFree(cmap);
3074:   PetscFree2(cellCIndices,cellFIndices);

3076:   ISCreateGeneral(PETSC_COMM_SELF, m, cindices, PETSC_OWN_POINTER, &cis);
3077:   ISCreateGeneral(PETSC_COMM_SELF, m, findices, PETSC_OWN_POINTER, &fis);
3078:   VecScatterCreate(cv, cis, fv, fis, sc);
3079:   ISDestroy(&cis);
3080:   ISDestroy(&fis);
3081:   DMRestoreGlobalVector(dmf, &fv);
3082:   DMRestoreGlobalVector(dmc, &cv);
3083:   PetscLogEventEnd(DMPLEX_InjectorFEM,dmc,dmf,0,0);
3084:   return(0);
3085: }

3087: /*@C
3088:   DMPlexGetCellFields - Retrieve the field values values for a chunk of cells

3090:   Input Parameters:
3091: + dm     - The DM
3092: . cellIS - The cells to include
3093: . locX   - A local vector with the solution fields
3094: . locX_t - A local vector with solution field time derivatives, or NULL
3095: - locA   - A local vector with auxiliary fields, or NULL

3097:   Output Parameters:
3098: + u   - The field coefficients
3099: . u_t - The fields derivative coefficients
3100: - a   - The auxiliary field coefficients

3102:   Level: developer

3104: .seealso: DMPlexGetFaceFields()
3105: @*/
3106: PetscErrorCode DMPlexGetCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3107: {
3108:   DM              plex, plexA = NULL;
3109:   PetscSection    section, sectionAux;
3110:   PetscDS         prob;
3111:   const PetscInt *cells;
3112:   PetscInt        cStart, cEnd, numCells, totDim, totDimAux, c;
3113:   PetscErrorCode  ierr;

3123:   DMPlexConvertPlex(dm, &plex, PETSC_FALSE);
3124:   ISGetPointRange(cellIS, &cStart, &cEnd, &cells);
3125:   DMGetLocalSection(dm, &section);
3126:   DMGetCellDS(dm, cStart, &prob);
3127:   PetscDSGetTotalDimension(prob, &totDim);
3128:   if (locA) {
3129:     DM      dmAux;
3130:     PetscDS probAux;

3132:     VecGetDM(locA, &dmAux);
3133:     DMPlexConvertPlex(dmAux, &plexA, PETSC_FALSE);
3134:     DMGetLocalSection(dmAux, &sectionAux);
3135:     DMGetDS(dmAux, &probAux);
3136:     PetscDSGetTotalDimension(probAux, &totDimAux);
3137:   }
3138:   numCells = cEnd - cStart;
3139:   DMGetWorkArray(dm, numCells*totDim, MPIU_SCALAR, u);
3140:   if (locX_t) {DMGetWorkArray(dm, numCells*totDim, MPIU_SCALAR, u_t);} else {*u_t = NULL;}
3141:   if (locA)   {DMGetWorkArray(dm, numCells*totDimAux, MPIU_SCALAR, a);} else {*a = NULL;}
3142:   for (c = cStart; c < cEnd; ++c) {
3143:     const PetscInt cell = cells ? cells[c] : c;
3144:     const PetscInt cind = c - cStart;
3145:     PetscScalar   *x = NULL, *x_t = NULL, *ul = *u, *ul_t = *u_t, *al = *a;
3146:     PetscInt       i;

3148:     DMPlexVecGetClosure(plex, section, locX, cell, NULL, &x);
3149:     for (i = 0; i < totDim; ++i) ul[cind*totDim+i] = x[i];
3150:     DMPlexVecRestoreClosure(plex, section, locX, cell, NULL, &x);
3151:     if (locX_t) {
3152:       DMPlexVecGetClosure(plex, section, locX_t, cell, NULL, &x_t);
3153:       for (i = 0; i < totDim; ++i) ul_t[cind*totDim+i] = x_t[i];
3154:       DMPlexVecRestoreClosure(plex, section, locX_t, cell, NULL, &x_t);
3155:     }
3156:     if (locA) {
3157:       PetscInt subcell;
3158:       DMPlexGetAuxiliaryPoint(plex, plexA, cell, &subcell);
3159:       DMPlexVecGetClosure(plexA, sectionAux, locA, subcell, NULL, &x);
3160:       for (i = 0; i < totDimAux; ++i) al[cind*totDimAux+i] = x[i];
3161:       DMPlexVecRestoreClosure(plexA, sectionAux, locA, subcell, NULL, &x);
3162:     }
3163:   }
3164:   DMDestroy(&plex);
3165:   if (locA) {DMDestroy(&plexA);}
3166:   ISRestorePointRange(cellIS, &cStart, &cEnd, &cells);
3167:   return(0);
3168: }

3170: /*@C
3171:   DMPlexRestoreCellFields - Restore the field values values for a chunk of cells

3173:   Input Parameters:
3174: + dm     - The DM
3175: . cellIS - The cells to include
3176: . locX   - A local vector with the solution fields
3177: . locX_t - A local vector with solution field time derivatives, or NULL
3178: - locA   - A local vector with auxiliary fields, or NULL

3180:   Output Parameters:
3181: + u   - The field coefficients
3182: . u_t - The fields derivative coefficients
3183: - a   - The auxiliary field coefficients

3185:   Level: developer

3187: .seealso: DMPlexGetFaceFields()
3188: @*/
3189: PetscErrorCode DMPlexRestoreCellFields(DM dm, IS cellIS, Vec locX, Vec locX_t, Vec locA, PetscScalar **u, PetscScalar **u_t, PetscScalar **a)
3190: {

3194:   DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u);
3195:   if (locX_t) {DMRestoreWorkArray(dm, 0, MPIU_SCALAR, u_t);}
3196:   if (locA)   {DMRestoreWorkArray(dm, 0, MPIU_SCALAR, a);}
3197:   return(0);
3198: }

3200: /*@C
3201:   DMPlexGetFaceFields - Retrieve the field values values for a chunk of faces

3203:   Input Parameters:
3204: + dm     - The DM
3205: . fStart - The first face to include
3206: . fEnd   - The first face to exclude
3207: . locX   - A local vector with the solution fields
3208: . locX_t - A local vector with solution field time derivatives, or NULL
3209: . faceGeometry - A local vector with face geometry
3210: . cellGeometry - A local vector with cell geometry
3211: - locaGrad - A local vector with field gradients, or NULL

3213:   Output Parameters:
3214: + Nface - The number of faces with field values
3215: . uL - The field values at the left side of the face
3216: - uR - The field values at the right side of the face

3218:   Level: developer

3220: .seealso: DMPlexGetCellFields()
3221: @*/
3222: PetscErrorCode DMPlexGetFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
3223: {
3224:   DM                 dmFace, dmCell, dmGrad = NULL;
3225:   PetscSection       section;
3226:   PetscDS            prob;
3227:   DMLabel            ghostLabel;
3228:   const PetscScalar *facegeom, *cellgeom, *x, *lgrad;
3229:   PetscBool         *isFE;
3230:   PetscInt           dim, Nf, f, Nc, numFaces = fEnd - fStart, iface, face;
3231:   PetscErrorCode     ierr;

3242:   DMGetDimension(dm, &dim);
3243:   DMGetDS(dm, &prob);
3244:   DMGetLocalSection(dm, &section);
3245:   PetscDSGetNumFields(prob, &Nf);
3246:   PetscDSGetTotalComponents(prob, &Nc);
3247:   PetscMalloc1(Nf, &isFE);
3248:   for (f = 0; f < Nf; ++f) {
3249:     PetscObject  obj;
3250:     PetscClassId id;

3252:     PetscDSGetDiscretization(prob, f, &obj);
3253:     PetscObjectGetClassId(obj, &id);
3254:     if (id == PETSCFE_CLASSID)      {isFE[f] = PETSC_TRUE;}
3255:     else if (id == PETSCFV_CLASSID) {isFE[f] = PETSC_FALSE;}
3256:     else                            {isFE[f] = PETSC_FALSE;}
3257:   }
3258:   DMGetLabel(dm, "ghost", &ghostLabel);
3259:   VecGetArrayRead(locX, &x);
3260:   VecGetDM(faceGeometry, &dmFace);
3261:   VecGetArrayRead(faceGeometry, &facegeom);
3262:   VecGetDM(cellGeometry, &dmCell);
3263:   VecGetArrayRead(cellGeometry, &cellgeom);
3264:   if (locGrad) {
3265:     VecGetDM(locGrad, &dmGrad);
3266:     VecGetArrayRead(locGrad, &lgrad);
3267:   }
3268:   DMGetWorkArray(dm, numFaces*Nc, MPIU_SCALAR, uL);
3269:   DMGetWorkArray(dm, numFaces*Nc, MPIU_SCALAR, uR);
3270:   /* Right now just eat the extra work for FE (could make a cell loop) */
3271:   for (face = fStart, iface = 0; face < fEnd; ++face) {
3272:     const PetscInt        *cells;
3273:     PetscFVFaceGeom       *fg;
3274:     PetscFVCellGeom       *cgL, *cgR;
3275:     PetscScalar           *xL, *xR, *gL, *gR;
3276:     PetscScalar           *uLl = *uL, *uRl = *uR;
3277:     PetscInt               ghost, nsupp, nchild;

3279:     DMLabelGetValue(ghostLabel, face, &ghost);
3280:     DMPlexGetSupportSize(dm, face, &nsupp);
3281:     DMPlexGetTreeChildren(dm, face, &nchild, NULL);
3282:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
3283:     DMPlexPointLocalRead(dmFace, face, facegeom, &fg);
3284:     DMPlexGetSupport(dm, face, &cells);
3285:     DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL);
3286:     DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR);
3287:     for (f = 0; f < Nf; ++f) {
3288:       PetscInt off;

3290:       PetscDSGetComponentOffset(prob, f, &off);
3291:       if (isFE[f]) {
3292:         const PetscInt *cone;
3293:         PetscInt        comp, coneSizeL, coneSizeR, faceLocL, faceLocR, ldof, rdof, d;

3295:         xL = xR = NULL;
3296:         PetscSectionGetFieldComponents(section, f, &comp);
3297:         DMPlexVecGetClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **) &xL);
3298:         DMPlexVecGetClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **) &xR);
3299:         DMPlexGetCone(dm, cells[0], &cone);
3300:         DMPlexGetConeSize(dm, cells[0], &coneSizeL);
3301:         for (faceLocL = 0; faceLocL < coneSizeL; ++faceLocL) if (cone[faceLocL] == face) break;
3302:         DMPlexGetCone(dm, cells[1], &cone);
3303:         DMPlexGetConeSize(dm, cells[1], &coneSizeR);
3304:         for (faceLocR = 0; faceLocR < coneSizeR; ++faceLocR) if (cone[faceLocR] == face) break;
3305:         if (faceLocL == coneSizeL && faceLocR == coneSizeR) SETERRQ3(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Could not find face %D in cone of cell %D or cell %D", face, cells[0], cells[1]);
3306:         /* Check that FEM field has values in the right cell (sometimes its an FV ghost cell) */
3307:         /* TODO: this is a hack that might not be right for nonconforming */
3308:         if (faceLocL < coneSizeL) {
3309:           PetscFEEvaluateFaceFields_Internal(prob, f, faceLocL, xL, &uLl[iface*Nc+off]);
3310:           if (rdof == ldof && faceLocR < coneSizeR) {PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface*Nc+off]);}
3311:           else              {for(d = 0; d < comp; ++d) uRl[iface*Nc+off+d] = uLl[iface*Nc+off+d];}
3312:         }
3313:         else {
3314:           PetscFEEvaluateFaceFields_Internal(prob, f, faceLocR, xR, &uRl[iface*Nc+off]);
3315:           PetscSectionGetFieldComponents(section, f, &comp);
3316:           for(d = 0; d < comp; ++d) uLl[iface*Nc+off+d] = uRl[iface*Nc+off+d];
3317:         }
3318:         DMPlexVecRestoreClosure(dm, section, locX, cells[0], &ldof, (PetscScalar **) &xL);
3319:         DMPlexVecRestoreClosure(dm, section, locX, cells[1], &rdof, (PetscScalar **) &xR);
3320:       } else {
3321:         PetscFV  fv;
3322:         PetscInt numComp, c;

3324:         PetscDSGetDiscretization(prob, f, (PetscObject *) &fv);
3325:         PetscFVGetNumComponents(fv, &numComp);
3326:         DMPlexPointLocalFieldRead(dm, cells[0], f, x, &xL);
3327:         DMPlexPointLocalFieldRead(dm, cells[1], f, x, &xR);
3328:         if (dmGrad) {
3329:           PetscReal dxL[3], dxR[3];

3331:           DMPlexPointLocalRead(dmGrad, cells[0], lgrad, &gL);
3332:           DMPlexPointLocalRead(dmGrad, cells[1], lgrad, &gR);
3333:           DMPlex_WaxpyD_Internal(dim, -1, cgL->centroid, fg->centroid, dxL);
3334:           DMPlex_WaxpyD_Internal(dim, -1, cgR->centroid, fg->centroid, dxR);
3335:           for (c = 0; c < numComp; ++c) {
3336:             uLl[iface*Nc+off+c] = xL[c] + DMPlex_DotD_Internal(dim, &gL[c*dim], dxL);
3337:             uRl[iface*Nc+off+c] = xR[c] + DMPlex_DotD_Internal(dim, &gR[c*dim], dxR);
3338:           }
3339:         } else {
3340:           for (c = 0; c < numComp; ++c) {
3341:             uLl[iface*Nc+off+c] = xL[c];
3342:             uRl[iface*Nc+off+c] = xR[c];
3343:           }
3344:         }
3345:       }
3346:     }
3347:     ++iface;
3348:   }
3349:   *Nface = iface;
3350:   VecRestoreArrayRead(locX, &x);
3351:   VecRestoreArrayRead(faceGeometry, &facegeom);
3352:   VecRestoreArrayRead(cellGeometry, &cellgeom);
3353:   if (locGrad) {
3354:     VecRestoreArrayRead(locGrad, &lgrad);
3355:   }
3356:   PetscFree(isFE);
3357:   return(0);
3358: }

3360: /*@C
3361:   DMPlexRestoreFaceFields - Restore the field values values for a chunk of faces

3363:   Input Parameters:
3364: + dm     - The DM
3365: . fStart - The first face to include
3366: . fEnd   - The first face to exclude
3367: . locX   - A local vector with the solution fields
3368: . locX_t - A local vector with solution field time derivatives, or NULL
3369: . faceGeometry - A local vector with face geometry
3370: . cellGeometry - A local vector with cell geometry
3371: - locaGrad - A local vector with field gradients, or NULL

3373:   Output Parameters:
3374: + Nface - The number of faces with field values
3375: . uL - The field values at the left side of the face
3376: - uR - The field values at the right side of the face

3378:   Level: developer

3380: .seealso: DMPlexGetFaceFields()
3381: @*/
3382: PetscErrorCode DMPlexRestoreFaceFields(DM dm, PetscInt fStart, PetscInt fEnd, Vec locX, Vec locX_t, Vec faceGeometry, Vec cellGeometry, Vec locGrad, PetscInt *Nface, PetscScalar **uL, PetscScalar **uR)
3383: {

3387:   DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uL);
3388:   DMRestoreWorkArray(dm, 0, MPIU_SCALAR, uR);
3389:   return(0);
3390: }

3392: /*@C
3393:   DMPlexGetFaceGeometry - Retrieve the geometric values for a chunk of faces

3395:   Input Parameters:
3396: + dm     - The DM
3397: . fStart - The first face to include
3398: . fEnd   - The first face to exclude
3399: . faceGeometry - A local vector with face geometry
3400: - cellGeometry - A local vector with cell geometry

3402:   Output Parameters:
3403: + Nface - The number of faces with field values
3404: . fgeom - The extract the face centroid and normal
3405: - vol   - The cell volume

3407:   Level: developer

3409: .seealso: DMPlexGetCellFields()
3410: @*/
3411: PetscErrorCode DMPlexGetFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
3412: {
3413:   DM                 dmFace, dmCell;
3414:   DMLabel            ghostLabel;
3415:   const PetscScalar *facegeom, *cellgeom;
3416:   PetscInt           dim, numFaces = fEnd - fStart, iface, face;
3417:   PetscErrorCode     ierr;

3425:   DMGetDimension(dm, &dim);
3426:   DMGetLabel(dm, "ghost", &ghostLabel);
3427:   VecGetDM(faceGeometry, &dmFace);
3428:   VecGetArrayRead(faceGeometry, &facegeom);
3429:   VecGetDM(cellGeometry, &dmCell);
3430:   VecGetArrayRead(cellGeometry, &cellgeom);
3431:   PetscMalloc1(numFaces, fgeom);
3432:   DMGetWorkArray(dm, numFaces*2, MPIU_SCALAR, vol);
3433:   for (face = fStart, iface = 0; face < fEnd; ++face) {
3434:     const PetscInt        *cells;
3435:     PetscFVFaceGeom       *fg;
3436:     PetscFVCellGeom       *cgL, *cgR;
3437:     PetscFVFaceGeom       *fgeoml = *fgeom;
3438:     PetscReal             *voll   = *vol;
3439:     PetscInt               ghost, d, nchild, nsupp;

3441:     DMLabelGetValue(ghostLabel, face, &ghost);
3442:     DMPlexGetSupportSize(dm, face, &nsupp);
3443:     DMPlexGetTreeChildren(dm, face, &nchild, NULL);
3444:     if (ghost >= 0 || nsupp > 2 || nchild > 0) continue;
3445:     DMPlexPointLocalRead(dmFace, face, facegeom, &fg);
3446:     DMPlexGetSupport(dm, face, &cells);
3447:     DMPlexPointLocalRead(dmCell, cells[0], cellgeom, &cgL);
3448:     DMPlexPointLocalRead(dmCell, cells[1], cellgeom, &cgR);
3449:     for (d = 0; d < dim; ++d) {
3450:       fgeoml[iface].centroid[d] = fg->centroid[d];
3451:       fgeoml[iface].normal[d]   = fg->normal[d];
3452:     }
3453:     voll[iface*2+0] = cgL->volume;
3454:     voll[iface*2+1] = cgR->volume;
3455:     ++iface;
3456:   }
3457:   *Nface = iface;
3458:   VecRestoreArrayRead(faceGeometry, &facegeom);
3459:   VecRestoreArrayRead(cellGeometry, &cellgeom);
3460:   return(0);
3461: }

3463: /*@C
3464:   DMPlexRestoreFaceGeometry - Restore the field values values for a chunk of faces

3466:   Input Parameters:
3467: + dm     - The DM
3468: . fStart - The first face to include
3469: . fEnd   - The first face to exclude
3470: . faceGeometry - A local vector with face geometry
3471: - cellGeometry - A local vector with cell geometry

3473:   Output Parameters:
3474: + Nface - The number of faces with field values
3475: . fgeom - The extract the face centroid and normal
3476: - vol   - The cell volume

3478:   Level: developer

3480: .seealso: DMPlexGetFaceFields()
3481: @*/
3482: PetscErrorCode DMPlexRestoreFaceGeometry(DM dm, PetscInt fStart, PetscInt fEnd, Vec faceGeometry, Vec cellGeometry, PetscInt *Nface, PetscFVFaceGeom **fgeom, PetscReal **vol)
3483: {

3487:   PetscFree(*fgeom);
3488:   DMRestoreWorkArray(dm, 0, MPIU_REAL, vol);
3489:   return(0);
3490: }

3492: PetscErrorCode DMSNESGetFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
3493: {
3494:   char            composeStr[33] = {0};
3495:   PetscObjectId   id;
3496:   PetscContainer  container;
3497:   PetscErrorCode  ierr;

3500:   PetscObjectGetId((PetscObject)quad,&id);
3501:   PetscSNPrintf(composeStr, 32, "DMSNESGetFEGeom_%x\n", id);
3502:   PetscObjectQuery((PetscObject) pointIS, composeStr, (PetscObject *) &container);
3503:   if (container) {
3504:     PetscContainerGetPointer(container, (void **) geom);
3505:   } else {
3506:     DMFieldCreateFEGeom(coordField, pointIS, quad, faceData, geom);
3507:     PetscContainerCreate(PETSC_COMM_SELF,&container);
3508:     PetscContainerSetPointer(container, (void *) *geom);
3509:     PetscContainerSetUserDestroy(container, PetscContainerUserDestroy_PetscFEGeom);
3510:     PetscObjectCompose((PetscObject) pointIS, composeStr, (PetscObject) container);
3511:     PetscContainerDestroy(&container);
3512:   }
3513:   return(0);
3514: }

3516: PetscErrorCode DMSNESRestoreFEGeom(DMField coordField, IS pointIS, PetscQuadrature quad, PetscBool faceData, PetscFEGeom **geom)
3517: {
3519:   *geom = NULL;
3520:   return(0);
3521: }

3523: PetscErrorCode DMPlexComputeResidual_Patch_Internal(DM dm, PetscSection section, IS cellIS, PetscReal t, Vec locX, Vec locX_t, Vec locF, void *user)
3524: {
3525:   DM_Plex         *mesh       = (DM_Plex *) dm->data;
3526:   const char      *name       = "Residual";
3527:   DM               dmAux      = NULL;
3528:   DMLabel          ghostLabel = NULL;
3529:   PetscDS          prob       = NULL;
3530:   PetscDS          probAux    = NULL;
3531:   PetscBool        useFEM     = PETSC_FALSE;
3532:   PetscBool        isImplicit = (locX_t || t == PETSC_MIN_REAL) ? PETSC_TRUE : PETSC_FALSE;
3533:   DMField          coordField = NULL;
3534:   Vec              locA;
3535:   PetscScalar     *u = NULL, *u_t, *a, *uL = NULL, *uR = NULL;
3536:   IS               chunkIS;
3537:   const PetscInt  *cells;
3538:   PetscInt         cStart, cEnd, numCells;
3539:   PetscInt         Nf, f, totDim, totDimAux, numChunks, cellChunkSize, chunk, fStart, fEnd;
3540:   PetscInt         maxDegree = PETSC_MAX_INT;
3541:   PetscQuadrature  affineQuad = NULL, *quads = NULL;
3542:   PetscFEGeom     *affineGeom = NULL, **geoms = NULL;
3543:   PetscErrorCode   ierr;

3546:   PetscLogEventBegin(DMPLEX_ResidualFEM,dm,0,0,0);
3547:   /* FEM+FVM */
3548:   /* 1: Get sizes from dm and dmAux */
3549:   DMGetLabel(dm, "ghost", &ghostLabel);
3550:   DMGetDS(dm, &prob);
3551:   PetscDSGetNumFields(prob, &Nf);
3552:   PetscDSGetTotalDimension(prob, &totDim);
3553:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &locA);
3554:   if (locA) {
3555:     VecGetDM(locA, &dmAux);
3556:     DMGetDS(dmAux, &probAux);
3557:     PetscDSGetTotalDimension(probAux, &totDimAux);
3558:   }
3559:   /* 2: Get geometric data */
3560:   for (f = 0; f < Nf; ++f) {
3561:     PetscObject  obj;
3562:     PetscClassId id;
3563:     PetscBool    fimp;

3565:     PetscDSGetImplicit(prob, f, &fimp);
3566:     if (isImplicit != fimp) continue;
3567:     PetscDSGetDiscretization(prob, f, &obj);
3568:     PetscObjectGetClassId(obj, &id);
3569:     if (id == PETSCFE_CLASSID) {useFEM = PETSC_TRUE;}
3570:     if (id == PETSCFV_CLASSID) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Use of FVM with PCPATCH not yet implemented");
3571:   }
3572:   if (useFEM) {
3573:     DMGetCoordinateField(dm, &coordField);
3574:     DMFieldGetDegree(coordField,cellIS,NULL,&maxDegree);
3575:     if (maxDegree <= 1) {
3576:       DMFieldCreateDefaultQuadrature(coordField,cellIS,&affineQuad);
3577:       if (affineQuad) {
3578:         DMSNESGetFEGeom(coordField,cellIS,affineQuad,PETSC_FALSE,&affineGeom);
3579:       }
3580:     } else {
3581:       PetscCalloc2(Nf,&quads,Nf,&geoms);
3582:       for (f = 0; f < Nf; ++f) {
3583:         PetscObject  obj;
3584:         PetscClassId id;
3585:         PetscBool    fimp;

3587:         PetscDSGetImplicit(prob, f, &fimp);
3588:         if (isImplicit != fimp) continue;
3589:         PetscDSGetDiscretization(prob, f, &obj);
3590:         PetscObjectGetClassId(obj, &id);
3591:         if (id == PETSCFE_CLASSID) {
3592:           PetscFE fe = (PetscFE) obj;

3594:           PetscFEGetQuadrature(fe, &quads[f]);
3595:           PetscObjectReference((PetscObject)quads[f]);
3596:           DMSNESGetFEGeom(coordField,cellIS,quads[f],PETSC_FALSE,&geoms[f]);
3597:         }
3598:       }
3599:     }
3600:   }
3601:   /* Loop over chunks */
3602:   ISGetPointRange(cellIS, &cStart, &cEnd, &cells);
3603:   DMPlexGetHeightStratum(dm, 1, &fStart, &fEnd);
3604:   if (useFEM) {ISCreate(PETSC_COMM_SELF, &chunkIS);}
3605:   numCells      = cEnd - cStart;
3606:   numChunks     = 1;
3607:   cellChunkSize = numCells/numChunks;
3608:   numChunks     = PetscMin(1,numCells);
3609:   for (chunk = 0; chunk < numChunks; ++chunk) {
3610:     PetscScalar     *elemVec, *fluxL = NULL, *fluxR = NULL;
3611:     PetscReal       *vol = NULL;
3612:     PetscFVFaceGeom *fgeom = NULL;
3613:     PetscInt         cS = cStart+chunk*cellChunkSize, cE = PetscMin(cS+cellChunkSize, cEnd), numCells = cE - cS, c;
3614:     PetscInt         numFaces = 0;

3616:     /* Extract field coefficients */
3617:     if (useFEM) {
3618:       ISGetPointSubrange(chunkIS, cS, cE, cells);
3619:       DMPlexGetCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a);
3620:       DMGetWorkArray(dm, numCells*totDim, MPIU_SCALAR, &elemVec);
3621:       PetscArrayzero(elemVec, numCells*totDim);
3622:     }
3623:     /* TODO We will interlace both our field coefficients (u, u_t, uL, uR, etc.) and our output (elemVec, fL, fR). I think this works */
3624:     /* Loop over fields */
3625:     for (f = 0; f < Nf; ++f) {
3626:       PetscObject  obj;
3627:       PetscClassId id;
3628:       PetscBool    fimp;
3629:       PetscInt     numChunks, numBatches, batchSize, numBlocks, blockSize, Ne, Nr, offset;

3631:       PetscDSGetImplicit(prob, f, &fimp);
3632:       if (isImplicit != fimp) continue;
3633:       PetscDSGetDiscretization(prob, f, &obj);
3634:       PetscObjectGetClassId(obj, &id);
3635:       if (id == PETSCFE_CLASSID) {
3636:         PetscFE         fe = (PetscFE) obj;
3637:         PetscFEGeom    *geom = affineGeom ? affineGeom : geoms[f];
3638:         PetscFEGeom    *chunkGeom = NULL;
3639:         PetscQuadrature quad = affineQuad ? affineQuad : quads[f];
3640:         PetscInt        Nq, Nb;

3642:         PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches);
3643:         PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL);
3644:         PetscFEGetDimension(fe, &Nb);
3645:         blockSize = Nb;
3646:         batchSize = numBlocks * blockSize;
3647:         PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches);
3648:         numChunks = numCells / (numBatches*batchSize);
3649:         Ne        = numChunks*numBatches*batchSize;
3650:         Nr        = numCells % (numBatches*batchSize);
3651:         offset    = numCells - Nr;
3652:         /* Integrate FE residual to get elemVec (need fields at quadrature points) */
3653:         /*   For FV, I think we use a P0 basis and the cell coefficients (for subdivided cells, we can tweak the basis tabulation to be the indicator function) */
3654:         PetscFEGeomGetChunk(geom,0,offset,&chunkGeom);
3655:         PetscFEIntegrateResidual(prob, f, Ne, chunkGeom, u, u_t, probAux, a, t, elemVec);
3656:         PetscFEGeomGetChunk(geom,offset,numCells,&chunkGeom);
3657:         PetscFEIntegrateResidual(prob, f, Nr, chunkGeom, &u[offset*totDim], u_t ? &u_t[offset*totDim] : NULL, probAux, &a[offset*totDimAux], t, &elemVec[offset*totDim]);
3658:         PetscFEGeomRestoreChunk(geom,offset,numCells,&chunkGeom);
3659:       } else if (id == PETSCFV_CLASSID) {
3660:         PetscFV fv = (PetscFV) obj;

3662:         Ne = numFaces;
3663:         /* Riemann solve over faces (need fields at face centroids) */
3664:         /*   We need to evaluate FE fields at those coordinates */
3665:         PetscFVIntegrateRHSFunction(fv, prob, f, Ne, fgeom, vol, uL, uR, fluxL, fluxR);
3666:       } else SETERRQ1(PetscObjectComm((PetscObject) dm), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %D", f);
3667:     }
3668:     /* Loop over domain */
3669:     if (useFEM) {
3670:       /* Add elemVec to locX */
3671:       for (c = cS; c < cE; ++c) {
3672:         const PetscInt cell = cells ? cells[c] : c;
3673:         const PetscInt cind = c - cStart;

3675:         if (mesh->printFEM > 1) {DMPrintCellVector(cell, name, totDim, &elemVec[cind*totDim]);}
3676:         if (ghostLabel) {
3677:           PetscInt ghostVal;

3679:           DMLabelGetValue(ghostLabel,cell,&ghostVal);
3680:           if (ghostVal > 0) continue;
3681:         }
3682:         DMPlexVecSetClosure(dm, section, locF, cell, &elemVec[cind*totDim], ADD_ALL_VALUES);
3683:       }
3684:     }
3685:     /* Handle time derivative */
3686:     if (locX_t) {
3687:       PetscScalar *x_t, *fa;

3689:       VecGetArray(locF, &fa);
3690:       VecGetArray(locX_t, &x_t);
3691:       for (f = 0; f < Nf; ++f) {
3692:         PetscFV      fv;
3693:         PetscObject  obj;
3694:         PetscClassId id;
3695:         PetscInt     pdim, d;

3697:         PetscDSGetDiscretization(prob, f, &obj);
3698:         PetscObjectGetClassId(obj, &id);
3699:         if (id != PETSCFV_CLASSID) continue;
3700:         fv   = (PetscFV) obj;
3701:         PetscFVGetNumComponents(fv, &pdim);
3702:         for (c = cS; c < cE; ++c) {
3703:           const PetscInt cell = cells ? cells[c] : c;
3704:           PetscScalar   *u_t, *r;

3706:           if (ghostLabel) {
3707:             PetscInt ghostVal;

3709:             DMLabelGetValue(ghostLabel, cell, &ghostVal);
3710:             if (ghostVal > 0) continue;
3711:           }
3712:           DMPlexPointLocalFieldRead(dm, cell, f, x_t, &u_t);
3713:           DMPlexPointLocalFieldRef(dm, cell, f, fa, &r);
3714:           for (d = 0; d < pdim; ++d) r[d] += u_t[d];
3715:         }
3716:       }
3717:       VecRestoreArray(locX_t, &x_t);
3718:       VecRestoreArray(locF, &fa);
3719:     }
3720:     if (useFEM) {
3721:       DMPlexRestoreCellFields(dm, chunkIS, locX, locX_t, locA, &u, &u_t, &a);
3722:       DMRestoreWorkArray(dm, numCells*totDim, MPIU_SCALAR, &elemVec);
3723:     }
3724:   }
3725:   if (useFEM) {ISDestroy(&chunkIS);}
3726:   ISRestorePointRange(cellIS, &cStart, &cEnd, &cells);
3727:   /* TODO Could include boundary residual here (see DMPlexComputeResidual_Internal) */
3728:   if (useFEM) {
3729:     if (maxDegree <= 1) {
3730:       DMSNESRestoreFEGeom(coordField,cellIS,affineQuad,PETSC_FALSE,&affineGeom);
3731:       PetscQuadratureDestroy(&affineQuad);
3732:     } else {
3733:       for (f = 0; f < Nf; ++f) {
3734:         DMSNESRestoreFEGeom(coordField,cellIS,quads[f],PETSC_FALSE,&geoms[f]);
3735:         PetscQuadratureDestroy(&quads[f]);
3736:       }
3737:       PetscFree2(quads,geoms);
3738:     }
3739:   }
3740:   PetscLogEventEnd(DMPLEX_ResidualFEM,dm,0,0,0);
3741:   return(0);
3742: }

3744: /*
3745:   We always assemble JacP, and if the matrix is different from Jac and two different sets of point functions are provided, we also assemble Jac

3747:   X   - The local solution vector
3748:   X_t - The local solution time derviative vector, or NULL
3749: */
3750: PetscErrorCode DMPlexComputeJacobian_Patch_Internal(DM dm, PetscSection section, PetscSection globalSection, IS cellIS,
3751:                                                     PetscReal t, PetscReal X_tShift, Vec X, Vec X_t, Mat Jac, Mat JacP, void *ctx)
3752: {
3753:   DM_Plex         *mesh  = (DM_Plex *) dm->data;
3754:   const char      *name = "Jacobian", *nameP = "JacobianPre";
3755:   DM               dmAux = NULL;
3756:   PetscDS          prob,   probAux = NULL;
3757:   PetscSection     sectionAux = NULL;
3758:   Vec              A;
3759:   DMField          coordField;
3760:   PetscFEGeom     *cgeomFEM;
3761:   PetscQuadrature  qGeom = NULL;
3762:   Mat              J = Jac, JP = JacP;
3763:   PetscScalar     *work, *u = NULL, *u_t = NULL, *a = NULL, *elemMat = NULL, *elemMatP = NULL, *elemMatD = NULL;
3764:   PetscBool        hasJac, hasPrec, hasDyn, assembleJac, isMatIS, isMatISP, *isFE, hasFV = PETSC_FALSE;
3765:   const PetscInt  *cells;
3766:   PetscInt         Nf, fieldI, fieldJ, maxDegree, numCells, cStart, cEnd, numChunks, chunkSize, chunk, totDim, totDimAux = 0, sz, wsz, off = 0, offCell = 0;
3767:   PetscErrorCode   ierr;

3770:   CHKMEMQ;
3771:   ISGetLocalSize(cellIS, &numCells);
3772:   ISGetPointRange(cellIS, &cStart, &cEnd, &cells);
3773:   PetscLogEventBegin(DMPLEX_JacobianFEM,dm,0,0,0);
3774:   DMGetDS(dm, &prob);
3775:   PetscObjectQuery((PetscObject) dm, "dmAux", (PetscObject *) &dmAux);
3776:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &A);
3777:   if (dmAux) {
3778:     DMGetLocalSection(dmAux, &sectionAux);
3779:     DMGetDS(dmAux, &probAux);
3780:   }
3781:   /* Get flags */
3782:   PetscDSGetNumFields(prob, &Nf);
3783:   DMGetWorkArray(dm, Nf, MPIU_BOOL, &isFE);
3784:   for (fieldI = 0; fieldI < Nf; ++fieldI) {
3785:     PetscObject  disc;
3786:     PetscClassId id;
3787:     PetscDSGetDiscretization(prob, fieldI, &disc);
3788:     PetscObjectGetClassId(disc, &id);
3789:     if (id == PETSCFE_CLASSID)      {isFE[fieldI] = PETSC_TRUE;}
3790:     else if (id == PETSCFV_CLASSID) {hasFV = PETSC_TRUE; isFE[fieldI] = PETSC_FALSE;}
3791:   }
3792:   PetscDSHasJacobian(prob, &hasJac);
3793:   PetscDSHasJacobianPreconditioner(prob, &hasPrec);
3794:   PetscDSHasDynamicJacobian(prob, &hasDyn);
3795:   assembleJac = hasJac && hasPrec && (Jac != JacP) ? PETSC_TRUE : PETSC_FALSE;
3796:   hasDyn      = hasDyn && (X_tShift != 0.0) ? PETSC_TRUE : PETSC_FALSE;
3797:   PetscObjectTypeCompare((PetscObject) Jac,  MATIS, &isMatIS);
3798:   PetscObjectTypeCompare((PetscObject) JacP, MATIS, &isMatISP);
3799:   /* Setup input data and temp arrays (should be DMGetWorkArray) */
3800:   if (isMatISP || isMatISP) {DMPlexGetSubdomainSection(dm, &globalSection);}
3801:   if (isMatIS)  {MatISGetLocalMat(Jac,  &J);}
3802:   if (isMatISP) {MatISGetLocalMat(JacP, &JP);}
3803:   if (hasFV)    {MatSetOption(JP, MAT_IGNORE_ZERO_ENTRIES, PETSC_TRUE);} /* No allocated space for FV stuff, so ignore the zero entries */
3804:   PetscObjectQuery((PetscObject) dm, "dmAux", (PetscObject *) &dmAux);
3805:   PetscObjectQuery((PetscObject) dm, "A", (PetscObject *) &A);
3806:   PetscDSGetTotalDimension(prob, &totDim);
3807:   if (probAux) {PetscDSGetTotalDimension(probAux, &totDimAux);}
3808:   CHKMEMQ;
3809:   /* Compute batch sizes */
3810:   if (isFE[0]) {
3811:     PetscFE         fe;
3812:     PetscQuadrature q;
3813:     PetscInt        numQuadPoints, numBatches, batchSize, numBlocks, blockSize, Nb;

3815:     PetscDSGetDiscretization(prob, 0, (PetscObject *) &fe);
3816:     PetscFEGetQuadrature(fe, &q);
3817:     PetscQuadratureGetData(q, NULL, NULL, &numQuadPoints, NULL, NULL);
3818:     PetscFEGetDimension(fe, &Nb);
3819:     PetscFEGetTileSizes(fe, NULL, &numBlocks, NULL, &numBatches);
3820:     blockSize = Nb*numQuadPoints;
3821:     batchSize = numBlocks  * blockSize;
3822:     chunkSize = numBatches * batchSize;
3823:     numChunks = numCells / chunkSize + numCells % chunkSize;
3824:     PetscFESetTileSizes(fe, blockSize, numBlocks, batchSize, numBatches);
3825:   } else {
3826:     chunkSize = numCells;
3827:     numChunks = 1;
3828:   }
3829:   /* Get work space */
3830:   wsz  = (((X?1:0) + (X_t?1:0) + (dmAux?1:0))*totDim + ((hasJac?1:0) + (hasPrec?1:0) + (hasDyn?1:0))*totDim*totDim)*chunkSize;
3831:   DMGetWorkArray(dm, wsz, MPIU_SCALAR, &work);
3832:   PetscArrayzero(work, wsz);
3833:   off      = 0;
3834:   u        = X       ? (sz = chunkSize*totDim,        off += sz, work+off-sz) : NULL;
3835:   u_t      = X_t     ? (sz = chunkSize*totDim,        off += sz, work+off-sz) : NULL;
3836:   a        = dmAux   ? (sz = chunkSize*totDimAux,     off += sz, work+off-sz) : NULL;
3837:   elemMat  = hasJac  ? (sz = chunkSize*totDim*totDim, off += sz, work+off-sz) : NULL;
3838:   elemMatP = hasPrec ? (sz = chunkSize*totDim*totDim, off += sz, work+off-sz) : NULL;
3839:   elemMatD = hasDyn  ? (sz = chunkSize*totDim*totDim, off += sz, work+off-sz) : NULL;
3840:   if (off != wsz) SETERRQ2(PETSC_COMM_SELF, PETSC_ERR_PLIB, "Error is workspace size %D should be %D", off, wsz);
3841:   /* Setup geometry */
3842:   DMGetCoordinateField(dm, &coordField);
3843:   DMFieldGetDegree(coordField, cellIS, NULL, &maxDegree);
3844:   if (maxDegree <= 1) {DMFieldCreateDefaultQuadrature(coordField, cellIS, &qGeom);}
3845:   if (!qGeom) {
3846:     PetscFE fe;

3848:     PetscDSGetDiscretization(prob, 0, (PetscObject *) &fe);
3849:     PetscFEGetQuadrature(fe, &qGeom);
3850:     PetscObjectReference((PetscObject) qGeom);
3851:   }
3852:   DMSNESGetFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM);
3853:   /* Compute volume integrals */
3854:   if (assembleJac) {MatZeroEntries(J);}
3855:   MatZeroEntries(JP);
3856:   for (chunk = 0; chunk < numChunks; ++chunk, offCell += chunkSize) {
3857:     const PetscInt   Ncell = PetscMin(chunkSize, numCells - offCell);
3858:     PetscInt         c;

3860:     /* Extract values */
3861:     for (c = 0; c < Ncell; ++c) {
3862:       const PetscInt cell = cells ? cells[c+offCell] : c+offCell;
3863:       PetscScalar   *x = NULL,  *x_t = NULL;
3864:       PetscInt       i;

3866:       if (X) {
3867:         DMPlexVecGetClosure(dm, section, X, cell, NULL, &x);
3868:         for (i = 0; i < totDim; ++i) u[c*totDim+i] = x[i];
3869:         DMPlexVecRestoreClosure(dm, section, X, cell, NULL, &x);
3870:       }
3871:       if (X_t) {
3872:         DMPlexVecGetClosure(dm, section, X_t, cell, NULL, &x_t);
3873:         for (i = 0; i < totDim; ++i) u_t[c*totDim+i] = x_t[i];
3874:         DMPlexVecRestoreClosure(dm, section, X_t, cell, NULL, &x_t);
3875:       }
3876:       if (dmAux) {
3877:         DMPlexVecGetClosure(dmAux, sectionAux, A, cell, NULL, &x);
3878:         for (i = 0; i < totDimAux; ++i) a[c*totDimAux+i] = x[i];
3879:         DMPlexVecRestoreClosure(dmAux, sectionAux, A, cell, NULL, &x);
3880:       }
3881:     }
3882:     CHKMEMQ;
3883:     for (fieldI = 0; fieldI < Nf; ++fieldI) {
3884:       PetscFE fe;
3885:       PetscDSGetDiscretization(prob, fieldI, (PetscObject *) &fe);
3886:       for (fieldJ = 0; fieldJ < Nf; ++fieldJ) {
3887:         if (hasJac)  {PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN,     fieldI, fieldJ, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMat);}
3888:         if (hasPrec) {PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_PRE, fieldI, fieldJ, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatP);}
3889:         if (hasDyn)  {PetscFEIntegrateJacobian(prob, PETSCFE_JACOBIAN_DYN, fieldI, fieldJ, Ncell, cgeomFEM, u, u_t, probAux, a, t, X_tShift, elemMatD);}
3890:       }
3891:       /* For finite volume, add the identity */
3892:       if (!isFE[fieldI]) {
3893:         PetscFV  fv;
3894:         PetscInt eOffset = 0, Nc, fc, foff;

3896:         PetscDSGetFieldOffset(prob, fieldI, &foff);
3897:         PetscDSGetDiscretization(prob, fieldI, (PetscObject *) &fv);
3898:         PetscFVGetNumComponents(fv, &Nc);
3899:         for (c = 0; c < chunkSize; ++c, eOffset += totDim*totDim) {
3900:           for (fc = 0; fc < Nc; ++fc) {
3901:             const PetscInt i = foff + fc;
3902:             if (hasJac)  {elemMat [eOffset+i*totDim+i] = 1.0;}
3903:             if (hasPrec) {elemMatP[eOffset+i*totDim+i] = 1.0;}
3904:           }
3905:         }
3906:       }
3907:     }
3908:     CHKMEMQ;
3909:     /*   Add contribution from X_t */
3910:     if (hasDyn) {for (c = 0; c < chunkSize*totDim*totDim; ++c) elemMat[c] += X_tShift*elemMatD[c];}
3911:     /* Insert values into matrix */
3912:     for (c = 0; c < Ncell; ++c) {
3913:       const PetscInt cell = cells ? cells[c+offCell] : c+offCell;
3914:       if (mesh->printFEM > 1) {
3915:         if (hasJac)  {DMPrintCellMatrix(cell, name,  totDim, totDim, &elemMat[(c-cStart)*totDim*totDim]);}
3916:         if (hasPrec) {DMPrintCellMatrix(cell, nameP, totDim, totDim, &elemMatP[(c-cStart)*totDim*totDim]);}
3917:       }
3918:       if (assembleJac) {DMPlexMatSetClosure(dm, section, globalSection, Jac, cell, &elemMat[(c-cStart)*totDim*totDim], ADD_VALUES);}
3919:       DMPlexMatSetClosure(dm, section, globalSection, JP, cell, &elemMat[(c-cStart)*totDim*totDim], ADD_VALUES);
3920:     }
3921:     CHKMEMQ;
3922:   }
3923:   /* Cleanup */
3924:   DMSNESRestoreFEGeom(coordField, cellIS, qGeom, PETSC_FALSE, &cgeomFEM);
3925:   PetscQuadratureDestroy(&qGeom);
3926:   if (hasFV) {MatSetOption(JacP, MAT_IGNORE_ZERO_ENTRIES, PETSC_FALSE);}
3927:   DMRestoreWorkArray(dm, Nf, MPIU_BOOL, &isFE);
3928:   DMRestoreWorkArray(dm, ((1 + (X_t?1:0) + (dmAux?1:0))*totDim + ((hasJac?1:0) + (hasPrec?1:0) + (hasDyn?1:0))*totDim*totDim)*chunkSize, MPIU_SCALAR, &work);
3929:   /* Compute boundary integrals */
3930:   /* DMPlexComputeBdJacobian_Internal(dm, X, X_t, t, X_tShift, Jac, JacP, ctx); */
3931:   /* Assemble matrix */
3932:   if (assembleJac) {MatAssemblyBegin(Jac, MAT_FINAL_ASSEMBLY);MatAssemblyEnd(Jac, MAT_FINAL_ASSEMBLY);}
3933:   MatAssemblyBegin(JacP, MAT_FINAL_ASSEMBLY);MatAssemblyEnd(JacP, MAT_FINAL_ASSEMBLY);
3934:   PetscLogEventEnd(DMPLEX_JacobianFEM,dm,0,0,0);
3935:   CHKMEMQ;
3936:   return(0);
3937: }