Actual source code: ts.c
petsc-3.10.5 2019-03-28
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
7: /* Logging support */
8: PetscClassId TS_CLASSID, DMTS_CLASSID;
9: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
11: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
13: /*@C
14: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
16: Collective on TS
18: Input Parameters:
19: + ts - TS object you wish to monitor
20: . name - the monitor type one is seeking
21: . help - message indicating what monitoring is done
22: . manual - manual page for the monitor
23: . monitor - the monitor function
24: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
26: Level: developer
28: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
29: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
30: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
31: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
32: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
33: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
34: PetscOptionsFList(), PetscOptionsEList()
35: @*/
36: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
37: {
38: PetscErrorCode ierr;
39: PetscViewer viewer;
40: PetscViewerFormat format;
41: PetscBool flg;
44: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
45: if (flg) {
46: PetscViewerAndFormat *vf;
47: PetscViewerAndFormatCreate(viewer,format,&vf);
48: PetscObjectDereference((PetscObject)viewer);
49: if (monitorsetup) {
50: (*monitorsetup)(ts,vf);
51: }
52: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
53: }
54: return(0);
55: }
57: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
58: {
64: if (!((PetscObject)adapt)->type_name) {
65: TSAdaptSetType(adapt,default_type);
66: }
67: return(0);
68: }
70: /*@
71: TSSetFromOptions - Sets various TS parameters from user options.
73: Collective on TS
75: Input Parameter:
76: . ts - the TS context obtained from TSCreate()
78: Options Database Keys:
79: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
80: . -ts_save_trajectory - checkpoint the solution at each time-step
81: . -ts_max_time <time> - maximum time to compute to
82: . -ts_max_steps <steps> - maximum number of time-steps to take
83: . -ts_init_time <time> - initial time to start computation
84: . -ts_final_time <time> - final time to compute to
85: . -ts_dt <dt> - initial time step
86: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
87: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
88: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
89: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
90: . -ts_rtol <rtol> - relative tolerance for local truncation error
91: . -ts_atol <atol> Absolute tolerance for local truncation error
92: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
93: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
94: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
95: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
96: . -ts_monitor - print information at each timestep
97: . -ts_monitor_lg_solution - Monitor solution graphically
98: . -ts_monitor_lg_error - Monitor error graphically
99: . -ts_monitor_error - Monitors norm of error
100: . -ts_monitor_lg_timestep - Monitor timestep size graphically
101: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
102: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
103: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
104: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
105: . -ts_monitor_draw_solution - Monitor solution graphically
106: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
107: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
108: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
109: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
110: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
112: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
114: Level: beginner
116: .keywords: TS, timestep, set, options, database
118: .seealso: TSGetType()
119: @*/
120: PetscErrorCode TSSetFromOptions(TS ts)
121: {
122: PetscBool opt,flg,tflg;
123: PetscErrorCode ierr;
124: char monfilename[PETSC_MAX_PATH_LEN];
125: PetscReal time_step;
126: TSExactFinalTimeOption eftopt;
127: char dir[16];
128: TSIFunction ifun;
129: const char *defaultType;
130: char typeName[256];
135: TSRegisterAll();
136: TSGetIFunction(ts,NULL,&ifun,NULL);
138: PetscObjectOptionsBegin((PetscObject)ts);
139: if (((PetscObject)ts)->type_name)
140: defaultType = ((PetscObject)ts)->type_name;
141: else
142: defaultType = ifun ? TSBEULER : TSEULER;
143: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
144: if (opt) {
145: TSSetType(ts,typeName);
146: } else {
147: TSSetType(ts,defaultType);
148: }
150: /* Handle generic TS options */
151: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
152: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
153: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
154: PetscOptionsReal("-ts_final_time","Final time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
155: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
156: if (flg) {TSSetTimeStep(ts,time_step);}
157: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
158: if (flg) {TSSetExactFinalTime(ts,eftopt);}
159: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
160: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
161: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
162: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
163: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
165: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
166: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
167: #if defined(PETSC_HAVE_SAWS)
168: {
169: PetscBool set;
170: flg = PETSC_FALSE;
171: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
172: if (set) {
173: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
174: }
175: }
176: #endif
178: /* Monitor options */
179: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
180: TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
181: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
183: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
184: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
186: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
187: if (opt) {
188: TSMonitorLGCtx ctx;
189: PetscInt howoften = 1;
191: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
192: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
193: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
194: }
196: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
197: if (opt) {
198: TSMonitorLGCtx ctx;
199: PetscInt howoften = 1;
201: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
202: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
203: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
204: }
205: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
207: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
208: if (opt) {
209: TSMonitorLGCtx ctx;
210: PetscInt howoften = 1;
212: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
213: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
214: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
215: }
216: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
217: if (opt) {
218: TSMonitorLGCtx ctx;
219: PetscInt howoften = 1;
221: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
222: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
223: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
224: ctx->semilogy = PETSC_TRUE;
225: }
227: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
228: if (opt) {
229: TSMonitorLGCtx ctx;
230: PetscInt howoften = 1;
232: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
233: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
234: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
235: }
236: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
237: if (opt) {
238: TSMonitorLGCtx ctx;
239: PetscInt howoften = 1;
241: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
242: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
243: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
244: }
245: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
246: if (opt) {
247: TSMonitorSPEigCtx ctx;
248: PetscInt howoften = 1;
250: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
251: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
252: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
253: }
254: opt = PETSC_FALSE;
255: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
256: if (opt) {
257: TSMonitorDrawCtx ctx;
258: PetscInt howoften = 1;
260: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
261: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
262: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
263: }
264: opt = PETSC_FALSE;
265: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
266: if (opt) {
267: TSMonitorDrawCtx ctx;
268: PetscReal bounds[4];
269: PetscInt n = 4;
270: PetscDraw draw;
271: PetscDrawAxis axis;
273: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
274: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
275: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
276: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
277: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
278: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
279: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
280: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
281: }
282: opt = PETSC_FALSE;
283: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
284: if (opt) {
285: TSMonitorDrawCtx ctx;
286: PetscInt howoften = 1;
288: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
289: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
290: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
291: }
292: opt = PETSC_FALSE;
293: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
294: if (opt) {
295: TSMonitorDrawCtx ctx;
296: PetscInt howoften = 1;
298: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
299: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
300: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
301: }
303: opt = PETSC_FALSE;
304: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
305: if (flg) {
306: const char *ptr,*ptr2;
307: char *filetemplate;
308: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
309: /* Do some cursory validation of the input. */
310: PetscStrstr(monfilename,"%",(char**)&ptr);
311: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
312: for (ptr++; ptr && *ptr; ptr++) {
313: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
314: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
315: if (ptr2) break;
316: }
317: PetscStrallocpy(monfilename,&filetemplate);
318: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
319: }
321: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
322: if (flg) {
323: TSMonitorDMDARayCtx *rayctx;
324: int ray = 0;
325: DMDADirection ddir;
326: DM da;
327: PetscMPIInt rank;
329: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
330: if (dir[0] == 'x') ddir = DMDA_X;
331: else if (dir[0] == 'y') ddir = DMDA_Y;
332: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
333: sscanf(dir+2,"%d",&ray);
335: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
336: PetscNew(&rayctx);
337: TSGetDM(ts,&da);
338: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
339: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
340: if (!rank) {
341: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
342: }
343: rayctx->lgctx = NULL;
344: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
345: }
346: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
347: if (flg) {
348: TSMonitorDMDARayCtx *rayctx;
349: int ray = 0;
350: DMDADirection ddir;
351: DM da;
352: PetscInt howoften = 1;
354: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
355: if (dir[0] == 'x') ddir = DMDA_X;
356: else if (dir[0] == 'y') ddir = DMDA_Y;
357: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
358: sscanf(dir+2, "%d", &ray);
360: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
361: PetscNew(&rayctx);
362: TSGetDM(ts, &da);
363: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
364: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
365: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
366: }
368: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
369: if (opt) {
370: TSMonitorEnvelopeCtx ctx;
372: TSMonitorEnvelopeCtxCreate(ts,&ctx);
373: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
374: }
376: flg = PETSC_FALSE;
377: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
378: if (flg) {
379: DM dm;
380: DMTS tdm;
382: TSGetDM(ts, &dm);
383: DMGetDMTS(dm, &tdm);
384: tdm->ijacobianctx = NULL;
385: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
386: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
387: }
389: /* Handle specific TS options */
390: if (ts->ops->setfromoptions) {
391: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
392: }
394: /* Handle TSAdapt options */
395: TSGetAdapt(ts,&ts->adapt);
396: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
397: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
399: /* TS trajectory must be set after TS, since it may use some TS options above */
400: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
401: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
402: if (tflg) {
403: TSSetSaveTrajectory(ts);
404: }
406: TSAdjointSetFromOptions(PetscOptionsObject,ts);
408: /* process any options handlers added with PetscObjectAddOptionsHandler() */
409: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
410: PetscOptionsEnd();
412: if (ts->trajectory) {
413: TSTrajectorySetFromOptions(ts->trajectory,ts);
414: }
416: TSGetSNES(ts,&ts->snes);
417: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
418: SNESSetFromOptions(ts->snes);
419: return(0);
420: }
422: /*@
423: TSGetTrajectory - Gets the trajectory from a TS if it exists
425: Collective on TS
427: Input Parameters:
428: . ts - the TS context obtained from TSCreate()
430: Output Parameters;
431: . tr - the TSTrajectory object, if it exists
433: Note: This routine should be called after all TS options have been set
435: Level: advanced
437: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
439: .keywords: TS, set, checkpoint,
440: @*/
441: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
442: {
445: *tr = ts->trajectory;
446: return(0);
447: }
449: /*@
450: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
452: Collective on TS
454: Input Parameters:
455: . ts - the TS context obtained from TSCreate()
457: Options Database:
458: + -ts_save_trajectory - saves the trajectory to a file
459: - -ts_trajectory_type type
461: Note: This routine should be called after all TS options have been set
463: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
464: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
466: Level: intermediate
468: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectoryType, TSSetTrajectoryType()
470: .keywords: TS, set, checkpoint,
471: @*/
472: PetscErrorCode TSSetSaveTrajectory(TS ts)
473: {
478: if (!ts->trajectory) {
479: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
480: }
481: return(0);
482: }
484: /*@
485: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
486: set with TSSetRHSJacobian().
488: Collective on TS and Vec
490: Input Parameters:
491: + ts - the TS context
492: . t - current timestep
493: - U - input vector
495: Output Parameters:
496: + A - Jacobian matrix
497: . B - optional preconditioning matrix
498: - flag - flag indicating matrix structure
500: Notes:
501: Most users should not need to explicitly call this routine, as it
502: is used internally within the nonlinear solvers.
504: See KSPSetOperators() for important information about setting the
505: flag parameter.
507: Level: developer
509: .keywords: SNES, compute, Jacobian, matrix
511: .seealso: TSSetRHSJacobian(), KSPSetOperators()
512: @*/
513: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
514: {
515: PetscErrorCode ierr;
516: PetscObjectState Ustate;
517: PetscObjectId Uid;
518: DM dm;
519: DMTS tsdm;
520: TSRHSJacobian rhsjacobianfunc;
521: void *ctx;
522: TSIJacobian ijacobianfunc;
523: TSRHSFunction rhsfunction;
529: TSGetDM(ts,&dm);
530: DMGetDMTS(dm,&tsdm);
531: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
532: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
533: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
534: PetscObjectStateGet((PetscObject)U,&Ustate);
535: PetscObjectGetId((PetscObject)U,&Uid);
536: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
537: return(0);
538: }
540: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
542: if (ts->rhsjacobian.reuse) {
543: MatShift(A,-ts->rhsjacobian.shift);
544: MatScale(A,1./ts->rhsjacobian.scale);
545: if (B && A != B) {
546: MatShift(B,-ts->rhsjacobian.shift);
547: MatScale(B,1./ts->rhsjacobian.scale);
548: }
549: ts->rhsjacobian.shift = 0;
550: ts->rhsjacobian.scale = 1.;
551: }
553: if (rhsjacobianfunc) {
554: PetscBool missing;
555: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
556: PetscStackPush("TS user Jacobian function");
557: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
558: PetscStackPop;
559: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
560: if (A) {
561: MatMissingDiagonal(A,&missing,NULL);
562: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
563: }
564: if (B && B != A) {
565: MatMissingDiagonal(B,&missing,NULL);
566: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
567: }
568: } else {
569: MatZeroEntries(A);
570: if (A != B) {MatZeroEntries(B);}
571: }
572: ts->rhsjacobian.time = t;
573: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
574: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
575: return(0);
576: }
578: /*@
579: TSComputeRHSFunction - Evaluates the right-hand-side function.
581: Collective on TS and Vec
583: Input Parameters:
584: + ts - the TS context
585: . t - current time
586: - U - state vector
588: Output Parameter:
589: . y - right hand side
591: Note:
592: Most users should not need to explicitly call this routine, as it
593: is used internally within the nonlinear solvers.
595: Level: developer
597: .keywords: TS, compute
599: .seealso: TSSetRHSFunction(), TSComputeIFunction()
600: @*/
601: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
602: {
604: TSRHSFunction rhsfunction;
605: TSIFunction ifunction;
606: void *ctx;
607: DM dm;
613: TSGetDM(ts,&dm);
614: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
615: DMTSGetIFunction(dm,&ifunction,NULL);
617: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
619: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
620: if (rhsfunction) {
621: PetscStackPush("TS user right-hand-side function");
622: (*rhsfunction)(ts,t,U,y,ctx);
623: PetscStackPop;
624: } else {
625: VecZeroEntries(y);
626: }
628: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
629: return(0);
630: }
632: /*@
633: TSComputeSolutionFunction - Evaluates the solution function.
635: Collective on TS and Vec
637: Input Parameters:
638: + ts - the TS context
639: - t - current time
641: Output Parameter:
642: . U - the solution
644: Note:
645: Most users should not need to explicitly call this routine, as it
646: is used internally within the nonlinear solvers.
648: Level: developer
650: .keywords: TS, compute
652: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
653: @*/
654: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
655: {
656: PetscErrorCode ierr;
657: TSSolutionFunction solutionfunction;
658: void *ctx;
659: DM dm;
664: TSGetDM(ts,&dm);
665: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
667: if (solutionfunction) {
668: PetscStackPush("TS user solution function");
669: (*solutionfunction)(ts,t,U,ctx);
670: PetscStackPop;
671: }
672: return(0);
673: }
674: /*@
675: TSComputeForcingFunction - Evaluates the forcing function.
677: Collective on TS and Vec
679: Input Parameters:
680: + ts - the TS context
681: - t - current time
683: Output Parameter:
684: . U - the function value
686: Note:
687: Most users should not need to explicitly call this routine, as it
688: is used internally within the nonlinear solvers.
690: Level: developer
692: .keywords: TS, compute
694: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
695: @*/
696: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
697: {
698: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
699: void *ctx;
700: DM dm;
705: TSGetDM(ts,&dm);
706: DMTSGetForcingFunction(dm,&forcing,&ctx);
708: if (forcing) {
709: PetscStackPush("TS user forcing function");
710: (*forcing)(ts,t,U,ctx);
711: PetscStackPop;
712: }
713: return(0);
714: }
716: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
717: {
718: Vec F;
722: *Frhs = NULL;
723: TSGetIFunction(ts,&F,NULL,NULL);
724: if (!ts->Frhs) {
725: VecDuplicate(F,&ts->Frhs);
726: }
727: *Frhs = ts->Frhs;
728: return(0);
729: }
731: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
732: {
733: Mat A,B;
735: TSIJacobian ijacobian;
738: if (Arhs) *Arhs = NULL;
739: if (Brhs) *Brhs = NULL;
740: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
741: if (Arhs) {
742: if (!ts->Arhs) {
743: if (ijacobian) {
744: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
745: } else {
746: ts->Arhs = A;
747: PetscObjectReference((PetscObject)A);
748: }
749: } else {
750: PetscBool flg;
751: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
752: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
753: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
754: PetscObjectDereference((PetscObject)ts->Arhs);
755: ts->Arhs = A;
756: PetscObjectReference((PetscObject)A);
757: }
758: }
759: *Arhs = ts->Arhs;
760: }
761: if (Brhs) {
762: if (!ts->Brhs) {
763: if (A != B) {
764: if (ijacobian) {
765: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
766: } else {
767: ts->Brhs = B;
768: PetscObjectReference((PetscObject)B);
769: }
770: } else {
771: PetscObjectReference((PetscObject)ts->Arhs);
772: ts->Brhs = ts->Arhs;
773: }
774: }
775: *Brhs = ts->Brhs;
776: }
777: return(0);
778: }
780: /*@
781: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
783: Collective on TS and Vec
785: Input Parameters:
786: + ts - the TS context
787: . t - current time
788: . U - state vector
789: . Udot - time derivative of state vector
790: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
792: Output Parameter:
793: . Y - right hand side
795: Note:
796: Most users should not need to explicitly call this routine, as it
797: is used internally within the nonlinear solvers.
799: If the user did did not write their equations in implicit form, this
800: function recasts them in implicit form.
802: Level: developer
804: .keywords: TS, compute
806: .seealso: TSSetIFunction(), TSComputeRHSFunction()
807: @*/
808: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
809: {
811: TSIFunction ifunction;
812: TSRHSFunction rhsfunction;
813: void *ctx;
814: DM dm;
822: TSGetDM(ts,&dm);
823: DMTSGetIFunction(dm,&ifunction,&ctx);
824: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
826: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
828: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
829: if (ifunction) {
830: PetscStackPush("TS user implicit function");
831: (*ifunction)(ts,t,U,Udot,Y,ctx);
832: PetscStackPop;
833: }
834: if (imex) {
835: if (!ifunction) {
836: VecCopy(Udot,Y);
837: }
838: } else if (rhsfunction) {
839: if (ifunction) {
840: Vec Frhs;
841: TSGetRHSVec_Private(ts,&Frhs);
842: TSComputeRHSFunction(ts,t,U,Frhs);
843: VecAXPY(Y,-1,Frhs);
844: } else {
845: TSComputeRHSFunction(ts,t,U,Y);
846: VecAYPX(Y,-1,Udot);
847: }
848: }
849: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
850: return(0);
851: }
853: /*@
854: TSComputeIJacobian - Evaluates the Jacobian of the DAE
856: Collective on TS and Vec
858: Input
859: Input Parameters:
860: + ts - the TS context
861: . t - current timestep
862: . U - state vector
863: . Udot - time derivative of state vector
864: . shift - shift to apply, see note below
865: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
867: Output Parameters:
868: + A - Jacobian matrix
869: - B - matrix from which the preconditioner is constructed; often the same as A
871: Notes:
872: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
874: dF/dU + shift*dF/dUdot
876: Most users should not need to explicitly call this routine, as it
877: is used internally within the nonlinear solvers.
879: Level: developer
881: .keywords: TS, compute, Jacobian, matrix
883: .seealso: TSSetIJacobian()
884: @*/
885: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
886: {
888: TSIJacobian ijacobian;
889: TSRHSJacobian rhsjacobian;
890: DM dm;
891: void *ctx;
902: TSGetDM(ts,&dm);
903: DMTSGetIJacobian(dm,&ijacobian,&ctx);
904: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
906: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
908: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
909: if (ijacobian) {
910: PetscBool missing;
911: PetscStackPush("TS user implicit Jacobian");
912: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
913: PetscStackPop;
914: MatMissingDiagonal(A,&missing,NULL);
915: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
916: if (B != A) {
917: MatMissingDiagonal(B,&missing,NULL);
918: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
919: }
920: }
921: if (imex) {
922: if (!ijacobian) { /* system was written as Udot = G(t,U) */
923: PetscBool assembled;
924: MatZeroEntries(A);
925: MatAssembled(A,&assembled);
926: if (!assembled) {
927: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
928: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
929: }
930: MatShift(A,shift);
931: if (A != B) {
932: MatZeroEntries(B);
933: MatAssembled(B,&assembled);
934: if (!assembled) {
935: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
936: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
937: }
938: MatShift(B,shift);
939: }
940: }
941: } else {
942: Mat Arhs = NULL,Brhs = NULL;
943: if (rhsjacobian) {
944: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
945: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
946: }
947: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
948: PetscBool flg;
949: ts->rhsjacobian.scale = -1;
950: ts->rhsjacobian.shift = shift;
951: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
952: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
953: if (!flg) {
954: MatScale(A,-1);
955: MatShift(A,shift);
956: }
957: if (A != B) {
958: MatScale(B,-1);
959: MatShift(B,shift);
960: }
961: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
962: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
963: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
964: MatZeroEntries(A);
965: MatShift(A,shift);
966: if (A != B) {
967: MatZeroEntries(B);
968: MatShift(B,shift);
969: }
970: }
971: MatAXPY(A,-1,Arhs,axpy);
972: if (A != B) {
973: MatAXPY(B,-1,Brhs,axpy);
974: }
975: }
976: }
977: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
978: return(0);
979: }
981: /*@C
982: TSSetRHSFunction - Sets the routine for evaluating the function,
983: where U_t = G(t,u).
985: Logically Collective on TS
987: Input Parameters:
988: + ts - the TS context obtained from TSCreate()
989: . r - vector to put the computed right hand side (or NULL to have it created)
990: . f - routine for evaluating the right-hand-side function
991: - ctx - [optional] user-defined context for private data for the
992: function evaluation routine (may be NULL)
994: Calling sequence of func:
995: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
997: + t - current timestep
998: . u - input vector
999: . F - function vector
1000: - ctx - [optional] user-defined function context
1002: Level: beginner
1004: Notes:
1005: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1007: .keywords: TS, timestep, set, right-hand-side, function
1009: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1010: @*/
1011: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1012: {
1014: SNES snes;
1015: Vec ralloc = NULL;
1016: DM dm;
1022: TSGetDM(ts,&dm);
1023: DMTSSetRHSFunction(dm,f,ctx);
1024: TSGetSNES(ts,&snes);
1025: if (!r && !ts->dm && ts->vec_sol) {
1026: VecDuplicate(ts->vec_sol,&ralloc);
1027: r = ralloc;
1028: }
1029: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1030: VecDestroy(&ralloc);
1031: return(0);
1032: }
1034: /*@C
1035: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1037: Logically Collective on TS
1039: Input Parameters:
1040: + ts - the TS context obtained from TSCreate()
1041: . f - routine for evaluating the solution
1042: - ctx - [optional] user-defined context for private data for the
1043: function evaluation routine (may be NULL)
1045: Calling sequence of func:
1046: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1048: + t - current timestep
1049: . u - output vector
1050: - ctx - [optional] user-defined function context
1052: Options Database:
1053: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1054: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1056: Notes:
1057: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1058: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1059: create closed-form solutions with non-physical forcing terms.
1061: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1063: Level: beginner
1065: .keywords: TS, timestep, set, right-hand-side, function
1067: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1068: @*/
1069: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1070: {
1072: DM dm;
1076: TSGetDM(ts,&dm);
1077: DMTSSetSolutionFunction(dm,f,ctx);
1078: return(0);
1079: }
1081: /*@C
1082: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1084: Logically Collective on TS
1086: Input Parameters:
1087: + ts - the TS context obtained from TSCreate()
1088: . func - routine for evaluating the forcing function
1089: - ctx - [optional] user-defined context for private data for the
1090: function evaluation routine (may be NULL)
1092: Calling sequence of func:
1093: $ func (TS ts,PetscReal t,Vec f,void *ctx);
1095: + t - current timestep
1096: . f - output vector
1097: - ctx - [optional] user-defined function context
1099: Notes:
1100: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1101: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1102: definition of the problem you are solving and hence possibly introducing bugs.
1104: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1106: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1107: parameters can be passed in the ctx variable.
1109: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1111: Level: beginner
1113: .keywords: TS, timestep, set, right-hand-side, function
1115: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1116: @*/
1117: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1118: {
1120: DM dm;
1124: TSGetDM(ts,&dm);
1125: DMTSSetForcingFunction(dm,func,ctx);
1126: return(0);
1127: }
1129: /*@C
1130: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1131: where U_t = G(U,t), as well as the location to store the matrix.
1133: Logically Collective on TS
1135: Input Parameters:
1136: + ts - the TS context obtained from TSCreate()
1137: . Amat - (approximate) Jacobian matrix
1138: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1139: . f - the Jacobian evaluation routine
1140: - ctx - [optional] user-defined context for private data for the
1141: Jacobian evaluation routine (may be NULL)
1143: Calling sequence of f:
1144: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1146: + t - current timestep
1147: . u - input vector
1148: . Amat - (approximate) Jacobian matrix
1149: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1150: - ctx - [optional] user-defined context for matrix evaluation routine
1152: Notes:
1153: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1155: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1156: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1158: Level: beginner
1160: .keywords: TS, timestep, set, right-hand-side, Jacobian
1162: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1164: @*/
1165: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1166: {
1168: SNES snes;
1169: DM dm;
1170: TSIJacobian ijacobian;
1179: TSGetDM(ts,&dm);
1180: DMTSSetRHSJacobian(dm,f,ctx);
1181: if (f == TSComputeRHSJacobianConstant) {
1182: /* Handle this case automatically for the user; otherwise user should call themselves. */
1183: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1184: }
1185: DMTSGetIJacobian(dm,&ijacobian,NULL);
1186: TSGetSNES(ts,&snes);
1187: if (!ijacobian) {
1188: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1189: }
1190: if (Amat) {
1191: PetscObjectReference((PetscObject)Amat);
1192: MatDestroy(&ts->Arhs);
1193: ts->Arhs = Amat;
1194: }
1195: if (Pmat) {
1196: PetscObjectReference((PetscObject)Pmat);
1197: MatDestroy(&ts->Brhs);
1198: ts->Brhs = Pmat;
1199: }
1200: return(0);
1201: }
1203: /*@C
1204: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1206: Logically Collective on TS
1208: Input Parameters:
1209: + ts - the TS context obtained from TSCreate()
1210: . r - vector to hold the residual (or NULL to have it created internally)
1211: . f - the function evaluation routine
1212: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1214: Calling sequence of f:
1215: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1217: + t - time at step/stage being solved
1218: . u - state vector
1219: . u_t - time derivative of state vector
1220: . F - function vector
1221: - ctx - [optional] user-defined context for matrix evaluation routine
1223: Important:
1224: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1226: Level: beginner
1228: .keywords: TS, timestep, set, DAE, Jacobian
1230: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1231: @*/
1232: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1233: {
1235: SNES snes;
1236: Vec ralloc = NULL;
1237: DM dm;
1243: TSGetDM(ts,&dm);
1244: DMTSSetIFunction(dm,f,ctx);
1246: TSGetSNES(ts,&snes);
1247: if (!r && !ts->dm && ts->vec_sol) {
1248: VecDuplicate(ts->vec_sol,&ralloc);
1249: r = ralloc;
1250: }
1251: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1252: VecDestroy(&ralloc);
1253: return(0);
1254: }
1256: /*@C
1257: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1259: Not Collective
1261: Input Parameter:
1262: . ts - the TS context
1264: Output Parameter:
1265: + r - vector to hold residual (or NULL)
1266: . func - the function to compute residual (or NULL)
1267: - ctx - the function context (or NULL)
1269: Level: advanced
1271: .keywords: TS, nonlinear, get, function
1273: .seealso: TSSetIFunction(), SNESGetFunction()
1274: @*/
1275: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1276: {
1278: SNES snes;
1279: DM dm;
1283: TSGetSNES(ts,&snes);
1284: SNESGetFunction(snes,r,NULL,NULL);
1285: TSGetDM(ts,&dm);
1286: DMTSGetIFunction(dm,func,ctx);
1287: return(0);
1288: }
1290: /*@C
1291: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1293: Not Collective
1295: Input Parameter:
1296: . ts - the TS context
1298: Output Parameter:
1299: + r - vector to hold computed right hand side (or NULL)
1300: . func - the function to compute right hand side (or NULL)
1301: - ctx - the function context (or NULL)
1303: Level: advanced
1305: .keywords: TS, nonlinear, get, function
1307: .seealso: TSSetRHSFunction(), SNESGetFunction()
1308: @*/
1309: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1310: {
1312: SNES snes;
1313: DM dm;
1317: TSGetSNES(ts,&snes);
1318: SNESGetFunction(snes,r,NULL,NULL);
1319: TSGetDM(ts,&dm);
1320: DMTSGetRHSFunction(dm,func,ctx);
1321: return(0);
1322: }
1324: /*@C
1325: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1326: provided with TSSetIFunction().
1328: Logically Collective on TS
1330: Input Parameters:
1331: + ts - the TS context obtained from TSCreate()
1332: . Amat - (approximate) Jacobian matrix
1333: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1334: . f - the Jacobian evaluation routine
1335: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1337: Calling sequence of f:
1338: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1340: + t - time at step/stage being solved
1341: . U - state vector
1342: . U_t - time derivative of state vector
1343: . a - shift
1344: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1345: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1346: - ctx - [optional] user-defined context for matrix evaluation routine
1348: Notes:
1349: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1351: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1352: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1354: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1355: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1356: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1357: a and vector W depend on the integration method, step size, and past states. For example with
1358: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1359: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1361: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1363: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1364: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1366: Level: beginner
1368: .keywords: TS, timestep, DAE, Jacobian
1370: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1372: @*/
1373: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1374: {
1376: SNES snes;
1377: DM dm;
1386: TSGetDM(ts,&dm);
1387: DMTSSetIJacobian(dm,f,ctx);
1389: TSGetSNES(ts,&snes);
1390: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1391: return(0);
1392: }
1394: /*@
1395: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1396: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1397: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1398: not been changed by the TS.
1400: Logically Collective
1402: Input Arguments:
1403: + ts - TS context obtained from TSCreate()
1404: - reuse - PETSC_TRUE if the RHS Jacobian
1406: Level: intermediate
1408: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1409: @*/
1410: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1411: {
1413: ts->rhsjacobian.reuse = reuse;
1414: return(0);
1415: }
1417: /*@C
1418: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1420: Logically Collective on TS
1422: Input Parameters:
1423: + ts - the TS context obtained from TSCreate()
1424: . F - vector to hold the residual (or NULL to have it created internally)
1425: . fun - the function evaluation routine
1426: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1428: Calling sequence of fun:
1429: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1431: + t - time at step/stage being solved
1432: . U - state vector
1433: . U_t - time derivative of state vector
1434: . U_tt - second time derivative of state vector
1435: . F - function vector
1436: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1438: Level: beginner
1440: .keywords: TS, timestep, set, ODE, DAE, Function
1442: .seealso: TSSetI2Jacobian()
1443: @*/
1444: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1445: {
1446: DM dm;
1452: TSSetIFunction(ts,F,NULL,NULL);
1453: TSGetDM(ts,&dm);
1454: DMTSSetI2Function(dm,fun,ctx);
1455: return(0);
1456: }
1458: /*@C
1459: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1461: Not Collective
1463: Input Parameter:
1464: . ts - the TS context
1466: Output Parameter:
1467: + r - vector to hold residual (or NULL)
1468: . fun - the function to compute residual (or NULL)
1469: - ctx - the function context (or NULL)
1471: Level: advanced
1473: .keywords: TS, nonlinear, get, function
1475: .seealso: TSSetI2Function(), SNESGetFunction()
1476: @*/
1477: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1478: {
1480: SNES snes;
1481: DM dm;
1485: TSGetSNES(ts,&snes);
1486: SNESGetFunction(snes,r,NULL,NULL);
1487: TSGetDM(ts,&dm);
1488: DMTSGetI2Function(dm,fun,ctx);
1489: return(0);
1490: }
1492: /*@C
1493: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1494: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1496: Logically Collective on TS
1498: Input Parameters:
1499: + ts - the TS context obtained from TSCreate()
1500: . J - Jacobian matrix
1501: . P - preconditioning matrix for J (may be same as J)
1502: . jac - the Jacobian evaluation routine
1503: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1505: Calling sequence of jac:
1506: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1508: + t - time at step/stage being solved
1509: . U - state vector
1510: . U_t - time derivative of state vector
1511: . U_tt - second time derivative of state vector
1512: . v - shift for U_t
1513: . a - shift for U_tt
1514: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1515: . P - preconditioning matrix for J, may be same as J
1516: - ctx - [optional] user-defined context for matrix evaluation routine
1518: Notes:
1519: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1521: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1522: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1523: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1524: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1526: Level: beginner
1528: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1530: .seealso: TSSetI2Function()
1531: @*/
1532: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1533: {
1534: DM dm;
1541: TSSetIJacobian(ts,J,P,NULL,NULL);
1542: TSGetDM(ts,&dm);
1543: DMTSSetI2Jacobian(dm,jac,ctx);
1544: return(0);
1545: }
1547: /*@C
1548: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1550: Not Collective, but parallel objects are returned if TS is parallel
1552: Input Parameter:
1553: . ts - The TS context obtained from TSCreate()
1555: Output Parameters:
1556: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1557: . P - The matrix from which the preconditioner is constructed, often the same as J
1558: . jac - The function to compute the Jacobian matrices
1559: - ctx - User-defined context for Jacobian evaluation routine
1561: Notes:
1562: You can pass in NULL for any return argument you do not need.
1564: Level: advanced
1566: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
1568: .keywords: TS, timestep, get, matrix, Jacobian
1569: @*/
1570: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1571: {
1573: SNES snes;
1574: DM dm;
1577: TSGetSNES(ts,&snes);
1578: SNESSetUpMatrices(snes);
1579: SNESGetJacobian(snes,J,P,NULL,NULL);
1580: TSGetDM(ts,&dm);
1581: DMTSGetI2Jacobian(dm,jac,ctx);
1582: return(0);
1583: }
1585: /*@
1586: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1588: Collective on TS and Vec
1590: Input Parameters:
1591: + ts - the TS context
1592: . t - current time
1593: . U - state vector
1594: . V - time derivative of state vector (U_t)
1595: - A - second time derivative of state vector (U_tt)
1597: Output Parameter:
1598: . F - the residual vector
1600: Note:
1601: Most users should not need to explicitly call this routine, as it
1602: is used internally within the nonlinear solvers.
1604: Level: developer
1606: .keywords: TS, compute, function, vector
1608: .seealso: TSSetI2Function()
1609: @*/
1610: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1611: {
1612: DM dm;
1613: TSI2Function I2Function;
1614: void *ctx;
1615: TSRHSFunction rhsfunction;
1625: TSGetDM(ts,&dm);
1626: DMTSGetI2Function(dm,&I2Function,&ctx);
1627: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1629: if (!I2Function) {
1630: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1631: return(0);
1632: }
1634: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1636: PetscStackPush("TS user implicit function");
1637: I2Function(ts,t,U,V,A,F,ctx);
1638: PetscStackPop;
1640: if (rhsfunction) {
1641: Vec Frhs;
1642: TSGetRHSVec_Private(ts,&Frhs);
1643: TSComputeRHSFunction(ts,t,U,Frhs);
1644: VecAXPY(F,-1,Frhs);
1645: }
1647: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1648: return(0);
1649: }
1651: /*@
1652: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1654: Collective on TS and Vec
1656: Input Parameters:
1657: + ts - the TS context
1658: . t - current timestep
1659: . U - state vector
1660: . V - time derivative of state vector
1661: . A - second time derivative of state vector
1662: . shiftV - shift to apply, see note below
1663: - shiftA - shift to apply, see note below
1665: Output Parameters:
1666: + J - Jacobian matrix
1667: - P - optional preconditioning matrix
1669: Notes:
1670: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1672: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1674: Most users should not need to explicitly call this routine, as it
1675: is used internally within the nonlinear solvers.
1677: Level: developer
1679: .keywords: TS, compute, Jacobian, matrix
1681: .seealso: TSSetI2Jacobian()
1682: @*/
1683: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1684: {
1685: DM dm;
1686: TSI2Jacobian I2Jacobian;
1687: void *ctx;
1688: TSRHSJacobian rhsjacobian;
1699: TSGetDM(ts,&dm);
1700: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1701: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1703: if (!I2Jacobian) {
1704: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1705: return(0);
1706: }
1708: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1710: PetscStackPush("TS user implicit Jacobian");
1711: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1712: PetscStackPop;
1714: if (rhsjacobian) {
1715: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1716: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1717: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1718: MatAXPY(J,-1,Jrhs,axpy);
1719: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1720: }
1722: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1723: return(0);
1724: }
1726: /*@
1727: TS2SetSolution - Sets the initial solution and time derivative vectors
1728: for use by the TS routines handling second order equations.
1730: Logically Collective on TS and Vec
1732: Input Parameters:
1733: + ts - the TS context obtained from TSCreate()
1734: . u - the solution vector
1735: - v - the time derivative vector
1737: Level: beginner
1739: .keywords: TS, timestep, set, solution, initial conditions
1740: @*/
1741: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1742: {
1749: TSSetSolution(ts,u);
1750: PetscObjectReference((PetscObject)v);
1751: VecDestroy(&ts->vec_dot);
1752: ts->vec_dot = v;
1753: return(0);
1754: }
1756: /*@
1757: TS2GetSolution - Returns the solution and time derivative at the present timestep
1758: for second order equations. It is valid to call this routine inside the function
1759: that you are evaluating in order to move to the new timestep. This vector not
1760: changed until the solution at the next timestep has been calculated.
1762: Not Collective, but Vec returned is parallel if TS is parallel
1764: Input Parameter:
1765: . ts - the TS context obtained from TSCreate()
1767: Output Parameter:
1768: + u - the vector containing the solution
1769: - v - the vector containing the time derivative
1771: Level: intermediate
1773: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1775: .keywords: TS, timestep, get, solution
1776: @*/
1777: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1778: {
1783: if (u) *u = ts->vec_sol;
1784: if (v) *v = ts->vec_dot;
1785: return(0);
1786: }
1788: /*@C
1789: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1791: Collective on PetscViewer
1793: Input Parameters:
1794: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1795: some related function before a call to TSLoad().
1796: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1798: Level: intermediate
1800: Notes:
1801: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1803: Notes for advanced users:
1804: Most users should not need to know the details of the binary storage
1805: format, since TSLoad() and TSView() completely hide these details.
1806: But for anyone who's interested, the standard binary matrix storage
1807: format is
1808: .vb
1809: has not yet been determined
1810: .ve
1812: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1813: @*/
1814: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1815: {
1817: PetscBool isbinary;
1818: PetscInt classid;
1819: char type[256];
1820: DMTS sdm;
1821: DM dm;
1826: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1827: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1829: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1830: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1831: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1832: TSSetType(ts, type);
1833: if (ts->ops->load) {
1834: (*ts->ops->load)(ts,viewer);
1835: }
1836: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1837: DMLoad(dm,viewer);
1838: TSSetDM(ts,dm);
1839: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1840: VecLoad(ts->vec_sol,viewer);
1841: DMGetDMTS(ts->dm,&sdm);
1842: DMTSLoad(sdm,viewer);
1843: return(0);
1844: }
1846: #include <petscdraw.h>
1847: #if defined(PETSC_HAVE_SAWS)
1848: #include <petscviewersaws.h>
1849: #endif
1850: /*@C
1851: TSView - Prints the TS data structure.
1853: Collective on TS
1855: Input Parameters:
1856: + ts - the TS context obtained from TSCreate()
1857: - viewer - visualization context
1859: Options Database Key:
1860: . -ts_view - calls TSView() at end of TSStep()
1862: Notes:
1863: The available visualization contexts include
1864: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1865: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1866: output where only the first processor opens
1867: the file. All other processors send their
1868: data to the first processor to print.
1870: The user can open an alternative visualization context with
1871: PetscViewerASCIIOpen() - output to a specified file.
1873: Level: beginner
1875: .keywords: TS, timestep, view
1877: .seealso: PetscViewerASCIIOpen()
1878: @*/
1879: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1880: {
1882: TSType type;
1883: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1884: DMTS sdm;
1885: #if defined(PETSC_HAVE_SAWS)
1886: PetscBool issaws;
1887: #endif
1891: if (!viewer) {
1892: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1893: }
1897: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1898: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1899: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1900: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1901: #if defined(PETSC_HAVE_SAWS)
1902: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1903: #endif
1904: if (iascii) {
1905: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1906: if (ts->ops->view) {
1907: PetscViewerASCIIPushTab(viewer);
1908: (*ts->ops->view)(ts,viewer);
1909: PetscViewerASCIIPopTab(viewer);
1910: }
1911: if (ts->max_steps < PETSC_MAX_INT) {
1912: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1913: }
1914: if (ts->max_time < PETSC_MAX_REAL) {
1915: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1916: }
1917: if (ts->usessnes) {
1918: PetscBool lin;
1919: if (ts->problem_type == TS_NONLINEAR) {
1920: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1921: }
1922: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1923: PetscObjectTypeCompare((PetscObject)ts->snes,SNESKSPONLY,&lin);
1924: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
1925: }
1926: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1927: if (ts->vrtol) {
1928: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
1929: } else {
1930: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
1931: }
1932: if (ts->vatol) {
1933: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
1934: } else {
1935: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
1936: }
1937: PetscViewerASCIIPushTab(viewer);
1938: TSAdaptView(ts->adapt,viewer);
1939: PetscViewerASCIIPopTab(viewer);
1940: if (ts->snes && ts->usessnes) {
1941: PetscViewerASCIIPushTab(viewer);
1942: SNESView(ts->snes,viewer);
1943: PetscViewerASCIIPopTab(viewer);
1944: }
1945: DMGetDMTS(ts->dm,&sdm);
1946: DMTSView(sdm,viewer);
1947: } else if (isstring) {
1948: TSGetType(ts,&type);
1949: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1950: } else if (isbinary) {
1951: PetscInt classid = TS_FILE_CLASSID;
1952: MPI_Comm comm;
1953: PetscMPIInt rank;
1954: char type[256];
1956: PetscObjectGetComm((PetscObject)ts,&comm);
1957: MPI_Comm_rank(comm,&rank);
1958: if (!rank) {
1959: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1960: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1961: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1962: }
1963: if (ts->ops->view) {
1964: (*ts->ops->view)(ts,viewer);
1965: }
1966: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1967: DMView(ts->dm,viewer);
1968: VecView(ts->vec_sol,viewer);
1969: DMGetDMTS(ts->dm,&sdm);
1970: DMTSView(sdm,viewer);
1971: } else if (isdraw) {
1972: PetscDraw draw;
1973: char str[36];
1974: PetscReal x,y,bottom,h;
1976: PetscViewerDrawGetDraw(viewer,0,&draw);
1977: PetscDrawGetCurrentPoint(draw,&x,&y);
1978: PetscStrcpy(str,"TS: ");
1979: PetscStrcat(str,((PetscObject)ts)->type_name);
1980: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1981: bottom = y - h;
1982: PetscDrawPushCurrentPoint(draw,x,bottom);
1983: if (ts->ops->view) {
1984: (*ts->ops->view)(ts,viewer);
1985: }
1986: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1987: if (ts->snes) {SNESView(ts->snes,viewer);}
1988: PetscDrawPopCurrentPoint(draw);
1989: #if defined(PETSC_HAVE_SAWS)
1990: } else if (issaws) {
1991: PetscMPIInt rank;
1992: const char *name;
1994: PetscObjectGetName((PetscObject)ts,&name);
1995: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1996: if (!((PetscObject)ts)->amsmem && !rank) {
1997: char dir[1024];
1999: PetscObjectViewSAWs((PetscObject)ts,viewer);
2000: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2001: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2002: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2003: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2004: }
2005: if (ts->ops->view) {
2006: (*ts->ops->view)(ts,viewer);
2007: }
2008: #endif
2009: }
2011: PetscViewerASCIIPushTab(viewer);
2012: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2013: PetscViewerASCIIPopTab(viewer);
2014: return(0);
2015: }
2017: /*@
2018: TSSetApplicationContext - Sets an optional user-defined context for
2019: the timesteppers.
2021: Logically Collective on TS
2023: Input Parameters:
2024: + ts - the TS context obtained from TSCreate()
2025: - usrP - optional user context
2027: Fortran Notes:
2028: To use this from Fortran you must write a Fortran interface definition for this
2029: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2031: Level: intermediate
2033: .keywords: TS, timestep, set, application, context
2035: .seealso: TSGetApplicationContext()
2036: @*/
2037: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2038: {
2041: ts->user = usrP;
2042: return(0);
2043: }
2045: /*@
2046: TSGetApplicationContext - Gets the user-defined context for the
2047: timestepper.
2049: Not Collective
2051: Input Parameter:
2052: . ts - the TS context obtained from TSCreate()
2054: Output Parameter:
2055: . usrP - user context
2057: Fortran Notes:
2058: To use this from Fortran you must write a Fortran interface definition for this
2059: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2061: Level: intermediate
2063: .keywords: TS, timestep, get, application, context
2065: .seealso: TSSetApplicationContext()
2066: @*/
2067: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2068: {
2071: *(void**)usrP = ts->user;
2072: return(0);
2073: }
2075: /*@
2076: TSGetStepNumber - Gets the number of steps completed.
2078: Not Collective
2080: Input Parameter:
2081: . ts - the TS context obtained from TSCreate()
2083: Output Parameter:
2084: . steps - number of steps completed so far
2086: Level: intermediate
2088: .keywords: TS, timestep, get, iteration, number
2089: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2090: @*/
2091: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2092: {
2096: *steps = ts->steps;
2097: return(0);
2098: }
2100: /*@
2101: TSSetStepNumber - Sets the number of steps completed.
2103: Logically Collective on TS
2105: Input Parameters:
2106: + ts - the TS context
2107: - steps - number of steps completed so far
2109: Notes:
2110: For most uses of the TS solvers the user need not explicitly call
2111: TSSetStepNumber(), as the step counter is appropriately updated in
2112: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2113: reinitialize timestepping by setting the step counter to zero (and time
2114: to the initial time) to solve a similar problem with different initial
2115: conditions or parameters. Other possible use case is to continue
2116: timestepping from a previously interrupted run in such a way that TS
2117: monitors will be called with a initial nonzero step counter.
2119: Level: advanced
2121: .keywords: TS, timestep, set, iteration, number
2122: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2123: @*/
2124: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2125: {
2129: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2130: ts->steps = steps;
2131: return(0);
2132: }
2134: /*@
2135: TSSetTimeStep - Allows one to reset the timestep at any time,
2136: useful for simple pseudo-timestepping codes.
2138: Logically Collective on TS
2140: Input Parameters:
2141: + ts - the TS context obtained from TSCreate()
2142: - time_step - the size of the timestep
2144: Level: intermediate
2146: .seealso: TSGetTimeStep(), TSSetTime()
2148: .keywords: TS, set, timestep
2149: @*/
2150: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2151: {
2155: ts->time_step = time_step;
2156: return(0);
2157: }
2159: /*@
2160: TSSetExactFinalTime - Determines whether to adapt the final time step to
2161: match the exact final time, interpolate solution to the exact final time,
2162: or just return at the final time TS computed.
2164: Logically Collective on TS
2166: Input Parameter:
2167: + ts - the time-step context
2168: - eftopt - exact final time option
2170: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2171: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2172: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2174: Options Database:
2175: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2177: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2178: then the final time you selected.
2180: Level: beginner
2182: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2183: @*/
2184: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2185: {
2189: ts->exact_final_time = eftopt;
2190: return(0);
2191: }
2193: /*@
2194: TSGetExactFinalTime - Gets the exact final time option.
2196: Not Collective
2198: Input Parameter:
2199: . ts - the TS context
2201: Output Parameter:
2202: . eftopt - exact final time option
2204: Level: beginner
2206: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2207: @*/
2208: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2209: {
2213: *eftopt = ts->exact_final_time;
2214: return(0);
2215: }
2217: /*@
2218: TSGetTimeStep - Gets the current timestep size.
2220: Not Collective
2222: Input Parameter:
2223: . ts - the TS context obtained from TSCreate()
2225: Output Parameter:
2226: . dt - the current timestep size
2228: Level: intermediate
2230: .seealso: TSSetTimeStep(), TSGetTime()
2232: .keywords: TS, get, timestep
2233: @*/
2234: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2235: {
2239: *dt = ts->time_step;
2240: return(0);
2241: }
2243: /*@
2244: TSGetSolution - Returns the solution at the present timestep. It
2245: is valid to call this routine inside the function that you are evaluating
2246: in order to move to the new timestep. This vector not changed until
2247: the solution at the next timestep has been calculated.
2249: Not Collective, but Vec returned is parallel if TS is parallel
2251: Input Parameter:
2252: . ts - the TS context obtained from TSCreate()
2254: Output Parameter:
2255: . v - the vector containing the solution
2257: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2258: final time. It returns the solution at the next timestep.
2260: Level: intermediate
2262: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2264: .keywords: TS, timestep, get, solution
2265: @*/
2266: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2267: {
2271: *v = ts->vec_sol;
2272: return(0);
2273: }
2275: /*@
2276: TSGetSolutionComponents - Returns any solution components at the present
2277: timestep, if available for the time integration method being used.
2278: Solution components are quantities that share the same size and
2279: structure as the solution vector.
2281: Not Collective, but Vec returned is parallel if TS is parallel
2283: Parameters :
2284: . ts - the TS context obtained from TSCreate() (input parameter).
2285: . n - If v is PETSC_NULL, then the number of solution components is
2286: returned through n, else the n-th solution component is
2287: returned in v.
2288: . v - the vector containing the n-th solution component
2289: (may be PETSC_NULL to use this function to find out
2290: the number of solutions components).
2292: Level: advanced
2294: .seealso: TSGetSolution()
2296: .keywords: TS, timestep, get, solution
2297: @*/
2298: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2299: {
2304: if (!ts->ops->getsolutioncomponents) *n = 0;
2305: else {
2306: (*ts->ops->getsolutioncomponents)(ts,n,v);
2307: }
2308: return(0);
2309: }
2311: /*@
2312: TSGetAuxSolution - Returns an auxiliary solution at the present
2313: timestep, if available for the time integration method being used.
2315: Not Collective, but Vec returned is parallel if TS is parallel
2317: Parameters :
2318: . ts - the TS context obtained from TSCreate() (input parameter).
2319: . v - the vector containing the auxiliary solution
2321: Level: intermediate
2323: .seealso: TSGetSolution()
2325: .keywords: TS, timestep, get, solution
2326: @*/
2327: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2328: {
2333: if (ts->ops->getauxsolution) {
2334: (*ts->ops->getauxsolution)(ts,v);
2335: } else {
2336: VecZeroEntries(*v);
2337: }
2338: return(0);
2339: }
2341: /*@
2342: TSGetTimeError - Returns the estimated error vector, if the chosen
2343: TSType has an error estimation functionality.
2345: Not Collective, but Vec returned is parallel if TS is parallel
2347: Note: MUST call after TSSetUp()
2349: Parameters :
2350: . ts - the TS context obtained from TSCreate() (input parameter).
2351: . n - current estimate (n=0) or previous one (n=-1)
2352: . v - the vector containing the error (same size as the solution).
2354: Level: intermediate
2356: .seealso: TSGetSolution(), TSSetTimeError()
2358: .keywords: TS, timestep, get, error
2359: @*/
2360: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2361: {
2366: if (ts->ops->gettimeerror) {
2367: (*ts->ops->gettimeerror)(ts,n,v);
2368: } else {
2369: VecZeroEntries(*v);
2370: }
2371: return(0);
2372: }
2374: /*@
2375: TSSetTimeError - Sets the estimated error vector, if the chosen
2376: TSType has an error estimation functionality. This can be used
2377: to restart such a time integrator with a given error vector.
2379: Not Collective, but Vec returned is parallel if TS is parallel
2381: Parameters :
2382: . ts - the TS context obtained from TSCreate() (input parameter).
2383: . v - the vector containing the error (same size as the solution).
2385: Level: intermediate
2387: .seealso: TSSetSolution(), TSGetTimeError)
2389: .keywords: TS, timestep, get, error
2390: @*/
2391: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2392: {
2397: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2398: if (ts->ops->settimeerror) {
2399: (*ts->ops->settimeerror)(ts,v);
2400: }
2401: return(0);
2402: }
2404: /* ----- Routines to initialize and destroy a timestepper ---- */
2405: /*@
2406: TSSetProblemType - Sets the type of problem to be solved.
2408: Not collective
2410: Input Parameters:
2411: + ts - The TS
2412: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2413: .vb
2414: U_t - A U = 0 (linear)
2415: U_t - A(t) U = 0 (linear)
2416: F(t,U,U_t) = 0 (nonlinear)
2417: .ve
2419: Level: beginner
2421: .keywords: TS, problem type
2422: .seealso: TSSetUp(), TSProblemType, TS
2423: @*/
2424: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2425: {
2430: ts->problem_type = type;
2431: if (type == TS_LINEAR) {
2432: SNES snes;
2433: TSGetSNES(ts,&snes);
2434: SNESSetType(snes,SNESKSPONLY);
2435: }
2436: return(0);
2437: }
2439: /*@C
2440: TSGetProblemType - Gets the type of problem to be solved.
2442: Not collective
2444: Input Parameter:
2445: . ts - The TS
2447: Output Parameter:
2448: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2449: .vb
2450: M U_t = A U
2451: M(t) U_t = A(t) U
2452: F(t,U,U_t)
2453: .ve
2455: Level: beginner
2457: .keywords: TS, problem type
2458: .seealso: TSSetUp(), TSProblemType, TS
2459: @*/
2460: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2461: {
2465: *type = ts->problem_type;
2466: return(0);
2467: }
2469: /*@
2470: TSSetUp - Sets up the internal data structures for the later use
2471: of a timestepper.
2473: Collective on TS
2475: Input Parameter:
2476: . ts - the TS context obtained from TSCreate()
2478: Notes:
2479: For basic use of the TS solvers the user need not explicitly call
2480: TSSetUp(), since these actions will automatically occur during
2481: the call to TSStep() or TSSolve(). However, if one wishes to control this
2482: phase separately, TSSetUp() should be called after TSCreate()
2483: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2485: Level: advanced
2487: .keywords: TS, timestep, setup
2489: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2490: @*/
2491: PetscErrorCode TSSetUp(TS ts)
2492: {
2494: DM dm;
2495: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2496: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2497: TSIFunction ifun;
2498: TSIJacobian ijac;
2499: TSI2Jacobian i2jac;
2500: TSRHSJacobian rhsjac;
2501: PetscBool isnone;
2505: if (ts->setupcalled) return(0);
2507: if (!((PetscObject)ts)->type_name) {
2508: TSGetIFunction(ts,NULL,&ifun,NULL);
2509: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2510: }
2512: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2514: if (ts->rhsjacobian.reuse) {
2515: Mat Amat,Pmat;
2516: SNES snes;
2517: TSGetSNES(ts,&snes);
2518: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2519: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2520: * have displaced the RHS matrix */
2521: if (Amat == ts->Arhs) {
2522: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2523: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2524: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2525: MatDestroy(&Amat);
2526: }
2527: if (Pmat == ts->Brhs) {
2528: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2529: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2530: MatDestroy(&Pmat);
2531: }
2532: }
2534: TSGetAdapt(ts,&ts->adapt);
2535: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2537: if (ts->ops->setup) {
2538: (*ts->ops->setup)(ts);
2539: }
2541: /* Attempt to check/preset a default value for the exact final time option */
2542: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2543: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED)
2544: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2546: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2547: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2548: */
2549: TSGetDM(ts,&dm);
2550: DMSNESGetFunction(dm,&func,NULL);
2551: if (!func) {
2552: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2553: }
2554: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2555: Otherwise, the SNES will use coloring internally to form the Jacobian.
2556: */
2557: DMSNESGetJacobian(dm,&jac,NULL);
2558: DMTSGetIJacobian(dm,&ijac,NULL);
2559: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2560: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2561: if (!jac && (ijac || i2jac || rhsjac)) {
2562: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2563: }
2565: /* if time integration scheme has a starting method, call it */
2566: if (ts->ops->startingmethod) {
2567: (*ts->ops->startingmethod)(ts);
2568: }
2570: ts->setupcalled = PETSC_TRUE;
2571: return(0);
2572: }
2574: /*@
2575: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2577: Collective on TS
2579: Input Parameter:
2580: . ts - the TS context obtained from TSCreate()
2582: Level: beginner
2584: .keywords: TS, timestep, reset
2586: .seealso: TSCreate(), TSSetup(), TSDestroy()
2587: @*/
2588: PetscErrorCode TSReset(TS ts)
2589: {
2590: TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2591: PetscErrorCode ierr;
2596: if (ts->ops->reset) {
2597: (*ts->ops->reset)(ts);
2598: }
2599: if (ts->snes) {SNESReset(ts->snes);}
2600: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2602: MatDestroy(&ts->Arhs);
2603: MatDestroy(&ts->Brhs);
2604: VecDestroy(&ts->Frhs);
2605: VecDestroy(&ts->vec_sol);
2606: VecDestroy(&ts->vec_dot);
2607: VecDestroy(&ts->vatol);
2608: VecDestroy(&ts->vrtol);
2609: VecDestroyVecs(ts->nwork,&ts->work);
2611: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2612: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2614: MatDestroy(&ts->Jacp);
2615: VecDestroy(&ts->vec_costintegral);
2616: VecDestroy(&ts->vec_costintegrand);
2617: MatDestroy(&ts->mat_sensip);
2619: while (ilink) {
2620: next = ilink->next;
2621: TSDestroy(&ilink->ts);
2622: PetscFree(ilink->splitname);
2623: ISDestroy(&ilink->is);
2624: PetscFree(ilink);
2625: ilink = next;
2626: }
2627: ts->num_rhs_splits = 0;
2628: ts->setupcalled = PETSC_FALSE;
2629: return(0);
2630: }
2632: /*@
2633: TSDestroy - Destroys the timestepper context that was created
2634: with TSCreate().
2636: Collective on TS
2638: Input Parameter:
2639: . ts - the TS context obtained from TSCreate()
2641: Level: beginner
2643: .keywords: TS, timestepper, destroy
2645: .seealso: TSCreate(), TSSetUp(), TSSolve()
2646: @*/
2647: PetscErrorCode TSDestroy(TS *ts)
2648: {
2652: if (!*ts) return(0);
2654: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2656: TSReset((*ts));
2658: /* if memory was published with SAWs then destroy it */
2659: PetscObjectSAWsViewOff((PetscObject)*ts);
2660: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2662: TSTrajectoryDestroy(&(*ts)->trajectory);
2664: TSAdaptDestroy(&(*ts)->adapt);
2665: TSEventDestroy(&(*ts)->event);
2667: SNESDestroy(&(*ts)->snes);
2668: DMDestroy(&(*ts)->dm);
2669: TSMonitorCancel((*ts));
2670: TSAdjointMonitorCancel((*ts));
2672: PetscHeaderDestroy(ts);
2673: return(0);
2674: }
2676: /*@
2677: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2678: a TS (timestepper) context. Valid only for nonlinear problems.
2680: Not Collective, but SNES is parallel if TS is parallel
2682: Input Parameter:
2683: . ts - the TS context obtained from TSCreate()
2685: Output Parameter:
2686: . snes - the nonlinear solver context
2688: Notes:
2689: The user can then directly manipulate the SNES context to set various
2690: options, etc. Likewise, the user can then extract and manipulate the
2691: KSP, KSP, and PC contexts as well.
2693: TSGetSNES() does not work for integrators that do not use SNES; in
2694: this case TSGetSNES() returns NULL in snes.
2696: Level: beginner
2698: .keywords: timestep, get, SNES
2699: @*/
2700: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2701: {
2707: if (!ts->snes) {
2708: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2709: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2710: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2711: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2712: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2713: if (ts->problem_type == TS_LINEAR) {
2714: SNESSetType(ts->snes,SNESKSPONLY);
2715: }
2716: }
2717: *snes = ts->snes;
2718: return(0);
2719: }
2721: /*@
2722: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2724: Collective
2726: Input Parameter:
2727: + ts - the TS context obtained from TSCreate()
2728: - snes - the nonlinear solver context
2730: Notes:
2731: Most users should have the TS created by calling TSGetSNES()
2733: Level: developer
2735: .keywords: timestep, set, SNES
2736: @*/
2737: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2738: {
2740: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2745: PetscObjectReference((PetscObject)snes);
2746: SNESDestroy(&ts->snes);
2748: ts->snes = snes;
2750: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2751: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2752: if (func == SNESTSFormJacobian) {
2753: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2754: }
2755: return(0);
2756: }
2758: /*@
2759: TSGetKSP - Returns the KSP (linear solver) associated with
2760: a TS (timestepper) context.
2762: Not Collective, but KSP is parallel if TS is parallel
2764: Input Parameter:
2765: . ts - the TS context obtained from TSCreate()
2767: Output Parameter:
2768: . ksp - the nonlinear solver context
2770: Notes:
2771: The user can then directly manipulate the KSP context to set various
2772: options, etc. Likewise, the user can then extract and manipulate the
2773: KSP and PC contexts as well.
2775: TSGetKSP() does not work for integrators that do not use KSP;
2776: in this case TSGetKSP() returns NULL in ksp.
2778: Level: beginner
2780: .keywords: timestep, get, KSP
2781: @*/
2782: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2783: {
2785: SNES snes;
2790: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2791: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2792: TSGetSNES(ts,&snes);
2793: SNESGetKSP(snes,ksp);
2794: return(0);
2795: }
2797: /* ----------- Routines to set solver parameters ---------- */
2799: /*@
2800: TSSetMaxSteps - Sets the maximum number of steps to use.
2802: Logically Collective on TS
2804: Input Parameters:
2805: + ts - the TS context obtained from TSCreate()
2806: - maxsteps - maximum number of steps to use
2808: Options Database Keys:
2809: . -ts_max_steps <maxsteps> - Sets maxsteps
2811: Notes:
2812: The default maximum number of steps is 5000
2814: Level: intermediate
2816: .keywords: TS, timestep, set, maximum, steps
2818: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2819: @*/
2820: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2821: {
2825: if (maxsteps < 0 ) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2826: ts->max_steps = maxsteps;
2827: return(0);
2828: }
2830: /*@
2831: TSGetMaxSteps - Gets the maximum number of steps to use.
2833: Not Collective
2835: Input Parameters:
2836: . ts - the TS context obtained from TSCreate()
2838: Output Parameter:
2839: . maxsteps - maximum number of steps to use
2841: Level: advanced
2843: .keywords: TS, timestep, get, maximum, steps
2845: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
2846: @*/
2847: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
2848: {
2852: *maxsteps = ts->max_steps;
2853: return(0);
2854: }
2856: /*@
2857: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
2859: Logically Collective on TS
2861: Input Parameters:
2862: + ts - the TS context obtained from TSCreate()
2863: - maxtime - final time to step to
2865: Options Database Keys:
2866: . -ts_max_time <maxtime> - Sets maxtime
2868: Notes:
2869: The default maximum time is 5.0
2871: Level: intermediate
2873: .keywords: TS, timestep, set, maximum, time
2875: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
2876: @*/
2877: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
2878: {
2882: ts->max_time = maxtime;
2883: return(0);
2884: }
2886: /*@
2887: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
2889: Not Collective
2891: Input Parameters:
2892: . ts - the TS context obtained from TSCreate()
2894: Output Parameter:
2895: . maxtime - final time to step to
2897: Level: advanced
2899: .keywords: TS, timestep, get, maximum, time
2901: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
2902: @*/
2903: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
2904: {
2908: *maxtime = ts->max_time;
2909: return(0);
2910: }
2912: /*@
2913: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
2915: Level: deprecated
2917: @*/
2918: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2919: {
2923: TSSetTime(ts,initial_time);
2924: TSSetTimeStep(ts,time_step);
2925: return(0);
2926: }
2928: /*@
2929: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
2931: Level: deprecated
2933: @*/
2934: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2935: {
2938: if (maxsteps) {
2940: *maxsteps = ts->max_steps;
2941: }
2942: if (maxtime) {
2944: *maxtime = ts->max_time;
2945: }
2946: return(0);
2947: }
2949: /*@
2950: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
2952: Level: deprecated
2954: @*/
2955: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2956: {
2961: if (maxsteps >= 0) ts->max_steps = maxsteps;
2962: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2963: return(0);
2964: }
2966: /*@
2967: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
2969: Level: deprecated
2971: @*/
2972: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2974: /*@
2975: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
2977: Level: deprecated
2979: @*/
2980: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2982: /*@
2983: TSSetSolution - Sets the initial solution vector
2984: for use by the TS routines.
2986: Logically Collective on TS and Vec
2988: Input Parameters:
2989: + ts - the TS context obtained from TSCreate()
2990: - u - the solution vector
2992: Level: beginner
2994: .keywords: TS, timestep, set, solution, initial values
2996: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
2997: @*/
2998: PetscErrorCode TSSetSolution(TS ts,Vec u)
2999: {
3001: DM dm;
3006: PetscObjectReference((PetscObject)u);
3007: VecDestroy(&ts->vec_sol);
3008: ts->vec_sol = u;
3010: TSGetDM(ts,&dm);
3011: DMShellSetGlobalVector(dm,u);
3012: return(0);
3013: }
3015: /*@C
3016: TSSetPreStep - Sets the general-purpose function
3017: called once at the beginning of each time step.
3019: Logically Collective on TS
3021: Input Parameters:
3022: + ts - The TS context obtained from TSCreate()
3023: - func - The function
3025: Calling sequence of func:
3026: . func (TS ts);
3028: Level: intermediate
3030: .keywords: TS, timestep
3031: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3032: @*/
3033: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3034: {
3037: ts->prestep = func;
3038: return(0);
3039: }
3041: /*@
3042: TSPreStep - Runs the user-defined pre-step function.
3044: Collective on TS
3046: Input Parameters:
3047: . ts - The TS context obtained from TSCreate()
3049: Notes:
3050: TSPreStep() is typically used within time stepping implementations,
3051: so most users would not generally call this routine themselves.
3053: Level: developer
3055: .keywords: TS, timestep
3056: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3057: @*/
3058: PetscErrorCode TSPreStep(TS ts)
3059: {
3064: if (ts->prestep) {
3065: Vec U;
3066: PetscObjectState sprev,spost;
3068: TSGetSolution(ts,&U);
3069: PetscObjectStateGet((PetscObject)U,&sprev);
3070: PetscStackCallStandard((*ts->prestep),(ts));
3071: PetscObjectStateGet((PetscObject)U,&spost);
3072: if (sprev != spost) {TSRestartStep(ts);}
3073: }
3074: return(0);
3075: }
3077: /*@C
3078: TSSetPreStage - Sets the general-purpose function
3079: called once at the beginning of each stage.
3081: Logically Collective on TS
3083: Input Parameters:
3084: + ts - The TS context obtained from TSCreate()
3085: - func - The function
3087: Calling sequence of func:
3088: . PetscErrorCode func(TS ts, PetscReal stagetime);
3090: Level: intermediate
3092: Note:
3093: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3094: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3095: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3097: .keywords: TS, timestep
3098: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3099: @*/
3100: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3101: {
3104: ts->prestage = func;
3105: return(0);
3106: }
3108: /*@C
3109: TSSetPostStage - Sets the general-purpose function
3110: called once at the end of each stage.
3112: Logically Collective on TS
3114: Input Parameters:
3115: + ts - The TS context obtained from TSCreate()
3116: - func - The function
3118: Calling sequence of func:
3119: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3121: Level: intermediate
3123: Note:
3124: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3125: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3126: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3128: .keywords: TS, timestep
3129: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3130: @*/
3131: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3132: {
3135: ts->poststage = func;
3136: return(0);
3137: }
3139: /*@C
3140: TSSetPostEvaluate - Sets the general-purpose function
3141: called once at the end of each step evaluation.
3143: Logically Collective on TS
3145: Input Parameters:
3146: + ts - The TS context obtained from TSCreate()
3147: - func - The function
3149: Calling sequence of func:
3150: . PetscErrorCode func(TS ts);
3152: Level: intermediate
3154: Note:
3155: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3156: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3157: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3158: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3159: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3161: .keywords: TS, timestep
3162: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3163: @*/
3164: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3165: {
3168: ts->postevaluate = func;
3169: return(0);
3170: }
3172: /*@
3173: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3175: Collective on TS
3177: Input Parameters:
3178: . ts - The TS context obtained from TSCreate()
3179: stagetime - The absolute time of the current stage
3181: Notes:
3182: TSPreStage() is typically used within time stepping implementations,
3183: most users would not generally call this routine themselves.
3185: Level: developer
3187: .keywords: TS, timestep
3188: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3189: @*/
3190: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3191: {
3196: if (ts->prestage) {
3197: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3198: }
3199: return(0);
3200: }
3202: /*@
3203: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3205: Collective on TS
3207: Input Parameters:
3208: . ts - The TS context obtained from TSCreate()
3209: stagetime - The absolute time of the current stage
3210: stageindex - Stage number
3211: Y - Array of vectors (of size = total number
3212: of stages) with the stage solutions
3214: Notes:
3215: TSPostStage() is typically used within time stepping implementations,
3216: most users would not generally call this routine themselves.
3218: Level: developer
3220: .keywords: TS, timestep
3221: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3222: @*/
3223: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3224: {
3229: if (ts->poststage) {
3230: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3231: }
3232: return(0);
3233: }
3235: /*@
3236: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3238: Collective on TS
3240: Input Parameters:
3241: . ts - The TS context obtained from TSCreate()
3243: Notes:
3244: TSPostEvaluate() is typically used within time stepping implementations,
3245: most users would not generally call this routine themselves.
3247: Level: developer
3249: .keywords: TS, timestep
3250: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3251: @*/
3252: PetscErrorCode TSPostEvaluate(TS ts)
3253: {
3258: if (ts->postevaluate) {
3259: Vec U;
3260: PetscObjectState sprev,spost;
3262: TSGetSolution(ts,&U);
3263: PetscObjectStateGet((PetscObject)U,&sprev);
3264: PetscStackCallStandard((*ts->postevaluate),(ts));
3265: PetscObjectStateGet((PetscObject)U,&spost);
3266: if (sprev != spost) {TSRestartStep(ts);}
3267: }
3268: return(0);
3269: }
3271: /*@C
3272: TSSetPostStep - Sets the general-purpose function
3273: called once at the end of each time step.
3275: Logically Collective on TS
3277: Input Parameters:
3278: + ts - The TS context obtained from TSCreate()
3279: - func - The function
3281: Calling sequence of func:
3282: $ func (TS ts);
3284: Notes:
3285: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3286: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3287: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3289: Level: intermediate
3291: .keywords: TS, timestep
3292: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3293: @*/
3294: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3295: {
3298: ts->poststep = func;
3299: return(0);
3300: }
3302: /*@
3303: TSPostStep - Runs the user-defined post-step function.
3305: Collective on TS
3307: Input Parameters:
3308: . ts - The TS context obtained from TSCreate()
3310: Notes:
3311: TSPostStep() is typically used within time stepping implementations,
3312: so most users would not generally call this routine themselves.
3314: Level: developer
3316: .keywords: TS, timestep
3317: @*/
3318: PetscErrorCode TSPostStep(TS ts)
3319: {
3324: if (ts->poststep) {
3325: Vec U;
3326: PetscObjectState sprev,spost;
3328: TSGetSolution(ts,&U);
3329: PetscObjectStateGet((PetscObject)U,&sprev);
3330: PetscStackCallStandard((*ts->poststep),(ts));
3331: PetscObjectStateGet((PetscObject)U,&spost);
3332: if (sprev != spost) {TSRestartStep(ts);}
3333: }
3334: return(0);
3335: }
3337: /* ------------ Routines to set performance monitoring options ----------- */
3339: /*@C
3340: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3341: timestep to display the iteration's progress.
3343: Logically Collective on TS
3345: Input Parameters:
3346: + ts - the TS context obtained from TSCreate()
3347: . monitor - monitoring routine
3348: . mctx - [optional] user-defined context for private data for the
3349: monitor routine (use NULL if no context is desired)
3350: - monitordestroy - [optional] routine that frees monitor context
3351: (may be NULL)
3353: Calling sequence of monitor:
3354: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3356: + ts - the TS context
3357: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3358: . time - current time
3359: . u - current iterate
3360: - mctx - [optional] monitoring context
3362: Notes:
3363: This routine adds an additional monitor to the list of monitors that
3364: already has been loaded.
3366: Fortran Notes:
3367: Only a single monitor function can be set for each TS object
3369: Level: intermediate
3371: .keywords: TS, timestep, set, monitor
3373: .seealso: TSMonitorDefault(), TSMonitorCancel()
3374: @*/
3375: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3376: {
3378: PetscInt i;
3379: PetscBool identical;
3383: for (i=0; i<ts->numbermonitors;i++) {
3384: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3385: if (identical) return(0);
3386: }
3387: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3388: ts->monitor[ts->numbermonitors] = monitor;
3389: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3390: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3391: return(0);
3392: }
3394: /*@C
3395: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3397: Logically Collective on TS
3399: Input Parameters:
3400: . ts - the TS context obtained from TSCreate()
3402: Notes:
3403: There is no way to remove a single, specific monitor.
3405: Level: intermediate
3407: .keywords: TS, timestep, set, monitor
3409: .seealso: TSMonitorDefault(), TSMonitorSet()
3410: @*/
3411: PetscErrorCode TSMonitorCancel(TS ts)
3412: {
3414: PetscInt i;
3418: for (i=0; i<ts->numbermonitors; i++) {
3419: if (ts->monitordestroy[i]) {
3420: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3421: }
3422: }
3423: ts->numbermonitors = 0;
3424: return(0);
3425: }
3427: /*@C
3428: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3430: Level: intermediate
3432: .keywords: TS, set, monitor
3434: .seealso: TSMonitorSet()
3435: @*/
3436: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3437: {
3439: PetscViewer viewer = vf->viewer;
3440: PetscBool iascii,ibinary;
3444: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3445: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3446: PetscViewerPushFormat(viewer,vf->format);
3447: if (iascii) {
3448: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3449: if (step == -1){ /* this indicates it is an interpolated solution */
3450: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3451: } else {
3452: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3453: }
3454: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3455: } else if (ibinary) {
3456: PetscMPIInt rank;
3457: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3458: if (!rank) {
3459: PetscBool skipHeader;
3460: PetscInt classid = REAL_FILE_CLASSID;
3462: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3463: if (!skipHeader) {
3464: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
3465: }
3466: PetscRealView(1,&ptime,viewer);
3467: } else {
3468: PetscRealView(0,&ptime,viewer);
3469: }
3470: }
3471: PetscViewerPopFormat(viewer);
3472: return(0);
3473: }
3475: /*@C
3476: TSMonitorExtreme - Prints the extreme values of the solution at each timestep
3478: Level: intermediate
3480: .keywords: TS, set, monitor
3482: .seealso: TSMonitorSet()
3483: @*/
3484: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3485: {
3487: PetscViewer viewer = vf->viewer;
3488: PetscBool iascii;
3489: PetscReal max,min;
3491:
3494: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3495: PetscViewerPushFormat(viewer,vf->format);
3496: if (iascii) {
3497: VecMax(v,NULL,&max);
3498: VecMin(v,NULL,&min);
3499: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3500: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3501: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3502: }
3503: PetscViewerPopFormat(viewer);
3504: return(0);
3505: }
3507: /*@
3508: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3510: Collective on TS
3512: Input Argument:
3513: + ts - time stepping context
3514: - t - time to interpolate to
3516: Output Argument:
3517: . U - state at given time
3519: Level: intermediate
3521: Developer Notes:
3522: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3524: .keywords: TS, set
3526: .seealso: TSSetExactFinalTime(), TSSolve()
3527: @*/
3528: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3529: {
3535: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3536: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3537: (*ts->ops->interpolate)(ts,t,U);
3538: return(0);
3539: }
3541: /*@
3542: TSStep - Steps one time step
3544: Collective on TS
3546: Input Parameter:
3547: . ts - the TS context obtained from TSCreate()
3549: Level: developer
3551: Notes:
3552: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3554: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3555: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3557: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3558: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3560: .keywords: TS, timestep, solve
3562: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3563: @*/
3564: PetscErrorCode TSStep(TS ts)
3565: {
3566: PetscErrorCode ierr;
3567: static PetscBool cite = PETSC_FALSE;
3568: PetscReal ptime;
3572: PetscCitationsRegister("@techreport{tspaper,\n"
3573: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3574: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3575: " type = {Preprint},\n"
3576: " number = {ANL/MCS-P5061-0114},\n"
3577: " institution = {Argonne National Laboratory},\n"
3578: " year = {2014}\n}\n",&cite);
3580: TSSetUp(ts);
3581: TSTrajectorySetUp(ts->trajectory,ts);
3583: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3584: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3585: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3587: if (!ts->steps) ts->ptime_prev = ts->ptime;
3588: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3589: ts->reason = TS_CONVERGED_ITERATING;
3590: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3591: PetscLogEventBegin(TS_Step,ts,0,0,0);
3592: (*ts->ops->step)(ts);
3593: PetscLogEventEnd(TS_Step,ts,0,0,0);
3594: ts->ptime_prev = ptime;
3595: ts->steps++;
3596: ts->steprollback = PETSC_FALSE;
3597: ts->steprestart = PETSC_FALSE;
3599: if (ts->reason < 0) {
3600: if (ts->errorifstepfailed) {
3601: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3602: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3603: }
3604: } else if (!ts->reason) {
3605: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3606: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3607: }
3608: return(0);
3609: }
3611: /*@
3612: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3613: at the end of a time step with a given order of accuracy.
3615: Collective on TS
3617: Input Arguments:
3618: + ts - time stepping context
3619: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3620: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3622: Output Arguments:
3623: + order - optional, the actual order of the error evaluation
3624: - wlte - the weighted local truncation error norm
3626: Level: advanced
3628: Notes:
3629: If the timestepper cannot evaluate the error in a particular step
3630: (eg. in the first step or restart steps after event handling),
3631: this routine returns wlte=-1.0 .
3633: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3634: @*/
3635: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3636: {
3646: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3647: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3648: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3649: return(0);
3650: }
3652: /*@
3653: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3655: Collective on TS
3657: Input Arguments:
3658: + ts - time stepping context
3659: . order - desired order of accuracy
3660: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3662: Output Arguments:
3663: . U - state at the end of the current step
3665: Level: advanced
3667: Notes:
3668: This function cannot be called until all stages have been evaluated.
3669: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3671: .seealso: TSStep(), TSAdapt
3672: @*/
3673: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3674: {
3681: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3682: (*ts->ops->evaluatestep)(ts,order,U,done);
3683: return(0);
3684: }
3686: /*@
3687: TSSolve - Steps the requested number of timesteps.
3689: Collective on TS
3691: Input Parameter:
3692: + ts - the TS context obtained from TSCreate()
3693: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
3694: otherwise must contain the initial conditions and will contain the solution at the final requested time
3696: Level: beginner
3698: Notes:
3699: The final time returned by this function may be different from the time of the internally
3700: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3701: stepped over the final time.
3703: .keywords: TS, timestep, solve
3705: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
3706: @*/
3707: PetscErrorCode TSSolve(TS ts,Vec u)
3708: {
3709: Vec solution;
3710: PetscErrorCode ierr;
3716: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3717: if (!ts->vec_sol || u == ts->vec_sol) {
3718: VecDuplicate(u,&solution);
3719: TSSetSolution(ts,solution);
3720: VecDestroy(&solution); /* grant ownership */
3721: }
3722: VecCopy(u,ts->vec_sol);
3723: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
3724: } else if (u) {
3725: TSSetSolution(ts,u);
3726: }
3727: TSSetUp(ts);
3728: TSTrajectorySetUp(ts->trajectory,ts);
3730: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3731: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
3732: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3734: if (ts->forward_solve) {
3735: TSForwardSetUp(ts);
3736: }
3738: /* reset number of steps only when the step is not restarted. ARKIMEX
3739: restarts the step after an event. Resetting these counters in such case causes
3740: TSTrajectory to incorrectly save the output files
3741: */
3742: /* reset time step and iteration counters */
3743: if (!ts->steps) {
3744: ts->ksp_its = 0;
3745: ts->snes_its = 0;
3746: ts->num_snes_failures = 0;
3747: ts->reject = 0;
3748: ts->steprestart = PETSC_TRUE;
3749: ts->steprollback = PETSC_FALSE;
3750: }
3751: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && ts->ptime + ts->time_step > ts->max_time) ts->time_step = ts->max_time - ts->ptime;
3752: ts->reason = TS_CONVERGED_ITERATING;
3754: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3756: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3757: (*ts->ops->solve)(ts);
3758: if (u) {VecCopy(ts->vec_sol,u);}
3759: ts->solvetime = ts->ptime;
3760: solution = ts->vec_sol;
3761: } else { /* Step the requested number of timesteps. */
3762: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3763: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3765: if (!ts->steps) {
3766: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3767: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
3768: }
3770: while (!ts->reason) {
3771: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3772: if (!ts->steprollback) {
3773: TSPreStep(ts);
3774: }
3775: TSStep(ts);
3776: if (ts->testjacobian) {
3777: TSRHSJacobianTest(ts,NULL);
3778: }
3779: if (ts->testjacobiantranspose) {
3780: TSRHSJacobianTestTranspose(ts,NULL);
3781: }
3782: if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
3783: TSForwardCostIntegral(ts);
3784: }
3785: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
3786: TSForwardStep(ts);
3787: }
3788: TSPostEvaluate(ts);
3789: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
3790: if (ts->steprollback) {
3791: TSPostEvaluate(ts);
3792: }
3793: if (!ts->steprollback) {
3794: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3795: TSPostStep(ts);
3796: }
3797: }
3798: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3800: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3801: TSInterpolate(ts,ts->max_time,u);
3802: ts->solvetime = ts->max_time;
3803: solution = u;
3804: TSMonitor(ts,-1,ts->solvetime,solution);
3805: } else {
3806: if (u) {VecCopy(ts->vec_sol,u);}
3807: ts->solvetime = ts->ptime;
3808: solution = ts->vec_sol;
3809: }
3810: }
3812: TSViewFromOptions(ts,NULL,"-ts_view");
3813: VecViewFromOptions(solution,NULL,"-ts_view_solution");
3814: PetscObjectSAWsBlock((PetscObject)ts);
3815: if (ts->adjoint_solve) {
3816: TSAdjointSolve(ts);
3817: }
3818: return(0);
3819: }
3821: /*@C
3822: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
3824: Collective on TS
3826: Input Parameters:
3827: + ts - time stepping context obtained from TSCreate()
3828: . step - step number that has just completed
3829: . ptime - model time of the state
3830: - u - state at the current model time
3832: Notes:
3833: TSMonitor() is typically used automatically within the time stepping implementations.
3834: Users would almost never call this routine directly.
3836: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
3838: Level: developer
3840: .keywords: TS, timestep
3841: @*/
3842: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
3843: {
3844: DM dm;
3845: PetscInt i,n = ts->numbermonitors;
3852: TSGetDM(ts,&dm);
3853: DMSetOutputSequenceNumber(dm,step,ptime);
3855: VecLockPush(u);
3856: for (i=0; i<n; i++) {
3857: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
3858: }
3859: VecLockPop(u);
3860: return(0);
3861: }
3863: /* ------------------------------------------------------------------------*/
3864: /*@C
3865: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
3866: TS to monitor the solution process graphically in various ways
3868: Collective on TS
3870: Input Parameters:
3871: + host - the X display to open, or null for the local machine
3872: . label - the title to put in the title bar
3873: . x, y - the screen coordinates of the upper left coordinate of the window
3874: . m, n - the screen width and height in pixels
3875: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
3877: Output Parameter:
3878: . ctx - the context
3880: Options Database Key:
3881: + -ts_monitor_lg_timestep - automatically sets line graph monitor
3882: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
3883: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
3884: . -ts_monitor_lg_error - monitor the error
3885: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
3886: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
3887: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
3889: Notes:
3890: Use TSMonitorLGCtxDestroy() to destroy.
3892: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
3894: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
3895: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
3896: as the first argument.
3898: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
3900: Level: intermediate
3902: .keywords: TS, monitor, line graph, residual
3904: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
3905: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
3906: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
3907: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
3908: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
3910: @*/
3911: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
3912: {
3913: PetscDraw draw;
3917: PetscNew(ctx);
3918: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
3919: PetscDrawSetFromOptions(draw);
3920: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
3921: PetscDrawLGSetFromOptions((*ctx)->lg);
3922: PetscDrawDestroy(&draw);
3923: (*ctx)->howoften = howoften;
3924: return(0);
3925: }
3927: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
3928: {
3929: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
3930: PetscReal x = ptime,y;
3934: if (step < 0) return(0); /* -1 indicates an interpolated solution */
3935: if (!step) {
3936: PetscDrawAxis axis;
3937: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
3938: PetscDrawLGGetAxis(ctx->lg,&axis);
3939: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
3940: PetscDrawLGReset(ctx->lg);
3941: }
3942: TSGetTimeStep(ts,&y);
3943: if (ctx->semilogy) y = PetscLog10Real(y);
3944: PetscDrawLGAddPoint(ctx->lg,&x,&y);
3945: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
3946: PetscDrawLGDraw(ctx->lg);
3947: PetscDrawLGSave(ctx->lg);
3948: }
3949: return(0);
3950: }
3952: /*@C
3953: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
3954: with TSMonitorLGCtxCreate().
3956: Collective on TSMonitorLGCtx
3958: Input Parameter:
3959: . ctx - the monitor context
3961: Level: intermediate
3963: .keywords: TS, monitor, line graph, destroy
3965: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
3966: @*/
3967: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
3968: {
3972: if ((*ctx)->transformdestroy) {
3973: ((*ctx)->transformdestroy)((*ctx)->transformctx);
3974: }
3975: PetscDrawLGDestroy(&(*ctx)->lg);
3976: PetscStrArrayDestroy(&(*ctx)->names);
3977: PetscStrArrayDestroy(&(*ctx)->displaynames);
3978: PetscFree((*ctx)->displayvariables);
3979: PetscFree((*ctx)->displayvalues);
3980: PetscFree(*ctx);
3981: return(0);
3982: }
3984: /*@
3985: TSGetTime - Gets the time of the most recently completed step.
3987: Not Collective
3989: Input Parameter:
3990: . ts - the TS context obtained from TSCreate()
3992: Output Parameter:
3993: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
3995: Level: beginner
3997: Note:
3998: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
3999: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
4001: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep()
4003: .keywords: TS, get, time
4004: @*/
4005: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
4006: {
4010: *t = ts->ptime;
4011: return(0);
4012: }
4014: /*@
4015: TSGetPrevTime - Gets the starting time of the previously completed step.
4017: Not Collective
4019: Input Parameter:
4020: . ts - the TS context obtained from TSCreate()
4022: Output Parameter:
4023: . t - the previous time
4025: Level: beginner
4027: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
4029: .keywords: TS, get, time
4030: @*/
4031: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
4032: {
4036: *t = ts->ptime_prev;
4037: return(0);
4038: }
4040: /*@
4041: TSSetTime - Allows one to reset the time.
4043: Logically Collective on TS
4045: Input Parameters:
4046: + ts - the TS context obtained from TSCreate()
4047: - time - the time
4049: Level: intermediate
4051: .seealso: TSGetTime(), TSSetMaxSteps()
4053: .keywords: TS, set, time
4054: @*/
4055: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4056: {
4060: ts->ptime = t;
4061: return(0);
4062: }
4064: /*@C
4065: TSSetOptionsPrefix - Sets the prefix used for searching for all
4066: TS options in the database.
4068: Logically Collective on TS
4070: Input Parameter:
4071: + ts - The TS context
4072: - prefix - The prefix to prepend to all option names
4074: Notes:
4075: A hyphen (-) must NOT be given at the beginning of the prefix name.
4076: The first character of all runtime options is AUTOMATICALLY the
4077: hyphen.
4079: Level: advanced
4081: .keywords: TS, set, options, prefix, database
4083: .seealso: TSSetFromOptions()
4085: @*/
4086: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4087: {
4089: SNES snes;
4093: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4094: TSGetSNES(ts,&snes);
4095: SNESSetOptionsPrefix(snes,prefix);
4096: return(0);
4097: }
4099: /*@C
4100: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4101: TS options in the database.
4103: Logically Collective on TS
4105: Input Parameter:
4106: + ts - The TS context
4107: - prefix - The prefix to prepend to all option names
4109: Notes:
4110: A hyphen (-) must NOT be given at the beginning of the prefix name.
4111: The first character of all runtime options is AUTOMATICALLY the
4112: hyphen.
4114: Level: advanced
4116: .keywords: TS, append, options, prefix, database
4118: .seealso: TSGetOptionsPrefix()
4120: @*/
4121: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4122: {
4124: SNES snes;
4128: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4129: TSGetSNES(ts,&snes);
4130: SNESAppendOptionsPrefix(snes,prefix);
4131: return(0);
4132: }
4134: /*@C
4135: TSGetOptionsPrefix - Sets the prefix used for searching for all
4136: TS options in the database.
4138: Not Collective
4140: Input Parameter:
4141: . ts - The TS context
4143: Output Parameter:
4144: . prefix - A pointer to the prefix string used
4146: Notes:
4147: On the fortran side, the user should pass in a string 'prifix' of
4148: sufficient length to hold the prefix.
4150: Level: intermediate
4152: .keywords: TS, get, options, prefix, database
4154: .seealso: TSAppendOptionsPrefix()
4155: @*/
4156: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4157: {
4163: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4164: return(0);
4165: }
4167: /*@C
4168: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4170: Not Collective, but parallel objects are returned if TS is parallel
4172: Input Parameter:
4173: . ts - The TS context obtained from TSCreate()
4175: Output Parameters:
4176: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4177: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4178: . func - Function to compute the Jacobian of the RHS (or NULL)
4179: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4181: Notes:
4182: You can pass in NULL for any return argument you do not need.
4184: Level: intermediate
4186: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4188: .keywords: TS, timestep, get, matrix, Jacobian
4189: @*/
4190: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4191: {
4193: DM dm;
4196: if (Amat || Pmat) {
4197: SNES snes;
4198: TSGetSNES(ts,&snes);
4199: SNESSetUpMatrices(snes);
4200: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4201: }
4202: TSGetDM(ts,&dm);
4203: DMTSGetRHSJacobian(dm,func,ctx);
4204: return(0);
4205: }
4207: /*@C
4208: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4210: Not Collective, but parallel objects are returned if TS is parallel
4212: Input Parameter:
4213: . ts - The TS context obtained from TSCreate()
4215: Output Parameters:
4216: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4217: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4218: . f - The function to compute the matrices
4219: - ctx - User-defined context for Jacobian evaluation routine
4221: Notes:
4222: You can pass in NULL for any return argument you do not need.
4224: Level: advanced
4226: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4228: .keywords: TS, timestep, get, matrix, Jacobian
4229: @*/
4230: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4231: {
4233: DM dm;
4236: if (Amat || Pmat) {
4237: SNES snes;
4238: TSGetSNES(ts,&snes);
4239: SNESSetUpMatrices(snes);
4240: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4241: }
4242: TSGetDM(ts,&dm);
4243: DMTSGetIJacobian(dm,f,ctx);
4244: return(0);
4245: }
4247: /*@C
4248: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4249: VecView() for the solution at each timestep
4251: Collective on TS
4253: Input Parameters:
4254: + ts - the TS context
4255: . step - current time-step
4256: . ptime - current time
4257: - dummy - either a viewer or NULL
4259: Options Database:
4260: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4262: Notes:
4263: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4264: will look bad
4266: Level: intermediate
4268: .keywords: TS, vector, monitor, view
4270: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4271: @*/
4272: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4273: {
4274: PetscErrorCode ierr;
4275: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4276: PetscDraw draw;
4279: if (!step && ictx->showinitial) {
4280: if (!ictx->initialsolution) {
4281: VecDuplicate(u,&ictx->initialsolution);
4282: }
4283: VecCopy(u,ictx->initialsolution);
4284: }
4285: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4287: if (ictx->showinitial) {
4288: PetscReal pause;
4289: PetscViewerDrawGetPause(ictx->viewer,&pause);
4290: PetscViewerDrawSetPause(ictx->viewer,0.0);
4291: VecView(ictx->initialsolution,ictx->viewer);
4292: PetscViewerDrawSetPause(ictx->viewer,pause);
4293: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4294: }
4295: VecView(u,ictx->viewer);
4296: if (ictx->showtimestepandtime) {
4297: PetscReal xl,yl,xr,yr,h;
4298: char time[32];
4300: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4301: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4302: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4303: h = yl + .95*(yr - yl);
4304: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4305: PetscDrawFlush(draw);
4306: }
4308: if (ictx->showinitial) {
4309: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4310: }
4311: return(0);
4312: }
4314: /*@C
4315: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4317: Collective on TS
4319: Input Parameters:
4320: + ts - the TS context
4321: . step - current time-step
4322: . ptime - current time
4323: - dummy - either a viewer or NULL
4325: Level: intermediate
4327: .keywords: TS, vector, monitor, view
4329: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4330: @*/
4331: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4332: {
4333: PetscErrorCode ierr;
4334: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4335: PetscDraw draw;
4336: PetscDrawAxis axis;
4337: PetscInt n;
4338: PetscMPIInt size;
4339: PetscReal U0,U1,xl,yl,xr,yr,h;
4340: char time[32];
4341: const PetscScalar *U;
4344: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4345: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4346: VecGetSize(u,&n);
4347: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4349: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4350: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4351: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4352: if (!step) {
4353: PetscDrawClear(draw);
4354: PetscDrawAxisDraw(axis);
4355: }
4357: VecGetArrayRead(u,&U);
4358: U0 = PetscRealPart(U[0]);
4359: U1 = PetscRealPart(U[1]);
4360: VecRestoreArrayRead(u,&U);
4361: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4363: PetscDrawCollectiveBegin(draw);
4364: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4365: if (ictx->showtimestepandtime) {
4366: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4367: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4368: h = yl + .95*(yr - yl);
4369: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4370: }
4371: PetscDrawCollectiveEnd(draw);
4372: PetscDrawFlush(draw);
4373: PetscDrawPause(draw);
4374: PetscDrawSave(draw);
4375: return(0);
4376: }
4378: /*@C
4379: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4381: Collective on TS
4383: Input Parameters:
4384: . ctx - the monitor context
4386: Level: intermediate
4388: .keywords: TS, vector, monitor, view
4390: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4391: @*/
4392: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4393: {
4397: PetscViewerDestroy(&(*ictx)->viewer);
4398: VecDestroy(&(*ictx)->initialsolution);
4399: PetscFree(*ictx);
4400: return(0);
4401: }
4403: /*@C
4404: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4406: Collective on TS
4408: Input Parameter:
4409: . ts - time-step context
4411: Output Patameter:
4412: . ctx - the monitor context
4414: Options Database:
4415: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4417: Level: intermediate
4419: .keywords: TS, vector, monitor, view
4421: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4422: @*/
4423: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4424: {
4425: PetscErrorCode ierr;
4428: PetscNew(ctx);
4429: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4430: PetscViewerSetFromOptions((*ctx)->viewer);
4432: (*ctx)->howoften = howoften;
4433: (*ctx)->showinitial = PETSC_FALSE;
4434: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4436: (*ctx)->showtimestepandtime = PETSC_FALSE;
4437: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4438: return(0);
4439: }
4441: /*@C
4442: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4443: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4445: Collective on TS
4447: Input Parameters:
4448: + ts - the TS context
4449: . step - current time-step
4450: . ptime - current time
4451: - dummy - either a viewer or NULL
4453: Options Database:
4454: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4456: Level: intermediate
4458: .keywords: TS, vector, monitor, view
4460: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4461: @*/
4462: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4463: {
4464: PetscErrorCode ierr;
4465: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4466: PetscViewer viewer = ctx->viewer;
4467: Vec work;
4470: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4471: VecDuplicate(u,&work);
4472: TSComputeSolutionFunction(ts,ptime,work);
4473: VecView(work,viewer);
4474: VecDestroy(&work);
4475: return(0);
4476: }
4478: /*@C
4479: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4480: VecView() for the error at each timestep
4482: Collective on TS
4484: Input Parameters:
4485: + ts - the TS context
4486: . step - current time-step
4487: . ptime - current time
4488: - dummy - either a viewer or NULL
4490: Options Database:
4491: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4493: Level: intermediate
4495: .keywords: TS, vector, monitor, view
4497: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4498: @*/
4499: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4500: {
4501: PetscErrorCode ierr;
4502: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4503: PetscViewer viewer = ctx->viewer;
4504: Vec work;
4507: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4508: VecDuplicate(u,&work);
4509: TSComputeSolutionFunction(ts,ptime,work);
4510: VecAXPY(work,-1.0,u);
4511: VecView(work,viewer);
4512: VecDestroy(&work);
4513: return(0);
4514: }
4516: #include <petsc/private/dmimpl.h>
4517: /*@
4518: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4520: Logically Collective on TS and DM
4522: Input Parameters:
4523: + ts - the ODE integrator object
4524: - dm - the dm, cannot be NULL
4526: Notes:
4527: A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4528: even when not using interfaces like DMTSSetIFunction(). Use DMClone() to get a distinct DM when solving
4529: different problems using the same function space.
4531: Level: intermediate
4533: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4534: @*/
4535: PetscErrorCode TSSetDM(TS ts,DM dm)
4536: {
4538: SNES snes;
4539: DMTS tsdm;
4544: PetscObjectReference((PetscObject)dm);
4545: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4546: if (ts->dm->dmts && !dm->dmts) {
4547: DMCopyDMTS(ts->dm,dm);
4548: DMGetDMTS(ts->dm,&tsdm);
4549: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4550: tsdm->originaldm = dm;
4551: }
4552: }
4553: DMDestroy(&ts->dm);
4554: }
4555: ts->dm = dm;
4557: TSGetSNES(ts,&snes);
4558: SNESSetDM(snes,dm);
4559: return(0);
4560: }
4562: /*@
4563: TSGetDM - Gets the DM that may be used by some preconditioners
4565: Not Collective
4567: Input Parameter:
4568: . ts - the preconditioner context
4570: Output Parameter:
4571: . dm - the dm
4573: Level: intermediate
4575: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4576: @*/
4577: PetscErrorCode TSGetDM(TS ts,DM *dm)
4578: {
4583: if (!ts->dm) {
4584: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4585: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4586: }
4587: *dm = ts->dm;
4588: return(0);
4589: }
4591: /*@
4592: SNESTSFormFunction - Function to evaluate nonlinear residual
4594: Logically Collective on SNES
4596: Input Parameter:
4597: + snes - nonlinear solver
4598: . U - the current state at which to evaluate the residual
4599: - ctx - user context, must be a TS
4601: Output Parameter:
4602: . F - the nonlinear residual
4604: Notes:
4605: This function is not normally called by users and is automatically registered with the SNES used by TS.
4606: It is most frequently passed to MatFDColoringSetFunction().
4608: Level: advanced
4610: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4611: @*/
4612: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4613: {
4614: TS ts = (TS)ctx;
4622: (ts->ops->snesfunction)(snes,U,F,ts);
4623: return(0);
4624: }
4626: /*@
4627: SNESTSFormJacobian - Function to evaluate the Jacobian
4629: Collective on SNES
4631: Input Parameter:
4632: + snes - nonlinear solver
4633: . U - the current state at which to evaluate the residual
4634: - ctx - user context, must be a TS
4636: Output Parameter:
4637: + A - the Jacobian
4638: . B - the preconditioning matrix (may be the same as A)
4639: - flag - indicates any structure change in the matrix
4641: Notes:
4642: This function is not normally called by users and is automatically registered with the SNES used by TS.
4644: Level: developer
4646: .seealso: SNESSetJacobian()
4647: @*/
4648: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
4649: {
4650: TS ts = (TS)ctx;
4661: (ts->ops->snesjacobian)(snes,U,A,B,ts);
4662: return(0);
4663: }
4665: /*@C
4666: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
4668: Collective on TS
4670: Input Arguments:
4671: + ts - time stepping context
4672: . t - time at which to evaluate
4673: . U - state at which to evaluate
4674: - ctx - context
4676: Output Arguments:
4677: . F - right hand side
4679: Level: intermediate
4681: Notes:
4682: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
4683: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
4685: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
4686: @*/
4687: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
4688: {
4690: Mat Arhs,Brhs;
4693: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
4694: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
4695: MatMult(Arhs,U,F);
4696: return(0);
4697: }
4699: /*@C
4700: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4702: Collective on TS
4704: Input Arguments:
4705: + ts - time stepping context
4706: . t - time at which to evaluate
4707: . U - state at which to evaluate
4708: - ctx - context
4710: Output Arguments:
4711: + A - pointer to operator
4712: . B - pointer to preconditioning matrix
4713: - flg - matrix structure flag
4715: Level: intermediate
4717: Notes:
4718: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
4720: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
4721: @*/
4722: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
4723: {
4725: return(0);
4726: }
4728: /*@C
4729: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4731: Collective on TS
4733: Input Arguments:
4734: + ts - time stepping context
4735: . t - time at which to evaluate
4736: . U - state at which to evaluate
4737: . Udot - time derivative of state vector
4738: - ctx - context
4740: Output Arguments:
4741: . F - left hand side
4743: Level: intermediate
4745: Notes:
4746: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4747: user is required to write their own TSComputeIFunction.
4748: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
4749: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
4751: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
4753: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
4754: @*/
4755: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
4756: {
4758: Mat A,B;
4761: TSGetIJacobian(ts,&A,&B,NULL,NULL);
4762: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
4763: MatMult(A,Udot,F);
4764: return(0);
4765: }
4767: /*@C
4768: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
4770: Collective on TS
4772: Input Arguments:
4773: + ts - time stepping context
4774: . t - time at which to evaluate
4775: . U - state at which to evaluate
4776: . Udot - time derivative of state vector
4777: . shift - shift to apply
4778: - ctx - context
4780: Output Arguments:
4781: + A - pointer to operator
4782: . B - pointer to preconditioning matrix
4783: - flg - matrix structure flag
4785: Level: advanced
4787: Notes:
4788: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
4790: It is only appropriate for problems of the form
4792: $ M Udot = F(U,t)
4794: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
4795: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
4796: an implicit operator of the form
4798: $ shift*M + J
4800: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4801: a copy of M or reassemble it when requested.
4803: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
4804: @*/
4805: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
4806: {
4810: MatScale(A, shift / ts->ijacobian.shift);
4811: ts->ijacobian.shift = shift;
4812: return(0);
4813: }
4815: /*@
4816: TSGetEquationType - Gets the type of the equation that TS is solving.
4818: Not Collective
4820: Input Parameter:
4821: . ts - the TS context
4823: Output Parameter:
4824: . equation_type - see TSEquationType
4826: Level: beginner
4828: .keywords: TS, equation type
4830: .seealso: TSSetEquationType(), TSEquationType
4831: @*/
4832: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
4833: {
4837: *equation_type = ts->equation_type;
4838: return(0);
4839: }
4841: /*@
4842: TSSetEquationType - Sets the type of the equation that TS is solving.
4844: Not Collective
4846: Input Parameter:
4847: + ts - the TS context
4848: - equation_type - see TSEquationType
4850: Level: advanced
4852: .keywords: TS, equation type
4854: .seealso: TSGetEquationType(), TSEquationType
4855: @*/
4856: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
4857: {
4860: ts->equation_type = equation_type;
4861: return(0);
4862: }
4864: /*@
4865: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
4867: Not Collective
4869: Input Parameter:
4870: . ts - the TS context
4872: Output Parameter:
4873: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4874: manual pages for the individual convergence tests for complete lists
4876: Level: beginner
4878: Notes:
4879: Can only be called after the call to TSSolve() is complete.
4881: .keywords: TS, nonlinear, set, convergence, test
4883: .seealso: TSSetConvergenceTest(), TSConvergedReason
4884: @*/
4885: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
4886: {
4890: *reason = ts->reason;
4891: return(0);
4892: }
4894: /*@
4895: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
4897: Not Collective
4899: Input Parameter:
4900: + ts - the TS context
4901: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4902: manual pages for the individual convergence tests for complete lists
4904: Level: advanced
4906: Notes:
4907: Can only be called during TSSolve() is active.
4909: .keywords: TS, nonlinear, set, convergence, test
4911: .seealso: TSConvergedReason
4912: @*/
4913: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
4914: {
4917: ts->reason = reason;
4918: return(0);
4919: }
4921: /*@
4922: TSGetSolveTime - Gets the time after a call to TSSolve()
4924: Not Collective
4926: Input Parameter:
4927: . ts - the TS context
4929: Output Parameter:
4930: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
4932: Level: beginner
4934: Notes:
4935: Can only be called after the call to TSSolve() is complete.
4937: .keywords: TS, nonlinear, set, convergence, test
4939: .seealso: TSSetConvergenceTest(), TSConvergedReason
4940: @*/
4941: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
4942: {
4946: *ftime = ts->solvetime;
4947: return(0);
4948: }
4950: /*@
4951: TSGetSNESIterations - Gets the total number of nonlinear iterations
4952: used by the time integrator.
4954: Not Collective
4956: Input Parameter:
4957: . ts - TS context
4959: Output Parameter:
4960: . nits - number of nonlinear iterations
4962: Notes:
4963: This counter is reset to zero for each successive call to TSSolve().
4965: Level: intermediate
4967: .keywords: TS, get, number, nonlinear, iterations
4969: .seealso: TSGetKSPIterations()
4970: @*/
4971: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
4972: {
4976: *nits = ts->snes_its;
4977: return(0);
4978: }
4980: /*@
4981: TSGetKSPIterations - Gets the total number of linear iterations
4982: used by the time integrator.
4984: Not Collective
4986: Input Parameter:
4987: . ts - TS context
4989: Output Parameter:
4990: . lits - number of linear iterations
4992: Notes:
4993: This counter is reset to zero for each successive call to TSSolve().
4995: Level: intermediate
4997: .keywords: TS, get, number, linear, iterations
4999: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
5000: @*/
5001: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5002: {
5006: *lits = ts->ksp_its;
5007: return(0);
5008: }
5010: /*@
5011: TSGetStepRejections - Gets the total number of rejected steps.
5013: Not Collective
5015: Input Parameter:
5016: . ts - TS context
5018: Output Parameter:
5019: . rejects - number of steps rejected
5021: Notes:
5022: This counter is reset to zero for each successive call to TSSolve().
5024: Level: intermediate
5026: .keywords: TS, get, number
5028: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5029: @*/
5030: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5031: {
5035: *rejects = ts->reject;
5036: return(0);
5037: }
5039: /*@
5040: TSGetSNESFailures - Gets the total number of failed SNES solves
5042: Not Collective
5044: Input Parameter:
5045: . ts - TS context
5047: Output Parameter:
5048: . fails - number of failed nonlinear solves
5050: Notes:
5051: This counter is reset to zero for each successive call to TSSolve().
5053: Level: intermediate
5055: .keywords: TS, get, number
5057: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5058: @*/
5059: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5060: {
5064: *fails = ts->num_snes_failures;
5065: return(0);
5066: }
5068: /*@
5069: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5071: Not Collective
5073: Input Parameter:
5074: + ts - TS context
5075: - rejects - maximum number of rejected steps, pass -1 for unlimited
5077: Notes:
5078: The counter is reset to zero for each step
5080: Options Database Key:
5081: . -ts_max_reject - Maximum number of step rejections before a step fails
5083: Level: intermediate
5085: .keywords: TS, set, maximum, number
5087: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5088: @*/
5089: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5090: {
5093: ts->max_reject = rejects;
5094: return(0);
5095: }
5097: /*@
5098: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5100: Not Collective
5102: Input Parameter:
5103: + ts - TS context
5104: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5106: Notes:
5107: The counter is reset to zero for each successive call to TSSolve().
5109: Options Database Key:
5110: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5112: Level: intermediate
5114: .keywords: TS, set, maximum, number
5116: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5117: @*/
5118: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5119: {
5122: ts->max_snes_failures = fails;
5123: return(0);
5124: }
5126: /*@
5127: TSSetErrorIfStepFails - Error if no step succeeds
5129: Not Collective
5131: Input Parameter:
5132: + ts - TS context
5133: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5135: Options Database Key:
5136: . -ts_error_if_step_fails - Error if no step succeeds
5138: Level: intermediate
5140: .keywords: TS, set, error
5142: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5143: @*/
5144: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5145: {
5148: ts->errorifstepfailed = err;
5149: return(0);
5150: }
5152: /*@C
5153: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5155: Collective on TS
5157: Input Parameters:
5158: + ts - the TS context
5159: . step - current time-step
5160: . ptime - current time
5161: . u - current state
5162: - vf - viewer and its format
5164: Level: intermediate
5166: .keywords: TS, vector, monitor, view
5168: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5169: @*/
5170: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5171: {
5175: PetscViewerPushFormat(vf->viewer,vf->format);
5176: VecView(u,vf->viewer);
5177: PetscViewerPopFormat(vf->viewer);
5178: return(0);
5179: }
5181: /*@C
5182: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5184: Collective on TS
5186: Input Parameters:
5187: + ts - the TS context
5188: . step - current time-step
5189: . ptime - current time
5190: . u - current state
5191: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5193: Level: intermediate
5195: Notes:
5196: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5197: These are named according to the file name template.
5199: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5201: .keywords: TS, vector, monitor, view
5203: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5204: @*/
5205: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5206: {
5208: char filename[PETSC_MAX_PATH_LEN];
5209: PetscViewer viewer;
5212: if (step < 0) return(0); /* -1 indicates interpolated solution */
5213: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5214: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5215: VecView(u,viewer);
5216: PetscViewerDestroy(&viewer);
5217: return(0);
5218: }
5220: /*@C
5221: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5223: Collective on TS
5225: Input Parameters:
5226: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5228: Level: intermediate
5230: Note:
5231: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5233: .keywords: TS, vector, monitor, view
5235: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5236: @*/
5237: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5238: {
5242: PetscFree(*(char**)filenametemplate);
5243: return(0);
5244: }
5246: /*@
5247: TSGetAdapt - Get the adaptive controller context for the current method
5249: Collective on TS if controller has not been created yet
5251: Input Arguments:
5252: . ts - time stepping context
5254: Output Arguments:
5255: . adapt - adaptive controller
5257: Level: intermediate
5259: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5260: @*/
5261: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5262: {
5268: if (!ts->adapt) {
5269: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5270: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5271: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5272: }
5273: *adapt = ts->adapt;
5274: return(0);
5275: }
5277: /*@
5278: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5280: Logically Collective
5282: Input Arguments:
5283: + ts - time integration context
5284: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5285: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5286: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5287: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5289: Options Database keys:
5290: + -ts_rtol <rtol> - relative tolerance for local truncation error
5291: - -ts_atol <atol> Absolute tolerance for local truncation error
5293: Notes:
5294: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5295: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5296: computed only for the differential or the algebraic part then this can be done using the vector of
5297: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5298: differential part and infinity for the algebraic part, the LTE calculation will include only the
5299: differential variables.
5301: Level: beginner
5303: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
5304: @*/
5305: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5306: {
5310: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5311: if (vatol) {
5312: PetscObjectReference((PetscObject)vatol);
5313: VecDestroy(&ts->vatol);
5314: ts->vatol = vatol;
5315: }
5316: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5317: if (vrtol) {
5318: PetscObjectReference((PetscObject)vrtol);
5319: VecDestroy(&ts->vrtol);
5320: ts->vrtol = vrtol;
5321: }
5322: return(0);
5323: }
5325: /*@
5326: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5328: Logically Collective
5330: Input Arguments:
5331: . ts - time integration context
5333: Output Arguments:
5334: + atol - scalar absolute tolerances, NULL to ignore
5335: . vatol - vector of absolute tolerances, NULL to ignore
5336: . rtol - scalar relative tolerances, NULL to ignore
5337: - vrtol - vector of relative tolerances, NULL to ignore
5339: Level: beginner
5341: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
5342: @*/
5343: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5344: {
5346: if (atol) *atol = ts->atol;
5347: if (vatol) *vatol = ts->vatol;
5348: if (rtol) *rtol = ts->rtol;
5349: if (vrtol) *vrtol = ts->vrtol;
5350: return(0);
5351: }
5353: /*@
5354: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5356: Collective on TS
5358: Input Arguments:
5359: + ts - time stepping context
5360: . U - state vector, usually ts->vec_sol
5361: - Y - state vector to be compared to U
5363: Output Arguments:
5364: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5365: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5366: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5368: Level: developer
5370: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5371: @*/
5372: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5373: {
5374: PetscErrorCode ierr;
5375: PetscInt i,n,N,rstart;
5376: PetscInt n_loc,na_loc,nr_loc;
5377: PetscReal n_glb,na_glb,nr_glb;
5378: const PetscScalar *u,*y;
5379: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5380: PetscReal tol,tola,tolr;
5381: PetscReal err_loc[6],err_glb[6];
5393: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5395: VecGetSize(U,&N);
5396: VecGetLocalSize(U,&n);
5397: VecGetOwnershipRange(U,&rstart,NULL);
5398: VecGetArrayRead(U,&u);
5399: VecGetArrayRead(Y,&y);
5400: sum = 0.; n_loc = 0;
5401: suma = 0.; na_loc = 0;
5402: sumr = 0.; nr_loc = 0;
5403: if (ts->vatol && ts->vrtol) {
5404: const PetscScalar *atol,*rtol;
5405: VecGetArrayRead(ts->vatol,&atol);
5406: VecGetArrayRead(ts->vrtol,&rtol);
5407: for (i=0; i<n; i++) {
5408: diff = PetscAbsScalar(y[i] - u[i]);
5409: tola = PetscRealPart(atol[i]);
5410: if(tola>0.){
5411: suma += PetscSqr(diff/tola);
5412: na_loc++;
5413: }
5414: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5415: if(tolr>0.){
5416: sumr += PetscSqr(diff/tolr);
5417: nr_loc++;
5418: }
5419: tol=tola+tolr;
5420: if(tol>0.){
5421: sum += PetscSqr(diff/tol);
5422: n_loc++;
5423: }
5424: }
5425: VecRestoreArrayRead(ts->vatol,&atol);
5426: VecRestoreArrayRead(ts->vrtol,&rtol);
5427: } else if (ts->vatol) { /* vector atol, scalar rtol */
5428: const PetscScalar *atol;
5429: VecGetArrayRead(ts->vatol,&atol);
5430: for (i=0; i<n; i++) {
5431: diff = PetscAbsScalar(y[i] - u[i]);
5432: tola = PetscRealPart(atol[i]);
5433: if(tola>0.){
5434: suma += PetscSqr(diff/tola);
5435: na_loc++;
5436: }
5437: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5438: if(tolr>0.){
5439: sumr += PetscSqr(diff/tolr);
5440: nr_loc++;
5441: }
5442: tol=tola+tolr;
5443: if(tol>0.){
5444: sum += PetscSqr(diff/tol);
5445: n_loc++;
5446: }
5447: }
5448: VecRestoreArrayRead(ts->vatol,&atol);
5449: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5450: const PetscScalar *rtol;
5451: VecGetArrayRead(ts->vrtol,&rtol);
5452: for (i=0; i<n; i++) {
5453: diff = PetscAbsScalar(y[i] - u[i]);
5454: tola = ts->atol;
5455: if(tola>0.){
5456: suma += PetscSqr(diff/tola);
5457: na_loc++;
5458: }
5459: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5460: if(tolr>0.){
5461: sumr += PetscSqr(diff/tolr);
5462: nr_loc++;
5463: }
5464: tol=tola+tolr;
5465: if(tol>0.){
5466: sum += PetscSqr(diff/tol);
5467: n_loc++;
5468: }
5469: }
5470: VecRestoreArrayRead(ts->vrtol,&rtol);
5471: } else { /* scalar atol, scalar rtol */
5472: for (i=0; i<n; i++) {
5473: diff = PetscAbsScalar(y[i] - u[i]);
5474: tola = ts->atol;
5475: if(tola>0.){
5476: suma += PetscSqr(diff/tola);
5477: na_loc++;
5478: }
5479: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5480: if(tolr>0.){
5481: sumr += PetscSqr(diff/tolr);
5482: nr_loc++;
5483: }
5484: tol=tola+tolr;
5485: if(tol>0.){
5486: sum += PetscSqr(diff/tol);
5487: n_loc++;
5488: }
5489: }
5490: }
5491: VecRestoreArrayRead(U,&u);
5492: VecRestoreArrayRead(Y,&y);
5494: err_loc[0] = sum;
5495: err_loc[1] = suma;
5496: err_loc[2] = sumr;
5497: err_loc[3] = (PetscReal)n_loc;
5498: err_loc[4] = (PetscReal)na_loc;
5499: err_loc[5] = (PetscReal)nr_loc;
5501: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5503: gsum = err_glb[0];
5504: gsuma = err_glb[1];
5505: gsumr = err_glb[2];
5506: n_glb = err_glb[3];
5507: na_glb = err_glb[4];
5508: nr_glb = err_glb[5];
5510: *norm = 0.;
5511: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5512: *norma = 0.;
5513: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5514: *normr = 0.;
5515: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5517: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5518: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5519: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5520: return(0);
5521: }
5523: /*@
5524: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5526: Collective on TS
5528: Input Arguments:
5529: + ts - time stepping context
5530: . U - state vector, usually ts->vec_sol
5531: - Y - state vector to be compared to U
5533: Output Arguments:
5534: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5535: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5536: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5538: Level: developer
5540: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5541: @*/
5542: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5543: {
5544: PetscErrorCode ierr;
5545: PetscInt i,n,N,rstart;
5546: const PetscScalar *u,*y;
5547: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5548: PetscReal tol,tola,tolr,diff;
5549: PetscReal err_loc[3],err_glb[3];
5561: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5563: VecGetSize(U,&N);
5564: VecGetLocalSize(U,&n);
5565: VecGetOwnershipRange(U,&rstart,NULL);
5566: VecGetArrayRead(U,&u);
5567: VecGetArrayRead(Y,&y);
5569: max=0.;
5570: maxa=0.;
5571: maxr=0.;
5573: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5574: const PetscScalar *atol,*rtol;
5575: VecGetArrayRead(ts->vatol,&atol);
5576: VecGetArrayRead(ts->vrtol,&rtol);
5578: for (i=0; i<n; i++) {
5579: diff = PetscAbsScalar(y[i] - u[i]);
5580: tola = PetscRealPart(atol[i]);
5581: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5582: tol = tola+tolr;
5583: if(tola>0.){
5584: maxa = PetscMax(maxa,diff / tola);
5585: }
5586: if(tolr>0.){
5587: maxr = PetscMax(maxr,diff / tolr);
5588: }
5589: if(tol>0.){
5590: max = PetscMax(max,diff / tol);
5591: }
5592: }
5593: VecRestoreArrayRead(ts->vatol,&atol);
5594: VecRestoreArrayRead(ts->vrtol,&rtol);
5595: } else if (ts->vatol) { /* vector atol, scalar rtol */
5596: const PetscScalar *atol;
5597: VecGetArrayRead(ts->vatol,&atol);
5598: for (i=0; i<n; i++) {
5599: diff = PetscAbsScalar(y[i] - u[i]);
5600: tola = PetscRealPart(atol[i]);
5601: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5602: tol = tola+tolr;
5603: if(tola>0.){
5604: maxa = PetscMax(maxa,diff / tola);
5605: }
5606: if(tolr>0.){
5607: maxr = PetscMax(maxr,diff / tolr);
5608: }
5609: if(tol>0.){
5610: max = PetscMax(max,diff / tol);
5611: }
5612: }
5613: VecRestoreArrayRead(ts->vatol,&atol);
5614: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5615: const PetscScalar *rtol;
5616: VecGetArrayRead(ts->vrtol,&rtol);
5618: for (i=0; i<n; i++) {
5619: diff = PetscAbsScalar(y[i] - u[i]);
5620: tola = ts->atol;
5621: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5622: tol = tola+tolr;
5623: if(tola>0.){
5624: maxa = PetscMax(maxa,diff / tola);
5625: }
5626: if(tolr>0.){
5627: maxr = PetscMax(maxr,diff / tolr);
5628: }
5629: if(tol>0.){
5630: max = PetscMax(max,diff / tol);
5631: }
5632: }
5633: VecRestoreArrayRead(ts->vrtol,&rtol);
5634: } else { /* scalar atol, scalar rtol */
5636: for (i=0; i<n; i++) {
5637: diff = PetscAbsScalar(y[i] - u[i]);
5638: tola = ts->atol;
5639: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5640: tol = tola+tolr;
5641: if(tola>0.){
5642: maxa = PetscMax(maxa,diff / tola);
5643: }
5644: if(tolr>0.){
5645: maxr = PetscMax(maxr,diff / tolr);
5646: }
5647: if(tol>0.){
5648: max = PetscMax(max,diff / tol);
5649: }
5650: }
5651: }
5652: VecRestoreArrayRead(U,&u);
5653: VecRestoreArrayRead(Y,&y);
5654: err_loc[0] = max;
5655: err_loc[1] = maxa;
5656: err_loc[2] = maxr;
5657: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5658: gmax = err_glb[0];
5659: gmaxa = err_glb[1];
5660: gmaxr = err_glb[2];
5662: *norm = gmax;
5663: *norma = gmaxa;
5664: *normr = gmaxr;
5665: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5666: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5667: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5668: return(0);
5669: }
5671: /*@
5672: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
5674: Collective on TS
5676: Input Arguments:
5677: + ts - time stepping context
5678: . U - state vector, usually ts->vec_sol
5679: . Y - state vector to be compared to U
5680: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5682: Output Arguments:
5683: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5684: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5685: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5687: Options Database Keys:
5688: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5690: Level: developer
5692: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
5693: @*/
5694: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5695: {
5699: if (wnormtype == NORM_2) {
5700: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
5701: } else if(wnormtype == NORM_INFINITY) {
5702: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
5703: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5704: return(0);
5705: }
5708: /*@
5709: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
5711: Collective on TS
5713: Input Arguments:
5714: + ts - time stepping context
5715: . E - error vector
5716: . U - state vector, usually ts->vec_sol
5717: - Y - state vector, previous time step
5719: Output Arguments:
5720: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5721: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5722: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5724: Level: developer
5726: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
5727: @*/
5728: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5729: {
5730: PetscErrorCode ierr;
5731: PetscInt i,n,N,rstart;
5732: PetscInt n_loc,na_loc,nr_loc;
5733: PetscReal n_glb,na_glb,nr_glb;
5734: const PetscScalar *e,*u,*y;
5735: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
5736: PetscReal tol,tola,tolr;
5737: PetscReal err_loc[6],err_glb[6];
5753: VecGetSize(E,&N);
5754: VecGetLocalSize(E,&n);
5755: VecGetOwnershipRange(E,&rstart,NULL);
5756: VecGetArrayRead(E,&e);
5757: VecGetArrayRead(U,&u);
5758: VecGetArrayRead(Y,&y);
5759: sum = 0.; n_loc = 0;
5760: suma = 0.; na_loc = 0;
5761: sumr = 0.; nr_loc = 0;
5762: if (ts->vatol && ts->vrtol) {
5763: const PetscScalar *atol,*rtol;
5764: VecGetArrayRead(ts->vatol,&atol);
5765: VecGetArrayRead(ts->vrtol,&rtol);
5766: for (i=0; i<n; i++) {
5767: err = PetscAbsScalar(e[i]);
5768: tola = PetscRealPart(atol[i]);
5769: if(tola>0.){
5770: suma += PetscSqr(err/tola);
5771: na_loc++;
5772: }
5773: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5774: if(tolr>0.){
5775: sumr += PetscSqr(err/tolr);
5776: nr_loc++;
5777: }
5778: tol=tola+tolr;
5779: if(tol>0.){
5780: sum += PetscSqr(err/tol);
5781: n_loc++;
5782: }
5783: }
5784: VecRestoreArrayRead(ts->vatol,&atol);
5785: VecRestoreArrayRead(ts->vrtol,&rtol);
5786: } else if (ts->vatol) { /* vector atol, scalar rtol */
5787: const PetscScalar *atol;
5788: VecGetArrayRead(ts->vatol,&atol);
5789: for (i=0; i<n; i++) {
5790: err = PetscAbsScalar(e[i]);
5791: tola = PetscRealPart(atol[i]);
5792: if(tola>0.){
5793: suma += PetscSqr(err/tola);
5794: na_loc++;
5795: }
5796: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5797: if(tolr>0.){
5798: sumr += PetscSqr(err/tolr);
5799: nr_loc++;
5800: }
5801: tol=tola+tolr;
5802: if(tol>0.){
5803: sum += PetscSqr(err/tol);
5804: n_loc++;
5805: }
5806: }
5807: VecRestoreArrayRead(ts->vatol,&atol);
5808: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5809: const PetscScalar *rtol;
5810: VecGetArrayRead(ts->vrtol,&rtol);
5811: for (i=0; i<n; i++) {
5812: err = PetscAbsScalar(e[i]);
5813: tola = ts->atol;
5814: if(tola>0.){
5815: suma += PetscSqr(err/tola);
5816: na_loc++;
5817: }
5818: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5819: if(tolr>0.){
5820: sumr += PetscSqr(err/tolr);
5821: nr_loc++;
5822: }
5823: tol=tola+tolr;
5824: if(tol>0.){
5825: sum += PetscSqr(err/tol);
5826: n_loc++;
5827: }
5828: }
5829: VecRestoreArrayRead(ts->vrtol,&rtol);
5830: } else { /* scalar atol, scalar rtol */
5831: for (i=0; i<n; i++) {
5832: err = PetscAbsScalar(e[i]);
5833: tola = ts->atol;
5834: if(tola>0.){
5835: suma += PetscSqr(err/tola);
5836: na_loc++;
5837: }
5838: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5839: if(tolr>0.){
5840: sumr += PetscSqr(err/tolr);
5841: nr_loc++;
5842: }
5843: tol=tola+tolr;
5844: if(tol>0.){
5845: sum += PetscSqr(err/tol);
5846: n_loc++;
5847: }
5848: }
5849: }
5850: VecRestoreArrayRead(E,&e);
5851: VecRestoreArrayRead(U,&u);
5852: VecRestoreArrayRead(Y,&y);
5854: err_loc[0] = sum;
5855: err_loc[1] = suma;
5856: err_loc[2] = sumr;
5857: err_loc[3] = (PetscReal)n_loc;
5858: err_loc[4] = (PetscReal)na_loc;
5859: err_loc[5] = (PetscReal)nr_loc;
5861: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5863: gsum = err_glb[0];
5864: gsuma = err_glb[1];
5865: gsumr = err_glb[2];
5866: n_glb = err_glb[3];
5867: na_glb = err_glb[4];
5868: nr_glb = err_glb[5];
5870: *norm = 0.;
5871: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5872: *norma = 0.;
5873: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5874: *normr = 0.;
5875: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5877: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5878: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5879: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5880: return(0);
5881: }
5883: /*@
5884: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
5885: Collective on TS
5887: Input Arguments:
5888: + ts - time stepping context
5889: . E - error vector
5890: . U - state vector, usually ts->vec_sol
5891: - Y - state vector, previous time step
5893: Output Arguments:
5894: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5895: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5896: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5898: Level: developer
5900: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
5901: @*/
5902: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5903: {
5904: PetscErrorCode ierr;
5905: PetscInt i,n,N,rstart;
5906: const PetscScalar *e,*u,*y;
5907: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
5908: PetscReal tol,tola,tolr;
5909: PetscReal err_loc[3],err_glb[3];
5925: VecGetSize(E,&N);
5926: VecGetLocalSize(E,&n);
5927: VecGetOwnershipRange(E,&rstart,NULL);
5928: VecGetArrayRead(E,&e);
5929: VecGetArrayRead(U,&u);
5930: VecGetArrayRead(Y,&y);
5932: max=0.;
5933: maxa=0.;
5934: maxr=0.;
5936: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5937: const PetscScalar *atol,*rtol;
5938: VecGetArrayRead(ts->vatol,&atol);
5939: VecGetArrayRead(ts->vrtol,&rtol);
5941: for (i=0; i<n; i++) {
5942: err = PetscAbsScalar(e[i]);
5943: tola = PetscRealPart(atol[i]);
5944: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5945: tol = tola+tolr;
5946: if(tola>0.){
5947: maxa = PetscMax(maxa,err / tola);
5948: }
5949: if(tolr>0.){
5950: maxr = PetscMax(maxr,err / tolr);
5951: }
5952: if(tol>0.){
5953: max = PetscMax(max,err / tol);
5954: }
5955: }
5956: VecRestoreArrayRead(ts->vatol,&atol);
5957: VecRestoreArrayRead(ts->vrtol,&rtol);
5958: } else if (ts->vatol) { /* vector atol, scalar rtol */
5959: const PetscScalar *atol;
5960: VecGetArrayRead(ts->vatol,&atol);
5961: for (i=0; i<n; i++) {
5962: err = PetscAbsScalar(e[i]);
5963: tola = PetscRealPart(atol[i]);
5964: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5965: tol = tola+tolr;
5966: if(tola>0.){
5967: maxa = PetscMax(maxa,err / tola);
5968: }
5969: if(tolr>0.){
5970: maxr = PetscMax(maxr,err / tolr);
5971: }
5972: if(tol>0.){
5973: max = PetscMax(max,err / tol);
5974: }
5975: }
5976: VecRestoreArrayRead(ts->vatol,&atol);
5977: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5978: const PetscScalar *rtol;
5979: VecGetArrayRead(ts->vrtol,&rtol);
5981: for (i=0; i<n; i++) {
5982: err = PetscAbsScalar(e[i]);
5983: tola = ts->atol;
5984: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5985: tol = tola+tolr;
5986: if(tola>0.){
5987: maxa = PetscMax(maxa,err / tola);
5988: }
5989: if(tolr>0.){
5990: maxr = PetscMax(maxr,err / tolr);
5991: }
5992: if(tol>0.){
5993: max = PetscMax(max,err / tol);
5994: }
5995: }
5996: VecRestoreArrayRead(ts->vrtol,&rtol);
5997: } else { /* scalar atol, scalar rtol */
5999: for (i=0; i<n; i++) {
6000: err = PetscAbsScalar(e[i]);
6001: tola = ts->atol;
6002: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6003: tol = tola+tolr;
6004: if(tola>0.){
6005: maxa = PetscMax(maxa,err / tola);
6006: }
6007: if(tolr>0.){
6008: maxr = PetscMax(maxr,err / tolr);
6009: }
6010: if(tol>0.){
6011: max = PetscMax(max,err / tol);
6012: }
6013: }
6014: }
6015: VecRestoreArrayRead(E,&e);
6016: VecRestoreArrayRead(U,&u);
6017: VecRestoreArrayRead(Y,&y);
6018: err_loc[0] = max;
6019: err_loc[1] = maxa;
6020: err_loc[2] = maxr;
6021: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6022: gmax = err_glb[0];
6023: gmaxa = err_glb[1];
6024: gmaxr = err_glb[2];
6026: *norm = gmax;
6027: *norma = gmaxa;
6028: *normr = gmaxr;
6029: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6030: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6031: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6032: return(0);
6033: }
6035: /*@
6036: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
6038: Collective on TS
6040: Input Arguments:
6041: + ts - time stepping context
6042: . E - error vector
6043: . U - state vector, usually ts->vec_sol
6044: . Y - state vector, previous time step
6045: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
6047: Output Arguments:
6048: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6049: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6050: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
6052: Options Database Keys:
6053: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
6055: Level: developer
6057: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6058: @*/
6059: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6060: {
6064: if (wnormtype == NORM_2) {
6065: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6066: } else if(wnormtype == NORM_INFINITY) {
6067: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6068: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6069: return(0);
6070: }
6073: /*@
6074: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6076: Logically Collective on TS
6078: Input Arguments:
6079: + ts - time stepping context
6080: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6082: Note:
6083: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6085: Level: intermediate
6087: .seealso: TSGetCFLTime(), TSADAPTCFL
6088: @*/
6089: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6090: {
6093: ts->cfltime_local = cfltime;
6094: ts->cfltime = -1.;
6095: return(0);
6096: }
6098: /*@
6099: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6101: Collective on TS
6103: Input Arguments:
6104: . ts - time stepping context
6106: Output Arguments:
6107: . cfltime - maximum stable time step for forward Euler
6109: Level: advanced
6111: .seealso: TSSetCFLTimeLocal()
6112: @*/
6113: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6114: {
6118: if (ts->cfltime < 0) {
6119: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6120: }
6121: *cfltime = ts->cfltime;
6122: return(0);
6123: }
6125: /*@
6126: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6128: Input Parameters:
6129: . ts - the TS context.
6130: . xl - lower bound.
6131: . xu - upper bound.
6133: Notes:
6134: If this routine is not called then the lower and upper bounds are set to
6135: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6137: Level: advanced
6139: @*/
6140: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6141: {
6143: SNES snes;
6146: TSGetSNES(ts,&snes);
6147: SNESVISetVariableBounds(snes,xl,xu);
6148: return(0);
6149: }
6151: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6152: #include <mex.h>
6154: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
6156: /*
6157: TSComputeFunction_Matlab - Calls the function that has been set with
6158: TSSetFunctionMatlab().
6160: Collective on TS
6162: Input Parameters:
6163: + snes - the TS context
6164: - u - input vector
6166: Output Parameter:
6167: . y - function vector, as set by TSSetFunction()
6169: Notes:
6170: TSComputeFunction() is typically used within nonlinear solvers
6171: implementations, so most users would not generally call this routine
6172: themselves.
6174: Level: developer
6176: .keywords: TS, nonlinear, compute, function
6178: .seealso: TSSetFunction(), TSGetFunction()
6179: */
6180: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6181: {
6182: PetscErrorCode ierr;
6183: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6184: int nlhs = 1,nrhs = 7;
6185: mxArray *plhs[1],*prhs[7];
6186: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
6196: PetscMemcpy(&ls,&snes,sizeof(snes));
6197: PetscMemcpy(&lx,&u,sizeof(u));
6198: PetscMemcpy(&lxdot,&udot,sizeof(udot));
6199: PetscMemcpy(&ly,&y,sizeof(u));
6201: prhs[0] = mxCreateDoubleScalar((double)ls);
6202: prhs[1] = mxCreateDoubleScalar(time);
6203: prhs[2] = mxCreateDoubleScalar((double)lx);
6204: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6205: prhs[4] = mxCreateDoubleScalar((double)ly);
6206: prhs[5] = mxCreateString(sctx->funcname);
6207: prhs[6] = sctx->ctx;
6208: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6209: mxGetScalar(plhs[0]);
6210: mxDestroyArray(prhs[0]);
6211: mxDestroyArray(prhs[1]);
6212: mxDestroyArray(prhs[2]);
6213: mxDestroyArray(prhs[3]);
6214: mxDestroyArray(prhs[4]);
6215: mxDestroyArray(prhs[5]);
6216: mxDestroyArray(plhs[0]);
6217: return(0);
6218: }
6220: /*
6221: TSSetFunctionMatlab - Sets the function evaluation routine and function
6222: vector for use by the TS routines in solving ODEs
6223: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
6225: Logically Collective on TS
6227: Input Parameters:
6228: + ts - the TS context
6229: - func - function evaluation routine
6231: Calling sequence of func:
6232: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
6234: Level: beginner
6236: .keywords: TS, nonlinear, set, function
6238: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6239: */
6240: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6241: {
6242: PetscErrorCode ierr;
6243: TSMatlabContext *sctx;
6246: /* currently sctx is memory bleed */
6247: PetscNew(&sctx);
6248: PetscStrallocpy(func,&sctx->funcname);
6249: /*
6250: This should work, but it doesn't
6251: sctx->ctx = ctx;
6252: mexMakeArrayPersistent(sctx->ctx);
6253: */
6254: sctx->ctx = mxDuplicateArray(ctx);
6256: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6257: return(0);
6258: }
6260: /*
6261: TSComputeJacobian_Matlab - Calls the function that has been set with
6262: TSSetJacobianMatlab().
6264: Collective on TS
6266: Input Parameters:
6267: + ts - the TS context
6268: . u - input vector
6269: . A, B - the matrices
6270: - ctx - user context
6272: Level: developer
6274: .keywords: TS, nonlinear, compute, function
6276: .seealso: TSSetFunction(), TSGetFunction()
6277: @*/
6278: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6279: {
6280: PetscErrorCode ierr;
6281: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6282: int nlhs = 2,nrhs = 9;
6283: mxArray *plhs[2],*prhs[9];
6284: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
6290: /* call Matlab function in ctx with arguments u and y */
6292: PetscMemcpy(&ls,&ts,sizeof(ts));
6293: PetscMemcpy(&lx,&u,sizeof(u));
6294: PetscMemcpy(&lxdot,&udot,sizeof(u));
6295: PetscMemcpy(&lA,A,sizeof(u));
6296: PetscMemcpy(&lB,B,sizeof(u));
6298: prhs[0] = mxCreateDoubleScalar((double)ls);
6299: prhs[1] = mxCreateDoubleScalar((double)time);
6300: prhs[2] = mxCreateDoubleScalar((double)lx);
6301: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6302: prhs[4] = mxCreateDoubleScalar((double)shift);
6303: prhs[5] = mxCreateDoubleScalar((double)lA);
6304: prhs[6] = mxCreateDoubleScalar((double)lB);
6305: prhs[7] = mxCreateString(sctx->funcname);
6306: prhs[8] = sctx->ctx;
6307: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
6308: mxGetScalar(plhs[0]);
6309: mxDestroyArray(prhs[0]);
6310: mxDestroyArray(prhs[1]);
6311: mxDestroyArray(prhs[2]);
6312: mxDestroyArray(prhs[3]);
6313: mxDestroyArray(prhs[4]);
6314: mxDestroyArray(prhs[5]);
6315: mxDestroyArray(prhs[6]);
6316: mxDestroyArray(prhs[7]);
6317: mxDestroyArray(plhs[0]);
6318: mxDestroyArray(plhs[1]);
6319: return(0);
6320: }
6322: /*
6323: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
6324: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
6326: Logically Collective on TS
6328: Input Parameters:
6329: + ts - the TS context
6330: . A,B - Jacobian matrices
6331: . func - function evaluation routine
6332: - ctx - user context
6334: Calling sequence of func:
6335: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
6337: Level: developer
6339: .keywords: TS, nonlinear, set, function
6341: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6342: */
6343: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
6344: {
6345: PetscErrorCode ierr;
6346: TSMatlabContext *sctx;
6349: /* currently sctx is memory bleed */
6350: PetscNew(&sctx);
6351: PetscStrallocpy(func,&sctx->funcname);
6352: /*
6353: This should work, but it doesn't
6354: sctx->ctx = ctx;
6355: mexMakeArrayPersistent(sctx->ctx);
6356: */
6357: sctx->ctx = mxDuplicateArray(ctx);
6359: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
6360: return(0);
6361: }
6363: /*
6364: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
6366: Collective on TS
6368: .seealso: TSSetFunction(), TSGetFunction()
6369: @*/
6370: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
6371: {
6372: PetscErrorCode ierr;
6373: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6374: int nlhs = 1,nrhs = 6;
6375: mxArray *plhs[1],*prhs[6];
6376: long long int lx = 0,ls = 0;
6382: PetscMemcpy(&ls,&ts,sizeof(ts));
6383: PetscMemcpy(&lx,&u,sizeof(u));
6385: prhs[0] = mxCreateDoubleScalar((double)ls);
6386: prhs[1] = mxCreateDoubleScalar((double)it);
6387: prhs[2] = mxCreateDoubleScalar((double)time);
6388: prhs[3] = mxCreateDoubleScalar((double)lx);
6389: prhs[4] = mxCreateString(sctx->funcname);
6390: prhs[5] = sctx->ctx;
6391: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
6392: mxGetScalar(plhs[0]);
6393: mxDestroyArray(prhs[0]);
6394: mxDestroyArray(prhs[1]);
6395: mxDestroyArray(prhs[2]);
6396: mxDestroyArray(prhs[3]);
6397: mxDestroyArray(prhs[4]);
6398: mxDestroyArray(plhs[0]);
6399: return(0);
6400: }
6402: /*
6403: TSMonitorSetMatlab - Sets the monitor function from Matlab
6405: Level: developer
6407: .keywords: TS, nonlinear, set, function
6409: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6410: */
6411: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
6412: {
6413: PetscErrorCode ierr;
6414: TSMatlabContext *sctx;
6417: /* currently sctx is memory bleed */
6418: PetscNew(&sctx);
6419: PetscStrallocpy(func,&sctx->funcname);
6420: /*
6421: This should work, but it doesn't
6422: sctx->ctx = ctx;
6423: mexMakeArrayPersistent(sctx->ctx);
6424: */
6425: sctx->ctx = mxDuplicateArray(ctx);
6427: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
6428: return(0);
6429: }
6430: #endif
6432: /*@C
6433: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6434: in a time based line graph
6436: Collective on TS
6438: Input Parameters:
6439: + ts - the TS context
6440: . step - current time-step
6441: . ptime - current time
6442: . u - current solution
6443: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6445: Options Database:
6446: . -ts_monitor_lg_solution_variables
6448: Level: intermediate
6450: Notes:
6451: Each process in a parallel run displays its component solutions in a separate window
6453: .keywords: TS, vector, monitor, view
6455: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6456: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6457: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6458: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6459: @*/
6460: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6461: {
6462: PetscErrorCode ierr;
6463: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6464: const PetscScalar *yy;
6465: Vec v;
6468: if (step < 0) return(0); /* -1 indicates interpolated solution */
6469: if (!step) {
6470: PetscDrawAxis axis;
6471: PetscInt dim;
6472: PetscDrawLGGetAxis(ctx->lg,&axis);
6473: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6474: if (!ctx->names) {
6475: PetscBool flg;
6476: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6477: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6478: if (flg) {
6479: PetscInt i,n;
6480: char **names;
6481: VecGetSize(u,&n);
6482: PetscMalloc1(n+1,&names);
6483: for (i=0; i<n; i++) {
6484: PetscMalloc1(5,&names[i]);
6485: PetscSNPrintf(names[i],5,"%D",i);
6486: }
6487: names[n] = NULL;
6488: ctx->names = names;
6489: }
6490: }
6491: if (ctx->names && !ctx->displaynames) {
6492: char **displaynames;
6493: PetscBool flg;
6494: VecGetLocalSize(u,&dim);
6495: PetscMalloc1(dim+1,&displaynames);
6496: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
6497: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6498: if (flg) {
6499: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6500: }
6501: PetscStrArrayDestroy(&displaynames);
6502: }
6503: if (ctx->displaynames) {
6504: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6505: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6506: } else if (ctx->names) {
6507: VecGetLocalSize(u,&dim);
6508: PetscDrawLGSetDimension(ctx->lg,dim);
6509: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6510: } else {
6511: VecGetLocalSize(u,&dim);
6512: PetscDrawLGSetDimension(ctx->lg,dim);
6513: }
6514: PetscDrawLGReset(ctx->lg);
6515: }
6517: if (!ctx->transform) v = u;
6518: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6519: VecGetArrayRead(v,&yy);
6520: if (ctx->displaynames) {
6521: PetscInt i;
6522: for (i=0; i<ctx->ndisplayvariables; i++)
6523: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6524: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6525: } else {
6526: #if defined(PETSC_USE_COMPLEX)
6527: PetscInt i,n;
6528: PetscReal *yreal;
6529: VecGetLocalSize(v,&n);
6530: PetscMalloc1(n,&yreal);
6531: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6532: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6533: PetscFree(yreal);
6534: #else
6535: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6536: #endif
6537: }
6538: VecRestoreArrayRead(v,&yy);
6539: if (ctx->transform) {VecDestroy(&v);}
6541: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6542: PetscDrawLGDraw(ctx->lg);
6543: PetscDrawLGSave(ctx->lg);
6544: }
6545: return(0);
6546: }
6548: /*@C
6549: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6551: Collective on TS
6553: Input Parameters:
6554: + ts - the TS context
6555: - names - the names of the components, final string must be NULL
6557: Level: intermediate
6559: Notes:
6560: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6562: .keywords: TS, vector, monitor, view
6564: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6565: @*/
6566: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6567: {
6568: PetscErrorCode ierr;
6569: PetscInt i;
6572: for (i=0; i<ts->numbermonitors; i++) {
6573: if (ts->monitor[i] == TSMonitorLGSolution) {
6574: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6575: break;
6576: }
6577: }
6578: return(0);
6579: }
6581: /*@C
6582: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6584: Collective on TS
6586: Input Parameters:
6587: + ts - the TS context
6588: - names - the names of the components, final string must be NULL
6590: Level: intermediate
6592: .keywords: TS, vector, monitor, view
6594: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6595: @*/
6596: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6597: {
6598: PetscErrorCode ierr;
6601: PetscStrArrayDestroy(&ctx->names);
6602: PetscStrArrayallocpy(names,&ctx->names);
6603: return(0);
6604: }
6606: /*@C
6607: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6609: Collective on TS
6611: Input Parameter:
6612: . ts - the TS context
6614: Output Parameter:
6615: . names - the names of the components, final string must be NULL
6617: Level: intermediate
6619: Notes:
6620: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6622: .keywords: TS, vector, monitor, view
6624: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6625: @*/
6626: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6627: {
6628: PetscInt i;
6631: *names = NULL;
6632: for (i=0; i<ts->numbermonitors; i++) {
6633: if (ts->monitor[i] == TSMonitorLGSolution) {
6634: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6635: *names = (const char *const *)ctx->names;
6636: break;
6637: }
6638: }
6639: return(0);
6640: }
6642: /*@C
6643: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6645: Collective on TS
6647: Input Parameters:
6648: + ctx - the TSMonitorLG context
6649: . displaynames - the names of the components, final string must be NULL
6651: Level: intermediate
6653: .keywords: TS, vector, monitor, view
6655: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6656: @*/
6657: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6658: {
6659: PetscInt j = 0,k;
6660: PetscErrorCode ierr;
6663: if (!ctx->names) return(0);
6664: PetscStrArrayDestroy(&ctx->displaynames);
6665: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6666: while (displaynames[j]) j++;
6667: ctx->ndisplayvariables = j;
6668: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6669: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6670: j = 0;
6671: while (displaynames[j]) {
6672: k = 0;
6673: while (ctx->names[k]) {
6674: PetscBool flg;
6675: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6676: if (flg) {
6677: ctx->displayvariables[j] = k;
6678: break;
6679: }
6680: k++;
6681: }
6682: j++;
6683: }
6684: return(0);
6685: }
6687: /*@C
6688: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6690: Collective on TS
6692: Input Parameters:
6693: + ts - the TS context
6694: . displaynames - the names of the components, final string must be NULL
6696: Notes:
6697: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6699: Level: intermediate
6701: .keywords: TS, vector, monitor, view
6703: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6704: @*/
6705: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6706: {
6707: PetscInt i;
6708: PetscErrorCode ierr;
6711: for (i=0; i<ts->numbermonitors; i++) {
6712: if (ts->monitor[i] == TSMonitorLGSolution) {
6713: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6714: break;
6715: }
6716: }
6717: return(0);
6718: }
6720: /*@C
6721: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6723: Collective on TS
6725: Input Parameters:
6726: + ts - the TS context
6727: . transform - the transform function
6728: . destroy - function to destroy the optional context
6729: - ctx - optional context used by transform function
6731: Notes:
6732: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6734: Level: intermediate
6736: .keywords: TS, vector, monitor, view
6738: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6739: @*/
6740: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6741: {
6742: PetscInt i;
6743: PetscErrorCode ierr;
6746: for (i=0; i<ts->numbermonitors; i++) {
6747: if (ts->monitor[i] == TSMonitorLGSolution) {
6748: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6749: }
6750: }
6751: return(0);
6752: }
6754: /*@C
6755: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6757: Collective on TSLGCtx
6759: Input Parameters:
6760: + ts - the TS context
6761: . transform - the transform function
6762: . destroy - function to destroy the optional context
6763: - ctx - optional context used by transform function
6765: Level: intermediate
6767: .keywords: TS, vector, monitor, view
6769: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6770: @*/
6771: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6772: {
6774: ctx->transform = transform;
6775: ctx->transformdestroy = destroy;
6776: ctx->transformctx = tctx;
6777: return(0);
6778: }
6780: /*@C
6781: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6782: in a time based line graph
6784: Collective on TS
6786: Input Parameters:
6787: + ts - the TS context
6788: . step - current time-step
6789: . ptime - current time
6790: . u - current solution
6791: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6793: Level: intermediate
6795: Notes:
6796: Each process in a parallel run displays its component errors in a separate window
6798: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6800: Options Database Keys:
6801: . -ts_monitor_lg_error - create a graphical monitor of error history
6803: .keywords: TS, vector, monitor, view
6805: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6806: @*/
6807: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6808: {
6809: PetscErrorCode ierr;
6810: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6811: const PetscScalar *yy;
6812: Vec y;
6815: if (!step) {
6816: PetscDrawAxis axis;
6817: PetscInt dim;
6818: PetscDrawLGGetAxis(ctx->lg,&axis);
6819: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6820: VecGetLocalSize(u,&dim);
6821: PetscDrawLGSetDimension(ctx->lg,dim);
6822: PetscDrawLGReset(ctx->lg);
6823: }
6824: VecDuplicate(u,&y);
6825: TSComputeSolutionFunction(ts,ptime,y);
6826: VecAXPY(y,-1.0,u);
6827: VecGetArrayRead(y,&yy);
6828: #if defined(PETSC_USE_COMPLEX)
6829: {
6830: PetscReal *yreal;
6831: PetscInt i,n;
6832: VecGetLocalSize(y,&n);
6833: PetscMalloc1(n,&yreal);
6834: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6835: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6836: PetscFree(yreal);
6837: }
6838: #else
6839: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6840: #endif
6841: VecRestoreArrayRead(y,&yy);
6842: VecDestroy(&y);
6843: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6844: PetscDrawLGDraw(ctx->lg);
6845: PetscDrawLGSave(ctx->lg);
6846: }
6847: return(0);
6848: }
6850: /*@C
6851: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
6853: Collective on TS
6855: Input Parameters:
6856: + ts - the TS context
6857: . step - current time-step
6858: . ptime - current time
6859: . u - current solution
6860: - dctx - unused context
6862: Level: intermediate
6864: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6866: Options Database Keys:
6867: . -ts_monitor_error - create a graphical monitor of error history
6869: .keywords: TS, vector, monitor, view
6871: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6872: @*/
6873: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
6874: {
6875: PetscErrorCode ierr;
6876: Vec y;
6877: PetscReal nrm;
6878: PetscBool flg;
6881: VecDuplicate(u,&y);
6882: TSComputeSolutionFunction(ts,ptime,y);
6883: VecAXPY(y,-1.0,u);
6884: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
6885: if (flg) {
6886: VecNorm(y,NORM_2,&nrm);
6887: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
6888: }
6889: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
6890: if (flg) {
6891: VecView(y,vf->viewer);
6892: }
6893: VecDestroy(&y);
6894: return(0);
6895: }
6897: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6898: {
6899: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6900: PetscReal x = ptime,y;
6902: PetscInt its;
6905: if (n < 0) return(0); /* -1 indicates interpolated solution */
6906: if (!n) {
6907: PetscDrawAxis axis;
6908: PetscDrawLGGetAxis(ctx->lg,&axis);
6909: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
6910: PetscDrawLGReset(ctx->lg);
6911: ctx->snes_its = 0;
6912: }
6913: TSGetSNESIterations(ts,&its);
6914: y = its - ctx->snes_its;
6915: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6916: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6917: PetscDrawLGDraw(ctx->lg);
6918: PetscDrawLGSave(ctx->lg);
6919: }
6920: ctx->snes_its = its;
6921: return(0);
6922: }
6924: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6925: {
6926: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6927: PetscReal x = ptime,y;
6929: PetscInt its;
6932: if (n < 0) return(0); /* -1 indicates interpolated solution */
6933: if (!n) {
6934: PetscDrawAxis axis;
6935: PetscDrawLGGetAxis(ctx->lg,&axis);
6936: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
6937: PetscDrawLGReset(ctx->lg);
6938: ctx->ksp_its = 0;
6939: }
6940: TSGetKSPIterations(ts,&its);
6941: y = its - ctx->ksp_its;
6942: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6943: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6944: PetscDrawLGDraw(ctx->lg);
6945: PetscDrawLGSave(ctx->lg);
6946: }
6947: ctx->ksp_its = its;
6948: return(0);
6949: }
6951: /*@
6952: TSComputeLinearStability - computes the linear stability function at a point
6954: Collective on TS and Vec
6956: Input Parameters:
6957: + ts - the TS context
6958: - xr,xi - real and imaginary part of input arguments
6960: Output Parameters:
6961: . yr,yi - real and imaginary part of function value
6963: Level: developer
6965: .keywords: TS, compute
6967: .seealso: TSSetRHSFunction(), TSComputeIFunction()
6968: @*/
6969: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
6970: {
6975: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
6976: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
6977: return(0);
6978: }
6980: /* ------------------------------------------------------------------------*/
6981: /*@C
6982: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
6984: Collective on TS
6986: Input Parameters:
6987: . ts - the ODE solver object
6989: Output Parameter:
6990: . ctx - the context
6992: Level: intermediate
6994: .keywords: TS, monitor, line graph, residual, seealso
6996: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
6998: @*/
6999: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7000: {
7004: PetscNew(ctx);
7005: return(0);
7006: }
7008: /*@C
7009: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
7011: Collective on TS
7013: Input Parameters:
7014: + ts - the TS context
7015: . step - current time-step
7016: . ptime - current time
7017: . u - current solution
7018: - dctx - the envelope context
7020: Options Database:
7021: . -ts_monitor_envelope
7023: Level: intermediate
7025: Notes:
7026: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
7028: .keywords: TS, vector, monitor, view
7030: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7031: @*/
7032: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7033: {
7034: PetscErrorCode ierr;
7035: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
7038: if (!ctx->max) {
7039: VecDuplicate(u,&ctx->max);
7040: VecDuplicate(u,&ctx->min);
7041: VecCopy(u,ctx->max);
7042: VecCopy(u,ctx->min);
7043: } else {
7044: VecPointwiseMax(ctx->max,u,ctx->max);
7045: VecPointwiseMin(ctx->min,u,ctx->min);
7046: }
7047: return(0);
7048: }
7050: /*@C
7051: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
7053: Collective on TS
7055: Input Parameter:
7056: . ts - the TS context
7058: Output Parameter:
7059: + max - the maximum values
7060: - min - the minimum values
7062: Notes:
7063: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7065: Level: intermediate
7067: .keywords: TS, vector, monitor, view
7069: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7070: @*/
7071: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7072: {
7073: PetscInt i;
7076: if (max) *max = NULL;
7077: if (min) *min = NULL;
7078: for (i=0; i<ts->numbermonitors; i++) {
7079: if (ts->monitor[i] == TSMonitorEnvelope) {
7080: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7081: if (max) *max = ctx->max;
7082: if (min) *min = ctx->min;
7083: break;
7084: }
7085: }
7086: return(0);
7087: }
7089: /*@C
7090: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7092: Collective on TSMonitorEnvelopeCtx
7094: Input Parameter:
7095: . ctx - the monitor context
7097: Level: intermediate
7099: .keywords: TS, monitor, line graph, destroy
7101: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7102: @*/
7103: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7104: {
7108: VecDestroy(&(*ctx)->min);
7109: VecDestroy(&(*ctx)->max);
7110: PetscFree(*ctx);
7111: return(0);
7112: }
7114: /*@
7115: TSRestartStep - Flags the solver to restart the next step
7117: Collective on TS
7119: Input Parameter:
7120: . ts - the TS context obtained from TSCreate()
7122: Level: advanced
7124: Notes:
7125: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7126: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7127: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7128: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7129: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7130: discontinuous source terms).
7132: .keywords: TS, timestep, restart
7134: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7135: @*/
7136: PetscErrorCode TSRestartStep(TS ts)
7137: {
7140: ts->steprestart = PETSC_TRUE;
7141: return(0);
7142: }
7144: /*@
7145: TSRollBack - Rolls back one time step
7147: Collective on TS
7149: Input Parameter:
7150: . ts - the TS context obtained from TSCreate()
7152: Level: advanced
7154: .keywords: TS, timestep, rollback
7156: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7157: @*/
7158: PetscErrorCode TSRollBack(TS ts)
7159: {
7164: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7165: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7166: (*ts->ops->rollback)(ts);
7167: ts->time_step = ts->ptime - ts->ptime_prev;
7168: ts->ptime = ts->ptime_prev;
7169: ts->ptime_prev = ts->ptime_prev_rollback;
7170: ts->steps--;
7171: ts->steprollback = PETSC_TRUE;
7172: return(0);
7173: }
7175: /*@
7176: TSGetStages - Get the number of stages and stage values
7178: Input Parameter:
7179: . ts - the TS context obtained from TSCreate()
7181: Level: advanced
7183: .keywords: TS, getstages
7185: .seealso: TSCreate()
7186: @*/
7187: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7188: {
7195: if (!ts->ops->getstages) *ns=0;
7196: else {
7197: (*ts->ops->getstages)(ts,ns,Y);
7198: }
7199: return(0);
7200: }
7202: /*@C
7203: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7205: Collective on SNES
7207: Input Parameters:
7208: + ts - the TS context
7209: . t - current timestep
7210: . U - state vector
7211: . Udot - time derivative of state vector
7212: . shift - shift to apply, see note below
7213: - ctx - an optional user context
7215: Output Parameters:
7216: + J - Jacobian matrix (not altered in this routine)
7217: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7219: Level: intermediate
7221: Notes:
7222: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7224: dF/dU + shift*dF/dUdot
7226: Most users should not need to explicitly call this routine, as it
7227: is used internally within the nonlinear solvers.
7229: This will first try to get the coloring from the DM. If the DM type has no coloring
7230: routine, then it will try to get the coloring from the matrix. This requires that the
7231: matrix have nonzero entries precomputed.
7233: .keywords: TS, finite differences, Jacobian, coloring, sparse
7234: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7235: @*/
7236: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7237: {
7238: SNES snes;
7239: MatFDColoring color;
7240: PetscBool hascolor, matcolor = PETSC_FALSE;
7244: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7245: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7246: if (!color) {
7247: DM dm;
7248: ISColoring iscoloring;
7250: TSGetDM(ts, &dm);
7251: DMHasColoring(dm, &hascolor);
7252: if (hascolor && !matcolor) {
7253: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7254: MatFDColoringCreate(B, iscoloring, &color);
7255: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7256: MatFDColoringSetFromOptions(color);
7257: MatFDColoringSetUp(B, iscoloring, color);
7258: ISColoringDestroy(&iscoloring);
7259: } else {
7260: MatColoring mc;
7262: MatColoringCreate(B, &mc);
7263: MatColoringSetDistance(mc, 2);
7264: MatColoringSetType(mc, MATCOLORINGSL);
7265: MatColoringSetFromOptions(mc);
7266: MatColoringApply(mc, &iscoloring);
7267: MatColoringDestroy(&mc);
7268: MatFDColoringCreate(B, iscoloring, &color);
7269: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7270: MatFDColoringSetFromOptions(color);
7271: MatFDColoringSetUp(B, iscoloring, color);
7272: ISColoringDestroy(&iscoloring);
7273: }
7274: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7275: PetscObjectDereference((PetscObject) color);
7276: }
7277: TSGetSNES(ts, &snes);
7278: MatFDColoringApply(B, color, U, snes);
7279: if (J != B) {
7280: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7281: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7282: }
7283: return(0);
7284: }
7286: /*@
7287: TSSetFunctionDomainError - Set the function testing if the current state vector is valid
7289: Input Parameters:
7290: ts - the TS context
7291: func - function called within TSFunctionDomainError
7293: Level: intermediate
7295: .keywords: TS, state, domain
7296: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7297: @*/
7299: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7300: {
7303: ts->functiondomainerror = func;
7304: return(0);
7305: }
7307: /*@
7308: TSFunctionDomainError - Check if the current state is valid
7310: Input Parameters:
7311: ts - the TS context
7312: stagetime - time of the simulation
7313: Y - state vector to check.
7315: Output Parameter:
7316: accept - Set to PETSC_FALSE if the current state vector is valid.
7318: Note:
7319: This function should be used to ensure the state is in a valid part of the space.
7320: For example, one can ensure here all values are positive.
7322: Level: advanced
7323: @*/
7324: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7325: {
7331: *accept = PETSC_TRUE;
7332: if (ts->functiondomainerror) {
7333: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7334: }
7335: return(0);
7336: }
7338: /*@C
7339: TSClone - This function clones a time step object.
7341: Collective on MPI_Comm
7343: Input Parameter:
7344: . tsin - The input TS
7346: Output Parameter:
7347: . tsout - The output TS (cloned)
7349: Notes:
7350: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7352: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7354: Level: developer
7356: .keywords: TS, clone
7357: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7358: @*/
7359: PetscErrorCode TSClone(TS tsin, TS *tsout)
7360: {
7361: TS t;
7363: SNES snes_start;
7364: DM dm;
7365: TSType type;
7369: *tsout = NULL;
7371: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7373: /* General TS description */
7374: t->numbermonitors = 0;
7375: t->setupcalled = 0;
7376: t->ksp_its = 0;
7377: t->snes_its = 0;
7378: t->nwork = 0;
7379: t->rhsjacobian.time = -1e20;
7380: t->rhsjacobian.scale = 1.;
7381: t->ijacobian.shift = 1.;
7383: TSGetSNES(tsin,&snes_start);
7384: TSSetSNES(t,snes_start);
7386: TSGetDM(tsin,&dm);
7387: TSSetDM(t,dm);
7389: t->adapt = tsin->adapt;
7390: PetscObjectReference((PetscObject)t->adapt);
7392: t->trajectory = tsin->trajectory;
7393: PetscObjectReference((PetscObject)t->trajectory);
7395: t->event = tsin->event;
7396: if (t->event) t->event->refct++;
7398: t->problem_type = tsin->problem_type;
7399: t->ptime = tsin->ptime;
7400: t->ptime_prev = tsin->ptime_prev;
7401: t->time_step = tsin->time_step;
7402: t->max_time = tsin->max_time;
7403: t->steps = tsin->steps;
7404: t->max_steps = tsin->max_steps;
7405: t->equation_type = tsin->equation_type;
7406: t->atol = tsin->atol;
7407: t->rtol = tsin->rtol;
7408: t->max_snes_failures = tsin->max_snes_failures;
7409: t->max_reject = tsin->max_reject;
7410: t->errorifstepfailed = tsin->errorifstepfailed;
7412: TSGetType(tsin,&type);
7413: TSSetType(t,type);
7415: t->vec_sol = NULL;
7417: t->cfltime = tsin->cfltime;
7418: t->cfltime_local = tsin->cfltime_local;
7419: t->exact_final_time = tsin->exact_final_time;
7421: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7423: if (((PetscObject)tsin)->fortran_func_pointers) {
7424: PetscInt i;
7425: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7426: for (i=0; i<10; i++) {
7427: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7428: }
7429: }
7430: *tsout = t;
7431: return(0);
7432: }
7434: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7435: {
7437: TS ts = (TS) ctx;
7440: TSComputeRHSFunction(ts,0,x,y);
7441: return(0);
7442: }
7444: /*@
7445: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7447: Logically Collective on TS and Mat
7449: Input Parameters:
7450: TS - the time stepping routine
7452: Output Parameter:
7453: . flg - PETSC_TRUE if the multiply is likely correct
7455: Options Database:
7456: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7458: Level: advanced
7460: Notes:
7461: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7463: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7464: @*/
7465: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7466: {
7467: Mat J,B;
7469: TSRHSJacobian func;
7470: void* ctx;
7473: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7474: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7475: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7476: return(0);
7477: }
7479: /*@C
7480: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7482: Logically Collective on TS and Mat
7484: Input Parameters:
7485: TS - the time stepping routine
7487: Output Parameter:
7488: . flg - PETSC_TRUE if the multiply is likely correct
7490: Options Database:
7491: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7493: Notes:
7494: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7496: Level: advanced
7498: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7499: @*/
7500: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7501: {
7502: Mat J,B;
7504: void *ctx;
7505: TSRHSJacobian func;
7508: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7509: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7510: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7511: return(0);
7512: }