
Control System Theory in Maple

by

Justin M.J. Wozniak

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2008

c©Justin M.J. Wozniak 2008

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by pho-

tocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

ii

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

iii

Abstract

In this thesis we examine the use of the computer algebra system Maple for

control system theory. Maple is an excellent system for the manipulation of expres-

sions used by control system engineers, but so far it is not widely used by the public

for this purpose. Many of the algorithms in Maple were implemented because their

application in control theory is known, but this functionality has not been compiled

in a meaningful way for engineers. Over the past two years we have investigated

what functionality control system engineers need and have attempted to fill in the

gaps in Maple’s functionality to make it more useful to engineers.

iv

Acknowledgements

I would like to thank my supervisor, Dr. George Labahn, for his assistance and

guidance in preparing this thesis. I also extend thanks to the readers, Dr. Justin

Wan and Dr. Keith Geddes, whom I met in the classrooms of this university.

A special debt of gratitude is owed to Venus, who accompanied me on our

extended honeymoon in Waterloo this summer. Thank you for your patience during

this project.

I would like to thank Shannon Puddister for his input regarding the user inter-

face from an engineering perspective.

Thanks also to the Symbolic Computation Group, Waterloo Maple and ORCCA,

for financial and academic support.

v

Dedication

This thesis is dedicated to all the family scientists and engineers, especially my

parents, Wayne and Susan.

vi

Contents

1 Introduction 1

1.1 Symbolic Computation and Control System Theory 2

1.2 Existing Software for Control System Theory 4

1.2.1 MATLAB . 4

1.2.2 Mathematica . 6

1.2.3 Maple . 7

1.3 Thesis Summary . 8

2 Mathematical Background 10

2.1 Control System Theory . 10

2.2 Differential Systems . 11

2.3 Linear Time Invariant Systems . 12

2.3.1 Linearization . 14

2.4 Output . 15

2.5 SISO Systems . 17

2.5.1 Mathematical Description 17

2.6 Algebraic Operations . 20

vii

2.7 System Poles and Zeroes . 21

3 Basic Analysis 24

3.1 Design Considerations . 24

3.1.1 Graphical User Interface . 25

3.1.2 Functionality . 26

3.2 Basic Functions . 26

3.2.1 System Conversion . 26

3.2.2 Observability and Controllability 27

3.2.3 Hurwitz Test . 28

3.3 Graphical Output . 32

3.3.1 Time Domain Response . 32

3.3.2 Root Locus . 34

3.3.3 Nyquist Diagram . 36

3.3.4 Bode Diagram . 38

4 The Matrix Exponential 40

4.1 Definitions and Properties . 40

4.2 Computation . 43

4.2.1 Polynomial Methods . 43

4.2.2 Matrix Decomposition Methods 48

4.3 Special Cases . 51

5 Feedback Control 54

5.1 Ackermann’s Method . 56

viii

5.2 Direct Method . 57

5.3 Transfer Function Method . 58

5.4 Eigenvector Control . 61

6 Conclusion 62

Bibliography 64

A The CST Module 66

B Vita 76

ix

List of Tables

2.1 Algebraic constructions of systems. 21

3.1 Possible inputs for system response. 33

x

List of Figures

3.1 Timing results of two Hurwitz algorithms. 30

3.2 Possible uses of the plotting functionality. 33

3.3 Possible uses of the root locus functionality. 35

3.4 Possible uses of the Nyquist functionality. 37

3.5 Possible uses of the Bode diagram functionality. 39

xi

Chapter 1

Introduction

Control system theory is a broad field that uses many different areas of mathemat-

ics. Differential equations, matrix manipulation, complex functions and integral

transforms are just some of the mathematical tools commonly used in most basic

control problems.

The Maple computer algebra system is an excellent tool to use when approaching

these types of problems, and the engineer attempting to solve a control problem

with Maple would have access to all the functionality necessary. However, Maple

was not designed primarily for engineering applications, and as a result engineers

often use other more specialized software to meet their needs.

The typical modern control system engineer has probably used a system that

emphasizes floating point computation, often in matrix-vector form. Older control

software written in Fortran or C++ would fit into this category, as would modern

MATLAB control software. Such systems tend to emphasize the state-space models

of control systems in a floating point domain.

1

CHAPTER 1. INTRODUCTION 2

In general, Maple’s floating point functionality is slower than that of competing

software, but its polynomial arithmetic and related functionality make up the well-

established, mature parts of the system. This indicates that Maple is best suited

to operate on polynomial models of control systems in exact arithmetic.

In this thesis we have undertaken two projects. The first is to implement in

Maple the basic control system functionality that would benefit the control sys-

tem engineer. This includes convenient plots, graphics, and engineering operations

commonly used in control theory. The second project examines some algorithms

already in Maple that are useful to the engineer, and report on how they help or

hinder control engineering.

We have approached the first project by designing and implementing the CST

package in Maple. This package has a library of software algorithms commonly

used by control engineers. It also has a Maplet that provides easy access to the

graphical routines in the library.

We have approached the second project by investigating two specific computa-

tional problems: solving the homogenous 1st order matrix differential equation and

eigenvalue assignment.

1.1 Symbolic Computation and Control System

Theory

An important issue when developing engineering software for Maple is the differ-

ence between exact arithmetic and floating point arithmetic. Maple is well suited

CHAPTER 1. INTRODUCTION 3

to perform calculations with integers, fractions of integers, algebraic numbers and

unknown parameters. However, a cursory examination of any control theory text-

book will show that engineers prefer floating point computation. Measurements

and constants found in typical electrical or mechanical control systems rarely take

on integer values.

In addition, many computations used in engineering applications do not result

in answers that are easy to describe using exact arithmetic. For example, the

basic analysis of a 5th order differential system involves finding the roots of a 5th

degree polynomial. Although polynomial arithmetic is convenient in Maple, finding

the explicit roots of such a polynomial is not generally possible. However, if the

coefficients are considered floating point numbers, floating point solutions can easily

be found.

Floating point numbers have certain drawbacks, however. Polynomials of 5th

degree or higher may have simple factorizations, especially for systems that were

designed with pole placement techniques. However, even minor round-off devi-

ations from the factorizable polynomial coefficients will result in a factorization

significantly different from the correct answer.

In addition, numerical instability can prevent accurate results from being ob-

tained. For example, manipulation of polynomial matrices in floating point is often

unreliable and computationally expensive [4].

We will assume, then, that the systems of interest to the engineer studying

control theory in Maple will really be investigating control theory, that is, computing

with idealized systems that make for convenient computation. The engineer will be

CHAPTER 1. INTRODUCTION 4

able to gain deep insight into such systems by examining them from a theoretical

perspective.

Graphical output will still be handled through floating point computation as

that is the natural vehicle for plotting, etc. However, important data points such

as maxima, roots, and limits may still be computed exactly if possible.

1.2 Existing Software for Control System Theory

We begin with an examination of popular software tools for the analysis of control

systems. We have chosen to examine three general purpose software systems which

offer potential benefit to the control system engineer.

1.2.1 MATLAB

MATLAB is a popular mathematical programming language based on matrix com-

putation in the floating point domain. MATLAB also offers certain Maple func-

tionality through the “Symbolic Toolbox”. It offers an interactive command-line

interface, and provides a variety of plotting and graphical functionality in pop-up

windows. MATLAB consists of the main program, with a variety of Toolboxes

associated with it that may be used for different applications. It is probably the

most common choice for engineers working with control systems.

The MATLAB Control System Toolbox allows for the creation and manipulation

of Linear Time Invariant (LTI) objects, a MATLAB data type. These objects

may be instantiated using a transfer function format or a state space model. LTI

objects may also be created by pole placement methods or even through graphical

CHAPTER 1. INTRODUCTION 5

pole placement. Model conversion and extraction is possible. LTI objects may be

added, multiplied, and concatenated easily with overloaded arithmetic operations.

Graphical analysis is available, such as the Bode diagram, the Nyquist diagrams,

and the Nichols chart. Time domain responses are available for impulse or step

inputs.

MATLAB’s Robust Control Toolbox is an additional collection of functions for

the design of control systems. This Toolbox contains functions for so-called H2 and

H∞ control, singular value analysis, and Riccati equation tools.

A software tool for MATLAB called Simulink is a graphical tool for the con-

struction and analysis of control systems. This tool allows the user to draw out the

desired system using a GUI, and then perform simulations of system response. The

systems may be continuous or discrete with respect to time, and may be linear or

nonlinear.

Third party software for MATLAB is abundant. For example, Shinners [12]

provides freeware for use by readers of his textbook, called the Modern Control

System Theory and Design Toolbox. This is a general-purpose package of control

functionality that is based around the textbook. It has a full set of graphical

routines as well as some analytical routines, including a small set of polynomial

arithmetic functionality.

Other third party software for MATLAB may be more specialized. For ex-

ample, the Submarine Control Toolbox allows the user to design and simulate a

virtual submarine. Typical design tools are present, including feedback control and

eigenvalue assignment. The resulting design may be previewed in an impressive 3D

CHAPTER 1. INTRODUCTION 6

graphical interface.

1.2.2 Mathematica

Mathematica is a programming language designed for a variety of mathematical ap-

plications in a symbolic context. The kernel of the Mathematica system is designed

for list-based functional programming, but has been expanded to support a variety

of programming styles. Users often prefer the document-driven interface, which is

beneficial for plotting and interactive development, but the kernel is also accessible

from the command line, or from other software systems, such as C, World Wide

Web interfaces, or even Microsoft Excel. Mathematica is distributed by Wolfram

Inc.

Wolfram also offers software called the Control System Professional that is dis-

tributed separately from Mathematica. This software provides a variety of control

functionality and analysis, such as plots and simulation. This functionality is avail-

able inline with the document-driven interface, allowing for seamless development

with other problems. It allows for symbolic analysis of systems such as solving state

equations, numerical system simulation, and classical plotting capabilities like Bode

and Nyquist. Other available plotting includes time domain response to impulse,

step, and ramp input.

Control System Professional also allows for more advanced mathematics, such

as Ackermann’s formula for eigenvalue assignment. Traditional and robust pole

assignment methods are also available. A variety of system realizations may be

computed, including Jordan and Kalman forms. Using such realizations, the order

CHAPTER 1. INTRODUCTION 7

of the system may be reduced to a more convenient form.

For nonlinear systems, linearization or rational polynomial approximation of

nonlinear systems is possible.

1.2.3 Maple

Maple is a computer algebra system designed originally for exact arithmetic and

polynomial manipulation [7]. It is built on a small kernel architecture with a large

library of mathematical functionality which may be loaded when necessary by the

user. Maple is a mature system with widely respected functionality for symbolic in-

tegration and summation, polynomial arithmetic and factorization, number theory,

and multiple-precision arithmetic. Maple has a document-driven interface which

allows access to the kernel, and provides a variety of plotting capabilities.

Floating point computation is performed explicitly by the user with special

commands that allow for arbitrary precision computation. Hardware based floating

point computation is also available, resulting in a fixed precision result but with

more efficient performance.

A recent addition to Maple is the Maplets package, which provides access to

Java-based graphical user interfaces. This allows the programmer to build mathe-

matical applications that the user would be comfortable using, complete with text

boxes, buttons, plots and images.

Although Maple does not yet have a package for control system theory, it does

already provide a great deal of functionality that is important when working on

control problems. Maple allows for elegant handling of the mathematical data

CHAPTER 1. INTRODUCTION 8

types essential for system analysis, such as transfer functions and lists of matrices.

In addition, many mathematical operations important in control system design are

present, such as the Laplace transform, z-transform, and matrix exponential.

1.3 Thesis Summary

In this thesis we will discuss many of the issues involved in using Maple for control

system computation. We will follow a control system design method:

• Chapter 2 - Mathematical Background

Given a system, we must describe it mathematically. We will provide a math-

ematical background for many control system problems. Similarly, the system

must be defined in a computational setting, so we will discuss how to express

such systems in Maple.

• Chapter 3 - Basic Analysis

The control engineer commonly seeks to control some given system, called

the plant. Basic analysis must be performed to determine the properties of

the given plant, such as system response, stability, and error. In this chapter

we will discuss our implementation of some of the simpler control algorithms

and graphical tools.

• Chapter 4 - The Matrix Exponential

It may be desirable to express the response of the system as a function of

time. This involves the computation of the matrix exponential. In Chapter

CHAPTER 1. INTRODUCTION 9

4 we examine a variety of algorithms to handle this problem.

• Chapter 5 - Feedback Control

Given a plant and a desired system behavior, we may design a feedback con-

troller to control the plant so it meets the design criteria. Feedback controllers

can modify the eigenvalues of the closed-loop system. We examine methods

to perform this computation in Chapter 5.

• Conclusion - Chapter 6

We conclude the thesis, tying together the theory and software.

Chapter 2

Mathematical Background

In this chapter we present the mathematical background for the study of control

system theory. We first discuss how to describe a system plant as a differential equa-

tion, and how such systems may be represented in Maple. We then describe some

preliminary operations and analysis, including system synthesis and root analysis.

2.1 Control System Theory

Control system theory is the mathematical process of designing a machine to control

another machine. The machine to be controlled is, in engineering lingo, called the

plant. The machine doing the controlling is called the compensator, or simply the

controller. Each of these machines may be referred to as a system. These two

machines must be somehow connected, output to input, so that they may interact.

We speak of control system theory as a mathematical process because there are

design decisions to be made using mathematical tools, working with idealized math-

10

CHAPTER 2. MATHEMATICAL BACKGROUND 11

ematical models of the actual systems. A mathematical model of a given system

may, for example, be a system of differential equations, with state variables repre-

senting the state of the system. These state variables describe the inner workings

of the machine at hand; for example, positions of components in space, velocities

of components, etc. The input to the system may be described as another set of

independent state variables, and the output of the system may be described as some

function of all the state variables.

With such an abstract concept of systems, we may describe anything from a

microscopic pair of transistors to a gigantic water reservoir. The state variables

for such systems may represent electrons, energy, or gallons of water. Input and

output may occur over silicon circuitry or PVC piping and evaporation.

2.2 Differential Systems

In this thesis we will focus on systems that can be described mathematically by

systems of continuous differential equations. We will assume that the system has

n state variables of interest, as well as n possible inputs. The state variables of

this system will be contained in the vector x, the inputs to the system will be

another vector u, and the time will be denoted t. The change in the state variables

of such a system with respect to time can then be written as ẋ. We will assume

that changes in x are only due to the current values of x, u, and t. With these

assumptions, we can write that the change in x is some function of x, u, and t,

called the system dynamics function, f . With this in mind, we can write a simple

CHAPTER 2. MATHEMATICAL BACKGROUND 12

differential equation

ẋ = f(x,u, t). (2.1)

as a description of our control system.

This is the most general of first-order differential equations; we have no condi-

tions on what kind of function f may be.

2.3 Linear Time Invariant Systems

The systems of concern to us in this chapter are known as linear time-invariant

(LTI) systems. An LTI system has many special properties that allow us to analyze

the system, predict behavior, and control the system. Many of the tools that are

described later in this thesis are only useful for LTI systems.

Time-invariance simply means that time is not a factor in the dynamics of

the system, and that the system dynamics function does not change with time.

Mathematically, this means that we may drop t from equation (2.1) and write:

ẋ = f(x,u). (2.2)

It should be noted that dropping t from this equation does not limit us function-

ally at all, since time can still be considered a factor. Time may still be deduced

in some cases from a component of the input vector, u, or even from certain state

variables in x. Thus, any system of the form (2.1) may be described by a system

of the form (2.2).

Up to this point, we have been referring to the current states of the system.

CHAPTER 2. MATHEMATICAL BACKGROUND 13

Since x and u may change with time, it is preferred to express them as functions of

time, x(t) and u(t). So we will consider x(t) to be the vector of state variables of

x at time t, and u(t) to be the input to the system at time t. We may then write

our differential equation as:

ẋ(t) = f(x(t),u(t)). (2.3)

Linear systems are systems like (2.2), but where the change in state at a given

time is a linear function of both the state and input. This means that the change

in each state variable is equal to the sum of fixed proportions of the state and input

variables, and the input. The proportions will be written as coefficients Aij. An

LTI system has a similar matrix B defined to operate on u. Thus the change in

each state variable can be written as below for a given state variable, xi:

ẋi(t) =Ai1x1(t) + Ai2x2(t) + ... + Ainxn(t)+ (2.4)

Bi1u1(t) + Bi2u2(t) + ... + Binun(t). (2.5)

The complete linear system may then be written in matrix-vector form:

ẋ1(t)

ẋ2(t)

...

ẋn(t)

=

A11 A12 A1n

A11 A11 A2n

...
...

...

An1 An2 Ann

x1(t)

x2(t)

...

xn(t)

+

B11 B12 B1n

B11 B11 B2n

...
...

...

Bn1 Bn2 Bnn

u1(t)

u2(t)

...

un(t)

,

(2.6)

CHAPTER 2. MATHEMATICAL BACKGROUND 14

or in a condensed form:

ẋ(t) = Ax(t) + Bu(t). (2.7)

2.3.1 Linearization

LTI systems are convenient to work with and easy to describe, but many systems are

not presented in such an easy fashion. Many problems in control system theory are

presented in a more general, nonlinear form, as in equation (2.3). Often, however,

we may approximate such systems by a linear system, by linearizing the system

around a given operating state.

In order to linearize a system, we first pick a state around which to linearize,

for example, an equilibrium point. An equilibrium point is a state x∗,u∗ such that:

f(x∗,u∗) = 0, (2.8)

and has the property that when a system is at the equilibrium point, it will stay

there forever (since then ẋ = 0).

Because f is continuous, we can assume that values of f at x, u close to x∗,u∗

will be close to 0. Linearization is the additional assumption that f will change

linearly as we move away from x∗ and u∗. We can think of this as a truncated

Taylor series representation of f . If f has a Taylor series, and starts at 0, we can

truncate the series so that only the first derivative remains. We assume that this

is appropriate for some range of values close to x∗ and u∗.

Of course, f is a function in R2n → Rn, so we need more than just a standard

Taylor series.

CHAPTER 2. MATHEMATICAL BACKGROUND 15

First, we must assume that x and u affect f linearly with respect to each other,

so that we may approximate f by some functions f1, f2:

f(x(t),u(t)) = f1(x(t)) + f2(u(t)) (2.9)

To get the first derivative in this space, we take the Jacobian of f1 with respect

to x, denoted ∂f1

∂x
. Evaluating

∂f1

∂x

∣

∣

∣

∣

x
∗

= A (2.10)

gives us our linear operator on x as above in equation (2.7), which will suffice as

an approximation to f1. The second part of (2.9), f2, must also be linearized. We

will linearize the action of f2 on each ui without respect to any uj, j 6= i. This will

give us a matrix B, that may be inserted into (2.7), giving our linearized version

of (2.3):

ẋ(t) = Ax(t) + Bu(t). (2.11)

2.4 Output

The output of a system is the observable data coming back out from the system.

Often, the output of the system is not the same as x(t), the system state, perhaps

because the plant cannot be observed directly, or perhaps because the engineer is

only interested in some subset of the state variables. In such systems, the equation

(2.3) will be a system of two equations, where the output y(t) is represented as

CHAPTER 2. MATHEMATICAL BACKGROUND 16

another function of x(t),u(t). Thus we have:

ẋ(t) = f(x(t),u(t)), (2.12)

y(t) = g(x(t),u(t)).

In some cases, only y(t) may be observed. In this case, if we desire to know

the values of x(t), we will have to estimate their values with an estimator. This is

especially important in feedback control as will be seen later in this thesis.

In equation (2.12) we have f, g written as nonlinear functions. We have already

shown that f may be linearized as in equation (2.11), and g will be linearized in a

similar way.

We first linearize g with respect to x by taking the Jacobian and evaluating at

an equilibrium point x∗.

∂g

∂x

∣

∣

∣

∣

x
∗

= C. (2.13)

We then similarly linearize g with respect to u

∂g

∂u

∣

∣

∣

∣

x
∗

= D. (2.14)

So our linearized system with input u and output y is

ẋ(t) = Ax(t) + Bu(t), (2.15)

y(t) = Cx(t) + Du(t).

CHAPTER 2. MATHEMATICAL BACKGROUND 17

2.5 SISO Systems

Thus far, we have seen first-order nonlinear and linear systems in n variables.

However, many common systems may have only one state variable in a higher-

order differential equation. Such a system with only one input and one output may

be represented as a SISO (single-input-single-output) system.

2.5.1 Mathematical Description

A linear time-invariant SISO system is described below. Letting u be the system

input, x be the state of the system and y the output, we may describe an nth order

LTI system by a single differential equation:

u(t) = a0x(t) + a1ẋ(t) + ... + an−1x
(n−1)(t) + anx

(n)(t) (2.16)

y(t) = c0x(t) + c1ẋ(t) + ... + cm−1x
(m−1)(t) + cmx(m)(t).

Such an equation has more than one state variable because the n−1 derivatives

of the state are considered state variables. We will assign the ith derivative to the

i + 1th state:

x1(t) = x(t),x2(t) = ẋ(t), ...,xn(t) = x(n−1)(t). (2.17)

Similar to equation (2.4), the derivative state of each xi(t) can be written as a

CHAPTER 2. MATHEMATICAL BACKGROUND 18

linear function of the state variables.

ẋ1(t) = x2(t), (2.18)

ẋ2(t) = x3(t),

...

ẋn−1(t) = xn(t),

ẋn(t) =
a0

an
x1(t) +

a1

an
x2(t) + ... +

an−1

an
xn(t) + u(t).

Systems as given in equations (2.16) or (2.18) can be awkward to use and ma-

nipulate. As a result these systems are typically expressed in other ways that are

more meaningful.

The most common way to express such systems is by performing a Laplace

transform, which converts a differential problem to an algebraic one. This relates

the system output to the system input as a rational function, called a transfer

function.

The Laplace transform of a function is an integral transform. A generic function

f(t) has a Laplace transform denoted F (s), according to the formula

F (s) =

∫ ∞

0

f(t)e−stdt . (2.19)

The Laplace transform is often written as an operator, L, giving L(f(t)) = F (s).

A handful of well-known methods are helpful when evaluating Laplace trans-

CHAPTER 2. MATHEMATICAL BACKGROUND 19

forms. When transforming equation (2.16), one may use the following simple rules:

L(f1(t) + f2(t)) = F1(s) + F2(s). (2.20)

L(ax(n)(t)) = asnX(s). (2.21)

Using these rules and assuming zero initial conditions, the system (2.16) would be

transformed to:

U(s) = (ansn + an−1s
n−1 + ... + a1s + a0)X(s)

Y (s) = (cnsm + cn−1s
n−1 + ... + c1s + c0)X(s).

A transfer function expresses the ratio of the output to the input:

Y (s)

U(s)
=

cmsm + cn−1s
n−1 + ... + c1s + c0

ansn + an−1sn−1 + ... + a1s + a0
. (2.22)

An important property that transfer functions may have is that of being proper.

A proper transfer function is a function F (s) that satisfies

lim
s→∞

F (s) ∈ R. (2.23)

For our purposes, this is equivalent to saying that the degree of the numerator

is less than or equal to the degree of the denominator.

A second expression for these systems is the state space model. In this repre-

sentation, we express each derivative of the state of the system as its own state

CHAPTER 2. MATHEMATICAL BACKGROUND 20

variable, as in equation (2.18). This leads to a natural matrix-vector expression:

ẋ1

ẋ2

...

ẋn

=

0 1 0 ... 0

0 0 1 ... 0

...
...

...

a0

an

a1

an

a2

an
... an−1

an

x1

x2

...

xn

+

0

...

0

u(t)

.

Or, more simply:

ẋ = Ax + Bu (2.24)

y = Cx + Du,

where B is the identity matrix and D = 0.

2.6 Algebraic Operations

Now that we have a mathematical representation for LTI systems, we will show

that they may be easily manipulated mathematically.

The set of rational transfer functions in a variable s forms an algebraic ring, so

the pairs of systems may be added or multiplied. In addition, linear systems that

are proper form a principal ideal domain [13], and hence the sum or product of a

proper system is also proper.

For example, given two linear systems, represented as transfer functions P (s), Q(s),

the following operations are allowed and result in the systems shown.

CHAPTER 2. MATHEMATICAL BACKGROUND 21

P (s) + Q(s)

Y(s)
P(s)

U(s)

Q(s)

P (s)Q(s)
U(s) Q(s)P(s) Y(s)

P (s)
1+P (s)Q(s)

U(s) P(s)

Q(s)

Y(s)

Table 2.1: Algebraic constructions of systems.

2.7 System Poles and Zeroes

A common first step when analyzing an LTI system is to determine the poles and

zeroes of the system. The zeroes of the system are the zeroes of the transfer function,

which are the roots of the numerator, while the poles of the system are the poles

of the transfer function, which are the roots of the denominator. In a state space

system such as (2.7), the poles are the eigenvalues of A.

To find the poles, we must solve a polynomial equation of degree n for s. Fol-

lowing equation (2.22), we set the denominator to zero:

sn + an−1s
n−1 + ... + a1s + a0 = 0, (2.25)

CHAPTER 2. MATHEMATICAL BACKGROUND 22

which may be factored to give

(s − λ1)(s − λ2)...(s − λn) = 0. (2.26)

The poles of a system are important because they reveal the system’s behavior.

Knowing the poles of the system often provides some immediate qualitative prop-

erties. For example, stability of the system is equivalent to the system having all of

the poles in the left half of the complex plane. Having poles close to the imaginary

axis and away from the origin will result in sinusoidal-like responses.

A rough explanation for this behavior may be given by imagining the inverse

Laplace transform of the real coefficient system corresponding to equation (2.26).

If this factored polynomial corresponds to the denominator of a transfer function

Y (s)
U(s)

, then the system has a partial fraction expansion with numerators Ni to be

determined:

N1

(s − λ1)
+

N2

(s − λ2)
+ ... +

Nn

(s − λn)
(2.27)

The inverse Laplace transform of this expression is

N1e
λ1t + N2e

λ2t + ... + Nne
λnt (2.28)

which expresses the response of the system in the time domain. The exponent in

each term can be thought of as a complex number a + bi. Each pair of roots with

an imaginary component results in addends

Nje
(a+bi)t + Nke

(a−bi)t, (2.29)

CHAPTER 2. MATHEMATICAL BACKGROUND 23

which may be expressed as

ea(N1e
(bi)t + N2e

−(bi)t). (2.30)

and hence clearly exhibits sinusoidal behavior. It is clear to see that if a > 0, the

system will demonstrate exponential growth. It is also clear that the nature of the

oscillations will be dependent on b.

The stability of a system is dependent on its behavior after a long period of

time. Specifically, if x(t) < ∞ for t → ∞ then the system can be described as

stable. If the system expands without bound, it is considered unstable.

It is well known that stable systems have all of their poles in the left half

plane. These are also known as Hurwitz systems. One does not have to explicitly

compute all the roots of the characteristic equation in order to determine stability,

the Routh-Hurwitz test allows one to test for the presence of positive roots without

such an extensive computation.

From a computer algebra perspective, we prefer to find the exact, explicit so-

lutions of this equation. This is often impossible to do for n > 4, and often gives

unmanageable results for n > 2. We will work around this difficulty by assuming

that in many cases, the system was designed with the poles in mind, making the

roots computable.

Chapter 3

Basic Analysis

We set out to create a Maple package that would meet the needs of engineers in

a way that is convenient in the Maple system. We have written a Maple module

called CST that allows the user to analyze control systems in transfer function or

state space form.

This module consists of a Maplet and a set of programmer-accessible functions

that may be helpful to the engineer using Maple. In this chapter, we will describe

the design of this system. We will then show how the system may be used, provide

screenshots of the program, and give examples.

3.1 Design Considerations

In this section, we will discuss how the system is intended to be used by the engineer.

All of the functions in this chapter are intended for SISO systems, as in section 2.5.

24

CHAPTER 3. BASIC ANALYSIS 25

3.1.1 Graphical User Interface

Our user interface is designed to be a quick way for the user to input and quickly

check the properties of different systems, and make quick changes. The user should

easily be able to easily perform different qualitative tests on each system, with point

and click simplicity.

The Maplet implementing this functionality is called the CSTI. The graphical

user interface is designed using the new Maple package Maplets. This package

allows the user to quickly create a GUI application in Maple by building a Maplet

data type, inserting window elements such as Buttons or ToolBars, and displaying

them.

We decided to use the Maplets package because we decided this would be the

most useful way for the modern control system engineer to get graphical output from

the system. This allows the user to see a variety of different aspects of the system

without a great deal of typing or other input. Once the system has been entered,

the user can simply click the different Maplet controls to view the properties he or

she wishes to see.

The interface consists of a text box where the transfer function may be entered.

The user is able to use a variable gain, K, because this is a commonly changed

variable in the design of a feedback system. The user is able to quickly change the

value of K by using the slide bar. The range of the slide bar endpoints may be

changed in the Settings window.

The package was created with the Java window system. Because of this, the

programmer’s interface is very familiar to Java users. The various window elements

CHAPTER 3. BASIC ANALYSIS 26

are inserted into Layouts, and the details of the display are left to the system.

3.1.2 Functionality

The programmer’s interface was chosen to be as simple as possible. Graphical

functions from the programmer’s interface simply provide the same functionality

found in the graphical user interface. This allows the user to create plot objects for

use elsewhere in the Maple system, including the use of certain plot options.

Other functions, such as the conversion functions, take and return a variety of

Maple data types, depending on the type of function. However, we try to use calling

sequences similar to those typically found in Maple. For example, many functions

take the transfer function as an argument: a rational function in s.

The functions are accessible once the CST package has been loaded.

3.2 Basic Functions

3.2.1 System Conversion

Given a system, as in section 2.5.1, we may desire to change it from a transfer

function representation to a state space representation, and back. The CST provides

two functions, toStateSpace and toTransferFunction to convert between the two

forms. For example:

[> TF := 13 s3+s2+2 s+3
3 s5+6 s4+s3+9 s2+4 s

: [> (A,B,C,D) := toStateSpace(TF,s);

CHAPTER 3. BASIC ANALYSIS 27

−2
−1
3

−3
−4
3

0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,

[

1
0
0
0
0

]

,

[1
3

13
3

2
3

1 0], 0

and back...

[> toTransferFunction(A, B, C,

D, s);

s+ 13

3
s2+ 2

3
s3+ 1

3
s4

s5+2 s4+ 1

3
s3+3 s2+ 4

3
s

Note that the final transfer function is the normalized form of the original

transfer function.

3.2.2 Observability and Controllability

Given a multiple-state system in state-space form, it may be desired to know which

states are observable or controllable. Observability is the property that indicates

that each state of the system is observable from the output, that is, that the value

of each state may be deduced. Controllability is the property that indicates that

each state is controllable, that is, that each state may be affected by the input.

Given a state space system {A, B, C, D} of order n, we construct the observ-

ability matrix below:
[

CT AT CT ... (AT)nCT

]

(3.1)

If the observability matrix is nonsingular, the system is observable.

Given the same system, the controllability matrix can be built in a similar way.

[

B AB A2B ... AnB

]

(3.2)

If this matrix is nonsingular, the system is controllable.

CHAPTER 3. BASIC ANALYSIS 28

Examples are given below for the 2nd order system

ẋ = [1 0
0 2]x + [1

2]u, (3.3)

y = [1 0]x.

[> isControllable([1 0
0 2], [1

2]);

true

[> isObservable([1 0
0 2], [1 0]);

false

It can be easily seen that ẋ1, ẋ2 may both be modified by appropriate choices of

u1, u2, so the system is intuitively controllable. It can also be seen that y = x1, and

that x2 does not affect x1, so the system is not completely observable. In particular,

we say that x2 is not observable.

3.2.3 Hurwitz Test

Another commonly used test used on differential systems is the Hurwitz test for

polynomials. The Hurwitz test allows one to quickly check whether a system is

stable without explicitly computing the poles of the characteristic polynomial of

the system.

A method to compute this is provided in the Maple library, in the function

PolynomialTools:-Hurwitz. However, a method in Shinners [12] seems to give

better performance for the type of transfer function systems we are concerned with

in this thesis. Shinners presents a turn of the century method from Routh [11],

which computes the same result as the Maple function, but uses a different, faster

method.

CHAPTER 3. BASIC ANALYSIS 29

The method in Shinners builds a table of the coefficients in the polynomial:

p(x) = sn + a2s
n−1 + ... + ans + an+1 = 0 (3.4)

r values

n 1 a3 a5 ... 0

n − 1 a2 a4 a6 ... 0

This table is continued downward by filling in using the following values, where

(r, j) denotes the element in row r, column j:

(r, j) :=
(r − 1, 1) × (r − 2, j + 1) − (r − 2, 1) × (r − 1, j + 1)

(i − 1, 1)
(3.5)

This process continues until we reach a row of zeroes. Zeroes enter the table

from the right because the values off to the right of the original table are zero, and

they are multiplied into the formula, so the maximum size of the table is n+1 rows

by n
2

columns. Filling in each spot is a constant time operation, so the asymptotic

time complexity of building the table is O(n2).

Once the table is complete, we examine the first column of the table starting

at the top, working down. The number of sign changes from row to row in this

column indicates the number of zeroes that the original polynomial contains in the

right half plane. Thus, the Hurwitz test returns true only if all the elements in the

first column are positive.

Some running time comparisons are given in Figure 3.1. The polynomials tested

were dense randpolys with degree n, with integer coefficients. The timings seem

CHAPTER 3. BASIC ANALYSIS 30

to agree with the expected quadratic performance.

0 5 10 15 20 25 30
0

0.1

0.2
Hurwitz Tests

PolynomialTools

Routh−Hurwitz

N

T
im

e
 (

se
c)

Figure 3.1: Timing results of two Hurwitz algorithms.

The figure shows that the Routh-Hurwitz method described in Shinners is con-

siderably faster, especially on the small polynomials common in control system

design.

Elementary examples are given below.

[> RouthHurwitz(1
(s+1)3

, s, output=table);

true, 0,

1 3

3 1

8
3

0

1 0

CHAPTER 3. BASIC ANALYSIS 31

[> RouthHurwitz(1
(s+1)2(s+3)2(s−1)

, s, output=table);

true, 0,

1 14 −15

7 2 −9

96
7

−96
7

0

9 −9 0

ǫ 0 0

−9 0 0

In the second example, ǫ is a small positive number, filling in for a 0. This is

necessary to avoid a 0 in the left column. When determining the sign changes in

the left column, a limit as ǫ → 0 is taken to find the sign of the expression. Note

that ǫ may be involved in larger expressions as the matrix size gets larger and the

ǫ is propagated down, resulting in a more complicated expression to work with and

making it more difficult to find a limit.

As seen above, the CST software optionally returns the table used for inspection

by the user. This is particularly useful if free variables are utilized in the Hurwitz

analysis. For example, a common control problem is to select a gain K that provides

a fast system response, without resulting in an unstable system. This means we

must find the largest stable value of K. For example, if our characteristic equation

is a(s) = s3 + s2 + s + K, we have the output below:

CHAPTER 3. BASIC ANALYSIS 32

[> RouthHurwitz(1
a

, s, output=table);

false, 2,

1 1

1 K

1 − K 0

K 0

The user then must solve the inequalities below to prevent a sign change in the first

column:

1 − K > 0,

K > 0.

This results in the set {0 < K < 1}, which is the range of stable gains K for this

system.

3.3 Graphical Output

In this section, we will describe some of the possible graphical outputs from the

CST package. These outputs include a variety of types of plots that are helpful in

studying control systems and identifying certain system properties.

3.3.1 Time Domain Response

Perhaps the first plot the user will want to see will be the response of the transfer

function to a given input. For example, the user may be interested to see what

CHAPTER 3. BASIC ANALYSIS 33

happens when the system input is switched from 0 to 1. This plot is called the time

domain response of the transfer function.

This is actually a series of possible plot outputs. There are three input functions

that are commonly used when testing a system: the impulse, the step, and the ramp

inputs. These three input functions available in this category are outlined in Table

3.1.

Impulse Response r(t) =

{

1 when t = 0

0 for t > 0

Step Response r(t) =

{

0 when t = 0

1 for t > 0

Ramp Response r(t) =

{

0 when t = 0

t for t > 0

Table 3.1: Possible inputs for system response.

[> CST:-StepPlot(1
s2+2s+1

, s); [> CST:-RampPlot(1
s2+ 1

5
s+1

, s);

Step Response

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

t

Ramp Response

0

2

4

6

8

10

2 4 6 8 10

t

Figure 3.2: Possible uses of the plotting functionality.

CHAPTER 3. BASIC ANALYSIS 34

A pair of example output plots is visible in Figure 3.2. The plot on the left

shows the response of a critically damped 2nd order system to a step input. The

input r(t) can be seen as the straight line across the top of the figure, and the

system output can be seen arcing to converge with the input. The system is called

critically damped because there is no overshoot, or oscillation, with the minimal

amount of damping. The plot on the right shows a system with a moderate amount

of overshoot that is responding to a ramp input. This system may, for example,

represent the position of a wobbly elevator ascending through time.

3.3.2 Root Locus

The root locus plot allows the user to view all the possible roots of the characteristic

equation of a system with respect to a positive free variable, K. This is equivalent

to viewing the possible eigenvalues of the system with a variety of possible gain

values. This is important to the engineer because often the gain is an easily tuned

value.

The corresponding command has been implemented in the function RootLocus.

This function takes a transfer function as an argument, which is a rational function,

with one or more of the coefficients dependent on K.

Given a transfer function N(s)
D(s)

, the routine simply picks a variety of values for

K, plugs each into D(s), and solves D(s) = 0. The result, a constant in C, is then

plotted on the complex axis.

Some example root loci are visible in Figure 3.3. The figure on the left shows

the root locus of the critically damped second order system. The locus is quite

CHAPTER 3. BASIC ANALYSIS 35

simple, the roots are either on the real axis, symmetric around −1 + 0i, or are a

pair of complex roots above and below −1 + 0i.

The figure on the right in Figure 3.3 shows the root locus of a more complex third

order system. Using Hurwitz analysis, it may be seen that this system becomes

unstable when K > 2. So we can say that the two symmetric curved loci cross the

imaginary axis when K = 2. We can use the graphical information provided by the

plot to gain insight into expected system behavior for other values of K.

[> CST:-RootLocus(K
s2+s+K

); [> CST:-RootLocus(K
s3+s2+2s+K

);

Root Locus

–3

–2

–1

0

1

2

3

Imaginary

–2 –1.5 –1 –0.5

Real

Root Locus

–2

–1

0

1

2

Imaginary

–2 –1.5 –1 –0.5 0.5

Real

Figure 3.3: Possible uses of the root locus functionality.

Viewing the root locus diagram allows the user to determine which values of K

lead to desired system characteristics. For example, roots close to the imaginary

axis will lead to oscillatory performance. By experimenting with the root locus

diagram, the user may gain insight as to which roots are responsible for various

system behaviors.

CHAPTER 3. BASIC ANALYSIS 36

3.3.3 Nyquist Diagram

The Nyquist diagram is a commonly used tool that can also be used to determine

the system stability of a given transfer function. It uses a plot in the complex plane

to show the user where the roots of the characteristic polynomial are, and thus

whether the system is stable.

This plotting tool uses a mapping of the entire imaginary axis through the

transfer function and back onto the complex plane. So for the transfer function F ,

and i =
√
−1, we can think of this as the set of points:

{±F (ωi), ω = 0...∞}. (3.6)

This is a difficult plot to draw because as ω → ∞, F (ωi) will often converge,

connecting to the negative side of the plot for a proper rational function. There is

no easy place to truncate this expression, so we take a limit:

lim
ω→∞

F (ωi) = Ω. (3.7)

Then we can start plotting points, starting from a small ω. At each step, we

compare our current location with the location of Ω, until we are close enough to

connect them. This gives a smooth-looking graph. We call the maximum allowable

distance between two plotted points the tolerance of the plot. If the tolerance is

too high, the plot appears rough, and so the user will be unable to observe some

important characteristics.

However, because of the large changes in scale of numbers used, an adaptive

CHAPTER 3. BASIC ANALYSIS 37

plotter is necessary. For example, for the simple transfer function

F (s) =
1

s2 + 2s + 1
, as ω → ∞, F (ωi) → 0. (3.8)

To capture this Nyquist diagram, we take the limit of F as ω → ∞, then plot F

until we are close enough to the limit 0 for a good image. As ω gets large, we have

to use a larger step in between to advance quickly, but without using a step larger

than the tolerance. The adaptive plotter is designed to do this. Some example

Nyquist diagrams are visible in Figure 3.4.

[> CST:-Nyquist(1
s2+2s+1

, s); [> CST:-Nyquist(1
s2+ 1

5
s+1

, s);

Nyquist

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1

Nyquist

–4

–2

2

4

–2 –1 1 2

Figure 3.4: Possible uses of the Nyquist functionality.

It is interesting to note that the image on the left was computed with 268

function evaluations, while the function on the right took 1809 function evaluations.

This is indicative of the slow convergence of the transfer function on the right.

CHAPTER 3. BASIC ANALYSIS 38

3.3.4 Bode Diagram

The Bode diagram is another helpful tool when analyzing systems, and is similar

to the Nyquist plot, providing similar information. The diagram actually consists

of a pair of plots. For a transfer function F , the first plot contains values of |F (ω)|,

where ω starts at 0 and extends up along the imaginary axis. This first plot is

labelled the dB plot. The second plot contains the values of the phase of F (ω), in

degrees, for the same values of ω, and labelled the degrees plot.

Some example Bode diagrams are visible in Figure 3.5. The figures on the left

display the critically damped second order system. The figures on the right show

the second order system with a much smaller damping coefficient, leading to a spike

near ω = 1 in the dB plot, and a steeper drop in the degrees plot, both of which

are expected behavior.

CHAPTER 3. BASIC ANALYSIS 39

[> CST:-Bode(1
s2+2s+1

, s); [> CST:-Bode(1
s2+ 1

5
s+1

, s);

Bode (DB)

–160

–140

–120

–100

–80

–60

–40

–20

0

dB

.1e–1 .1 1. .1e2 .1e3 .1e4 .1e5

Frequency

Bode (DB)

–160

–140

–120

–100

–80

–60

–40

–20

0

dB

.1e–1 .1 1. .1e2 .1e3 .1e4 .1e5

Frequency

Bode (DEG)

180

200

220

240

260

280

300

320

340

360

Degrees

.1e–1 .1 1. .1e2 .1e3 .1e4 .1e5

Frequency

Bode (DEG)

180

200

220

240

260

280

300

320

340

360

Degrees

.1e–1 .1 1. .1e2 .1e3 .1e4 .1e5

Frequency

Figure 3.5: Possible uses of the Bode diagram functionality.

Chapter 4

The Matrix Exponential

In the study of control systems, it is important to be able to predict the system

response to a variety of initial conditions. Given a complicated differential system,

the user may desire to compute the state of the system at various points in time

to study the response in terms of stability or convergence, or a variety of more

qualitative criteria. The state of the system may be expressed in closed form,

dependent on the time, t, using a computation called the matrix exponential. In this

chapter, we study various techniques to compute the matrix exponential efficiently

in a computer algebra system.

4.1 Definitions and Properties

For a given square matrix A, let

eAt = I + At +
t2

2!
A2 +

t3

3!
A3 + ... =

∞
∑

k=0

Aktk

k!
(4.1)

40

CHAPTER 4. THE MATRIX EXPONENTIAL 41

where convergence is assumed. We may take the derivative of this function with

respect to t to obtain

(eAt)′ = A + A2t +
t2

2!
A3 +

t3

3!
A4 + ...

= A

∞
∑

k=0

Aktk

k!
; (4.2)

= AeAt.

Thus we observe the most useful property of the matrix exponential: that the

system of linear differential equations

ẋ(t) = Ax(t),

x(0) = x0,

is solved by

x(t) = eAtx0. (4.3)

The matrix exponential has certain important properties analogous to scalar

exponentials [2].

1. For scalars t0, t1, e(t0+t1)A = et0Aet1A.

2. For a scalar t, (etA)−1 = e−tA. This follows from (1).

3. For matrices A, B that are commutative by multiplication, eA+B = eAeB.

It is important to note that property 3 applies only to commutative matrices.

CHAPTER 4. THE MATRIX EXPONENTIAL 42

Consider our linearized system model, which relates the system state, x(t) and

the system input, u(t), to the derivative of the system state ẋ(t), as in equation

(2.11):

ẋ(t) = Ax(t) + Bu(t). (4.4)

We may use the properties of the matrix exponential to solve the system for x(t).

We first offer a solution analogous to the scalar case,

x(t) = eAtx0 + eAt

∫ t

0

e−AsBu(s)ds. (4.5)

By differentiating, factoring, and using property 1 we obtain:

ẋ(t) = A(eAtx0 + etA

∫ t

0

e−sABu(s) ds) + Bu(t).

We observe that the sum in the parentheses is exactly our guess for the solution in

equation (4.5), so we may substitute:

ẋ(t) = Ax(t) + Bu(t), (4.6)

proving our guess correct [2], and giving a closed form solution for x(t) in terms of

the matrix exponential, eAt.

Equation (4.5) shows that the system state, x(t), can be split into a sum of two

terms, one dependent on the initial state, and the other dependent on the input.

If u(t) = 0, we have equation (4.1) above. In this case, the matrix exponential is

referred to as the unforced response of the system to an initial state x0. Note also

CHAPTER 4. THE MATRIX EXPONENTIAL 43

that the second addend in (4.5) is independent of x0, meaning that this describes

the forced response of the system, unaffected by the initial state.

4.2 Computation

Adding up terms in a series is not the only way to evaluate the matrix exponential.

A variety of methods have been proposed, including methods based on the Cayley-

Hamilton theorem, matrix decomposition methods, and others. In this chapter

we will discuss methods to compute the exponential that are useful in an exact

arithmetic context.

Existing software to compute the matrix exponential is abundant. For example,

Matlab provides three different exponential algorithms that the user may select.

The command expm(A) or expm1(A) will compute the matrix exponential of A

using a method based on scaling and squaring and Padé approximation. Enter-

ing expm2(A) will compute the exponential viá the Taylor series described above.

The third function, expm3(A) will perform the computation using eigenvectors and

eigenvalues, which is a matrix decomposition method discussed below.

Maple allows for the exact calculation of eAt with the use of the function

linalg[exponential]. This function and its methodology will be discussed below.

4.2.1 Polynomial Methods

Many polynomial methods derive from the Cayley-Hamilton theorem. This theo-

rem, originating independently from Cayley and Hamilton around 1860, shows that

CHAPTER 4. THE MATRIX EXPONENTIAL 44

every matrix satisfies its characteristic equation. That is, if

p(s) = det(sI − A) = sn + an−1s
n−1 + ... + a0,

then p(A) = An + an−1A
n−1 + ... + I = 0.

If f(x) is a polynomial in x then we may compute the remainder of f and p,

f(x) = p(x)q(x) + r(x)

where the degree of r is less than n, the degree of p(x). This is also true for a power

series f(x), in which case q(x) is also a power series. Since p(A) = 0 we get that

f(A) = r(A).

Hence we need only find the n unknown coefficients for the remainder r(x).

Note that for any eigenvalue λ we have f(λ) = r(λ). Given n distinct eigenvalues

λ1...λn we may interpolate to obtain r(x) of degree n or less satisfying r(λi) = eλi .

In the case of a repeated eigenvalue λi of multiplicity k then p(x) = (x−λi)
kp̂(x)

leaving

f(x) = (x − λi)
kp̂(x)q(x) + r(x),

with deg(r(x)) < n. In this case we would have the k equations r(λ) = eλ, r′(λ) =

λeλ ... r(k−1)(λ) = λk−1eλ. Thus we still have n equations with n unknowns.

The Lagrange method for the matrix exponential is based on a direct interpo-

lation of the eigenvalues of A. It is effective if A has n different eigenvalues. In

this method, we build up the Lagrange terms and evaluate at A. We compute the

CHAPTER 4. THE MATRIX EXPONENTIAL 45

Lagrange terms using the form

Aj =
n

∏

k=1,k 6=j

A − λkI

λj − λk
. (4.7)

Then we add up the sum

etA =

n
∑

j=1

eλjtAj. (4.8)

This results in an exact representation of the matrix exponential.

A similar method was proposed by Kirchner [6]. This technique works whether

or not A has repeated eigenvalues. In the case that A has n different eigenvalues,

the Kirchner method takes the form of equation (4.8). However, Kirchner does not

use the Lagrange terms to compute Aj . The first formula Kirchner gives for Aj is

pj(s) =

n
∏

k=1,k 6=j

(s − λj)
mj ; (4.9)

q(s) =
n

∑

k=1

pk(s); (4.10)

Aj = q(A)−1pj(A). (4.11)

This method is clearly more expensive in terms of matrix operations because a

matrix polynomial must be evaluated and inverted. However, Kirchner gives an-

other method for computing Aj based on a Vandermonde matrix of the eigenvalues.

CHAPTER 4. THE MATRIX EXPONENTIAL 46

He computes

C =

1 1 ... 1

λ1 λ2 ... λn

...
...

...

λn−1
1 λn−1

2 ... λn−1
n

−1

, (4.12)

Aj =
n

∑

k=1

CkjA
j−1. (4.13)

This method is easily seen to be similar to a Vandermonde interpolation of the

eigenvalues. An earlier method developed by Putzer [10] uses the Vandermonde

matrix implicitly in the context of solving a set of linear equations to satisfy initial

conditions of a linear differential equation. This method must solve an nth order

linear ODE, z(t), to build up the coefficients qj(t) of the polynomial

eAt =

n−1
∑

j=0

qj(t)A
j. (4.14)

To solve the ODE z(t), we must compute the roots of the nth order polynomial,

then solve for the constants ki using t = 0:

1 1 ... 1

λ1 λ2 ... λn

...
...

...

λn−1
1 λn−1

2 ... λn−1
n

k1

k2

...

kn

=

0

...

0

1

. (4.15)

However, because of the special right hand side in this equation, the solution

CHAPTER 4. THE MATRIX EXPONENTIAL 47

may be easily found. The ODE solution, z(t), is then used to compute the qj(t),

each of which is a linear combination of the exponentials, eλit. The solution is then

computed as above in equation (4.14).

Another Vandermonde-based procedure was used by Fulmer [5] that is function-

ally similar to the Putzer method, but based on the solutions to the initial value

problem

p(
d

dt
)(G(t)) = 0, G(0) = I, G′(0) = A, G(2)(0) = A2... (4.16)

Since dk

dtk
(eAt) = AkeAt, G(t) = eAt. The general solution of the differential

equation, if we have n different eigenvalues, is

eAt = C1e
λ1t + ... + Cne

λnt. (4.17)

We solve for the unknown matrices Ci by inverting a Vandermonde matrix of

the eigenvalues.

The current Maple implementation of the matrix exponential mentioned earlier

also uses a method based on interpolating the values of eλi at the eigenvalues,

λi. This method efficiently computes the coefficients of the Newton form of the

interpolating polynomial, resulting in a Horner-like polynomial in A. The method

plugs A into that expression, resulting in the exponential, eAt.

Limitations

Assume we have a matrix exponential eAt where A is a square matrix that contains

n2 exact entries. To compute the exact form of the matrix exponential, all polyno-

CHAPTER 4. THE MATRIX EXPONENTIAL 48

mial methods must compute the eigenvalues of A. This involves finding the roots

of the characteristic equation of A, which has coefficients that are polynomial in

the entries of A. If the degree of the characteristic equation is less than 4, the exact

roots may be found quite easily. If the degree is 5 or greater, finding the roots ex-

actly may be impossible, forcing the method to work with symbolic representations

of the actual roots. This greatly adds to the size of the expressions produced in the

output.

In addition, polynomial methods for the matrix exponential typically build up

a degree n polynomial in A with exponential coefficients which must represent the

matrix exponential. This polynomial is evaluated, giving the result in time O(n4).

This running time does not include the cost of the size of the expressions involved,

which is considerable given the multiplication of the aforementioned exponential

coefficients.

4.2.2 Matrix Decomposition Methods

Certain matrices have a non-zero structure that allows for an easier computation

of the matrix exponential. It will be shown that a variety of these structures may

be used to compute the matrix exponential efficiently.

For example, a n × n diagonal matrix D = diag(d1, ..., dn) may be exponenti-

ated with time complexity O(n), by simply exponentiating each element along the

diagonal, i.e. eDt = diag(ed1t, ..., ednt).

Another example of an easy matrix exponential is a Jordan block. A m × m

CHAPTER 4. THE MATRIX EXPONENTIAL 49

Jordan block may be exponentiated into a Toeplitz block:

Jλ =

λ 1 0 0

0 λ 1 0 ... 0

...
. . .

. . .
...

0 0 ... 0 λ 1

0 0 0 λ

, eJt =

eλt teλt t2

2!
eλt tm

m!
eλt

0 eλt teλt ...
...

...
. . .

...

0 0 ... 0 eλt teλt

0 0 0 eλt

. (4.18)

This calculation would take O(n) time, because the output is a Toeplitz matrix.

Triangular matrices are also relatively easy to exponentiate, using the recurrence

method given by Parlett [9]. Parlett’s method runs in time O(n3) and works on

triangular or block triangular matrices.

The existance of easy matrix exponentials allow us to compute exponentials of

matrices that are similar to a easy exponentials. Suppose we wish to compute the

exponential eAt where we have a matrix decomposition A = S−1PS, with ePt easy

to compute. Because of the power series definition of eAt,

eAt = I + S−1PSt +
t2

2!
S−1PSS−1PS +

t3

3!
S−1PSS−1PSS−1PS... (4.19)

= S−1(I + Pt + P 2 t2

2!
+ P 3 t3

3!
...)S (4.20)

= S−1ePtS, (4.21)

giving us a matrix decomposition method to compute the matrix exponential.

A natural similarity decomposition to use is the Jordan form. This is the de-

composition A = Q−1JQ, where J is block diagonal, with each block in the form

CHAPTER 4. THE MATRIX EXPONENTIAL 50

(4.18). In exact arithmetic, the Jordan form may be computed with confidence, as

opposed to floating point arithmetic, where nearby eigenvalues may or may not be

equal.

If the Schur form of a matrix is given, we have A = Q−1TQ where Q is unitary

and T is upper triangular. Parlett’s method may be used to apply the exponential

function.

Limitations

These methods have the same difficulty that the polynomial methods suffer: the

exact eigenvalues must be computed, and are found as roots of an nth-degree poly-

nomial equation. An additional difficulty is that the similarity matrix must be

inverted. This is analagous to the computational difficulty of inverting the Vander-

monde matrix in the previous section for polynomial interpolation.

For example, benchmarking showed that the Jordan form method was 30% faster

than the current Maple method when n = 3, for matrices of random integers less

than 100. It was not competitive for n = 4, because the Jordan form (J, Q) could

not be computed in a reasonable amount of time, with A = Q−1JQ. This does

not include the time to invert Q. The current method, however, can exponentiate

a 4 × 4 matrix in a reasonable amount of time, and give a solution in terms of

RootOfs.

CHAPTER 4. THE MATRIX EXPONENTIAL 51

4.3 Special Cases

As discussed in the previous section, many matrices have exponentials that are easy

to compute. In this section we will describe a few of these cases and discuss their

computational complexity.

Matrices with one eigenvalue are an important case. If the matrix A has just

one eigenvalue, λ, then the exponential may be easily formed as given by Apostol

[3],

etA = eλt
n−1
∑

k=0

tk

k!
(A − λI)k. (4.22)

This method uses a finite series because A−λI is a nilpotent matrix. Formulae

for some simpler matrices result from this method. For example, the exponential of

a triangular matrix where every nonzero entry is equal to x is a triangular Toeplitz

matrix where the ith off-diagonal entries may be written

eλ

i−1
∑

j=0

(i−2
j−1)

xjtj

j!
. (4.23)

This formula describes an O(n2) method to compute the exponential, assuming

the factorials are reused.

Another simple matrix exponential is the triangular band matrix with equal

coefficients. Assume the matrix A is like the previous example, but A has only a

band of such non-zeroes that is k-wide, i.e. A{(k+1)...n}1 = 0. In this case, a similar

CHAPTER 4. THE MATRIX EXPONENTIAL 52

method results. If we define a function f

f1j = (A − λI)j1, (4.24)

fij =

j−1
∑

h=j−k+1

f(i−1)h,

then we may express the matrix exponential of A as the triangular Toeplitz matrix

based on the set of elements

eAti = eλ

n
∑

j=1

fij
xjtj

j!
. (4.25)

This recursive definition allows the fij to be computable in amortized constant

time, giving a total running time of O(n2).

The form of other matrix exponentials may be deduced following the method

of Ziebur [15]. This gives a formula for eAt in terms of specified nilpotent matrices

and projection matrices. Ziebur shows that the exponential can be broken down:

eAt =

k
∑

i=1

mi−1
∑

j=0

tj

j!
eλitN j

i Pi, (4.26)

where N is nilpotent and P is a projection matrix. When there is just one eigen-

value, k = 1, and P1 = I, giving the form from Apostol above, in equation (4.22).

If k = n, we have n eigenvalues, giving the interpolation form above in equation

(4.8), because we have mi = 1, i = 1..n.

CHAPTER 4. THE MATRIX EXPONENTIAL 53

The matrices N, P are dependent on A:

A =
k

∑

i=1

λiPi + Ni, (4.27)

so if we know something about the structure of A, we have a simple form for the

matrix exponential that may be exploited.

Chapter 5

Feedback Control

Thus far, we have only discussed the study of differential systems - plants - from

a rather aloof standpoint. We have discussed the basic mathematical properties

of such systems, described software to graphically display their properties, and

shown how to compute the time domain reponse of such systems with the matrix

exponential. In this chapter we discuss the construction of control systems, that is,

systems created to control the plant in order to meet certain design requirements.

We have described our system of interest as equation (2.11), repeated here for

reference:

ẋ(t) = Ax(t) + Bu(t). (5.1)

We assume that the operators A and B are fixed, they make up the plant

that we wish to control. The system state, x(t), is shown in equation (4.5) to be

dependent on only the initial conditions and the plant operators. So for a given

initial condition, if we wish to modify the behavior of x(t), we must find an input

54

CHAPTER 5. FEEDBACK CONTROL 55

function, u(t), to adjust the behavior of x(t) to meet our specifications.

The specifications that may be chosen are as varied as the possible applications.

A very common specification is that the system be stable, that is, x(t) < ∞ for

t → ∞. In a previous chapter we stated that this depends on the eigenvalues of

A. However, by using the input u(t) appropriately, we may keep the system state

bounded without modifying A.

In order to use u(t), let us assign u(t) to be a function of the current system

state and the reference signal, r(t). The reference signal is the desired state of the

system, the state to which x(t) should converge over time. So we redefine u(t) as

u(t) = f(x(t), r(t)). (5.2)

To stay within the bounds of the LTI model, we will linearize f with respect to

the two functions x, r as

u(t) = Fx(t) + r(t), (5.3)

assuming r(t) is simply added in. Now by substituting for u(t) in equation (5.1),

we can show how the complete system has been modified by F :

ẋ(t) = Ax(t) + B(Fx(t) + r(t)),

ẋ(t) = (A + BF)x(t) + Br(t), (5.4)

after some algebraic rearrangement. It is now clear that the system dynamics

are dependent on (A + BF), and that system stability and performance will be

dependent on this new operator.

CHAPTER 5. FEEDBACK CONTROL 56

It can be shown that as long as the pair (A, B) is controllable, the eigenvalues

of the new system may be assigned to any desired values [14]. This certainly allows

for a system to be stabilized or tuned in a variety of ways.

In this chapter, we will describe how F may be chosen to assign the system

eigenvalues to user-defined values. For the state space system used above, there is

a direct method, which works in the single or multiple output case; and there is

the shortcut, known as Ackermann’s formula for the single output case. We will

then discuss a similar operation for systems of transfer functions. We will then

demonstrate some optimal control techniques for eigenvalue placement.

5.1 Ackermann’s Method

In the case of a SISO state space system, a well-known formula exists to compute the

matrix F , due to Ackermann [1]. This method depends on the system controllability

matrix, and the desired characteristic polynomial. The controllability matrix, C

is discussed in Chapter 3 and is elementary to compute. Since we require (A, B)

to be controllable we may compute the inverse, C−1. The desired characteristic

polynomial, αD, is simply built from its roots, which are our desired eigenvalues.

With these tools, we may express Ackermann’s formula,

F = enC
−1αD(A) (5.5)

where en is the n-vector [0, ..., 0, 1]T .

This formula was implemented in Maple and performs well in an exact arith-

CHAPTER 5. FEEDBACK CONTROL 57

metic context. Computationally, the inverse of the controllability matrix is expen-

sive if the some of the entries of C are symbols; the denominator of each entry of

C−1 is the determinant of C which gets large rather quickly.

The evaluation of αD(A), with αD an n-th degree polynomial, is an O(n4)

operation, not including the size of the expressions. As before, these expressions

will get large quickly if symbols are involved. Overall, however, this method is

practical for most basic problems that would regularly need to be computed.

5.2 Direct Method

The direct method for eigenvalue assignment is a polynomial method to build the

operator F which will set the eigenvalues of (A+BF) to their desired values. This

method is designed for multi-input, multi-output (MIMO) systems.

To begin this, we first compute (A+BF), where A ∈ Kn×n, B ∈ Kn×m are given

matrices of scalars in the field K and F is a m × n matrix of unknown symbols,

Fij . (A + BF) then consists of elements that are linear combinations of the Fij .

We represent the eigenvalues of (A + BF) as the solutions of the degree n

characteristic polynomial, αF (λ). The coefficients of αF (λ) may be expressed as

multivariate polynomials in the Fij, we will name them gn−1, ..., g0.

The desired eigenvalues may be used to form our desired characteristic poly-

nomial, αD. By equating the coefficients from the unknown polynomial and our

desired polynomial we derive a system of equations that must be solved for the Fij

to build our desired system:

CHAPTER 5. FEEDBACK CONTROL 58

αF (λ) = λ + gn−1λ
n−1 + ... + g1λ + g0

m m m

αD(λ) = λ + cn−1λ
n−1 + ... + c1λ + c0.

By building up this system and solving for the Fij, we may construct the matrix

F .

As long as (A, B) is controllable, this system will have solutions. In fact, in

many cases the system will have free variables left over in the solution that may be

assigned to any value by the user. These appear as free variables Fij .

The difficulty lies in exactly solving the system of equations, {gi = ci}. At first

glance, this seems extremely difficult. We have n equations in m × n unknowns,

with each equation a multivariate polynomial in the Fij . However, in many real

cases, B is sparse, and often diagonal. This allows for a solution set to be easily

found.

5.3 Transfer Function Method

In addition to the state space methods above, a variety of polynomial techniques

are available for control system design in transfer function form. Such methods

are based on solving the Diophantine equation for polynomials in the Euclidean

domain S, which is the set of stable transfer functions.

Given an unstable plant P /∈ S, represented as a transfer function, we may

construct another transfer function C, the compensator, so that the combined sys-

tem is stable. The combined system in this section will be treated as the feedback

system P
1+CP

. In fact, it is shown [13] that we may quite simply describe the set

CHAPTER 5. FEEDBACK CONTROL 59

of all such compensators using only simple polynomial arithmetic. If P = NP

DP
, we

may pick X, Y so that

XNP + Y DP = 1.

With X and Y so chosen, we may describe the set of possible C that will stabilize

P as a set:

C ∈ S(P) =

{

X + RDP

Y − RNP

}

. (5.6)

We may pick any transfer function R, as long as R ∈ S. This method allows us

great flexibility in picking a compensator. The downside is that, for a given R ∈ S,

we do not know what the properties of the system C or of the combined system

will be. So this method is much different from the previously described methods

that allow for the exact assignment of system eigenvalues. However, by treating

our transfer functions as elements of S, we may keep our compensator C ∈ S. The

ability to build stable compensators is beneficial for engineering reasons.

In order to ensure the stability of C, we first must show that P has the parity

interlacing property. A transfer function has this property if for each pair of pos-

itive zeroes of P , there are an even number of poles in between. This property is

necessary to find a function U that interpolates the values of DP (yi) at the positive

zeroes of NP (xi), and has no positive poles. Given U , we have the compensator

C = (U − DP)/NP .

Building the interpolant U is an n-step iterative process. Given the n pairs

CHAPTER 5. FEEDBACK CONTROL 60

(xi, yi), we start by setting U0 = yi. Then, we iterate over i:

f =
i−1
∏

j=1

s − xj

s + 1
; (5.7)

b =
(yi+1

U(xi+1)
)1/a − 1

f(xi+1)
, |b| <

1

||f || , a ∈ N; (5.8)

Ui+1 = (1 + bf)aUi. (5.9)

So the next Ui may always be constructed in terms of two positive integers a, b,

which must satisfy the constraint in the above inequality.

To satisfy this constraint, we must evaluate ||f || ∈ C+, with f a rational function

and the norm defined as:

||f || = sup
s∈C+

f(s). (5.10)

In general, this is very difficult or impossible to accomplish in exact arithmetic.

However, any pair a, b that satisfies the constraints will work. So we just need

to find a good floating point approximation of this value, then we can compare it

to b. It turns out that due to the maximum modulus theorem, the maximum is

guaranteed to be found along the imaginary axis. This allows us to use Maple to

easily compute a useful approximation, resulting in an exact solution for C.

Although the solution for C can be computed exactly by Maple in a reasonable

amount of time, the expressions involved get very large rather quickly. After the

algorithm was implemented, elementary tests on 3rd order systems, with length

near 50, resulted in output compensators of length over 700.

CHAPTER 5. FEEDBACK CONTROL 61

5.4 Eigenvector Control

Thus far, we have discussed how the most important properties of a linear system

may be modified by controlling the input so as to modify the eigenvalues of the

closed-loop system. These properties include the speed of the response of the system

to its input. In a SISO system, specifying the eigenvalues specifies the complete

system, so there is no room for modification, but in the MIMO case, the eigenvectors

may also be chosen to modify the shape of the response as well as the distribution

of the response of the system components.

An algorithm from Moore [8] allows the user to specify not only the eigenvalues,

but also the eigenvectors of the closed-loop system. The eigenvectors may be chosen

freely as long as they meet a few constraints: linear independence, consistency with

pairs of imaginary eigenvalues, and a third constraint that they must fall within a

specified subspace.

Given the system (5.1), and desired system eigenvalues and eigenvectors {λi, vi},

Moore’s method desires to compute an m × n matrix F such that for i = 1..n,

(λiI − (A + BF))vi = 0. (5.11)

The paper shows how matrix-vector multiplications and a single matrix inversion

may be used to compute the matrix F .

This method was implemented in Maple and works well for small systems, how-

ever, for more complex systems the n × n matrix inversion becomes more difficult

to perform.

Chapter 6

Conclusion

In this thesis, we have discussed a variety of control system concepts and algorithms.

We began by describing control systems from an abstract perspective, and then

described the mathematical model for such systems.

It is clear that such systems can be built up and expressed with computer

algebra, in fact, for transfer functions computer algebra is an ideal environment.

We have briefly shown how to perform certain elementary operations on control

systems and synthesis of control systems.

We also described a software package that meets the basic needs of an engineer

attempting to use computer algebra for control system computations. A highlight is

the Routh-Hurwitz computation which allows the user to determine system stability

exactly and efficiently. In addition, we demonstrated a package of plotting software

that allows the user to visualize many aspects of the control system in the Maple

system.

Another important tool in studying linear systems, the matrix exponential, was

62

CHAPTER 6. CONCLUSION 63

investigated and various methods for computing it were compared in a symbolic

context. We then showed how to perform a variety of eigenvalue and eigenvector as-

signment methods in exact arithmetic. With the implementation of these advanced

methods we found that symbolic analysis was beneficial for small or sparse systems,

but for larger systems expression swell quickly made the methods impossible to use.

In general, engineers can benefit from computer algebra analysis of control sys-

tems in the same way that scientific users benefit from computer algebra analysis

in general: the input and output is exact, free variables may be kept through a

computation, etc. In the case of feedback control, for example, a control system

could be computed using free variables, resulting in a feedback operator valid for a

whole class of systems. Using the rest of the given software, specific numbers could

be substituted in and further investigated to test a variety of operating conditions.

A complete model for the analysis of control systems symbolically, or with ex-

act arithmetic, is far from complete. Many of the inherent difficulties, such as

exact computation of eigenvalues or other linear algebra limitations are difficult

to work around. In this thesis, we have attempted to improve the control system

functionality in Maple while leaving these problems unsolved.

There are many further enhancements to Maple that would benefit control sys-

tem engineers. Some were overlooked in the CST package, such as the Nichols plot

and miscellaneous eigenvalue assignment techniques. Other topics are more com-

plex, such as algorithms to handle linear matrix equations and the algebraic Riccati

equations, which would benefit the study of optimal control.

Bibliography

[1] J. E. Ackermann. Der entwerf linearer regelungs systems in zustandstraum.

Regelungstech. Prozess-Datenverarb, 7, 1972.

[2] Panos J. Antsaklis and Anthony N. Michel. Linear Systems. McGraw-Hill,

1997.

[3] T. M. Apostol. Some explicit formulas for the matrix exponential etA. Amer-

ican Mathematical Monthly, 76, 1969.

[4] M. Chetty, K. P. Dabke, and B. Nath. Use of symbolic algebra toolbox in

system simulation and control. Melbourne VIC, November 2000. Matlab 2000.

[5] Edward P. Fulmer. Computation of the matrix exponential. American Math-

ematical Monthly, 82, 1975.

[6] R. B. Kirchner. An explicit formula for eAt. American Mathematical Monthly,

74, 1967.

[7] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,

J. McCarron, and P. DeMarco. Maple 8 Introductory Programming Guide.

Waterloo Maple Inc., 2002.

64

BIBLIOGRAPHY 65

[8] B. C. Moore. On the flexibility offered by state feedback in multivariable

systems beyond closed loop eigenvalue assignment. IEEE Transactions on

Automatic Control, 21, 1976.

[9] B. N. Parlett. A recurrence among the elements of functions of triangular

matrices. Linear Algebra and its Applications, 14, 1976.

[10] E. J. Putzer. Avoiding the Jordan canonical form in the discussion of linear

systems with constant coefficients. American Mathematical Monthly, 73, 1966.

[11] E. Routh. Advanced Dynamics of a System of Rigid Bodies. Macmillan, 1905.

[12] Stanley M. Shinners. Modern Control System Theory and Design. John Wiley

Sons, Inc., 1998.

[13] M. Vidyasagar. Control System Synthesis: A Factorization Approach. The

MIT Press, Cambridge, Massachusetts, 1985.

[14] W. M. Wonham. On pole assignment in multi-input controllable linear systems.

IEEE Transactions on Automatic Control, 12, 1967.

[15] Allen D. Ziebur. On determining the structure of A by analyzing eAt. SIAM

Review, 12, 1970.

Appendix A

The CST Module

This appendix describes in more detail the Maple functions that were implemented

in the course of developing this thesis.

The state space system of interest is reprinted here for convenience.

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).

(A.1)

CST Package

• CST[toStateSpace] - convert a transfer function to a state space system

Calling sequence

toStateSpace(tf)

Parameters

tf - transfer function in s

66

APPENDIX A. THE CST MODULE 67

Description

– toStateSpace(tf) returns the state space system equivalent to the

given transfer function tf.

– The output is the sequence A,B,C,D representing the state space system

(A.1).

– As discussed in section 3.2.1.

• CST[toTransferFunction] - convert a state space system to a transfer

function

Calling sequence

toTransferFunction(A, B, C, D)

Parameters

A - n × n Matrix

B - n × m Matrix

C - m × n Matrix

D - m × m Matrix

Description

– toTransferFunction(A, B, C, D) returns the transfer function or trans-

fer function matrix equivalent to the system (A.1).

– The output is an nth degree rational function in s.

– As discussed in section 3.2.1.

APPENDIX A. THE CST MODULE 68

• CST[ImpulseResponse]

CST[StepResponse]

CST[RampResponse]

Calling sequences

ImpulseResponse(tf, options)

StepResponse(tf, options)

RampResponse(tf, options)

Parameters

tf - transfer function in s to be plotted

options - (optional) list of equations of form keyword = value

Description

– ImpulseResponse(tf) returns plot representing the response of the trans-

fer function system tf to the input u(0) = 1, u(t > 0) = 0.

– StepResponse(tf) returns plot representing the response of the transfer

function system tf to the input u(t >= 0) = 1.

– RampResponse(tf) returns plot representing the response of the transfer

function system tf to the input u(t >= 0) = t.

– As discussed in section 3.3.1.

• CST[ControllabilityMatrix]

CST[ObservabilityMatrix]

Calling sequences

APPENDIX A. THE CST MODULE 69

ControllabilityMatrix(A,B) ObservabilityMatrix(A,C)

Parameters

A - n × n Matrix

B - n × m Matrix

C - m × n Matrix

Description

– ControllabilityMatrix(A,B) returns the n × n controllability matrix

for the system (A.1).

– ObservabilityMatrix(A,C) returns the n × n observability matrix for

the system (A.1).

– As discussed in section 3.2.2.

• CST[isControllable]

CST[isObservable]

Calling sequences

isControllable(A, B)

isObservable(A, C)

Parameters

A - n × n Matrix

B - n × m Matrix

C - m × n Matrix

Description

APPENDIX A. THE CST MODULE 70

– IsControllable(A,B) returns a Boolean indicating whether or not the

system (A.1) would be controllable given A,B.

– IsObservable(A,C) returns a Boolean indicating whether or not the

system (A.1) would be observable given A,C.

– As discussed in section 3.2.2.

• CST[RootLocusPlot]

Calling sequences

RootLocusPlot(tf, options)

Parameters

tf - transfer function in s and K

options - (optional) list of equations of form keyword = value

Description

– RootLocusPlot(tf) returns a plot in the complex plane of the poles of

the transfer function tf for a range of values of K.

– The default range for values of K is 0..10, but may be modified by using

the argument Kvals = Kmin..Kmax, where Kmin, Kmax are numbers to

start and end the range of K.

– The argument view = [xmin..xmax, ymin..ymax] allows the user to

specify the region of the plane shown.

– As discussed in section 3.3.2.

APPENDIX A. THE CST MODULE 71

• CST[Nyquist]

Calling sequences

Nyquist(tf, options)

Parameters

tf - transfer function in s

options - (optional) list of equations of form keyword = value

Description

– Nyquist(tf) returns a plot in the complex plane containing the Nyquist

diagram of the transfer function tf.

– The argument view = [xmin..xmax, ymin..ymax] allows the user to

specify the region of the plane shown.

– As discussed in section 3.3.3.

• CST[Bode]

Calling sequences

Bode[type](tf, options)

Parameters

type - the type of Bode plot, DB or DEG

tf - transfer function in s

options - (optional) list of equations of form keyword = value

Description

APPENDIX A. THE CST MODULE 72

– BodePlot(tf) returns the Bode plot on the semilog axis of the transfer

function tf.

– The type specifier allows the user to create either the amplitude or

degrees plot by specifying the symbol DB or DEG.

– The argument view = [xmin..xmax, ymin..ymax] allows the user to

specify the region of the plane shown.

– As discussed in section 3.3.4.

• CST[FeedbackControl]

Calling sequences

FeedbackControl(A, B, eigs, options)

Parameters

A - n × n Matrix

B - n × m Matrix

eigs - n-Vector

options - (optional) list of equations of form keyword = value

Description

– FeedbackControl(A, B, eigs) returns an m × n Matrix F such that

Eigenvalues(A + B.F) = eigs. (A.2)

– The argument output = true returns any free variables as indexed sym-

bols f[i,j]. The default behavior is to set these variables to 0.

APPENDIX A. THE CST MODULE 73

– If m = 1 it is recommended to use CST[Ackermann].

– As discussed in section 5.2.

• CST[Ackermann]

Calling sequences

Ackermann(A, B, eigs)

Parameters

A - n × n Matrix

B - n-Vector

eigs - n-Vector

Description

– Ackermann(A, B, eigs) returns an n-row-Vector F to satisfy (A.2).

– As discussed in section 5.1.

• CST[StableCompensator]

Calling sequence

StableCompensator(P)

Parameters

P - rational function in s

Description

– StableCompensator(P) constructs a stable compensator C such that C,

as well as the closed-loop system, P

1+CP
, are stable.

APPENDIX A. THE CST MODULE 74

– As discussed in section 5.3.

• CST[EigenvectorControl]

Calling sequences

EigenvectorControl(A, B, eigs, eigvs)

Parameters

A - n × n Matrix

B - n × m Matrix

eigs - n-Vector

eigvs - n-list of n-Vectors

Description

– EigenvectorControl(A, B, eigs, eigvs) returns an m×n Matrix F

such that:

Eigenvalues(A + B.F) = eigs and (A.3)

Eigenvectors(A + B.F) = eigvs. (A.4)

– As discussed in Chapter 5.

• CST[CSTI]

Calling sequences

CST[CSTI](tf)

Parameters

tf - (optional) rational function in s

APPENDIX A. THE CST MODULE 75

Description

– CSTI(tf) starts up the CSTI Maplet, which is a GUI that allows access

to many of the graphical tools in the CST. The argument tf, if present,

starts the Maplet with that function in the input box.

– As discussed in Chapter 3.

Appendix B

Vita

Justin Wozniak is a native of the state of Illinois in the USA. He graduated from St.

Edwards High School, Elgin, IL, in 1996. His undergraduate degree in Mathematics

and Computer Science with minors in Latin and Chemistry was awarded by the

University of Illinois at Urbana-Champaign in 2000. He currently lives and works

at the Hershey Montessori Farm School in Huntsburg, Ohio with his wife, Venus.

76

