Actual source code: rvector.c

petsc-3.10.5 2019-03-28
Report Typos and Errors

  2: /*
  3:      Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
  4:    These are the vector functions the user calls.
  5: */
  6:  #include <petsc/private/vecimpl.h>
  7: static PetscInt VecGetSubVectorSavedStateId = -1;

  9: PETSC_EXTERN PetscErrorCode VecValidValues(Vec vec,PetscInt argnum,PetscBool begin)
 10: {
 11: #if defined(PETSC_USE_DEBUG)
 12:   PetscErrorCode    ierr;
 13:   PetscInt          n,i;
 14:   const PetscScalar *x;

 17: #if defined(PETSC_HAVE_VECCUDA) || defined(PETSC_HAVE_VIENNACL)
 18:   if ((vec->petscnative || vec->ops->getarray) && (vec->valid_GPU_array == PETSC_OFFLOAD_CPU || vec->valid_GPU_array == PETSC_OFFLOAD_BOTH)) {
 19: #else
 20:   if (vec->petscnative || vec->ops->getarray) {
 21: #endif
 22:     VecGetLocalSize(vec,&n);
 23:     VecGetArrayRead(vec,&x);
 24:     for (i=0; i<n; i++) {
 25:       if (begin) {
 26:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at beginning of function: Parameter number %D",i,argnum);
 27:       } else {
 28:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at end of function: Parameter number %D",i,argnum);
 29:       }
 30:     }
 31:     VecRestoreArrayRead(vec,&x);
 32:   }
 33:   return(0);
 34: #else
 35:   return 0;
 36: #endif
 37: }

 39: /*@
 40:    VecMaxPointwiseDivide - Computes the maximum of the componentwise division max = max_i abs(x_i/y_i).

 42:    Logically Collective on Vec

 44:    Input Parameters:
 45: .  x, y  - the vectors

 47:    Output Parameter:
 48: .  max - the result

 50:    Level: advanced

 52:    Notes:
 53:     x and y may be the same vector
 54:           if a particular y_i is zero, it is treated as 1 in the above formula

 56: .seealso: VecPointwiseDivide(), VecPointwiseMult(), VecPointwiseMax(), VecPointwiseMin(), VecPointwiseMaxAbs()
 57: @*/
 58: PetscErrorCode  VecMaxPointwiseDivide(Vec x,Vec y,PetscReal *max)
 59: {

 69:   VecCheckSameSize(x,1,y,2);
 70:   (*x->ops->maxpointwisedivide)(x,y,max);
 71:   return(0);
 72: }

 74: /*@
 75:    VecDot - Computes the vector dot product.

 77:    Collective on Vec

 79:    Input Parameters:
 80: .  x, y - the vectors

 82:    Output Parameter:
 83: .  val - the dot product

 85:    Performance Issues:
 86: $    per-processor memory bandwidth
 87: $    interprocessor latency
 88: $    work load inbalance that causes certain processes to arrive much earlier than others

 90:    Notes for Users of Complex Numbers:
 91:    For complex vectors, VecDot() computes
 92: $     val = (x,y) = y^H x,
 93:    where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
 94:    inner product where the SECOND argument gets the complex conjugate. Since the BLASdot() complex conjugates the first
 95:    first argument we call the BLASdot() with the arguments reversed.

 97:    Use VecTDot() for the indefinite form
 98: $     val = (x,y) = y^T x,
 99:    where y^T denotes the transpose of y.

101:    Level: intermediate

103:    Concepts: inner product
104:    Concepts: vector^inner product

106: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDotRealPart()
107: @*/
108: PetscErrorCode  VecDot(Vec x,Vec y,PetscScalar *val)
109: {

119:   VecCheckSameSize(x,1,y,2);

121:   PetscLogEventBegin(VEC_Dot,x,y,0,0);
122:   (*x->ops->dot)(x,y,val);
123:   PetscLogEventEnd(VEC_Dot,x,y,0,0);
124:   return(0);
125: }

127: /*@
128:    VecDotRealPart - Computes the real part of the vector dot product.

130:    Collective on Vec

132:    Input Parameters:
133: .  x, y - the vectors

135:    Output Parameter:
136: .  val - the real part of the dot product;

138:    Performance Issues:
139: $    per-processor memory bandwidth
140: $    interprocessor latency
141: $    work load inbalance that causes certain processes to arrive much earlier than others

143:    Notes for Users of Complex Numbers:
144:      See VecDot() for more details on the definition of the dot product for complex numbers

146:      For real numbers this returns the same value as VecDot()

148:      For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
149:      the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)

151:    Developer Note: This is not currently optimized to compute only the real part of the dot product.

153:    Level: intermediate

155:    Concepts: inner product
156:    Concepts: vector^inner product

158: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDot(), VecDotNorm2()
159: @*/
160: PetscErrorCode  VecDotRealPart(Vec x,Vec y,PetscReal *val)
161: {
163:   PetscScalar    fdot;

166:   VecDot(x,y,&fdot);
167:   *val = PetscRealPart(fdot);
168:   return(0);
169: }

171: /*@
172:    VecNorm  - Computes the vector norm.

174:    Collective on Vec

176:    Input Parameters:
177: +  x - the vector
178: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
179:           NORM_1_AND_2, which computes both norms and stores them
180:           in a two element array.

182:    Output Parameter:
183: .  val - the norm

185:    Notes:
186: $     NORM_1 denotes sum_i |x_i|
187: $     NORM_2 denotes sqrt(sum_i |x_i|^2)
188: $     NORM_INFINITY denotes max_i |x_i|

190:       For complex numbers NORM_1 will return the traditional 1 norm of the 2 norm of the complex numbers; that is the 1
191:       norm of the absolutely values of the complex entries. In PETSc 3.6 and earlier releases it returned the 1 norm of
192:       the 1 norm of the complex entries (what is returned by the BLAS routine asum()). Both are valid norms but most
193:       people expect the former.

195:    Level: intermediate

197:    Performance Issues:
198: $    per-processor memory bandwidth
199: $    interprocessor latency
200: $    work load inbalance that causes certain processes to arrive much earlier than others

202:    Concepts: norm
203:    Concepts: vector^norm

205: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNormAvailable(),
206:           VecNormBegin(), VecNormEnd()

208: @*/
209: PetscErrorCode  VecNorm(Vec x,NormType type,PetscReal *val)
210: {
211:   PetscBool      flg;


219:   /*
220:    * Cached data?
221:    */
222:   if (type!=NORM_1_AND_2) {
223:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,flg);
224:     if (flg) return(0);
225:   }
226:   PetscLogEventBegin(VEC_Norm,x,0,0,0);
227:   (*x->ops->norm)(x,type,val);
228:   PetscLogEventEnd(VEC_Norm,x,0,0,0);

230:   if (type!=NORM_1_AND_2) {
231:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[type],*val);
232:   }
233:   return(0);
234: }

236: /*@
237:    VecNormAvailable  - Returns the vector norm if it is already known.

239:    Not Collective

241:    Input Parameters:
242: +  x - the vector
243: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
244:           NORM_1_AND_2, which computes both norms and stores them
245:           in a two element array.

247:    Output Parameter:
248: +  available - PETSC_TRUE if the val returned is valid
249: -  val - the norm

251:    Notes:
252: $     NORM_1 denotes sum_i |x_i|
253: $     NORM_2 denotes sqrt(sum_i (x_i)^2)
254: $     NORM_INFINITY denotes max_i |x_i|

256:    Level: intermediate

258:    Performance Issues:
259: $    per-processor memory bandwidth
260: $    interprocessor latency
261: $    work load inbalance that causes certain processes to arrive much earlier than others

263:    Compile Option:
264:    PETSC_HAVE_SLOW_BLAS_NORM2 will cause a C (loop unrolled) version of the norm to be used, rather
265:  than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
266:  (as opposed to vendor provided) because the FORTRAN BLAS NRM2() routine is very slow.

268:    Concepts: norm
269:    Concepts: vector^norm

271: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNorm()
272:           VecNormBegin(), VecNormEnd()

274: @*/
275: PetscErrorCode  VecNormAvailable(Vec x,NormType type,PetscBool  *available,PetscReal *val)
276: {


284:   *available = PETSC_FALSE;
285:   if (type!=NORM_1_AND_2) {
286:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,*available);
287:   }
288:   return(0);
289: }

291: /*@
292:    VecNormalize - Normalizes a vector by 2-norm.

294:    Collective on Vec

296:    Input Parameters:
297: +  x - the vector

299:    Output Parameter:
300: .  x - the normalized vector
301: -  val - the vector norm before normalization

303:    Level: intermediate

305:    Concepts: vector^normalizing
306:    Concepts: normalizing^vector

308: @*/
309: PetscErrorCode  VecNormalize(Vec x,PetscReal *val)
310: {
312:   PetscReal      norm;

317:   PetscLogEventBegin(VEC_Normalize,x,0,0,0);
318:   VecNorm(x,NORM_2,&norm);
319:   if (norm == 0.0) {
320:     PetscInfo(x,"Vector of zero norm can not be normalized; Returning only the zero norm\n");
321:   } else if (norm != 1.0) {
322:     PetscScalar tmp = 1.0/norm;
323:     VecScale(x,tmp);
324:   }
325:   if (val) *val = norm;
326:   PetscLogEventEnd(VEC_Normalize,x,0,0,0);
327:   return(0);
328: }

330: /*@C
331:    VecMax - Determines the vector component with maximum real part and its location.

333:    Collective on Vec

335:    Input Parameter:
336: .  x - the vector

338:    Output Parameters:
339: +  p - the location of val (pass NULL if you don't want this)
340: -  val - the maximum component

342:    Notes:
343:    Returns the value PETSC_MIN_REAL and p = -1 if the vector is of length 0.

345:    Returns the smallest index with the maximum value
346:    Level: intermediate

348:    Concepts: maximum^of vector
349:    Concepts: vector^maximum value

351: .seealso: VecNorm(), VecMin()
352: @*/
353: PetscErrorCode  VecMax(Vec x,PetscInt *p,PetscReal *val)
354: {

361:   PetscLogEventBegin(VEC_Max,x,0,0,0);
362:   (*x->ops->max)(x,p,val);
363:   PetscLogEventEnd(VEC_Max,x,0,0,0);
364:   return(0);
365: }

367: /*@C
368:    VecMin - Determines the vector component with minimum real part and its location.

370:    Collective on Vec

372:    Input Parameters:
373: .  x - the vector

375:    Output Parameter:
376: +  p - the location of val (pass NULL if you don't want this location)
377: -  val - the minimum component

379:    Level: intermediate

381:    Notes:
382:    Returns the value PETSC_MAX_REAL and p = -1 if the vector is of length 0.

384:    This returns the smallest index with the minumum value

386:    Concepts: minimum^of vector
387:    Concepts: vector^minimum entry

389: .seealso: VecMax()
390: @*/
391: PetscErrorCode  VecMin(Vec x,PetscInt *p,PetscReal *val)
392: {

399:   PetscLogEventBegin(VEC_Min,x,0,0,0);
400:   (*x->ops->min)(x,p,val);
401:   PetscLogEventEnd(VEC_Min,x,0,0,0);
402:   return(0);
403: }

405: /*@
406:    VecTDot - Computes an indefinite vector dot product. That is, this
407:    routine does NOT use the complex conjugate.

409:    Collective on Vec

411:    Input Parameters:
412: .  x, y - the vectors

414:    Output Parameter:
415: .  val - the dot product

417:    Notes for Users of Complex Numbers:
418:    For complex vectors, VecTDot() computes the indefinite form
419: $     val = (x,y) = y^T x,
420:    where y^T denotes the transpose of y.

422:    Use VecDot() for the inner product
423: $     val = (x,y) = y^H x,
424:    where y^H denotes the conjugate transpose of y.

426:    Level: intermediate

428:    Concepts: inner product^non-Hermitian
429:    Concepts: vector^inner product
430:    Concepts: non-Hermitian inner product

432: .seealso: VecDot(), VecMTDot()
433: @*/
434: PetscErrorCode  VecTDot(Vec x,Vec y,PetscScalar *val)
435: {

445:   VecCheckSameSize(x,1,y,2);

447:   PetscLogEventBegin(VEC_TDot,x,y,0,0);
448:   (*x->ops->tdot)(x,y,val);
449:   PetscLogEventEnd(VEC_TDot,x,y,0,0);
450:   return(0);
451: }

453: /*@
454:    VecScale - Scales a vector.

456:    Not collective on Vec

458:    Input Parameters:
459: +  x - the vector
460: -  alpha - the scalar

462:    Output Parameter:
463: .  x - the scaled vector

465:    Note:
466:    For a vector with n components, VecScale() computes
467: $      x[i] = alpha * x[i], for i=1,...,n.

469:    Level: intermediate

471:    Concepts: vector^scaling
472:    Concepts: scaling^vector

474: @*/
475: PetscErrorCode  VecScale(Vec x, PetscScalar alpha)
476: {
477:   PetscReal      norms[4] = {0.0,0.0,0.0, 0.0};
478:   PetscBool      flgs[4];
480:   PetscInt       i;

485:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled vector");
486:   PetscLogEventBegin(VEC_Scale,x,0,0,0);
487:   if (alpha != (PetscScalar)1.0) {
488:     /* get current stashed norms */
489:     for (i=0; i<4; i++) {
490:       PetscObjectComposedDataGetReal((PetscObject)x,NormIds[i],norms[i],flgs[i]);
491:     }
492:     (*x->ops->scale)(x,alpha);
493:     PetscObjectStateIncrease((PetscObject)x);
494:     /* put the scaled stashed norms back into the Vec */
495:     for (i=0; i<4; i++) {
496:       if (flgs[i]) {
497:         PetscObjectComposedDataSetReal((PetscObject)x,NormIds[i],PetscAbsScalar(alpha)*norms[i]);
498:       }
499:     }
500:   }
501:   PetscLogEventEnd(VEC_Scale,x,0,0,0);
502:   return(0);
503: }

505: /*@
506:    VecSet - Sets all components of a vector to a single scalar value.

508:    Logically Collective on Vec

510:    Input Parameters:
511: +  x  - the vector
512: -  alpha - the scalar

514:    Output Parameter:
515: .  x  - the vector

517:    Note:
518:    For a vector of dimension n, VecSet() computes
519: $     x[i] = alpha, for i=1,...,n,
520:    so that all vector entries then equal the identical
521:    scalar value, alpha.  Use the more general routine
522:    VecSetValues() to set different vector entries.

524:    You CANNOT call this after you have called VecSetValues() but before you call
525:    VecAssemblyBegin/End().

527:    Level: beginner

529: .seealso VecSetValues(), VecSetValuesBlocked(), VecSetRandom()

531:    Concepts: vector^setting to constant

533: @*/
534: PetscErrorCode  VecSet(Vec x,PetscScalar alpha)
535: {
536:   PetscReal      val;

542:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"You cannot call this after you have called VecSetValues() but\n before you have called VecAssemblyBegin/End()");
544:   VecLocked(x,1);

546:   PetscLogEventBegin(VEC_Set,x,0,0,0);
547:   (*x->ops->set)(x,alpha);
548:   PetscLogEventEnd(VEC_Set,x,0,0,0);
549:   PetscObjectStateIncrease((PetscObject)x);

551:   /*  norms can be simply set (if |alpha|*N not too large) */
552:   val  = PetscAbsScalar(alpha);
553:   if (x->map->N == 0) {
554:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],0.0l);
555:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],0.0);
556:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],0.0);
557:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],0.0);
558:   } else if (val > PETSC_MAX_REAL/x->map->N) {
559:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
560:   } else {
561:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],x->map->N * val);
562:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
563:     val  = PetscSqrtReal((PetscReal)x->map->N) * val;
564:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],val);
565:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],val);
566:   }
567:   return(0);
568: }


571: /*@
572:    VecAXPY - Computes y = alpha x + y.

574:    Logically Collective on Vec

576:    Input Parameters:
577: +  alpha - the scalar
578: -  x, y  - the vectors

580:    Output Parameter:
581: .  y - output vector

583:    Level: intermediate

585:    Notes:
586:     x and y MUST be different vectors

588:    Concepts: vector^BLAS
589:    Concepts: BLAS

591: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY()
592: @*/
593: PetscErrorCode  VecAXPY(Vec y,PetscScalar alpha,Vec x)
594: {

603:   VecCheckSameSize(x,1,y,3);
604:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
606:   VecLocked(y,1);

608:   VecLockPush(x);
609:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
610:   (*y->ops->axpy)(y,alpha,x);
611:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
612:   VecLockPop(x);
613:   PetscObjectStateIncrease((PetscObject)y);
614:   return(0);
615: }

617: /*@
618:    VecAXPBY - Computes y = alpha x + beta y.

620:    Logically Collective on Vec

622:    Input Parameters:
623: +  alpha,beta - the scalars
624: -  x, y  - the vectors

626:    Output Parameter:
627: .  y - output vector

629:    Level: intermediate

631:    Notes:
632:     x and y MUST be different vectors

634:    Concepts: BLAS
635:    Concepts: vector^BLAS

637: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY()
638: @*/
639: PetscErrorCode  VecAXPBY(Vec y,PetscScalar alpha,PetscScalar beta,Vec x)
640: {

649:   VecCheckSameSize(x,1,y,4);
650:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");

654:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
655:   (*y->ops->axpby)(y,alpha,beta,x);
656:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
657:   PetscObjectStateIncrease((PetscObject)y);
658:   return(0);
659: }

661: /*@
662:    VecAXPBYPCZ - Computes z = alpha x + beta y + gamma z

664:    Logically Collective on Vec

666:    Input Parameters:
667: +  alpha,beta, gamma - the scalars
668: -  x, y, z  - the vectors

670:    Output Parameter:
671: .  z - output vector

673:    Level: intermediate

675:    Notes:
676:     x, y and z must be different vectors

678:    Developer Note:   alpha = 1 or gamma = 1 or gamma = 0.0 are handled as special cases

680:    Concepts: BLAS
681:    Concepts: vector^BLAS

683: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY()
684: @*/
685: PetscErrorCode  VecAXPBYPCZ(Vec z,PetscScalar alpha,PetscScalar beta,PetscScalar gamma,Vec x,Vec y)
686: {

698:   VecCheckSameSize(x,1,y,5);
699:   VecCheckSameSize(x,1,z,6);
700:   if (x == y || x == z) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
701:   if (y == z) SETERRQ(PetscObjectComm((PetscObject)y),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");

706:   PetscLogEventBegin(VEC_AXPBYPCZ,x,y,z,0);
707:   (*y->ops->axpbypcz)(z,alpha,beta,gamma,x,y);
708:   PetscLogEventEnd(VEC_AXPBYPCZ,x,y,z,0);
709:   PetscObjectStateIncrease((PetscObject)z);
710:   return(0);
711: }

713: /*@
714:    VecAYPX - Computes y = x + alpha y.

716:    Logically Collective on Vec

718:    Input Parameters:
719: +  alpha - the scalar
720: -  x, y  - the vectors

722:    Output Parameter:
723: .  y - output vector

725:    Level: intermediate

727:    Notes:
728:     x and y MUST be different vectors

730:    Concepts: vector^BLAS
731:    Concepts: BLAS

733: .seealso: VecAXPY(), VecWAXPY()
734: @*/
735: PetscErrorCode  VecAYPX(Vec y,PetscScalar alpha,Vec x)
736: {

745:   VecCheckSameSize(x,1,y,3);
746:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y must be different vectors");

749:   PetscLogEventBegin(VEC_AYPX,x,y,0,0);
750:    (*y->ops->aypx)(y,alpha,x);
751:   PetscLogEventEnd(VEC_AYPX,x,y,0,0);
752:   PetscObjectStateIncrease((PetscObject)y);
753:   return(0);
754: }


757: /*@
758:    VecWAXPY - Computes w = alpha x + y.

760:    Logically Collective on Vec

762:    Input Parameters:
763: +  alpha - the scalar
764: -  x, y  - the vectors

766:    Output Parameter:
767: .  w - the result

769:    Level: intermediate

771:    Notes:
772:     w cannot be either x or y, but x and y can be the same

774:    Concepts: vector^BLAS
775:    Concepts: BLAS

777: .seealso: VecAXPY(), VecAYPX(), VecAXPBY()
778: @*/
779: PetscErrorCode  VecWAXPY(Vec w,PetscScalar alpha,Vec x,Vec y)
780: {

792:   VecCheckSameSize(x,3,y,4);
793:   VecCheckSameSize(x,3,w,1);
794:   if (w == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector y, suggest VecAXPY()");
795:   if (w == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector x, suggest VecAYPX()");

798:   PetscLogEventBegin(VEC_WAXPY,x,y,w,0);
799:    (*w->ops->waxpy)(w,alpha,x,y);
800:   PetscLogEventEnd(VEC_WAXPY,x,y,w,0);
801:   PetscObjectStateIncrease((PetscObject)w);
802:   return(0);
803: }


806: /*@C
807:    VecSetValues - Inserts or adds values into certain locations of a vector.

809:    Not Collective

811:    Input Parameters:
812: +  x - vector to insert in
813: .  ni - number of elements to add
814: .  ix - indices where to add
815: .  y - array of values
816: -  iora - either INSERT_VALUES or ADD_VALUES, where
817:    ADD_VALUES adds values to any existing entries, and
818:    INSERT_VALUES replaces existing entries with new values

820:    Notes:
821:    VecSetValues() sets x[ix[i]] = y[i], for i=0,...,ni-1.

823:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
824:    options cannot be mixed without intervening calls to the assembly
825:    routines.

827:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
828:    MUST be called after all calls to VecSetValues() have been completed.

830:    VecSetValues() uses 0-based indices in Fortran as well as in C.

832:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
833:    negative indices may be passed in ix. These rows are
834:    simply ignored. This allows easily inserting element load matrices
835:    with homogeneous Dirchlet boundary conditions that you don't want represented
836:    in the vector.

838:    Level: beginner

840:    Concepts: vector^setting values

842: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesLocal(),
843:            VecSetValue(), VecSetValuesBlocked(), InsertMode, INSERT_VALUES, ADD_VALUES, VecGetValues()
844: @*/
845: PetscErrorCode  VecSetValues(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
846: {

851:   if (!ni) return(0);
855:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
856:   (*x->ops->setvalues)(x,ni,ix,y,iora);
857:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
858:   PetscObjectStateIncrease((PetscObject)x);
859:   return(0);
860: }

862: /*@
863:    VecGetValues - Gets values from certain locations of a vector. Currently
864:           can only get values on the same processor

866:     Not Collective

868:    Input Parameters:
869: +  x - vector to get values from
870: .  ni - number of elements to get
871: -  ix - indices where to get them from (in global 1d numbering)

873:    Output Parameter:
874: .   y - array of values

876:    Notes:
877:    The user provides the allocated array y; it is NOT allocated in this routine

879:    VecGetValues() gets y[i] = x[ix[i]], for i=0,...,ni-1.

881:    VecAssemblyBegin() and VecAssemblyEnd()  MUST be called before calling this

883:    VecGetValues() uses 0-based indices in Fortran as well as in C.

885:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
886:    negative indices may be passed in ix. These rows are
887:    simply ignored.

889:    Level: beginner

891:    Concepts: vector^getting values

893: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues()
894: @*/
895: PetscErrorCode  VecGetValues(Vec x,PetscInt ni,const PetscInt ix[],PetscScalar y[])
896: {

901:   if (!ni) return(0);
905:   (*x->ops->getvalues)(x,ni,ix,y);
906:   return(0);
907: }

909: /*@C
910:    VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.

912:    Not Collective

914:    Input Parameters:
915: +  x - vector to insert in
916: .  ni - number of blocks to add
917: .  ix - indices where to add in block count, rather than element count
918: .  y - array of values
919: -  iora - either INSERT_VALUES or ADD_VALUES, where
920:    ADD_VALUES adds values to any existing entries, and
921:    INSERT_VALUES replaces existing entries with new values

923:    Notes:
924:    VecSetValuesBlocked() sets x[bs*ix[i]+j] = y[bs*i+j],
925:    for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().

927:    Calls to VecSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
928:    options cannot be mixed without intervening calls to the assembly
929:    routines.

931:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
932:    MUST be called after all calls to VecSetValuesBlocked() have been completed.

934:    VecSetValuesBlocked() uses 0-based indices in Fortran as well as in C.

936:    Negative indices may be passed in ix, these rows are
937:    simply ignored. This allows easily inserting element load matrices
938:    with homogeneous Dirchlet boundary conditions that you don't want represented
939:    in the vector.

941:    Level: intermediate

943:    Concepts: vector^setting values blocked

945: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesBlockedLocal(),
946:            VecSetValues()
947: @*/
948: PetscErrorCode  VecSetValuesBlocked(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
949: {

957:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
958:   (*x->ops->setvaluesblocked)(x,ni,ix,y,iora);
959:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
960:   PetscObjectStateIncrease((PetscObject)x);
961:   return(0);
962: }


965: /*@C
966:    VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
967:    using a local ordering of the nodes.

969:    Not Collective

971:    Input Parameters:
972: +  x - vector to insert in
973: .  ni - number of elements to add
974: .  ix - indices where to add
975: .  y - array of values
976: -  iora - either INSERT_VALUES or ADD_VALUES, where
977:    ADD_VALUES adds values to any existing entries, and
978:    INSERT_VALUES replaces existing entries with new values

980:    Level: intermediate

982:    Notes:
983:    VecSetValuesLocal() sets x[ix[i]] = y[i], for i=0,...,ni-1.

985:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
986:    options cannot be mixed without intervening calls to the assembly
987:    routines.

989:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
990:    MUST be called after all calls to VecSetValuesLocal() have been completed.

992:    VecSetValuesLocal() uses 0-based indices in Fortran as well as in C.

994:    Concepts: vector^setting values with local numbering

996: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetLocalToGlobalMapping(),
997:            VecSetValuesBlockedLocal()
998: @*/
999: PetscErrorCode  VecSetValuesLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1000: {
1002:   PetscInt       lixp[128],*lix = lixp;

1006:   if (!ni) return(0);

1011:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1012:   if (!x->ops->setvalueslocal) {
1013:     if (!x->map->mapping) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Local to global never set with VecSetLocalToGlobalMapping()");
1014:     if (ni > 128) {
1015:       PetscMalloc1(ni,&lix);
1016:     }
1017:     ISLocalToGlobalMappingApply(x->map->mapping,ni,(PetscInt*)ix,lix);
1018:     (*x->ops->setvalues)(x,ni,lix,y,iora);
1019:     if (ni > 128) {
1020:       PetscFree(lix);
1021:     }
1022:   } else {
1023:     (*x->ops->setvalueslocal)(x,ni,ix,y,iora);
1024:   }
1025:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1026:   PetscObjectStateIncrease((PetscObject)x);
1027:   return(0);
1028: }

1030: /*@
1031:    VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1032:    using a local ordering of the nodes.

1034:    Not Collective

1036:    Input Parameters:
1037: +  x - vector to insert in
1038: .  ni - number of blocks to add
1039: .  ix - indices where to add in block count, not element count
1040: .  y - array of values
1041: -  iora - either INSERT_VALUES or ADD_VALUES, where
1042:    ADD_VALUES adds values to any existing entries, and
1043:    INSERT_VALUES replaces existing entries with new values

1045:    Level: intermediate

1047:    Notes:
1048:    VecSetValuesBlockedLocal() sets x[bs*ix[i]+j] = y[bs*i+j],
1049:    for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with VecSetBlockSize().

1051:    Calls to VecSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
1052:    options cannot be mixed without intervening calls to the assembly
1053:    routines.

1055:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
1056:    MUST be called after all calls to VecSetValuesBlockedLocal() have been completed.

1058:    VecSetValuesBlockedLocal() uses 0-based indices in Fortran as well as in C.


1061:    Concepts: vector^setting values blocked with local numbering

1063: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetValuesBlocked(),
1064:            VecSetLocalToGlobalMapping()
1065: @*/
1066: PetscErrorCode  VecSetValuesBlockedLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1067: {
1069:   PetscInt       lixp[128],*lix = lixp;

1076:   if (ni > 128) {
1077:     PetscMalloc1(ni,&lix);
1078:   }

1080:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1081:   ISLocalToGlobalMappingApplyBlock(x->map->mapping,ni,(PetscInt*)ix,lix);
1082:   (*x->ops->setvaluesblocked)(x,ni,lix,y,iora);
1083:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1084:   if (ni > 128) {
1085:     PetscFree(lix);
1086:   }
1087:   PetscObjectStateIncrease((PetscObject)x);
1088:   return(0);
1089: }

1091: /*@
1092:    VecMTDot - Computes indefinite vector multiple dot products.
1093:    That is, it does NOT use the complex conjugate.

1095:    Collective on Vec

1097:    Input Parameters:
1098: +  x - one vector
1099: .  nv - number of vectors
1100: -  y - array of vectors.  Note that vectors are pointers

1102:    Output Parameter:
1103: .  val - array of the dot products

1105:    Notes for Users of Complex Numbers:
1106:    For complex vectors, VecMTDot() computes the indefinite form
1107: $      val = (x,y) = y^T x,
1108:    where y^T denotes the transpose of y.

1110:    Use VecMDot() for the inner product
1111: $      val = (x,y) = y^H x,
1112:    where y^H denotes the conjugate transpose of y.

1114:    Level: intermediate

1116:    Concepts: inner product^multiple
1117:    Concepts: vector^multiple inner products

1119: .seealso: VecMDot(), VecTDot()
1120: @*/
1121: PetscErrorCode  VecMTDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1122: {

1133:   VecCheckSameSize(x,1,*y,3);

1135:   PetscLogEventBegin(VEC_MTDot,x,*y,0,0);
1136:   (*x->ops->mtdot)(x,nv,y,val);
1137:   PetscLogEventEnd(VEC_MTDot,x,*y,0,0);
1138:   return(0);
1139: }

1141: /*@
1142:    VecMDot - Computes vector multiple dot products.

1144:    Collective on Vec

1146:    Input Parameters:
1147: +  x - one vector
1148: .  nv - number of vectors
1149: -  y - array of vectors.

1151:    Output Parameter:
1152: .  val - array of the dot products (does not allocate the array)

1154:    Notes for Users of Complex Numbers:
1155:    For complex vectors, VecMDot() computes
1156: $     val = (x,y) = y^H x,
1157:    where y^H denotes the conjugate transpose of y.

1159:    Use VecMTDot() for the indefinite form
1160: $     val = (x,y) = y^T x,
1161:    where y^T denotes the transpose of y.

1163:    Level: intermediate

1165:    Concepts: inner product^multiple
1166:    Concepts: vector^multiple inner products

1168: .seealso: VecMTDot(), VecDot()
1169: @*/
1170: PetscErrorCode  VecMDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1171: {

1176:   if (!nv) return(0);
1177:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1184:   VecCheckSameSize(x,1,*y,3);

1186:   PetscLogEventBegin(VEC_MDot,x,*y,0,0);
1187:   (*x->ops->mdot)(x,nv,y,val);
1188:   PetscLogEventEnd(VEC_MDot,x,*y,0,0);
1189:   return(0);
1190: }

1192: /*@
1193:    VecMAXPY - Computes y = y + sum alpha[j] x[j]

1195:    Logically Collective on Vec

1197:    Input Parameters:
1198: +  nv - number of scalars and x-vectors
1199: .  alpha - array of scalars
1200: .  y - one vector
1201: -  x - array of vectors

1203:    Level: intermediate

1205:    Notes:
1206:     y cannot be any of the x vectors

1208:    Concepts: BLAS

1210: .seealso: VecAXPY(), VecWAXPY(), VecAYPX()
1211: @*/
1212: PetscErrorCode  VecMAXPY(Vec y,PetscInt nv,const PetscScalar alpha[],Vec x[])
1213: {
1215:   PetscInt       i;

1219:   if (!nv) return(0);
1220:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1227:   VecCheckSameSize(y,1,*x,4);

1230:   PetscLogEventBegin(VEC_MAXPY,*x,y,0,0);
1231:   (*y->ops->maxpy)(y,nv,alpha,x);
1232:   PetscLogEventEnd(VEC_MAXPY,*x,y,0,0);
1233:   PetscObjectStateIncrease((PetscObject)y);
1234:   return(0);
1235: }

1237: /*@
1238:    VecGetSubVector - Gets a vector representing part of another vector

1240:    Collective on IS (and Vec if nonlocal entries are needed)

1242:    Input Arguments:
1243: + X - vector from which to extract a subvector
1244: - is - index set representing portion of X to extract

1246:    Output Arguments:
1247: . Y - subvector corresponding to is

1249:    Level: advanced

1251:    Notes:
1252:    The subvector Y should be returned with VecRestoreSubVector().

1254:    This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1255:    modifying the subvector.  Other non-overlapping subvectors can still be obtained from X using this function.

1257: .seealso: MatCreateSubMatrix()
1258: @*/
1259: PetscErrorCode  VecGetSubVector(Vec X,IS is,Vec *Y)
1260: {
1261:   PetscErrorCode   ierr;
1262:   Vec              Z;

1268:   if (X->ops->getsubvector) {
1269:     (*X->ops->getsubvector)(X,is,&Z);
1270:   } else { /* Default implementation currently does no caching */
1271:     PetscInt  gstart,gend,start;
1272:     PetscBool contiguous,gcontiguous;
1273:     VecGetOwnershipRange(X,&gstart,&gend);
1274:     ISContiguousLocal(is,gstart,gend,&start,&contiguous);
1275:     MPIU_Allreduce(&contiguous,&gcontiguous,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)is));
1276:     if (gcontiguous) { /* We can do a no-copy implementation */
1277:       PetscInt n,N,bs;
1278:       PetscInt state;

1280:       ISGetSize(is,&N);
1281:       ISGetLocalSize(is,&n);
1282:       VecGetBlockSize(X,&bs);
1283:       if (n%bs || bs == 1 || !n) bs = -1; /* Do not decide block size if we do not have to */
1284:       VecLockGet(X,&state);
1285:       if (state) {
1286:         const PetscScalar *x;
1287:         VecGetArrayRead(X,&x);
1288:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1289:         VecSetType(Z,((PetscObject)X)->type_name);
1290:         VecSetSizes(Z,n,N);
1291:         VecSetBlockSize(Z,bs);
1292:         VecPlaceArray(Z,(PetscScalar*)x+start);
1293:         VecLockPush(Z);
1294:         VecRestoreArrayRead(X,&x);
1295:       } else {
1296:         PetscScalar *x;
1297:         VecGetArray(X,&x);
1298:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1299:         VecSetType(Z,((PetscObject)X)->type_name);
1300:         VecSetSizes(Z,n,N);
1301:         VecSetBlockSize(Z,bs);
1302:         VecPlaceArray(Z,(PetscScalar*)x+start);
1303:         VecRestoreArray(X,&x);
1304:       }
1305:     } else { /* Have to create a scatter and do a copy */
1306:       VecScatter scatter;
1307:       PetscInt   n,N;
1308:       ISGetLocalSize(is,&n);
1309:       ISGetSize(is,&N);
1310:       VecCreate(PetscObjectComm((PetscObject)is),&Z);
1311:       VecSetSizes(Z,n,N);
1312:       VecSetType(Z,((PetscObject)X)->type_name);
1313:       VecScatterCreate(X,is,Z,NULL,&scatter);
1314:       VecScatterBegin(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1315:       VecScatterEnd(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1316:       PetscObjectCompose((PetscObject)Z,"VecGetSubVector_Scatter",(PetscObject)scatter);
1317:       VecScatterDestroy(&scatter);
1318:     }
1319:   }
1320:   /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1321:   if (VecGetSubVectorSavedStateId < 0) {PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId);}
1322:   PetscObjectComposedDataSetInt((PetscObject)Z,VecGetSubVectorSavedStateId,1);
1323:   *Y   = Z;
1324:   return(0);
1325: }

1327: /*@
1328:    VecRestoreSubVector - Restores a subvector extracted using VecGetSubVector()

1330:    Collective on IS (and Vec if nonlocal entries need to be written)

1332:    Input Arguments:
1333: + X - vector from which subvector was obtained
1334: . is - index set representing the subset of X
1335: - Y - subvector being restored

1337:    Level: advanced

1339: .seealso: VecGetSubVector()
1340: @*/
1341: PetscErrorCode  VecRestoreSubVector(Vec X,IS is,Vec *Y)
1342: {

1350:   if (X->ops->restoresubvector) {
1351:     (*X->ops->restoresubvector)(X,is,Y);
1352:   } else {
1353:     PETSC_UNUSED PetscObjectState dummystate = 0;
1354:     PetscBool valid;
1355:     PetscObjectComposedDataGetInt((PetscObject)*Y,VecGetSubVectorSavedStateId,dummystate,valid);
1356:     if (!valid) {
1357:       VecScatter scatter;

1359:       PetscObjectQuery((PetscObject)*Y,"VecGetSubVector_Scatter",(PetscObject*)&scatter);
1360:       if (scatter) {
1361:         VecScatterBegin(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1362:         VecScatterEnd(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1363:       }
1364:     }
1365:     VecDestroy(Y);
1366:   }
1367:   return(0);
1368: }

1370: /*@
1371:    VecGetLocalVectorRead - Maps the local portion of a vector into a
1372:    vector.  You must call VecRestoreLocalVectorRead() when the local
1373:    vector is no longer needed.

1375:    Not collective.

1377:    Input parameter:
1378: .  v - The vector for which the local vector is desired.

1380:    Output parameter:
1381: .  w - Upon exit this contains the local vector.

1383:    Level: beginner

1385:    Notes:
1386:    This function is similar to VecGetArrayRead() which maps the local
1387:    portion into a raw pointer.  VecGetLocalVectorRead() is usually
1388:    almost as efficient as VecGetArrayRead() but in certain circumstances
1389:    VecGetLocalVectorRead() can be much more efficient than
1390:    VecGetArrayRead().  This is because the construction of a contiguous
1391:    array representing the vector data required by VecGetArrayRead() can
1392:    be an expensive operation for certain vector types.  For example, for
1393:    GPU vectors VecGetArrayRead() requires that the data between device
1394:    and host is synchronized.

1396:    Unlike VecGetLocalVector(), this routine is not collective and
1397:    preserves cached information.

1399: .seealso: VecRestoreLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1400: @*/
1401: PetscErrorCode VecGetLocalVectorRead(Vec v,Vec w)
1402: {
1404:   PetscScalar    *a;

1409:   VecCheckSameLocalSize(v,1,w,2);
1410:   if (v->ops->getlocalvectorread) {
1411:     (*v->ops->getlocalvectorread)(v,w);
1412:   } else {
1413:     VecGetArrayRead(v,(const PetscScalar**)&a);
1414:     VecPlaceArray(w,a);
1415:   }
1416:   return(0);
1417: }

1419: /*@
1420:    VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1421:    previously mapped into a vector using VecGetLocalVectorRead().

1423:    Not collective.

1425:    Input parameter:
1426: .  v - The local portion of this vector was previously mapped into w using VecGetLocalVectorRead().
1427: .  w - The vector into which the local portion of v was mapped.

1429:    Level: beginner

1431: .seealso: VecGetLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1432: @*/
1433: PetscErrorCode VecRestoreLocalVectorRead(Vec v,Vec w)
1434: {
1436:   PetscScalar    *a;

1441:   if (v->ops->restorelocalvectorread) {
1442:     (*v->ops->restorelocalvectorread)(v,w);
1443:   } else {
1444:     VecGetArrayRead(w,(const PetscScalar**)&a);
1445:     VecRestoreArrayRead(v,(const PetscScalar**)&a);
1446:     VecResetArray(w);
1447:   }
1448:   return(0);
1449: }

1451: /*@
1452:    VecGetLocalVector - Maps the local portion of a vector into a
1453:    vector.

1455:    Collective on v, not collective on w.

1457:    Input parameter:
1458: .  v - The vector for which the local vector is desired.

1460:    Output parameter:
1461: .  w - Upon exit this contains the local vector.

1463:    Level: beginner

1465:    Notes:
1466:    This function is similar to VecGetArray() which maps the local
1467:    portion into a raw pointer.  VecGetLocalVector() is usually about as
1468:    efficient as VecGetArray() but in certain circumstances
1469:    VecGetLocalVector() can be much more efficient than VecGetArray().
1470:    This is because the construction of a contiguous array representing
1471:    the vector data required by VecGetArray() can be an expensive
1472:    operation for certain vector types.  For example, for GPU vectors
1473:    VecGetArray() requires that the data between device and host is
1474:    synchronized.

1476: .seealso: VecRestoreLocalVector(), VecGetLocalVectorRead(), VecGetArrayRead(), VecGetArray()
1477: @*/
1478: PetscErrorCode VecGetLocalVector(Vec v,Vec w)
1479: {
1481:   PetscScalar    *a;

1486:   VecCheckSameLocalSize(v,1,w,2);
1487:   if (v->ops->getlocalvector) {
1488:     (*v->ops->getlocalvector)(v,w);
1489:   } else {
1490:     VecGetArray(v,&a);
1491:     VecPlaceArray(w,a);
1492:   }
1493:   return(0);
1494: }

1496: /*@
1497:    VecRestoreLocalVector - Unmaps the local portion of a vector
1498:    previously mapped into a vector using VecGetLocalVector().

1500:    Logically collective.

1502:    Input parameter:
1503: .  v - The local portion of this vector was previously mapped into w using VecGetLocalVector().
1504: .  w - The vector into which the local portion of v was mapped.

1506:    Level: beginner

1508: .seealso: VecGetLocalVector(), VecGetLocalVectorRead(), VecRestoreLocalVectorRead(), LocalVectorRead(), VecGetArrayRead(), VecGetArray()
1509: @*/
1510: PetscErrorCode VecRestoreLocalVector(Vec v,Vec w)
1511: {
1513:   PetscScalar    *a;

1518:   if (v->ops->restorelocalvector) {
1519:     (*v->ops->restorelocalvector)(v,w);
1520:   } else {
1521:     VecGetArray(w,&a);
1522:     VecRestoreArray(v,&a);
1523:     VecResetArray(w);
1524:   }
1525:   return(0);
1526: }

1528: /*@C
1529:    VecGetArray - Returns a pointer to a contiguous array that contains this
1530:    processor's portion of the vector data. For the standard PETSc
1531:    vectors, VecGetArray() returns a pointer to the local data array and
1532:    does not use any copies. If the underlying vector data is not stored
1533:    in a contiguous array this routine will copy the data to a contiguous
1534:    array and return a pointer to that. You MUST call VecRestoreArray()
1535:    when you no longer need access to the array.

1537:    Logically Collective on Vec

1539:    Input Parameter:
1540: .  x - the vector

1542:    Output Parameter:
1543: .  a - location to put pointer to the array

1545:    Fortran Note:
1546:    This routine is used differently from Fortran 77
1547: $    Vec         x
1548: $    PetscScalar x_array(1)
1549: $    PetscOffset i_x
1550: $    PetscErrorCode ierr
1551: $       call VecGetArray(x,x_array,i_x,ierr)
1552: $
1553: $   Access first local entry in vector with
1554: $      value = x_array(i_x + 1)
1555: $
1556: $      ...... other code
1557: $       call VecRestoreArray(x,x_array,i_x,ierr)
1558:    For Fortran 90 see VecGetArrayF90()

1560:    See the Fortran chapter of the users manual and
1561:    petsc/src/snes/examples/tutorials/ex5f.F for details.

1563:    Level: beginner

1565:    Concepts: vector^accessing local values

1567: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1568:           VecGetArrayPair(), VecRestoreArrayPair()
1569: @*/
1570: PetscErrorCode VecGetArray(Vec x,PetscScalar **a)
1571: {
1573: #if defined(PETSC_HAVE_VIENNACL)
1574:   PetscBool      is_viennacltype = PETSC_FALSE;
1575: #endif

1579:   VecLocked(x,1);
1580:   if (x->petscnative) {
1581: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1582:     if (x->valid_GPU_array == PETSC_OFFLOAD_GPU) {
1583: #if defined(PETSC_HAVE_VIENNACL)
1584:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1585:       if (is_viennacltype) {
1586:         VecViennaCLCopyFromGPU(x);
1587:       } else
1588: #endif
1589:       {
1590: #if defined(PETSC_HAVE_VECCUDA)
1591:         VecCUDACopyFromGPU(x);
1592: #endif
1593:       }
1594:     } else if (x->valid_GPU_array == PETSC_OFFLOAD_UNALLOCATED) {
1595: #if defined(PETSC_HAVE_VIENNACL)
1596:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1597:       if (is_viennacltype) {
1598:         VecViennaCLAllocateCheckHost(x);
1599:       } else
1600: #endif
1601:       {
1602: #if defined(PETSC_HAVE_VECCUDA)
1603:         VecCUDAAllocateCheckHost(x);
1604: #endif
1605:       }
1606:     }
1607: #endif
1608:     *a = *((PetscScalar**)x->data);
1609:   } else {
1610:     if (x->ops->getarray) {
1611:       (*x->ops->getarray)(x,a);
1612:     } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot get array for vector type \"%s\"",((PetscObject)x)->type_name);
1613:   }
1614:   return(0);
1615: }

1617: /*@C
1618:    VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.

1620:    Not Collective

1622:    Input Parameters:
1623: .  x - the vector

1625:    Output Parameter:
1626: .  a - the array

1628:    Level: beginner

1630:    Notes:
1631:    The array must be returned using a matching call to VecRestoreArrayRead().

1633:    Unlike VecGetArray(), this routine is not collective and preserves cached information like vector norms.

1635:    Standard PETSc vectors use contiguous storage so that this routine does not perform a copy.  Other vector
1636:    implementations may require a copy, but must such implementations should cache the contiguous representation so that
1637:    only one copy is performed when this routine is called multiple times in sequence.

1639: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1640: @*/
1641: PetscErrorCode VecGetArrayRead(Vec x,const PetscScalar **a)
1642: {
1644: #if defined(PETSC_HAVE_VIENNACL)
1645:   PetscBool      is_viennacltype = PETSC_FALSE;
1646: #endif

1650:   if (x->petscnative) {
1651: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1652:     if (x->valid_GPU_array == PETSC_OFFLOAD_GPU) {
1653: #if defined(PETSC_HAVE_VIENNACL)
1654:       PetscObjectTypeCompareAny((PetscObject)x,&is_viennacltype,VECSEQVIENNACL,VECMPIVIENNACL,VECVIENNACL,"");
1655:       if (is_viennacltype) {
1656:         VecViennaCLCopyFromGPU(x);
1657:       } else
1658: #endif
1659:       {
1660: #if defined(PETSC_HAVE_VECCUDA)
1661:         VecCUDACopyFromGPU(x);
1662: #endif
1663:       }
1664:     }
1665: #endif
1666:     *a = *((PetscScalar **)x->data);
1667:   } else if (x->ops->getarrayread) {
1668:     (*x->ops->getarrayread)(x,a);
1669:   } else {
1670:     (*x->ops->getarray)(x,(PetscScalar**)a);
1671:   }
1672:   return(0);
1673: }

1675: /*@C
1676:    VecGetArrays - Returns a pointer to the arrays in a set of vectors
1677:    that were created by a call to VecDuplicateVecs().  You MUST call
1678:    VecRestoreArrays() when you no longer need access to the array.

1680:    Logically Collective on Vec

1682:    Input Parameter:
1683: +  x - the vectors
1684: -  n - the number of vectors

1686:    Output Parameter:
1687: .  a - location to put pointer to the array

1689:    Fortran Note:
1690:    This routine is not supported in Fortran.

1692:    Level: intermediate

1694: .seealso: VecGetArray(), VecRestoreArrays()
1695: @*/
1696: PetscErrorCode  VecGetArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1697: {
1699:   PetscInt       i;
1700:   PetscScalar    **q;

1706:   if (n <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must get at least one array n = %D",n);
1707:   PetscMalloc1(n,&q);
1708:   for (i=0; i<n; ++i) {
1709:     VecGetArray(x[i],&q[i]);
1710:   }
1711:   *a = q;
1712:   return(0);
1713: }

1715: /*@C
1716:    VecRestoreArrays - Restores a group of vectors after VecGetArrays()
1717:    has been called.

1719:    Logically Collective on Vec

1721:    Input Parameters:
1722: +  x - the vector
1723: .  n - the number of vectors
1724: -  a - location of pointer to arrays obtained from VecGetArrays()

1726:    Notes:
1727:    For regular PETSc vectors this routine does not involve any copies. For
1728:    any special vectors that do not store local vector data in a contiguous
1729:    array, this routine will copy the data back into the underlying
1730:    vector data structure from the arrays obtained with VecGetArrays().

1732:    Fortran Note:
1733:    This routine is not supported in Fortran.

1735:    Level: intermediate

1737: .seealso: VecGetArrays(), VecRestoreArray()
1738: @*/
1739: PetscErrorCode  VecRestoreArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1740: {
1742:   PetscInt       i;
1743:   PetscScalar    **q = *a;


1750:   for (i=0; i<n; ++i) {
1751:     VecRestoreArray(x[i],&q[i]);
1752:   }
1753:   PetscFree(q);
1754:   return(0);
1755: }

1757: /*@C
1758:    VecRestoreArray - Restores a vector after VecGetArray() has been called.

1760:    Logically Collective on Vec

1762:    Input Parameters:
1763: +  x - the vector
1764: -  a - location of pointer to array obtained from VecGetArray()

1766:    Level: beginner

1768:    Notes:
1769:    For regular PETSc vectors this routine does not involve any copies. For
1770:    any special vectors that do not store local vector data in a contiguous
1771:    array, this routine will copy the data back into the underlying
1772:    vector data structure from the array obtained with VecGetArray().

1774:    This routine actually zeros out the a pointer. This is to prevent accidental
1775:    us of the array after it has been restored. If you pass null for a it will
1776:    not zero the array pointer a.

1778:    Fortran Note:
1779:    This routine is used differently from Fortran 77
1780: $    Vec         x
1781: $    PetscScalar x_array(1)
1782: $    PetscOffset i_x
1783: $    PetscErrorCode ierr
1784: $       call VecGetArray(x,x_array,i_x,ierr)
1785: $
1786: $   Access first local entry in vector with
1787: $      value = x_array(i_x + 1)
1788: $
1789: $      ...... other code
1790: $       call VecRestoreArray(x,x_array,i_x,ierr)

1792:    See the Fortran chapter of the users manual and
1793:    petsc/src/snes/examples/tutorials/ex5f.F for details.
1794:    For Fortran 90 see VecRestoreArrayF90()

1796: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1797:           VecGetArrayPair(), VecRestoreArrayPair()
1798: @*/
1799: PetscErrorCode VecRestoreArray(Vec x,PetscScalar **a)
1800: {

1805:   if (x->petscnative) {
1806: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_VECCUDA)
1807:     x->valid_GPU_array = PETSC_OFFLOAD_CPU;
1808: #endif
1809:   } else {
1810:     (*x->ops->restorearray)(x,a);
1811:   }
1812:   if (a) *a = NULL;
1813:   PetscObjectStateIncrease((PetscObject)x);
1814:   return(0);
1815: }

1817: /*@C
1818:    VecRestoreArrayRead - Restore array obtained with VecGetArrayRead()

1820:    Not Collective

1822:    Input Parameters:
1823: +  vec - the vector
1824: -  array - the array

1826:    Level: beginner

1828: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1829: @*/
1830: PetscErrorCode VecRestoreArrayRead(Vec x,const PetscScalar **a)
1831: {

1836:   if (x->petscnative) {
1837:     /* nothing */
1838:   } else if (x->ops->restorearrayread) {
1839:     (*x->ops->restorearrayread)(x,a);
1840:   } else {
1841:     (*x->ops->restorearray)(x,(PetscScalar**)a);
1842:   }
1843:   if (a) *a = NULL;
1844:   return(0);
1845: }

1847: /*@
1848:    VecPlaceArray - Allows one to replace the array in a vector with an
1849:    array provided by the user. This is useful to avoid copying an array
1850:    into a vector.

1852:    Not Collective

1854:    Input Parameters:
1855: +  vec - the vector
1856: -  array - the array

1858:    Notes:
1859:    You can return to the original array with a call to VecResetArray()

1861:    Level: developer

1863: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray()

1865: @*/
1866: PetscErrorCode  VecPlaceArray(Vec vec,const PetscScalar array[])
1867: {

1874:   if (vec->ops->placearray) {
1875:     (*vec->ops->placearray)(vec,array);
1876:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot place array in this type of vector");
1877:   PetscObjectStateIncrease((PetscObject)vec);
1878:   return(0);
1879: }

1881: /*@C
1882:    VecReplaceArray - Allows one to replace the array in a vector with an
1883:    array provided by the user. This is useful to avoid copying an array
1884:    into a vector.

1886:    Not Collective

1888:    Input Parameters:
1889: +  vec - the vector
1890: -  array - the array

1892:    Notes:
1893:    This permanently replaces the array and frees the memory associated
1894:    with the old array.

1896:    The memory passed in MUST be obtained with PetscMalloc() and CANNOT be
1897:    freed by the user. It will be freed when the vector is destroy.

1899:    Not supported from Fortran

1901:    Level: developer

1903: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray()

1905: @*/
1906: PetscErrorCode  VecReplaceArray(Vec vec,const PetscScalar array[])
1907: {

1913:   if (vec->ops->replacearray) {
1914:     (*vec->ops->replacearray)(vec,array);
1915:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot replace array in this type of vector");
1916:   PetscObjectStateIncrease((PetscObject)vec);
1917:   return(0);
1918: }

1920: /*MC
1921:     VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
1922:     and makes them accessible via a Fortran90 pointer.

1924:     Synopsis:
1925:     VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)

1927:     Collective on Vec

1929:     Input Parameters:
1930: +   x - a vector to mimic
1931: -   n - the number of vectors to obtain

1933:     Output Parameters:
1934: +   y - Fortran90 pointer to the array of vectors
1935: -   ierr - error code

1937:     Example of Usage:
1938: .vb
1939: #include <petsc/finclude/petscvec.h>
1940:     use petscvec

1942:     Vec x
1943:     Vec, pointer :: y(:)
1944:     ....
1945:     call VecDuplicateVecsF90(x,2,y,ierr)
1946:     call VecSet(y(2),alpha,ierr)
1947:     call VecSet(y(2),alpha,ierr)
1948:     ....
1949:     call VecDestroyVecsF90(2,y,ierr)
1950: .ve

1952:     Notes:
1953:     Not yet supported for all F90 compilers

1955:     Use VecDestroyVecsF90() to free the space.

1957:     Level: beginner

1959: .seealso:  VecDestroyVecsF90(), VecDuplicateVecs()

1961: M*/

1963: /*MC
1964:     VecRestoreArrayF90 - Restores a vector to a usable state after a call to
1965:     VecGetArrayF90().

1967:     Synopsis:
1968:     VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

1970:     Logically Collective on Vec

1972:     Input Parameters:
1973: +   x - vector
1974: -   xx_v - the Fortran90 pointer to the array

1976:     Output Parameter:
1977: .   ierr - error code

1979:     Example of Usage:
1980: .vb
1981: #include <petsc/finclude/petscvec.h>
1982:     use petscvec

1984:     PetscScalar, pointer :: xx_v(:)
1985:     ....
1986:     call VecGetArrayF90(x,xx_v,ierr)
1987:     xx_v(3) = a
1988:     call VecRestoreArrayF90(x,xx_v,ierr)
1989: .ve

1991:     Level: beginner

1993: .seealso:  VecGetArrayF90(), VecGetArray(), VecRestoreArray(), UsingFortran, VecRestoreArrayReadF90()

1995: M*/

1997: /*MC
1998:     VecDestroyVecsF90 - Frees a block of vectors obtained with VecDuplicateVecsF90().

2000:     Synopsis:
2001:     VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)

2003:     Collective on Vec

2005:     Input Parameters:
2006: +   n - the number of vectors previously obtained
2007: -   x - pointer to array of vector pointers

2009:     Output Parameter:
2010: .   ierr - error code

2012:     Notes:
2013:     Not yet supported for all F90 compilers

2015:     Level: beginner

2017: .seealso:  VecDestroyVecs(), VecDuplicateVecsF90()

2019: M*/

2021: /*MC
2022:     VecGetArrayF90 - Accesses a vector array from Fortran90. For default PETSc
2023:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2024:     this routine is implementation dependent. You MUST call VecRestoreArrayF90()
2025:     when you no longer need access to the array.

2027:     Synopsis:
2028:     VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2030:     Logically Collective on Vec

2032:     Input Parameter:
2033: .   x - vector

2035:     Output Parameters:
2036: +   xx_v - the Fortran90 pointer to the array
2037: -   ierr - error code

2039:     Example of Usage:
2040: .vb
2041: #include <petsc/finclude/petscvec.h>
2042:     use petscvec

2044:     PetscScalar, pointer :: xx_v(:)
2045:     ....
2046:     call VecGetArrayF90(x,xx_v,ierr)
2047:     xx_v(3) = a
2048:     call VecRestoreArrayF90(x,xx_v,ierr)
2049: .ve

2051:     If you ONLY intend to read entries from the array and not change any entries you should use VecGetArrayReadF90().

2053:     Level: beginner

2055: .seealso:  VecRestoreArrayF90(), VecGetArray(), VecRestoreArray(), VecGetArrayReadF90(), UsingFortran

2057: M*/

2059:  /*MC
2060:     VecGetArrayReadF90 - Accesses a read only array from Fortran90. For default PETSc
2061:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
2062:     this routine is implementation dependent. You MUST call VecRestoreArrayReadF90()
2063:     when you no longer need access to the array.

2065:     Synopsis:
2066:     VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2068:     Logically Collective on Vec

2070:     Input Parameter:
2071: .   x - vector

2073:     Output Parameters:
2074: +   xx_v - the Fortran90 pointer to the array
2075: -   ierr - error code

2077:     Example of Usage:
2078: .vb
2079: #include <petsc/finclude/petscvec.h>
2080:     use petscvec

2082:     PetscScalar, pointer :: xx_v(:)
2083:     ....
2084:     call VecGetArrayReadF90(x,xx_v,ierr)
2085:     a = xx_v(3)
2086:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2087: .ve

2089:     If you intend to write entries into the array you must use VecGetArrayF90().

2091:     Level: beginner

2093: .seealso:  VecRestoreArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(), VecGetArrayF90(), UsingFortran

2095: M*/

2097: /*MC
2098:     VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
2099:     VecGetArrayReadF90().

2101:     Synopsis:
2102:     VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2104:     Logically Collective on Vec

2106:     Input Parameters:
2107: +   x - vector
2108: -   xx_v - the Fortran90 pointer to the array

2110:     Output Parameter:
2111: .   ierr - error code

2113:     Example of Usage:
2114: .vb
2115: #include <petsc/finclude/petscvec.h>
2116:     use petscvec

2118:     PetscScalar, pointer :: xx_v(:)
2119:     ....
2120:     call VecGetArrayReadF90(x,xx_v,ierr)
2121:     a = xx_v(3)
2122:     call VecRestoreArrayReadF90(x,xx_v,ierr)
2123: .ve

2125:     Level: beginner

2127: .seealso:  VecGetArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(),UsingFortran, VecRestoreArrayF90()

2129: M*/

2131: /*@C
2132:    VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
2133:    processor's portion of the vector data.  You MUST call VecRestoreArray2d()
2134:    when you no longer need access to the array.

2136:    Logically Collective

2138:    Input Parameter:
2139: +  x - the vector
2140: .  m - first dimension of two dimensional array
2141: .  n - second dimension of two dimensional array
2142: .  mstart - first index you will use in first coordinate direction (often 0)
2143: -  nstart - first index in the second coordinate direction (often 0)

2145:    Output Parameter:
2146: .  a - location to put pointer to the array

2148:    Level: developer

2150:   Notes:
2151:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2152:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2153:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2154:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2156:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2158:    Concepts: vector^accessing local values as 2d array

2160: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2161:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2162:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2163: @*/
2164: PetscErrorCode  VecGetArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2165: {
2167:   PetscInt       i,N;
2168:   PetscScalar    *aa;

2174:   VecGetLocalSize(x,&N);
2175:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2176:   VecGetArray(x,&aa);

2178:   PetscMalloc1(m,a);
2179:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
2180:   *a -= mstart;
2181:   return(0);
2182: }

2184: /*@C
2185:    VecRestoreArray2d - Restores a vector after VecGetArray2d() has been called.

2187:    Logically Collective

2189:    Input Parameters:
2190: +  x - the vector
2191: .  m - first dimension of two dimensional array
2192: .  n - second dimension of the two dimensional array
2193: .  mstart - first index you will use in first coordinate direction (often 0)
2194: .  nstart - first index in the second coordinate direction (often 0)
2195: -  a - location of pointer to array obtained from VecGetArray2d()

2197:    Level: developer

2199:    Notes:
2200:    For regular PETSc vectors this routine does not involve any copies. For
2201:    any special vectors that do not store local vector data in a contiguous
2202:    array, this routine will copy the data back into the underlying
2203:    vector data structure from the array obtained with VecGetArray().

2205:    This routine actually zeros out the a pointer.

2207: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2208:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2209:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2210: @*/
2211: PetscErrorCode  VecRestoreArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2212: {
2214:   void           *dummy;

2220:   dummy = (void*)(*a + mstart);
2221:   PetscFree(dummy);
2222:   VecRestoreArray(x,NULL);
2223:   return(0);
2224: }

2226: /*@C
2227:    VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
2228:    processor's portion of the vector data.  You MUST call VecRestoreArray1d()
2229:    when you no longer need access to the array.

2231:    Logically Collective

2233:    Input Parameter:
2234: +  x - the vector
2235: .  m - first dimension of two dimensional array
2236: -  mstart - first index you will use in first coordinate direction (often 0)

2238:    Output Parameter:
2239: .  a - location to put pointer to the array

2241:    Level: developer

2243:   Notes:
2244:    For a vector obtained from DMCreateLocalVector() mstart are likely
2245:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2246:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2248:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2250: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2251:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2252:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2253: @*/
2254: PetscErrorCode  VecGetArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2255: {
2257:   PetscInt       N;

2263:   VecGetLocalSize(x,&N);
2264:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2265:   VecGetArray(x,a);
2266:   *a  -= mstart;
2267:   return(0);
2268: }

2270: /*@C
2271:    VecRestoreArray1d - Restores a vector after VecGetArray1d() has been called.

2273:    Logically Collective

2275:    Input Parameters:
2276: +  x - the vector
2277: .  m - first dimension of two dimensional array
2278: .  mstart - first index you will use in first coordinate direction (often 0)
2279: -  a - location of pointer to array obtained from VecGetArray21()

2281:    Level: developer

2283:    Notes:
2284:    For regular PETSc vectors this routine does not involve any copies. For
2285:    any special vectors that do not store local vector data in a contiguous
2286:    array, this routine will copy the data back into the underlying
2287:    vector data structure from the array obtained with VecGetArray1d().

2289:    This routine actually zeros out the a pointer.

2291:    Concepts: vector^accessing local values as 1d array

2293: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2294:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2295:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2296: @*/
2297: PetscErrorCode  VecRestoreArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2298: {

2304:   VecRestoreArray(x,NULL);
2305:   return(0);
2306: }


2309: /*@C
2310:    VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
2311:    processor's portion of the vector data.  You MUST call VecRestoreArray3d()
2312:    when you no longer need access to the array.

2314:    Logically Collective

2316:    Input Parameter:
2317: +  x - the vector
2318: .  m - first dimension of three dimensional array
2319: .  n - second dimension of three dimensional array
2320: .  p - third dimension of three dimensional array
2321: .  mstart - first index you will use in first coordinate direction (often 0)
2322: .  nstart - first index in the second coordinate direction (often 0)
2323: -  pstart - first index in the third coordinate direction (often 0)

2325:    Output Parameter:
2326: .  a - location to put pointer to the array

2328:    Level: developer

2330:   Notes:
2331:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2332:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2333:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2334:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2336:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2338:    Concepts: vector^accessing local values as 3d array

2340: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2341:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2342:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2343: @*/
2344: PetscErrorCode  VecGetArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2345: {
2347:   PetscInt       i,N,j;
2348:   PetscScalar    *aa,**b;

2354:   VecGetLocalSize(x,&N);
2355:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
2356:   VecGetArray(x,&aa);

2358:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
2359:   b    = (PetscScalar**)((*a) + m);
2360:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2361:   for (i=0; i<m; i++)
2362:     for (j=0; j<n; j++)
2363:       b[i*n+j] = aa + i*n*p + j*p - pstart;

2365:   *a -= mstart;
2366:   return(0);
2367: }

2369: /*@C
2370:    VecRestoreArray3d - Restores a vector after VecGetArray3d() has been called.

2372:    Logically Collective

2374:    Input Parameters:
2375: +  x - the vector
2376: .  m - first dimension of three dimensional array
2377: .  n - second dimension of the three dimensional array
2378: .  p - third dimension of the three dimensional array
2379: .  mstart - first index you will use in first coordinate direction (often 0)
2380: .  nstart - first index in the second coordinate direction (often 0)
2381: .  pstart - first index in the third coordinate direction (often 0)
2382: -  a - location of pointer to array obtained from VecGetArray3d()

2384:    Level: developer

2386:    Notes:
2387:    For regular PETSc vectors this routine does not involve any copies. For
2388:    any special vectors that do not store local vector data in a contiguous
2389:    array, this routine will copy the data back into the underlying
2390:    vector data structure from the array obtained with VecGetArray().

2392:    This routine actually zeros out the a pointer.

2394: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2395:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2396:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2397: @*/
2398: PetscErrorCode  VecRestoreArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2399: {
2401:   void           *dummy;

2407:   dummy = (void*)(*a + mstart);
2408:   PetscFree(dummy);
2409:   VecRestoreArray(x,NULL);
2410:   return(0);
2411: }

2413: /*@C
2414:    VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
2415:    processor's portion of the vector data.  You MUST call VecRestoreArray4d()
2416:    when you no longer need access to the array.

2418:    Logically Collective

2420:    Input Parameter:
2421: +  x - the vector
2422: .  m - first dimension of four dimensional array
2423: .  n - second dimension of four dimensional array
2424: .  p - third dimension of four dimensional array
2425: .  q - fourth dimension of four dimensional array
2426: .  mstart - first index you will use in first coordinate direction (often 0)
2427: .  nstart - first index in the second coordinate direction (often 0)
2428: .  pstart - first index in the third coordinate direction (often 0)
2429: -  qstart - first index in the fourth coordinate direction (often 0)

2431:    Output Parameter:
2432: .  a - location to put pointer to the array

2434:    Level: beginner

2436:   Notes:
2437:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2438:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2439:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2440:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2442:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2444:    Concepts: vector^accessing local values as 3d array

2446: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2447:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2448:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2449: @*/
2450: PetscErrorCode  VecGetArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2451: {
2453:   PetscInt       i,N,j,k;
2454:   PetscScalar    *aa,***b,**c;

2460:   VecGetLocalSize(x,&N);
2461:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
2462:   VecGetArray(x,&aa);

2464:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
2465:   b    = (PetscScalar***)((*a) + m);
2466:   c    = (PetscScalar**)(b + m*n);
2467:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2468:   for (i=0; i<m; i++)
2469:     for (j=0; j<n; j++)
2470:       b[i*n+j] = c + i*n*p + j*p - pstart;
2471:   for (i=0; i<m; i++)
2472:     for (j=0; j<n; j++)
2473:       for (k=0; k<p; k++)
2474:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
2475:   *a -= mstart;
2476:   return(0);
2477: }

2479: /*@C
2480:    VecRestoreArray4d - Restores a vector after VecGetArray3d() has been called.

2482:    Logically Collective

2484:    Input Parameters:
2485: +  x - the vector
2486: .  m - first dimension of four dimensional array
2487: .  n - second dimension of the four dimensional array
2488: .  p - third dimension of the four dimensional array
2489: .  q - fourth dimension of the four dimensional array
2490: .  mstart - first index you will use in first coordinate direction (often 0)
2491: .  nstart - first index in the second coordinate direction (often 0)
2492: .  pstart - first index in the third coordinate direction (often 0)
2493: .  qstart - first index in the fourth coordinate direction (often 0)
2494: -  a - location of pointer to array obtained from VecGetArray4d()

2496:    Level: beginner

2498:    Notes:
2499:    For regular PETSc vectors this routine does not involve any copies. For
2500:    any special vectors that do not store local vector data in a contiguous
2501:    array, this routine will copy the data back into the underlying
2502:    vector data structure from the array obtained with VecGetArray().

2504:    This routine actually zeros out the a pointer.

2506: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2507:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2508:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2509: @*/
2510: PetscErrorCode  VecRestoreArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2511: {
2513:   void           *dummy;

2519:   dummy = (void*)(*a + mstart);
2520:   PetscFree(dummy);
2521:   VecRestoreArray(x,NULL);
2522:   return(0);
2523: }

2525: /*@C
2526:    VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
2527:    processor's portion of the vector data.  You MUST call VecRestoreArray2dRead()
2528:    when you no longer need access to the array.

2530:    Logically Collective

2532:    Input Parameter:
2533: +  x - the vector
2534: .  m - first dimension of two dimensional array
2535: .  n - second dimension of two dimensional array
2536: .  mstart - first index you will use in first coordinate direction (often 0)
2537: -  nstart - first index in the second coordinate direction (often 0)

2539:    Output Parameter:
2540: .  a - location to put pointer to the array

2542:    Level: developer

2544:   Notes:
2545:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
2546:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2547:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2548:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

2550:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2552:    Concepts: vector^accessing local values as 2d array

2554: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2555:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2556:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2557: @*/
2558: PetscErrorCode  VecGetArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2559: {
2560:   PetscErrorCode    ierr;
2561:   PetscInt          i,N;
2562:   const PetscScalar *aa;

2568:   VecGetLocalSize(x,&N);
2569:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
2570:   VecGetArrayRead(x,&aa);

2572:   PetscMalloc1(m,a);
2573:   for (i=0; i<m; i++) (*a)[i] = (PetscScalar*) aa + i*n - nstart;
2574:   *a -= mstart;
2575:   return(0);
2576: }

2578: /*@C
2579:    VecRestoreArray2dRead - Restores a vector after VecGetArray2dRead() has been called.

2581:    Logically Collective

2583:    Input Parameters:
2584: +  x - the vector
2585: .  m - first dimension of two dimensional array
2586: .  n - second dimension of the two dimensional array
2587: .  mstart - first index you will use in first coordinate direction (often 0)
2588: .  nstart - first index in the second coordinate direction (often 0)
2589: -  a - location of pointer to array obtained from VecGetArray2d()

2591:    Level: developer

2593:    Notes:
2594:    For regular PETSc vectors this routine does not involve any copies. For
2595:    any special vectors that do not store local vector data in a contiguous
2596:    array, this routine will copy the data back into the underlying
2597:    vector data structure from the array obtained with VecGetArray().

2599:    This routine actually zeros out the a pointer.

2601: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2602:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2603:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2604: @*/
2605: PetscErrorCode  VecRestoreArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
2606: {
2608:   void           *dummy;

2614:   dummy = (void*)(*a + mstart);
2615:   PetscFree(dummy);
2616:   VecRestoreArrayRead(x,NULL);
2617:   return(0);
2618: }

2620: /*@C
2621:    VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
2622:    processor's portion of the vector data.  You MUST call VecRestoreArray1dRead()
2623:    when you no longer need access to the array.

2625:    Logically Collective

2627:    Input Parameter:
2628: +  x - the vector
2629: .  m - first dimension of two dimensional array
2630: -  mstart - first index you will use in first coordinate direction (often 0)

2632:    Output Parameter:
2633: .  a - location to put pointer to the array

2635:    Level: developer

2637:   Notes:
2638:    For a vector obtained from DMCreateLocalVector() mstart are likely
2639:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2640:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

2642:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2644: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2645:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2646:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2647: @*/
2648: PetscErrorCode  VecGetArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2649: {
2651:   PetscInt       N;

2657:   VecGetLocalSize(x,&N);
2658:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
2659:   VecGetArrayRead(x,(const PetscScalar**)a);
2660:   *a  -= mstart;
2661:   return(0);
2662: }

2664: /*@C
2665:    VecRestoreArray1dRead - Restores a vector after VecGetArray1dRead() has been called.

2667:    Logically Collective

2669:    Input Parameters:
2670: +  x - the vector
2671: .  m - first dimension of two dimensional array
2672: .  mstart - first index you will use in first coordinate direction (often 0)
2673: -  a - location of pointer to array obtained from VecGetArray21()

2675:    Level: developer

2677:    Notes:
2678:    For regular PETSc vectors this routine does not involve any copies. For
2679:    any special vectors that do not store local vector data in a contiguous
2680:    array, this routine will copy the data back into the underlying
2681:    vector data structure from the array obtained with VecGetArray1dRead().

2683:    This routine actually zeros out the a pointer.

2685:    Concepts: vector^accessing local values as 1d array

2687: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2688:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2689:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
2690: @*/
2691: PetscErrorCode  VecRestoreArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
2692: {

2698:   VecRestoreArrayRead(x,NULL);
2699:   return(0);
2700: }


2703: /*@C
2704:    VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
2705:    processor's portion of the vector data.  You MUST call VecRestoreArray3dRead()
2706:    when you no longer need access to the array.

2708:    Logically Collective

2710:    Input Parameter:
2711: +  x - the vector
2712: .  m - first dimension of three dimensional array
2713: .  n - second dimension of three dimensional array
2714: .  p - third dimension of three dimensional array
2715: .  mstart - first index you will use in first coordinate direction (often 0)
2716: .  nstart - first index in the second coordinate direction (often 0)
2717: -  pstart - first index in the third coordinate direction (often 0)

2719:    Output Parameter:
2720: .  a - location to put pointer to the array

2722:    Level: developer

2724:   Notes:
2725:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2726:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2727:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2728:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3dRead().

2730:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2732:    Concepts: vector^accessing local values as 3d array

2734: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2735:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2736:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2737: @*/
2738: PetscErrorCode  VecGetArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2739: {
2740:   PetscErrorCode    ierr;
2741:   PetscInt          i,N,j;
2742:   const PetscScalar *aa;
2743:   PetscScalar       **b;

2749:   VecGetLocalSize(x,&N);
2750:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
2751:   VecGetArrayRead(x,&aa);

2753:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
2754:   b    = (PetscScalar**)((*a) + m);
2755:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2756:   for (i=0; i<m; i++)
2757:     for (j=0; j<n; j++)
2758:       b[i*n+j] = (PetscScalar *)aa + i*n*p + j*p - pstart;

2760:   *a -= mstart;
2761:   return(0);
2762: }

2764: /*@C
2765:    VecRestoreArray3dRead - Restores a vector after VecGetArray3dRead() has been called.

2767:    Logically Collective

2769:    Input Parameters:
2770: +  x - the vector
2771: .  m - first dimension of three dimensional array
2772: .  n - second dimension of the three dimensional array
2773: .  p - third dimension of the three dimensional array
2774: .  mstart - first index you will use in first coordinate direction (often 0)
2775: .  nstart - first index in the second coordinate direction (often 0)
2776: .  pstart - first index in the third coordinate direction (often 0)
2777: -  a - location of pointer to array obtained from VecGetArray3dRead()

2779:    Level: developer

2781:    Notes:
2782:    For regular PETSc vectors this routine does not involve any copies. For
2783:    any special vectors that do not store local vector data in a contiguous
2784:    array, this routine will copy the data back into the underlying
2785:    vector data structure from the array obtained with VecGetArray().

2787:    This routine actually zeros out the a pointer.

2789: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2790:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2791:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2792: @*/
2793: PetscErrorCode  VecRestoreArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
2794: {
2796:   void           *dummy;

2802:   dummy = (void*)(*a + mstart);
2803:   PetscFree(dummy);
2804:   VecRestoreArrayRead(x,NULL);
2805:   return(0);
2806: }

2808: /*@C
2809:    VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
2810:    processor's portion of the vector data.  You MUST call VecRestoreArray4dRead()
2811:    when you no longer need access to the array.

2813:    Logically Collective

2815:    Input Parameter:
2816: +  x - the vector
2817: .  m - first dimension of four dimensional array
2818: .  n - second dimension of four dimensional array
2819: .  p - third dimension of four dimensional array
2820: .  q - fourth dimension of four dimensional array
2821: .  mstart - first index you will use in first coordinate direction (often 0)
2822: .  nstart - first index in the second coordinate direction (often 0)
2823: .  pstart - first index in the third coordinate direction (often 0)
2824: -  qstart - first index in the fourth coordinate direction (often 0)

2826:    Output Parameter:
2827: .  a - location to put pointer to the array

2829:    Level: beginner

2831:   Notes:
2832:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
2833:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
2834:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
2835:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

2837:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

2839:    Concepts: vector^accessing local values as 3d array

2841: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
2842:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
2843:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
2844: @*/
2845: PetscErrorCode  VecGetArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2846: {
2847:   PetscErrorCode    ierr;
2848:   PetscInt          i,N,j,k;
2849:   const PetscScalar *aa;
2850:   PetscScalar       ***b,**c;

2856:   VecGetLocalSize(x,&N);
2857:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
2858:   VecGetArrayRead(x,&aa);

2860:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
2861:   b    = (PetscScalar***)((*a) + m);
2862:   c    = (PetscScalar**)(b + m*n);
2863:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
2864:   for (i=0; i<m; i++)
2865:     for (j=0; j<n; j++)
2866:       b[i*n+j] = c + i*n*p + j*p - pstart;
2867:   for (i=0; i<m; i++)
2868:     for (j=0; j<n; j++)
2869:       for (k=0; k<p; k++)
2870:         c[i*n*p+j*p+k] = (PetscScalar*) aa + i*n*p*q + j*p*q + k*q - qstart;
2871:   *a -= mstart;
2872:   return(0);
2873: }

2875: /*@C
2876:    VecRestoreArray4dRead - Restores a vector after VecGetArray3d() has been called.

2878:    Logically Collective

2880:    Input Parameters:
2881: +  x - the vector
2882: .  m - first dimension of four dimensional array
2883: .  n - second dimension of the four dimensional array
2884: .  p - third dimension of the four dimensional array
2885: .  q - fourth dimension of the four dimensional array
2886: .  mstart - first index you will use in first coordinate direction (often 0)
2887: .  nstart - first index in the second coordinate direction (often 0)
2888: .  pstart - first index in the third coordinate direction (often 0)
2889: .  qstart - first index in the fourth coordinate direction (often 0)
2890: -  a - location of pointer to array obtained from VecGetArray4dRead()

2892:    Level: beginner

2894:    Notes:
2895:    For regular PETSc vectors this routine does not involve any copies. For
2896:    any special vectors that do not store local vector data in a contiguous
2897:    array, this routine will copy the data back into the underlying
2898:    vector data structure from the array obtained with VecGetArray().

2900:    This routine actually zeros out the a pointer.

2902: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
2903:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
2904:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
2905: @*/
2906: PetscErrorCode  VecRestoreArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
2907: {
2909:   void           *dummy;

2915:   dummy = (void*)(*a + mstart);
2916:   PetscFree(dummy);
2917:   VecRestoreArrayRead(x,NULL);
2918:   return(0);
2919: }

2921: #if defined(PETSC_USE_DEBUG)

2923: /*@
2924:    VecLockGet  - Gets the current lock status of a vector

2926:    Logically Collective on Vec

2928:    Input Parameter:
2929: .  x - the vector

2931:    Output Parameter:
2932: .  state - greater than zero indicates the vector is still locked

2934:    Level: beginner

2936:    Concepts: vector^accessing local values

2938: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPush(), VecLockGet()
2939: @*/
2940: PetscErrorCode VecLockGet(Vec x,PetscInt *state)
2941: {
2944:   *state = x->lock;
2945:   return(0);
2946: }

2948: /*@
2949:    VecLockPush  - Lock a vector from writing

2951:    Logically Collective on Vec

2953:    Input Parameter:
2954: .  x - the vector

2956:    Notes:
2957:     If this is set then calls to VecGetArray() or VecSetValues() or any other routines that change the vectors values will fail.

2959:     Call VecLockPop() to remove the latest lock

2961:    Level: beginner

2963:    Concepts: vector^accessing local values

2965: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPop(), VecLockGet()
2966: @*/
2967: PetscErrorCode VecLockPush(Vec x)
2968: {
2971:   x->lock++;
2972:   return(0);
2973: }

2975: /*@
2976:    VecLockPop  - Unlock a vector from writing

2978:    Logically Collective on Vec

2980:    Input Parameter:
2981: .  x - the vector

2983:    Level: beginner

2985:    Concepts: vector^accessing local values

2987: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockPush(), VecLockGet()
2988: @*/
2989: PetscErrorCode VecLockPop(Vec x)
2990: {
2993:   x->lock--;
2994:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector has been unlocked too many times");
2995:   return(0);
2996: }

2998: #endif