petsc-3.10.5 2019-03-28
Report Typos and Errors

MatCreateShell

Creates a new matrix class for use with a user-defined private data storage format.

Synopsis

#include "petscmat.h" 
PetscErrorCode  MatCreateShell(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,void *ctx,Mat *A)
Collective on MPI_Comm

Input Parameters

comm - MPI communicator
m - number of local rows (must be given)
n - number of local columns (must be given)
M - number of global rows (may be PETSC_DETERMINE)
N - number of global columns (may be PETSC_DETERMINE)
ctx - pointer to data needed by the shell matrix routines

Output Parameter

A -the matrix

Usage

   extern int mult(Mat,Vec,Vec);
   MatCreateShell(comm,m,n,M,N,ctx,&mat);
   MatShellSetOperation(mat,MATOP_MULT,(void(*)(void))mult);
   [ Use matrix for operations that have been set ]
   MatDestroy(mat);

Notes

The shell matrix type is intended to provide a simple class to use with KSP (such as, for use with matrix-free methods). You should not use the shell type if you plan to define a complete matrix class.

Fortran Notes

To use this from Fortran with a ctx you must write an interface definition for this function and for MatShellGetContext() that tells Fortran the Fortran derived data type you are passing in as the ctx argument.

PETSc requires that matrices and vectors being used for certain operations are partitioned accordingly. For example, when creating a shell matrix, A, that supports parallel matrix-vector products using MatMult(A,x,y) the user should set the number of local matrix rows to be the number of local elements of the corresponding result vector, y. Note that this is information is required for use of the matrix interface routines, even though the shell matrix may not actually be physically partitioned. For example,


    Vec x, y
    extern int mult(Mat,Vec,Vec);
    Mat A

    VecCreateMPI(comm,PETSC_DECIDE,M,&y);
    VecCreateMPI(comm,PETSC_DECIDE,N,&x);
    VecGetLocalSize(y,&m);
    VecGetLocalSize(x,&n);
    MatCreateShell(comm,m,n,M,N,ctx,&A);
    MatShellSetOperation(mat,MATOP_MULT,(void(*)(void))mult);
    MatMult(A,x,y);
    MatDestroy(A);
    VecDestroy(y); VecDestroy(x);

MATSHELL handles MatShift(), MatDiagonalSet(), MatDiagonalScale(), MatAXPY(), and MatScale() internally so these operations cannot be overwritten unless MatShellSetManageScalingShifts() is called.

For rectangular matrices do all the scalings and shifts make sense?

Developers Notes

Regarding shifting and scaling. The general form is

diag(left)(vscale*A + diag(dshift) + vshift I)diag(right)

The order you apply the operations is important. For example if you have a dshift then apply a MatScale(s) you get s*vscale*A + s*diag(shift). But if you first scale and then shift you get s*vscale*A + diag(shift)

A is the user provided function.

Keywords

matrix, shell, create

See Also

MatShellSetOperation(), MatHasOperation(), MatShellGetContext(), MatShellSetContext(), MATSHELL, MatShellSetManageScalingShifts()

Level

advanced

Location

src/mat/impls/shell/shell.c

Examples

src/mat/examples/tutorials/ex6f.F90.html
src/ksp/ksp/examples/tutorials/ex14f.F90.html
src/ts/examples/tutorials/ex22f_mf.F90.html
src/tao/unconstrained/examples/tutorials/eptorsion1.c.html
src/tao/bound/examples/tutorials/plate2.c.html
src/tao/pde_constrained/examples/tutorials/elliptic.c.html
src/tao/pde_constrained/examples/tutorials/parabolic.c.html
src/tao/pde_constrained/examples/tutorials/hyperbolic.c.html

Index of all Mat routines
Table of Contents for all manual pages
Index of all manual pages