Next: About this document
Up: Method of Constrained Global
Previous: Conclusion
- 1
- R. Rafac, J. P. Schiffer, J. S. Hangst, D. H. E. Dubin, and D. J. Wales, Proc. Natl. Acad. Sci USA 88 483 (1991).
- 2
- L. T. Wille, Nature 324 46 (1986).
- 3
- G. S. Mageras and R. Mohan, Med. Phys. 20 639 (1993).
- 4
- L. L. Whyte, AM. Math. Mnthly. 59 606 (1952).
- 5
- S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220 671 (1983).
- 6
- N.Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys 21 1087 (1953).
- 7
- T. Erber and G. M. Hockney, J. Phys. A 24, L1369 (1991).
- 8
- J. R. Edmunsen, Acta Cryst. A48, 60 (1992).
- 9
- L. Glasser and A. G. Avery, J. Phys. A 25, 2473 (1992).
- 10
- J. R. Edmunsen, Acta Cryst. A49, 648 (1993).
- 11
- S. Lin, Bell Syst. Tech. J. 44 2245 (1965); S. Lin and B. W. Kernighan, Oper. Res. 21 498 (1973).
- 12
- W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge, New York, 1990).
Table i: Values obtained using the method of constrained global
optimization that we believe to be minimum Coulombic energies for
Thomson's problem of N unit point charges on the surface of a unit
sphere.
Table ii: Comparison of angst values for the office assignment
problem using the method of constrained global optimization (CGO) and
simulated annealing with the Lin--Kernighan rearrangement (SA). N is
the number of offices, which is equal to the number of occupants. The
column labelled ``minimum'' is the lowest value from ten runs using
different initial conditions; the column labelled ``mean'' is the
average of the ten values.
Timothy J. Williams
Thu Jan 4 16:47:51 MST 1996