Control System Theory in Maple

by

Justin M.J. Wozniak

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2008
© Justin M.J. Wozniak 2008

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

The University of Waterloo requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date.

Abstract

In this thesis we examine the use of the computer algebra system Maple for control system theory. Maple is an excellent system for the manipulation of expressions used by control system engineers, but so far it is not widely used by the public for this purpose. Many of the algorithms in Maple were implemented because their application in control theory is known, but this functionality has not been compiled in a meaningful way for engineers. Over the past two years we have investigated what functionality control system engineers need and have attempted to fill in the gaps in Maple's functionality to make it more useful to engineers.

Acknowledgements

I would like to thank my supervisor, Dr. George Labahn, for his assistance and guidance in preparing this thesis. I also extend thanks to the readers, Dr. Justin Wan and Dr. Keith Geddes, whom I met in the classrooms of this university.

A special debt of gratitude is owed to Venus, who accompanied me on our extended honeymoon in Waterloo this summer. Thank you for your patience during this project.

I would like to thank Shannon Puddister for his input regarding the user interface from an engineering perspective.

Thanks also to the Symbolic Computation Group, Waterloo Maple and ORCCA, for financial and academic support.

Dedication

This thesis is dedicated to all the family scientists and engineers, especially my parents, Wayne and Susan.

Contents

1 Introduction 1
1.1 Symbolic Computation and Control System Theory 2
1.2 Existing Software for Control System Theory 4
1.2.1 MATLAB 4
1.2.2 Mathematica 6
1.2.3 Maple 7
1.3 Thesis Summary 8
2 Mathematical Background 10
2.1 Control System Theory 10
2.2 Differential Systems 11
2.3 Linear Time Invariant Systems 12
2.3.1 Linearization 14
2.4 Output 15
2.5 SISO Systems 17
2.5.1 Mathematical Description 17
2.6 Algebraic Operations 20
2.7 System Poles and Zeroes 21
3 Basic Analysis 24
3.1 Design Considerations 24
3.1.1 Graphical User Interface 25
3.1.2 Functionality 26
3.2 Basic Functions 26
3.2.1 System Conversion 26
3.2.2 Observability and Controllability 27
3.2.3 Hurwitz Test 28
3.3 Graphical Output 32
3.3.1 Time Domain Response 32
3.3.2 Root Locus 34
3.3.3 Nyquist Diagram 36
3.3.4 Bode Diagram 38
4 The Matrix Exponential 40
4.1 Definitions and Properties 40
4.2 Computation 43
4.2.1 Polynomial Methods 43
4.2.2 Matrix Decomposition Methods 48
4.3 Special Cases 51
5 Feedback Control 54
5.1 Ackermann's Method 56
5.2 Direct Method 57
5.3 Transfer Function Method 58
5.4 Eigenvector Control 61
6 Conclusion 62
Bibliography 64
A The CST Module 66
B Vita 76

List of Tables

2.1 Algebraic constructions of systems. 21
3.1 Possible inputs for system response. 33

List of Figures

3.1 Timing results of two Hurwitz algorithms. 30
3.2 Possible uses of the plotting functionality. 33
3.3 Possible uses of the root locus functionality. 35
3.4 Possible uses of the Nyquist functionality. 37
3.5 Possible uses of the Bode diagram functionality. 39

Chapter 1

Introduction

Control system theory is a broad field that uses many different areas of mathematics. Differential equations, matrix manipulation, complex functions and integral transforms are just some of the mathematical tools commonly used in most basic control problems.

The Maple computer algebra system is an excellent tool to use when approaching these types of problems, and the engineer attempting to solve a control problem with Maple would have access to all the functionality necessary. However, Maple was not designed primarily for engineering applications, and as a result engineers often use other more specialized software to meet their needs.

The typical modern control system engineer has probably used a system that emphasizes floating point computation, often in matrix-vector form. Older control software written in Fortran or C++ would fit into this category, as would modern MATLAB control software. Such systems tend to emphasize the state-space models of control systems in a floating point domain.

In general, Maple's floating point functionality is slower than that of competing software, but its polynomial arithmetic and related functionality make up the wellestablished, mature parts of the system. This indicates that Maple is best suited to operate on polynomial models of control systems in exact arithmetic.

In this thesis we have undertaken two projects. The first is to implement in Maple the basic control system functionality that would benefit the control system engineer. This includes convenient plots, graphics, and engineering operations commonly used in control theory. The second project examines some algorithms already in Maple that are useful to the engineer, and report on how they help or hinder control engineering.

We have approached the first project by designing and implementing the CST package in Maple. This package has a library of software algorithms commonly used by control engineers. It also has a Maplet that provides easy access to the graphical routines in the library.

We have approached the second project by investigating two specific computational problems: solving the homogenous $1^{\text {st }}$ order matrix differential equation and eigenvalue assignment.

1.1 Symbolic Computation and Control System Theory

An important issue when developing engineering software for Maple is the difference between exact arithmetic and floating point arithmetic. Maple is well suited
to perform calculations with integers, fractions of integers, algebraic numbers and unknown parameters. However, a cursory examination of any control theory textbook will show that engineers prefer floating point computation. Measurements and constants found in typical electrical or mechanical control systems rarely take on integer values.

In addition, many computations used in engineering applications do not result in answers that are easy to describe using exact arithmetic. For example, the basic analysis of a $5^{\text {th }}$ order differential system involves finding the roots of a $5^{\text {th }}$ degree polynomial. Although polynomial arithmetic is convenient in Maple, finding the explicit roots of such a polynomial is not generally possible. However, if the coefficients are considered floating point numbers, floating point solutions can easily be found.

Floating point numbers have certain drawbacks, however. Polynomials of $5^{\text {th }}$ degree or higher may have simple factorizations, especially for systems that were designed with pole placement techniques. However, even minor round-off deviations from the factorizable polynomial coefficients will result in a factorization significantly different from the correct answer.

In addition, numerical instability can prevent accurate results from being obtained. For example, manipulation of polynomial matrices in floating point is often unreliable and computationally expensive [4].

We will assume, then, that the systems of interest to the engineer studying control theory in Maple will really be investigating control theory, that is, computing with idealized systems that make for convenient computation. The engineer will be
able to gain deep insight into such systems by examining them from a theoretical perspective.

Graphical output will still be handled through floating point computation as that is the natural vehicle for plotting, etc. However, important data points such as maxima, roots, and limits may still be computed exactly if possible.

1.2 Existing Software for Control System Theory

We begin with an examination of popular software tools for the analysis of control systems. We have chosen to examine three general purpose software systems which offer potential benefit to the control system engineer.

1.2.1 MATLAB

MATLAB is a popular mathematical programming language based on matrix computation in the floating point domain. MATLAB also offers certain Maple functionality through the "Symbolic Toolbox". It offers an interactive command-line interface, and provides a variety of plotting and graphical functionality in pop-up windows. MATLAB consists of the main program, with a variety of Toolboxes associated with it that may be used for different applications. It is probably the most common choice for engineers working with control systems.

The MATLAB Control System Toolbox allows for the creation and manipulation of Linear Time Invariant (LTI) objects, a MATLAB data type. These objects may be instantiated using a transfer function format or a state space model. LTI objects may also be created by pole placement methods or even through graphical
pole placement. Model conversion and extraction is possible. LTI objects may be added, multiplied, and concatenated easily with overloaded arithmetic operations.

Graphical analysis is available, such as the Bode diagram, the Nyquist diagrams, and the Nichols chart. Time domain responses are available for impulse or step inputs.

MATLAB's Robust Control Toolbox is an additional collection of functions for the design of control systems. This Toolbox contains functions for so-called H_{2} and H_{∞} control, singular value analysis, and Riccati equation tools.

A software tool for MATLAB called Simulink is a graphical tool for the construction and analysis of control systems. This tool allows the user to draw out the desired system using a GUI, and then perform simulations of system response. The systems may be continuous or discrete with respect to time, and may be linear or nonlinear.

Third party software for MATLAB is abundant. For example, Shinners [12] provides freeware for use by readers of his textbook, called the Modern Control System Theory and Design Toolbox. This is a general-purpose package of control functionality that is based around the textbook. It has a full set of graphical routines as well as some analytical routines, including a small set of polynomial arithmetic functionality.

Other third party software for MATLAB may be more specialized. For example, the Submarine Control Toolbox allows the user to design and simulate a virtual submarine. Typical design tools are present, including feedback control and eigenvalue assignment. The resulting design may be previewed in an impressive 3D
graphical interface.

1.2.2 Mathematica

Mathematica is a programming language designed for a variety of mathematical applications in a symbolic context. The kernel of the Mathematica system is designed for list-based functional programming, but has been expanded to support a variety of programming styles. Users often prefer the document-driven interface, which is beneficial for plotting and interactive development, but the kernel is also accessible from the command line, or from other software systems, such as C, World Wide Web interfaces, or even Microsoft Excel. Mathematica is distributed by Wolfram Inc.

Wolfram also offers software called the Control System Professional that is distributed separately from Mathematica. This software provides a variety of control functionality and analysis, such as plots and simulation. This functionality is available inline with the document-driven interface, allowing for seamless development with other problems. It allows for symbolic analysis of systems such as solving state equations, numerical system simulation, and classical plotting capabilities like Bode and Nyquist. Other available plotting includes time domain response to impulse, step, and ramp input.

Control System Professional also allows for more advanced mathematics, such as Ackermann's formula for eigenvalue assignment. Traditional and robust pole assignment methods are also available. A variety of system realizations may be computed, including Jordan and Kalman forms. Using such realizations, the order
of the system may be reduced to a more convenient form.
For nonlinear systems, linearization or rational polynomial approximation of nonlinear systems is possible.

1.2.3 Maple

Maple is a computer algebra system designed originally for exact arithmetic and polynomial manipulation [7]. It is built on a small kernel architecture with a large library of mathematical functionality which may be loaded when necessary by the user. Maple is a mature system with widely respected functionality for symbolic integration and summation, polynomial arithmetic and factorization, number theory, and multiple-precision arithmetic. Maple has a document-driven interface which allows access to the kernel, and provides a variety of plotting capabilities.

Floating point computation is performed explicitly by the user with special commands that allow for arbitrary precision computation. Hardware based floating point computation is also available, resulting in a fixed precision result but with more efficient performance.

A recent addition to Maple is the Maplets package, which provides access to Java-based graphical user interfaces. This allows the programmer to build mathematical applications that the user would be comfortable using, complete with text boxes, buttons, plots and images.

Although Maple does not yet have a package for control system theory, it does already provide a great deal of functionality that is important when working on control problems. Maple allows for elegant handling of the mathematical data
types essential for system analysis, such as transfer functions and lists of matrices. In addition, many mathematical operations important in control system design are present, such as the Laplace transform, z-transform, and matrix exponential.

1.3 Thesis Summary

In this thesis we will discuss many of the issues involved in using Maple for control system computation. We will follow a control system design method:

- Chapter 2 - Mathematical Background

Given a system, we must describe it mathematically. We will provide a mathematical background for many control system problems. Similarly, the system must be defined in a computational setting, so we will discuss how to express such systems in Maple.

- Chapter 3 - Basic Analysis

The control engineer commonly seeks to control some given system, called the plant. Basic analysis must be performed to determine the properties of the given plant, such as system response, stability, and error. In this chapter we will discuss our implementation of some of the simpler control algorithms and graphical tools.

- Chapter 4 - The Matrix Exponential

It may be desirable to express the response of the system as a function of time. This involves the computation of the matrix exponential. In Chapter

4 we examine a variety of algorithms to handle this problem.

- Chapter 5 - Feedback Control

Given a plant and a desired system behavior, we may design a feedback controller to control the plant so it meets the design criteria. Feedback controllers can modify the eigenvalues of the closed-loop system. We examine methods to perform this computation in Chapter 5.

- Conclusion - Chapter 6

We conclude the thesis, tying together the theory and software.

Chapter 2

Mathematical Background

In this chapter we present the mathematical background for the study of control system theory. We first discuss how to describe a system plant as a differential equation, and how such systems may be represented in Maple. We then describe some preliminary operations and analysis, including system synthesis and root analysis.

2.1 Control System Theory

Control system theory is the mathematical process of designing a machine to control another machine. The machine to be controlled is, in engineering lingo, called the plant. The machine doing the controlling is called the compensator, or simply the controller. Each of these machines may be referred to as a system. These two machines must be somehow connected, output to input, so that they may interact.

We speak of control system theory as a mathematical process because there are design decisions to be made using mathematical tools, working with idealized math-
ematical models of the actual systems. A mathematical model of a given system may, for example, be a system of differential equations, with state variables representing the state of the system. These state variables describe the inner workings of the machine at hand; for example, positions of components in space, velocities of components, etc. The input to the system may be described as another set of independent state variables, and the output of the system may be described as some function of all the state variables.

With such an abstract concept of systems, we may describe anything from a microscopic pair of transistors to a gigantic water reservoir. The state variables for such systems may represent electrons, energy, or gallons of water. Input and output may occur over silicon circuitry or PVC piping and evaporation.

2.2 Differential Systems

In this thesis we will focus on systems that can be described mathematically by systems of continuous differential equations. We will assume that the system has n state variables of interest, as well as n possible inputs. The state variables of this system will be contained in the vector \mathbf{x}, the inputs to the system will be another vector \mathbf{u}, and the time will be denoted t. The change in the state variables of such a system with respect to time can then be written as $\dot{\mathbf{x}}$. We will assume that changes in \mathbf{x} are only due to the current values of \mathbf{x}, \mathbf{u}, and t. With these assumptions, we can write that the change in \mathbf{x} is some function of \mathbf{x}, \mathbf{u}, and t, called the system dynamics function, f. With this in mind, we can write a simple
differential equation

$$
\begin{equation*}
\dot{\mathbf{x}}=f(\mathbf{x}, \mathbf{u}, t) \tag{2.1}
\end{equation*}
$$

as a description of our control system.
This is the most general of first-order differential equations; we have no conditions on what kind of function f may be.

2.3 Linear Time Invariant Systems

The systems of concern to us in this chapter are known as linear time-invariant (LTI) systems. An LTI system has many special properties that allow us to analyze the system, predict behavior, and control the system. Many of the tools that are described later in this thesis are only useful for LTI systems.

Time-invariance simply means that time is not a factor in the dynamics of the system, and that the system dynamics function does not change with time. Mathematically, this means that we may drop t from equation (2.1) and write:

$$
\begin{equation*}
\dot{\mathbf{x}}=f(\mathbf{x}, \mathbf{u}) . \tag{2.2}
\end{equation*}
$$

It should be noted that dropping t from this equation does not limit us functionally at all, since time can still be considered a factor. Time may still be deduced in some cases from a component of the input vector, \mathbf{u}, or even from certain state variables in \mathbf{x}. Thus, any system of the form (2.1) may be described by a system of the form (2.2).

Up to this point, we have been referring to the current states of the system.

Since \mathbf{x} and \mathbf{u} may change with time, it is preferred to express them as functions of time, $\mathbf{x}(t)$ and $\mathbf{u}(t)$. So we will consider $\mathbf{x}(t)$ to be the vector of state variables of \mathbf{x} at time t, and $\mathbf{u}(t)$ to be the input to the system at time t. We may then write our differential equation as:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \mathbf{u}(t)) \tag{2.3}
\end{equation*}
$$

Linear systems are systems like (2.2), but where the change in state at a given time is a linear function of both the state and input. This means that the change in each state variable is equal to the sum of fixed proportions of the state and input variables, and the input. The proportions will be written as coefficients $\mathbf{A}_{i j}$. An LTI system has a similar matrix \mathbf{B} defined to operate on \mathbf{u}. Thus the change in each state variable can be written as below for a given state variable, \mathbf{x}_{i} :

$$
\begin{align*}
\dot{\mathbf{x}}_{i}(t)= & \mathbf{A}_{i 1} \mathbf{x}_{1}(t)+\mathbf{A}_{i 2} \mathbf{x}_{2}(t)+\ldots+\mathbf{A}_{i n} \mathbf{x}_{n}(t)+ \tag{2.4}\\
& \mathbf{B}_{i 1} \mathbf{u}_{1}(t)+\mathbf{B}_{i 2} \mathbf{u}_{2}(t)+\ldots+\mathbf{B}_{i n} \mathbf{u}_{n}(t) \tag{2.5}
\end{align*}
$$

The complete linear system may then be written in matrix-vector form:
$\left[\begin{array}{c}\dot{\mathbf{x}}_{1}(t) \\ \dot{\mathbf{x}}_{2}(t) \\ \vdots \\ \dot{\mathbf{x}}_{n}(t)\end{array}\right]=\left[\begin{array}{ccccc}\mathbf{A}_{11} & \mathbf{A}_{12} & \ldots & \ldots & \mathbf{A}_{1 n} \\ \mathbf{A}_{11} & \mathbf{A}_{11} & \ldots & \ldots & \mathbf{A}_{2 n} \\ \vdots & \vdots & & & \vdots \\ \mathbf{A}_{n 1} & \mathbf{A}_{n 2} & \ldots & \ldots & \mathbf{A}_{n n}\end{array}\right]\left[\begin{array}{c}\mathbf{x}_{1}(t) \\ \mathbf{x}_{2}(t) \\ \vdots \\ \mathbf{x}_{n}(t)\end{array}\right]+\left[\begin{array}{ccccc}\mathbf{B}_{11} & \mathbf{B}_{12} & \ldots & \ldots & \mathbf{B}_{1 n} \\ \mathbf{B}_{11} & \mathbf{B}_{11} & \ldots & \ldots & \mathbf{B}_{2 n} \\ \vdots & \vdots & & & \vdots \\ \mathbf{B}_{n 1} & \mathbf{B}_{n 2} & \ldots & \ldots & \mathbf{B}_{n n}\end{array}\right]\left[\begin{array}{c}\mathbf{u}_{1}(t) \\ \mathbf{u}_{2}(t) \\ \vdots \\ \mathbf{u}_{n}(t)\end{array}\right]$,
or in a condensed form:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{2.7}
\end{equation*}
$$

2.3.1 Linearization

LTI systems are convenient to work with and easy to describe, but many systems are not presented in such an easy fashion. Many problems in control system theory are presented in a more general, nonlinear form, as in equation (2.3). Often, however, we may approximate such systems by a linear system, by linearizing the system around a given operating state.

In order to linearize a system, we first pick a state around which to linearize, for example, an equilibrium point. An equilibrium point is a state $\mathbf{x}^{*}, \mathbf{u}^{*}$ such that:

$$
\begin{equation*}
f\left(\mathbf{x}^{*}, \mathbf{u}^{*}\right)=0 \tag{2.8}
\end{equation*}
$$

and has the property that when a system is at the equilibrium point, it will stay there forever (since then $\dot{\mathrm{x}}=0$).

Because f is continuous, we can assume that values of f at \mathbf{x}, \mathbf{u} close to $\mathbf{x}^{*}, \mathbf{u}^{*}$ will be close to 0 . Linearization is the additional assumption that f will change linearly as we move away from \mathbf{x}^{*} and \mathbf{u}^{*}. We can think of this as a truncated Taylor series representation of f. If f has a Taylor series, and starts at 0 , we can truncate the series so that only the first derivative remains. We assume that this is appropriate for some range of values close to \mathbf{x}^{*} and \mathbf{u}^{*}.

Of course, f is a function in $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$, so we need more than just a standard Taylor series.

First, we must assume that \mathbf{x} and \mathbf{u} affect f linearly with respect to each other, so that we may approximate f by some functions f_{1}, f_{2} :

$$
\begin{equation*}
f(\mathbf{x}(t), \mathbf{u}(t))=f_{1}(\mathbf{x}(t))+f_{2}(\mathbf{u}(t)) \tag{2.9}
\end{equation*}
$$

To get the first derivative in this space, we take the Jacobian of f_{1} with respect to \mathbf{x}, denoted $\frac{\partial f_{1}}{\partial x}$. Evaluating

$$
\begin{equation*}
\left.\frac{\partial f_{1}}{\partial x}\right|_{\mathbf{x}^{*}}=\mathbf{A} \tag{2.10}
\end{equation*}
$$

gives us our linear operator on \mathbf{x} as above in equation (2.7), which will suffice as an approximation to f_{1}. The second part of (2.9), f_{2}, must also be linearized. We will linearize the action of f_{2} on each \mathbf{u}_{i} without respect to any $\mathbf{u}_{j}, j \neq i$. This will give us a matrix B, that may be inserted into (2.7), giving our linearized version of (2.3):

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t) \tag{2.11}
\end{equation*}
$$

2.4 Output

The output of a system is the observable data coming back out from the system. Often, the output of the system is not the same as $\mathbf{x}(t)$, the system state, perhaps because the plant cannot be observed directly, or perhaps because the engineer is only interested in some subset of the state variables. In such systems, the equation (2.3) will be a system of two equations, where the output $\mathbf{y}(t)$ is represented as
another function of $\mathbf{x}(t), \mathbf{u}(t)$. Thus we have:

$$
\begin{align*}
& \dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \mathbf{u}(t)), \tag{2.12}\\
& \mathbf{y}(t)=g(\mathbf{x}(t), \mathbf{u}(t))
\end{align*}
$$

In some cases, only $\mathbf{y}(t)$ may be observed. In this case, if we desire to know the values of $\mathbf{x}(t)$, we will have to estimate their values with an estimator. This is especially important in feedback control as will be seen later in this thesis.

In equation (2.12) we have f, g written as nonlinear functions. We have already shown that f may be linearized as in equation (2.11), and g will be linearized in a similar way.

We first linearize g with respect to \mathbf{x} by taking the Jacobian and evaluating at an equilibrium point \mathbf{x}^{*}.

$$
\begin{equation*}
\left.\frac{\partial g}{\partial x}\right|_{\mathbf{x}^{*}}=\mathbf{C} \tag{2.13}
\end{equation*}
$$

We then similarly linearize g with respect to u

$$
\begin{equation*}
\left.\frac{\partial g}{\partial u}\right|_{\mathbf{x}^{*}}=\mathbf{D} \tag{2.14}
\end{equation*}
$$

So our linearized system with input u and output y is

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{2.15}\\
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(t)
\end{align*}
$$

2.5 SISO Systems

Thus far, we have seen first-order nonlinear and linear systems in n variables. However, many common systems may have only one state variable in a higherorder differential equation. Such a system with only one input and one output may be represented as a SISO (single-input-single-output) system.

2.5.1 Mathematical Description

A linear time-invariant SISO system is described below. Letting u be the system input, x be the state of the system and y the output, we may describe an $n^{\text {th }}$ order LTI system by a single differential equation:

$$
\begin{align*}
& u(t)=a_{0} x(t)+a_{1} \dot{x}(t)+\ldots+a_{n-1} x^{(n-1)}(t)+a_{n} x^{(n)}(t) \tag{2.16}\\
& y(t)=c_{0} x(t)+c_{1} \dot{x}(t)+\ldots+c_{m-1} x^{(m-1)}(t)+c_{m} x^{(m)}(t)
\end{align*}
$$

Such an equation has more than one state variable because the $n-1$ derivatives of the state are considered state variables. We will assign the $i^{\text {th }}$ derivative to the $i+1^{\text {th }}$ state:

$$
\begin{equation*}
\mathbf{x}_{1}(t)=x(t), \mathbf{x}_{2}(t)=\dot{x}(t), \ldots, \mathbf{x}_{n}(t)=x^{(n-1)}(t) \tag{2.17}
\end{equation*}
$$

Similar to equation (2.4), the derivative state of each $\mathbf{x}_{i}(t)$ can be written as a
linear function of the state variables.

$$
\begin{align*}
\dot{\mathbf{x}}_{1}(t) & =\mathbf{x}_{2}(t), \tag{2.18}\\
\dot{\mathbf{x}}_{2}(t) & =\mathbf{x}_{3}(t), \\
& \vdots \\
\dot{\mathbf{x}}_{n-1}(t) & =\mathbf{x}_{n}(t), \\
\dot{\mathbf{x}}_{n}(t) & =\frac{a_{0}}{a_{n}} \mathbf{x}_{1}(t)+\frac{a_{1}}{a_{n}} \mathbf{x}_{2}(t)+\ldots+\frac{a_{n-1}}{a_{n}} \mathbf{x}_{n}(t)+u(t) .
\end{align*}
$$

Systems as given in equations (2.16) or (2.18) can be awkward to use and manipulate. As a result these systems are typically expressed in other ways that are more meaningful.

The most common way to express such systems is by performing a Laplace transform, which converts a differential problem to an algebraic one. This relates the system output to the system input as a rational function, called a transfer function.

The Laplace transform of a function is an integral transform. A generic function $f(t)$ has a Laplace transform denoted $F(s)$, according to the formula

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{2.19}
\end{equation*}
$$

The Laplace transform is often written as an operator, \mathcal{L}, giving $\mathcal{L}(f(t))=F(s)$.
A handful of well-known methods are helpful when evaluating Laplace trans-
forms. When transforming equation (2.16), one may use the following simple rules:

$$
\begin{align*}
\mathcal{L}\left(f_{1}(t)+f_{2}(t)\right) & =F_{1}(s)+F_{2}(s) . \tag{2.20}\\
\mathcal{L}\left(a x^{(n)}(t)\right) & =a s^{n} X(s) . \tag{2.21}
\end{align*}
$$

Using these rules and assuming zero initial conditions, the system (2.16) would be transformed to:

$$
\begin{aligned}
& U(s)=\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}\right) X(s) \\
& Y(s)=\left(c_{n} s^{m}+c_{n-1} s^{n-1}+\ldots+c_{1} s+c_{0}\right) X(s) .
\end{aligned}
$$

A transfer function expresses the ratio of the output to the input:

$$
\begin{equation*}
\frac{Y(s)}{U(s)}=\frac{c_{m} s^{m}+c_{n-1} s^{n-1}+\ldots+c_{1} s+c_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}} . \tag{2.22}
\end{equation*}
$$

An important property that transfer functions may have is that of being proper. A proper transfer function is a function $F(s)$ that satisfies

$$
\begin{equation*}
\lim _{s \rightarrow \infty} F(s) \in \mathbb{R} \tag{2.23}
\end{equation*}
$$

For our purposes, this is equivalent to saying that the degree of the numerator is less than or equal to the degree of the denominator.

A second expression for these systems is the state space model. In this representation, we express each derivative of the state of the system as its own state
variable, as in equation (2.18). This leads to a natural matrix-vector expression:

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}_{1} \\
\dot{\mathbf{x}}_{2} \\
\vdots \\
\dot{\mathbf{x}}_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & & & \vdots \\
\frac{a_{0}}{a_{n}} & \frac{a_{1}}{a_{n}} & \frac{a_{2}}{a_{n}} & \ldots & \frac{a_{n-1}}{a_{n}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
u(t)
\end{array}\right]
$$

Or, more simply:

$$
\begin{align*}
& \dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u} \tag{2.24}\\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{align*}
$$

where \mathbf{B} is the identity matrix and $\mathbf{D}=0$.

2.6 Algebraic Operations

Now that we have a mathematical representation for LTI systems, we will show that they may be easily manipulated mathematically.

The set of rational transfer functions in a variable s forms an algebraic ring, so the pairs of systems may be added or multiplied. In addition, linear systems that are proper form a principal ideal domain [13], and hence the sum or product of a proper system is also proper.

For example, given two linear systems, represented as transfer functions $P(s), Q(s)$, the following operations are allowed and result in the systems shown.

Table 2.1: Algebraic constructions of systems.

2.7 System Poles and Zeroes

A common first step when analyzing an LTI system is to determine the poles and zeroes of the system. The zeroes of the system are the zeroes of the transfer function, which are the roots of the numerator, while the poles of the system are the poles of the transfer function, which are the roots of the denominator. In a state space system such as (2.7), the poles are the eigenvalues of \mathbf{A}.

To find the poles, we must solve a polynomial equation of degree n for s. Following equation (2.22), we set the denominator to zero:

$$
\begin{equation*}
s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}=0, \tag{2.25}
\end{equation*}
$$

which may be factored to give

$$
\begin{equation*}
\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{n}\right)=0 \tag{2.26}
\end{equation*}
$$

The poles of a system are important because they reveal the system's behavior. Knowing the poles of the system often provides some immediate qualitative properties. For example, stability of the system is equivalent to the system having all of the poles in the left half of the complex plane. Having poles close to the imaginary axis and away from the origin will result in sinusoidal-like responses.

A rough explanation for this behavior may be given by imagining the inverse Laplace transform of the real coefficient system corresponding to equation (2.26). If this factored polynomial corresponds to the denominator of a transfer function $\frac{Y(s)}{U(s)}$, then the system has a partial fraction expansion with numerators N_{i} to be determined:

$$
\begin{equation*}
\frac{N_{1}}{\left(s-\lambda_{1}\right)}+\frac{N_{2}}{\left(s-\lambda_{2}\right)}+\ldots+\frac{N_{n}}{\left(s-\lambda_{n}\right)} \tag{2.27}
\end{equation*}
$$

The inverse Laplace transform of this expression is

$$
\begin{equation*}
N_{1} e^{\lambda_{1} t}+N_{2} e^{\lambda_{2} t}+\ldots+N_{n} e^{\lambda_{n} t} \tag{2.28}
\end{equation*}
$$

which expresses the response of the system in the time domain. The exponent in each term can be thought of as a complex number $a+b i$. Each pair of roots with an imaginary component results in addends

$$
\begin{equation*}
N_{j} e^{(a+b i) t}+N_{k} e^{(a-b i) t} \tag{2.29}
\end{equation*}
$$

which may be expressed as

$$
\begin{equation*}
e^{a}\left(N_{1} e^{(b i) t}+N_{2} e^{-(b i) t}\right) \tag{2.30}
\end{equation*}
$$

and hence clearly exhibits sinusoidal behavior. It is clear to see that if $a>0$, the system will demonstrate exponential growth. It is also clear that the nature of the oscillations will be dependent on b.

The stability of a system is dependent on its behavior after a long period of time. Specifically, if $\mathbf{x}(t)<\infty$ for $t \rightarrow \infty$ then the system can be described as stable. If the system expands without bound, it is considered unstable.

It is well known that stable systems have all of their poles in the left half plane. These are also known as Hurwitz systems. One does not have to explicitly compute all the roots of the characteristic equation in order to determine stability, the Routh-Hurwitz test allows one to test for the presence of positive roots without such an extensive computation.

From a computer algebra perspective, we prefer to find the exact, explicit solutions of this equation. This is often impossible to do for $n>4$, and often gives unmanageable results for $n>2$. We will work around this difficulty by assuming that in many cases, the system was designed with the poles in mind, making the roots computable.

Chapter 3

Basic Analysis

We set out to create a Maple package that would meet the needs of engineers in a way that is convenient in the Maple system. We have written a Maple module called CST that allows the user to analyze control systems in transfer function or state space form.

This module consists of a Maplet and a set of programmer-accessible functions that may be helpful to the engineer using Maple. In this chapter, we will describe the design of this system. We will then show how the system may be used, provide screenshots of the program, and give examples.

3.1 Design Considerations

In this section, we will discuss how the system is intended to be used by the engineer. All of the functions in this chapter are intended for SISO systems, as in section 2.5.

3.1.1 Graphical User Interface

Our user interface is designed to be a quick way for the user to input and quickly check the properties of different systems, and make quick changes. The user should easily be able to easily perform different qualitative tests on each system, with point and click simplicity.

The Maplet implementing this functionality is called the CSTI. The graphical user interface is designed using the new Maple package Maplets. This package allows the user to quickly create a GUI application in Maple by building a Maplet data type, inserting window elements such as Buttons or ToolBars, and displaying them.

We decided to use the Maplets package because we decided this would be the most useful way for the modern control system engineer to get graphical output from the system. This allows the user to see a variety of different aspects of the system without a great deal of typing or other input. Once the system has been entered, the user can simply click the different Maplet controls to view the properties he or she wishes to see.

The interface consists of a text box where the transfer function may be entered. The user is able to use a variable gain, K, because this is a commonly changed variable in the design of a feedback system. The user is able to quickly change the value of K by using the slide bar. The range of the slide bar endpoints may be changed in the Settings window.

The package was created with the Java window system. Because of this, the programmer's interface is very familiar to Java users. The various window elements
are inserted into Layouts, and the details of the display are left to the system.

3.1.2 Functionality

The programmer's interface was chosen to be as simple as possible. Graphical functions from the programmer's interface simply provide the same functionality found in the graphical user interface. This allows the user to create plot objects for use elsewhere in the Maple system, including the use of certain plot options.

Other functions, such as the conversion functions, take and return a variety of Maple data types, depending on the type of function. However, we try to use calling sequences similar to those typically found in Maple. For example, many functions take the transfer function as an argument: a rational function in s.

The functions are accessible once the CST package has been loaded.

3.2 Basic Functions

3.2.1 System Conversion

Given a system, as in section 2.5.1, we may desire to change it from a transfer function representation to a state space representation, and back. The CST provides two functions, toStateSpace and toTransferFunction to convert between the two forms. For example:
$\left[>\right.$ TF $:=\frac{13 s^{3}+s^{2}+2 s+3}{3 s^{5}+6 s^{4}+s^{3}+9 s^{2}+4 s}:$
$[>(A, B, C, D):=$ toStateSpace $(T F, s)$;

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
-2 & \frac{-1}{3} & -3 & \frac{-4}{3} & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],} \\
\\
\quad\left[\frac{1}{3} \frac{13}{3} \frac{2}{3}\right.
\end{array} 10\right], 0 \quad[>+1 \text { D, s); }
$$

and back...

$$
\frac{s+\frac{13}{3} s^{2}+\frac{2}{3} s^{3}+\frac{1}{3} s^{4}}{s^{5}+2 s^{4}+\frac{1}{3} s^{3}+3 s^{2}+\frac{4}{3} s}
$$

Note that the final transfer function is the normalized form of the original transfer function.

3.2.2 Observability and Controllability

Given a multiple-state system in state-space form, it may be desired to know which states are observable or controllable. Observability is the property that indicates that each state of the system is observable from the output, that is, that the value of each state may be deduced. Controllability is the property that indicates that each state is controllable, that is, that each state may be affected by the input.

Given a state space system $\{A, B, C, D\}$ of order n, we construct the observability matrix below:

$$
\left[\begin{array}{llll}
C^{T} & A^{T} C^{T} & \ldots & \left(A^{T}\right)^{n} C^{T} \tag{3.1}
\end{array}\right]
$$

If the observability matrix is nonsingular, the system is observable.
Given the same system, the controllability matrix can be built in a similar way.

$$
\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{n} B \tag{3.2}
\end{array}\right]
$$

If this matrix is nonsingular, the system is controllable.

Examples are given below for the $2^{\text {nd }}$ order system

$$
\begin{gather*}
\dot{x}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] x+\left[\begin{array}{l}
1 \\
2
\end{array}\right] u, \tag{3.3}\\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x . \\
\text { [> isControllable(} \left.\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) ; \quad\left[>\text { isObservable }\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right) ;\right. \\
\text { true }
\end{gather*}
$$

It can be easily seen that \dot{x}_{1}, \dot{x}_{2} may both be modified by appropriate choices of u_{1}, u_{2}, so the system is intuitively controllable. It can also be seen that $y=x_{1}$, and that x_{2} does not affect x_{1}, so the system is not completely observable. In particular, we say that x_{2} is not observable.

3.2.3 Hurwitz Test

Another commonly used test used on differential systems is the Hurwitz test for polynomials. The Hurwitz test allows one to quickly check whether a system is stable without explicitly computing the poles of the characteristic polynomial of the system.

A method to compute this is provided in the Maple library, in the function PolynomialTools:-Hurwitz. However, a method in Shinners [12] seems to give better performance for the type of transfer function systems we are concerned with in this thesis. Shinners presents a turn of the century method from Routh [11], which computes the same result as the Maple function, but uses a different, faster method.

The method in Shinners builds a table of the coefficients in the polynomial:

$$
\begin{equation*}
p(x)=s^{n}+a_{2} s^{n-1}+\ldots+a_{n} s+a_{n+1}=0 \tag{3.4}
\end{equation*}
$$

r	values				
n	1	a_{3}	a_{5}	\ldots	0
$n-1$	a_{2}	a_{4}	a_{6}	\ldots	0

This table is continued downward by filling in using the following values, where (r, j) denotes the element in row r, column j :

$$
\begin{equation*}
(r, j):=\frac{(r-1,1) \times(r-2, j+1)-(r-2,1) \times(r-1, j+1)}{(i-1,1)} \tag{3.5}
\end{equation*}
$$

This process continues until we reach a row of zeroes. Zeroes enter the table from the right because the values off to the right of the original table are zero, and they are multiplied into the formula, so the maximum size of the table is $n+1$ rows by $\frac{n}{2}$ columns. Filling in each spot is a constant time operation, so the asymptotic time complexity of building the table is $O\left(n^{2}\right)$.

Once the table is complete, we examine the first column of the table starting at the top, working down. The number of sign changes from row to row in this column indicates the number of zeroes that the original polynomial contains in the right half plane. Thus, the Hurwitz test returns true only if all the elements in the first column are positive.

Some running time comparisons are given in Figure 3.1. The polynomials tested were dense randpolys with degree n, with integer coefficients. The timings seem
to agree with the expected quadratic performance.

Figure 3.1: Timing results of two Hurwitz algorithms.

The figure shows that the Routh-Hurwitz method described in Shinners is considerably faster, especially on the small polynomials common in control system design.

Elementary examples are given below.
[> RouthHurwitz ($\frac{1}{(s+1)^{3}}$, s, output=table);

$$
\text { true } 0,\left[\begin{array}{ll}
1 & 3 \\
3 & 1 \\
\frac{8}{3} & 0 \\
1 & 0
\end{array}\right]
$$

[> RouthHurwitz $\left(\frac{1}{(s+1)^{2}(s+3)^{2}(s-1)}, \mathrm{s}\right.$, output=table);

$$
\text { true, } 0,\left[\begin{array}{ccc}
1 & 14 & -15 \\
7 & 2 & -9 \\
\frac{96}{7} & -\frac{96}{7} & 0 \\
9 & -9 & 0 \\
\epsilon & 0 & 0 \\
-9 & 0 & 0
\end{array}\right]
$$

In the second example, ϵ is a small positive number, filling in for a 0 . This is necessary to avoid a 0 in the left column. When determining the sign changes in the left column, a limit as $\epsilon \rightarrow 0$ is taken to find the sign of the expression. Note that ϵ may be involved in larger expressions as the matrix size gets larger and the ϵ is propagated down, resulting in a more complicated expression to work with and making it more difficult to find a limit.

As seen above, the CST software optionally returns the table used for inspection by the user. This is particularly useful if free variables are utilized in the Hurwitz analysis. For example, a common control problem is to select a gain K that provides a fast system response, without resulting in an unstable system. This means we must find the largest stable value of K. For example, if our characteristic equation is $a(s)=s^{3}+s^{2}+s+K$, we have the output below:
[> RouthHurwitz($\frac{1}{a}$, s, output=table);

$$
\text { false, } 2,\left[\begin{array}{cc}
1 & 1 \\
1 & K \\
1-K & 0 \\
K & 0
\end{array}\right]
$$

The user then must solve the inequalities below to prevent a sign change in the first column:

$$
\begin{gathered}
1-K>0 \\
K>0
\end{gathered}
$$

This results in the set $\{0<K<1\}$, which is the range of stable gains K for this system.

3.3 Graphical Output

In this section, we will describe some of the possible graphical outputs from the CST package. These outputs include a variety of types of plots that are helpful in studying control systems and identifying certain system properties.

3.3.1 Time Domain Response

Perhaps the first plot the user will want to see will be the response of the transfer function to a given input. For example, the user may be interested to see what
happens when the system input is switched from 0 to 1 . This plot is called the time domain response of the transfer function.

This is actually a series of possible plot outputs. There are three input functions that are commonly used when testing a system: the impulse, the step, and the ramp inputs. These three input functions available in this category are outlined in Table 3.1.

Impulse Response	$r(t)= \begin{cases}1 & \text { when } t=0 \\ 0 & \text { for } t>0\end{cases}$
Step Response	$r(t)= \begin{cases}0 & \text { when } t=0 \\ 1 & \text { for } t>0\end{cases}$
Ramp Response	$r(t)= \begin{cases}0 & \text { when } t=0 \\ t & \text { for } t>0\end{cases}$

Table 3.1: Possible inputs for system response.

Figure 3.2: Possible uses of the plotting functionality.

A pair of example output plots is visible in Figure 3.2. The plot on the left shows the response of a critically damped $2^{\text {nd }}$ order system to a step input. The input $r(t)$ can be seen as the straight line across the top of the figure, and the system output can be seen arcing to converge with the input. The system is called critically damped because there is no overshoot, or oscillation, with the minimal amount of damping. The plot on the right shows a system with a moderate amount of overshoot that is responding to a ramp input. This system may, for example, represent the position of a wobbly elevator ascending through time.

3.3.2 Root Locus

The root locus plot allows the user to view all the possible roots of the characteristic equation of a system with respect to a positive free variable, K. This is equivalent to viewing the possible eigenvalues of the system with a variety of possible gain values. This is important to the engineer because often the gain is an easily tuned value.

The corresponding command has been implemented in the function RootLocus. This function takes a transfer function as an argument, which is a rational function, with one or more of the coefficients dependent on K.

Given a transfer function $\frac{N(s)}{D(s)}$, the routine simply picks a variety of values for K, plugs each into $D(s)$, and solves $D(s)=0$. The result, a constant in \mathbb{C}, is then plotted on the complex axis.

Some example root loci are visible in Figure 3.3. The figure on the left shows the root locus of the critically damped second order system. The locus is quite
simple, the roots are either on the real axis, symmetric around $-1+0 i$, or are a pair of complex roots above and below $-1+0 i$.

The figure on the right in Figure 3.3 shows the root locus of a more complex third order system. Using Hurwitz analysis, it may be seen that this system becomes unstable when $K>2$. So we can say that the two symmetric curved loci cross the imaginary axis when $K=2$. We can use the graphical information provided by the plot to gain insight into expected system behavior for other values of K.

$$
\text { [> CST:-RootLocus }\left(\frac{K}{s^{2}+s+K}\right) ; \quad\left[>\operatorname{CST}:-\operatorname{RootLocus}\left(\frac{K}{s^{3}+s^{2}+2 s+K}\right) ;\right.
$$

Figure 3.3: Possible uses of the root locus functionality.

Viewing the root locus diagram allows the user to determine which values of K lead to desired system characteristics. For example, roots close to the imaginary axis will lead to oscillatory performance. By experimenting with the root locus diagram, the user may gain insight as to which roots are responsible for various system behaviors.

3.3.3 Nyquist Diagram

The Nyquist diagram is a commonly used tool that can also be used to determine the system stability of a given transfer function. It uses a plot in the complex plane to show the user where the roots of the characteristic polynomial are, and thus whether the system is stable.

This plotting tool uses a mapping of the entire imaginary axis through the transfer function and back onto the complex plane. So for the transfer function F, and $i=\sqrt{-1}$, we can think of this as the set of points:

$$
\begin{equation*}
\{ \pm F(\omega i), \omega=0 \ldots \infty\} \tag{3.6}
\end{equation*}
$$

This is a difficult plot to draw because as $\omega \rightarrow \infty, F(\omega i)$ will often converge, connecting to the negative side of the plot for a proper rational function. There is no easy place to truncate this expression, so we take a limit:

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty} F(\omega i)=\Omega \tag{3.7}
\end{equation*}
$$

Then we can start plotting points, starting from a small ω. At each step, we compare our current location with the location of Ω, until we are close enough to connect them. This gives a smooth-looking graph. We call the maximum allowable distance between two plotted points the tolerance of the plot. If the tolerance is too high, the plot appears rough, and so the user will be unable to observe some important characteristics.

However, because of the large changes in scale of numbers used, an adaptive
plotter is necessary. For example, for the simple transfer function

$$
\begin{equation*}
F(s)=\frac{1}{s^{2}+2 s+1}, \text { as } \omega \rightarrow \infty, F(\omega i) \rightarrow 0 \tag{3.8}
\end{equation*}
$$

To capture this Nyquist diagram, we take the limit of F as $\omega \rightarrow \infty$, then plot F until we are close enough to the limit 0 for a good image. As ω gets large, we have to use a larger step in between to advance quickly, but without using a step larger than the tolerance. The adaptive plotter is designed to do this. Some example Nyquist diagrams are visible in Figure 3.4.

$$
\left[>\text { CST:-Nyquist }\left(\frac{1}{s^{2}+2 s+1}, \text { s }\right) ; \quad\left[>\operatorname{CST}:-N y q u i s t\left(\frac{1}{s^{2}+\frac{1}{5} s+1},\right. \text { s); }\right.\right.
$$

Figure 3.4: Possible uses of the Nyquist functionality.

It is interesting to note that the image on the left was computed with 268 function evaluations, while the function on the right took 1809 function evaluations. This is indicative of the slow convergence of the transfer function on the right.

3.3.4 Bode Diagram

The Bode diagram is another helpful tool when analyzing systems, and is similar to the Nyquist plot, providing similar information. The diagram actually consists of a pair of plots. For a transfer function F, the first plot contains values of $|F(\omega)|$, where ω starts at 0 and extends up along the imaginary axis. This first plot is labelled the dB plot. The second plot contains the values of the phase of $F(\omega)$, in degrees, for the same values of ω, and labelled the degrees plot.

Some example Bode diagrams are visible in Figure 3.5. The figures on the left display the critically damped second order system. The figures on the right show the second order system with a much smaller damping coefficient, leading to a spike near $\omega=1$ in the dB plot, and a steeper drop in the degrees plot, both of which are expected behavior.

Figure 3.5: Possible uses of the Bode diagram functionality.

Chapter 4

The Matrix Exponential

In the study of control systems, it is important to be able to predict the system response to a variety of initial conditions. Given a complicated differential system, the user may desire to compute the state of the system at various points in time to study the response in terms of stability or convergence, or a variety of more qualitative criteria. The state of the system may be expressed in closed form, dependent on the time, t, using a computation called the matrix exponential. In this chapter, we study various techniques to compute the matrix exponential efficiently in a computer algebra system.

4.1 Definitions and Properties

For a given square matrix A, let

$$
\begin{equation*}
e^{A t}=I+A t+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\ldots=\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!} \tag{4.1}
\end{equation*}
$$

where convergence is assumed. We may take the derivative of this function with respect to t to obtain

$$
\begin{align*}
\left(e^{A t}\right)^{\prime} & =A+A^{2} t+\frac{t^{2}}{2!} A^{3}+\frac{t^{3}}{3!} A^{4}+\ldots \\
& =A \sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!} \tag{4.2}\\
& =A e^{A t}
\end{align*}
$$

Thus we observe the most useful property of the matrix exponential: that the system of linear differential equations

$$
\begin{gathered}
\dot{x}(t)=A x(t), \\
x(0)=x_{0},
\end{gathered}
$$

is solved by

$$
\begin{equation*}
x(t)=e^{A t} x_{0} \tag{4.3}
\end{equation*}
$$

The matrix exponential has certain important properties analogous to scalar exponentials [2].

1. For scalars $t_{0}, t_{1}, e^{\left(t_{0}+t_{1}\right) A}=e^{t_{0} A} e^{t_{1} A}$.
2. For a scalar $t,\left(e^{t A}\right)^{-1}=e^{-t A}$. This follows from (1).
3. For matrices A, B that are commutative by multiplication, $e^{A+B}=e^{A} e^{B}$.

It is important to note that property 3 applies only to commutative matrices.

Consider our linearized system model, which relates the system state, $x(t)$ and the system input, $u(t)$, to the derivative of the system state $\dot{x}(t)$, as in equation (2.11):

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) . \tag{4.4}
\end{equation*}
$$

We may use the properties of the matrix exponential to solve the system for $x(t)$. We first offer a solution analogous to the scalar case,

$$
\begin{equation*}
x(t)=e^{A t} x_{0}+e^{A t} \int_{0}^{t} e^{-A s} B u(s) d s \tag{4.5}
\end{equation*}
$$

By differentiating, factoring, and using property 1 we obtain:

$$
\dot{x}(t)=A\left(e^{A t} x_{0}+e^{t A} \int_{0}^{t} e^{-s A} B u(s) d s\right)+B u(t) .
$$

We observe that the sum in the parentheses is exactly our guess for the solution in equation (4.5), so we may substitute:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t), \tag{4.6}
\end{equation*}
$$

proving our guess correct [2], and giving a closed form solution for $x(t)$ in terms of the matrix exponential, $e^{A t}$.

Equation (4.5) shows that the system state, $x(t)$, can be split into a sum of two terms, one dependent on the initial state, and the other dependent on the input. If $u(t)=0$, we have equation (4.1) above. In this case, the matrix exponential is referred to as the unforced response of the system to an initial state x_{0}. Note also
that the second addend in (4.5) is independent of x_{0}, meaning that this describes the forced response of the system, unaffected by the initial state.

4.2 Computation

Adding up terms in a series is not the only way to evaluate the matrix exponential. A variety of methods have been proposed, including methods based on the CayleyHamilton theorem, matrix decomposition methods, and others. In this chapter we will discuss methods to compute the exponential that are useful in an exact arithmetic context.

Existing software to compute the matrix exponential is abundant. For example, Matlab provides three different exponential algorithms that the user may select. The command expm(A) or expm1(A) will compute the matrix exponential of A using a method based on scaling and squaring and Padé approximation. Entering expm2(A) will compute the exponential viá the Taylor series described above. The third function, $\operatorname{expm} 3(A)$ will perform the computation using eigenvectors and eigenvalues, which is a matrix decomposition method discussed below.

Maple allows for the exact calculation of $e^{A t}$ with the use of the function linalg[exponential]. This function and its methodology will be discussed below.

4.2.1 Polynomial Methods

Many polynomial methods derive from the Cayley-Hamilton theorem. This theorem, originating independently from Cayley and Hamilton around 1860, shows that
every matrix satisfies its characteristic equation. That is, if

$$
\begin{gathered}
p(s)=\operatorname{det}(s I-A)=s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}, \\
\text { then } p(A)=A^{n}+a_{n-1} A^{n-1}+\ldots+I=0 .
\end{gathered}
$$

If $f(x)$ is a polynomial in x then we may compute the remainder of f and p,

$$
f(x)=p(x) q(x)+r(x)
$$

where the degree of r is less than n, the degree of $p(x)$. This is also true for a power series $f(x)$, in which case $q(x)$ is also a power series. Since $p(A)=0$ we get that $f(A)=r(A)$.

Hence we need only find the n unknown coefficients for the remainder $r(x)$. Note that for any eigenvalue λ we have $f(\lambda)=r(\lambda)$. Given n distinct eigenvalues $\lambda_{1} \ldots \lambda_{n}$ we may interpolate to obtain $r(x)$ of degree n or less satisfying $r\left(\lambda_{i}\right)=e^{\lambda_{i}}$.

In the case of a repeated eigenvalue λ_{i} of multiplicity k then $p(x)=\left(x-\lambda_{i}\right)^{k} \hat{p}(x)$ leaving

$$
f(x)=\left(x-\lambda_{i}\right)^{k} \hat{p}(x) q(x)+r(x),
$$

with $\operatorname{deg}(r(x))<n$. In this case we would have the k equations $r(\lambda)=e^{\lambda}, r^{\prime}(\lambda)=$ $\lambda e^{\lambda} \ldots r^{(k-1)}(\lambda)=\lambda^{k-1} e^{\lambda}$. Thus we still have n equations with n unknowns.

The Lagrange method for the matrix exponential is based on a direct interpolation of the eigenvalues of A. It is effective if A has n different eigenvalues. In this method, we build up the Lagrange terms and evaluate at A. We compute the

Lagrange terms using the form

$$
\begin{equation*}
A_{j}=\prod_{k=1, k \neq j}^{n} \frac{A-\lambda_{k} I}{\lambda_{j}-\lambda_{k}} . \tag{4.7}
\end{equation*}
$$

Then we add up the sum

$$
\begin{equation*}
e^{t A}=\sum_{j=1}^{n} e^{\lambda_{j} t} A_{j} . \tag{4.8}
\end{equation*}
$$

This results in an exact representation of the matrix exponential.
A similar method was proposed by Kirchner [6]. This technique works whether or not A has repeated eigenvalues. In the case that A has n different eigenvalues, the Kirchner method takes the form of equation (4.8). However, Kirchner does not use the Lagrange terms to compute A_{j}. The first formula Kirchner gives for A_{j} is

$$
\begin{align*}
p_{j}(s) & =\prod_{k=1, k \neq j}^{n}\left(s-\lambda_{j}\right)^{m_{j}} \tag{4.9}\\
q(s) & =\sum_{k=1}^{n} p_{k}(s) \tag{4.10}\\
A_{j} & =q(A)^{-1} p_{j}(A) . \tag{4.11}
\end{align*}
$$

This method is clearly more expensive in terms of matrix operations because a matrix polynomial must be evaluated and inverted. However, Kirchner gives another method for computing A_{j} based on a Vandermonde matrix of the eigenvalues.

He computes

$$
\begin{align*}
C & =\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{n} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \ldots & \lambda_{n}^{n-1}
\end{array}\right]^{-1} \tag{4.12}\\
A_{j} & =\sum_{k=1}^{n} C_{k j} A^{j-1} . \tag{4.13}
\end{align*}
$$

This method is easily seen to be similar to a Vandermonde interpolation of the eigenvalues. An earlier method developed by Putzer [10] uses the Vandermonde matrix implicitly in the context of solving a set of linear equations to satisfy initial conditions of a linear differential equation. This method must solve an $n^{t h}$ order linear ODE, $z(t)$, to build up the coefficients $q_{j}(t)$ of the polynomial

$$
\begin{equation*}
e^{A t}=\sum_{j=0}^{n-1} q_{j}(t) A^{j} \tag{4.14}
\end{equation*}
$$

To solve the ODE $z(t)$, we must compute the roots of the $n^{t h}$ order polynomial, then solve for the constants k_{i} using $t=0$:

$$
\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \tag{4.15}\\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{n} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \ldots & \lambda_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

However, because of the special right hand side in this equation, the solution
may be easily found. The ODE solution, $z(t)$, is then used to compute the $q_{j}(t)$, each of which is a linear combination of the exponentials, $e^{\lambda_{i} t}$. The solution is then computed as above in equation (4.14).

Another Vandermonde-based procedure was used by Fulmer [5] that is functionally similar to the Putzer method, but based on the solutions to the initial value problem

$$
\begin{equation*}
p\left(\frac{d}{d t}\right)(G(t))=0, G(0)=I, G^{\prime}(0)=A, G^{(2)}(0)=A^{2} \ldots \tag{4.16}
\end{equation*}
$$

Since $\frac{d^{k}}{d t^{k}}\left(e^{A t}\right)=A^{k} e^{A t}, G(t)=e^{A t}$. The general solution of the differential equation, if we have n different eigenvalues, is

$$
\begin{equation*}
e^{A t}=C_{1} e^{\lambda_{1} t}+\ldots+C_{n} e^{\lambda_{n} t} \tag{4.17}
\end{equation*}
$$

We solve for the unknown matrices C_{i} by inverting a Vandermonde matrix of the eigenvalues.

The current Maple implementation of the matrix exponential mentioned earlier also uses a method based on interpolating the values of $e^{\lambda_{i}}$ at the eigenvalues, λ_{i}. This method efficiently computes the coefficients of the Newton form of the interpolating polynomial, resulting in a Horner-like polynomial in A. The method plugs A into that expression, resulting in the exponential, $e^{A t}$.

Limitations

Assume we have a matrix exponential $e^{A t}$ where A is a square matrix that contains n^{2} exact entries. To compute the exact form of the matrix exponential, all polyno-
mial methods must compute the eigenvalues of A. This involves finding the roots of the characteristic equation of A, which has coefficients that are polynomial in the entries of A. If the degree of the characteristic equation is less than 4 , the exact roots may be found quite easily. If the degree is 5 or greater, finding the roots exactly may be impossible, forcing the method to work with symbolic representations of the actual roots. This greatly adds to the size of the expressions produced in the output.

In addition, polynomial methods for the matrix exponential typically build up a degree n polynomial in A with exponential coefficients which must represent the matrix exponential. This polynomial is evaluated, giving the result in time $O\left(n^{4}\right)$. This running time does not include the cost of the size of the expressions involved, which is considerable given the multiplication of the aforementioned exponential coefficients.

4.2.2 Matrix Decomposition Methods

Certain matrices have a non-zero structure that allows for an easier computation of the matrix exponential. It will be shown that a variety of these structures may be used to compute the matrix exponential efficiently.

For example, a $n \times n$ diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ may be exponentiated with time complexity $O(n)$, by simply exponentiating each element along the diagonal, i.e. $e^{D t}=\operatorname{diag}\left(e^{d_{1} t}, \ldots, e^{d_{n} t}\right)$.

Another example of an easy matrix exponential is a Jordan block. A $m \times m$

Jordan block may be exponentiated into a Toeplitz block:

$$
J_{\lambda}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & \ldots & 0 \tag{4.18}\\
0 & \lambda & 1 & 0 & \ldots & 0 \\
\vdots & & \ddots & \ddots & \vdots & \\
0 & 0 & \ldots & 0 & \lambda & 1 \\
0 & 0 & \ldots & \ldots & 0 & \lambda
\end{array}\right], e^{J t}=\left[\begin{array}{cccccc}
e^{\lambda t} & t e^{\lambda t} & \frac{t^{2}}{2!} e^{\lambda t} & \ldots & \ldots & \frac{t^{m}}{m!} e^{\lambda t} \\
0 & e^{\lambda t} & t e^{\lambda t} & \ldots & & \vdots \\
\vdots & & \ddots & & & \vdots \\
0 & 0 & \ldots & 0 & e^{\lambda t} & t e^{\lambda t} \\
0 & 0 & \ldots & \ldots & 0 & e^{\lambda t}
\end{array}\right] .
$$

This calculation would take $O(n)$ time, because the output is a Toeplitz matrix. Triangular matrices are also relatively easy to exponentiate, using the recurrence method given by Parlett [9]. Parlett's method runs in time $O\left(n^{3}\right)$ and works on triangular or block triangular matrices.

The existance of easy matrix exponentials allow us to compute exponentials of matrices that are similar to a easy exponentials. Suppose we wish to compute the exponential $e^{A t}$ where we have a matrix decomposition $A=S^{-1} P S$, with $e^{P t}$ easy to compute. Because of the power series definition of $e^{A t}$,

$$
\begin{align*}
e^{A t} & =I+S^{-1} P S t+\frac{t^{2}}{2!} S^{-1} P S S^{-1} P S+\frac{t^{3}}{3!} S^{-1} P S S^{-1} P S S^{-1} P S \ldots \tag{4.19}\\
& =S^{-1}\left(I+P t+P^{2} \frac{t^{2}}{2!}+P^{3} \frac{t^{3}}{3!} \cdots\right) S \tag{4.20}\\
& =S^{-1} e^{P t} S \tag{4.21}
\end{align*}
$$

giving us a matrix decomposition method to compute the matrix exponential.
A natural similarity decomposition to use is the Jordan form. This is the decomposition $A=Q^{-1} J Q$, where J is block diagonal, with each block in the form
(4.18). In exact arithmetic, the Jordan form may be computed with confidence, as opposed to floating point arithmetic, where nearby eigenvalues may or may not be equal.

If the Schur form of a matrix is given, we have $A=Q^{-1} T Q$ where Q is unitary and T is upper triangular. Parlett's method may be used to apply the exponential function.

Limitations

These methods have the same difficulty that the polynomial methods suffer: the exact eigenvalues must be computed, and are found as roots of an n th-degree polynomial equation. An additional difficulty is that the similarity matrix must be inverted. This is analagous to the computational difficulty of inverting the Vandermonde matrix in the previous section for polynomial interpolation.

For example, benchmarking showed that the Jordan form method was 30% faster than the current Maple method when $n=3$, for matrices of random integers less than 100. It was not competitive for $n=4$, because the Jordan form (J, Q) could not be computed in a reasonable amount of time, with $A=Q^{-1} J Q$. This does not include the time to invert Q. The current method, however, can exponentiate a 4×4 matrix in a reasonable amount of time, and give a solution in terms of RootOfs.

4.3 Special Cases

As discussed in the previous section, many matrices have exponentials that are easy to compute. In this section we will describe a few of these cases and discuss their computational complexity.

Matrices with one eigenvalue are an important case. If the matrix A has just one eigenvalue, λ, then the exponential may be easily formed as given by Apostol [3],

$$
\begin{equation*}
e^{t A}=e^{\lambda t} \sum_{k=0}^{n-1} \frac{t^{k}}{k!}(A-\lambda I)^{k} . \tag{4.22}
\end{equation*}
$$

This method uses a finite series because $A-\lambda I$ is a nilpotent matrix. Formulae for some simpler matrices result from this method. For example, the exponential of a triangular matrix where every nonzero entry is equal to x is a triangular Toeplitz matrix where the $i^{\text {th }}$ off-diagonal entries may be written

$$
\begin{equation*}
e^{\lambda} \sum_{j=0}^{i-1}\binom{i-2}{j-1} \frac{x^{j} t^{j}}{j!} . \tag{4.23}
\end{equation*}
$$

This formula describes an $O\left(n^{2}\right)$ method to compute the exponential, assuming the factorials are reused.

Another simple matrix exponential is the triangular band matrix with equal coefficients. Assume the matrix A is like the previous example, but A has only a band of such non-zeroes that is k-wide, i.e. $A_{\{(k+1) \ldots n\} 1}=0$. In this case, a similar
method results. If we define a function f

$$
\begin{align*}
f_{1 j} & =(A-\lambda I)_{j 1}, \tag{4.24}\\
f_{i j} & =\sum_{h=j-k+1}^{j-1} f_{(i-1) h}
\end{align*}
$$

then we may express the matrix exponential of A as the triangular Toeplitz matrix based on the set of elements

$$
\begin{equation*}
e^{A} t_{i}=e^{\lambda} \sum_{j=1}^{n} f_{i j} \frac{x^{j} t^{j}}{j!} \tag{4.25}
\end{equation*}
$$

This recursive definition allows the $f_{i j}$ to be computable in amortized constant time, giving a total running time of $O\left(n^{2}\right)$.

The form of other matrix exponentials may be deduced following the method of Ziebur [15]. This gives a formula for $e^{A t}$ in terms of specified nilpotent matrices and projection matrices. Ziebur shows that the exponential can be broken down:

$$
\begin{equation*}
e^{A t}=\sum_{i=1}^{k} \sum_{j=0}^{m_{i}-1} \frac{t^{j}}{j!} e^{\lambda_{i} t} N_{i}^{j} P_{i}, \tag{4.26}
\end{equation*}
$$

where N is nilpotent and P is a projection matrix. When there is just one eigenvalue, $k=1$, and $P_{1}=I$, giving the form from Apostol above, in equation (4.22). If $k=n$, we have n eigenvalues, giving the interpolation form above in equation (4.8), because we have $m_{i}=1, i=1 . . n$.

The matrices N, P are dependent on A :

$$
\begin{equation*}
A=\sum_{i=1}^{k} \lambda_{i} P_{i}+N_{i} \tag{4.27}
\end{equation*}
$$

so if we know something about the structure of A, we have a simple form for the matrix exponential that may be exploited.

Chapter 5

Feedback Control

Thus far, we have only discussed the study of differential systems - plants - from a rather aloof standpoint. We have discussed the basic mathematical properties of such systems, described software to graphically display their properties, and shown how to compute the time domain reponse of such systems with the matrix exponential. In this chapter we discuss the construction of control systems, that is, systems created to control the plant in order to meet certain design requirements.

We have described our system of interest as equation (2.11), repeated here for reference:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) . \tag{5.1}
\end{equation*}
$$

We assume that the operators A and B are fixed, they make up the plant that we wish to control. The system state, $x(t)$, is shown in equation (4.5) to be dependent on only the initial conditions and the plant operators. So for a given initial condition, if we wish to modify the behavior of $x(t)$, we must find an input
function, $u(t)$, to adjust the behavior of $x(t)$ to meet our specifications.
The specifications that may be chosen are as varied as the possible applications. A very common specification is that the system be stable, that is, $x(t)<\infty$ for $t \rightarrow \infty$. In a previous chapter we stated that this depends on the eigenvalues of A. However, by using the input $u(t)$ appropriately, we may keep the system state bounded without modifying A.

In order to use $u(t)$, let us assign $u(t)$ to be a function of the current system state and the reference signal, $r(t)$. The reference signal is the desired state of the system, the state to which $x(t)$ should converge over time. So we redefine $u(t)$ as

$$
\begin{equation*}
u(t)=f(x(t), r(t)) \tag{5.2}
\end{equation*}
$$

To stay within the bounds of the LTI model, we will linearize f with respect to the two functions x, r as

$$
\begin{equation*}
u(t)=F x(t)+r(t), \tag{5.3}
\end{equation*}
$$

assuming $r(t)$ is simply added in. Now by substituting for $u(t)$ in equation (5.1), we can show how the complete system has been modified by F :

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B(F x(t)+r(t)), \\
& \dot{x}(t)=(A+B F) x(t)+B r(t), \tag{5.4}
\end{align*}
$$

after some algebraic rearrangement. It is now clear that the system dynamics are dependent on $(A+B F)$, and that system stability and performance will be dependent on this new operator.

It can be shown that as long as the pair (A, B) is controllable, the eigenvalues of the new system may be assigned to any desired values [14]. This certainly allows for a system to be stabilized or tuned in a variety of ways.

In this chapter, we will describe how F may be chosen to assign the system eigenvalues to user-defined values. For the state space system used above, there is a direct method, which works in the single or multiple output case; and there is the shortcut, known as Ackermann's formula for the single output case. We will then discuss a similar operation for systems of transfer functions. We will then demonstrate some optimal control techniques for eigenvalue placement.

5.1 Ackermann's Method

In the case of a SISO state space system, a well-known formula exists to compute the matrix F, due to Ackermann [1]. This method depends on the system controllability matrix, and the desired characteristic polynomial. The controllability matrix, C is discussed in Chapter 3 and is elementary to compute. Since we require (A, B) to be controllable we may compute the inverse, C^{-1}. The desired characteristic polynomial, α_{D}, is simply built from its roots, which are our desired eigenvalues. With these tools, we may express Ackermann's formula,

$$
\begin{equation*}
F=e_{n} C^{-1} \alpha_{D}(A) \tag{5.5}
\end{equation*}
$$

where e_{n} is the n-vector $[0, \ldots, 0,1]^{T}$.
This formula was implemented in Maple and performs well in an exact arith-
metic context. Computationally, the inverse of the controllability matrix is expensive if the some of the entries of C are symbols; the denominator of each entry of C^{-1} is the determinant of C which gets large rather quickly.

The evaluation of $\alpha_{D}(A)$, with α_{D} an n-th degree polynomial, is an $O\left(n^{4}\right)$ operation, not including the size of the expressions. As before, these expressions will get large quickly if symbols are involved. Overall, however, this method is practical for most basic problems that would regularly need to be computed.

5.2 Direct Method

The direct method for eigenvalue assignment is a polynomial method to build the operator F which will set the eigenvalues of $(A+B F)$ to their desired values. This method is designed for multi-input, multi-output (MIMO) systems.

To begin this, we first compute $(A+B F)$, where $A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times m}$ are given matrices of scalars in the field \mathbb{K} and F is a $m \times n$ matrix of unknown symbols, $F_{i j} .(A+B F)$ then consists of elements that are linear combinations of the $F_{i j}$.

We represent the eigenvalues of $(A+B F)$ as the solutions of the degree n characteristic polynomial, $\alpha_{F}(\lambda)$. The coefficients of $\alpha_{F}(\lambda)$ may be expressed as multivariate polynomials in the $F_{i j}$, we will name them g_{n-1}, \ldots, g_{0}.

The desired eigenvalues may be used to form our desired characteristic polynomial, α_{D}. By equating the coefficients from the unknown polynomial and our desired polynomial we derive a system of equations that must be solved for the $F_{i j}$ to build our desired system:

By building up this system and solving for the $F_{i j}$, we may construct the matrix F.

As long as (A, B) is controllable, this system will have solutions. In fact, in many cases the system will have free variables left over in the solution that may be assigned to any value by the user. These appear as free variables $F_{i j}$.

The difficulty lies in exactly solving the system of equations, $\left\{g_{i}=c_{i}\right\}$. At first glance, this seems extremely difficult. We have n equations in $m \times n$ unknowns, with each equation a multivariate polynomial in the $F_{i j}$. However, in many real cases, B is sparse, and often diagonal. This allows for a solution set to be easily found.

5.3 Transfer Function Method

In addition to the state space methods above, a variety of polynomial techniques are available for control system design in transfer function form. Such methods are based on solving the Diophantine equation for polynomials in the Euclidean domain \mathbb{S}, which is the set of stable transfer functions.

Given an unstable plant $P \notin \mathbb{S}$, represented as a transfer function, we may construct another transfer function C, the compensator, so that the combined system is stable. The combined system in this section will be treated as the feedback system $\frac{P}{1+C P}$. In fact, it is shown [13] that we may quite simply describe the set
of all such compensators using only simple polynomial arithmetic. If $P=\frac{N_{P}}{D_{P}}$, we may pick X, Y so that

$$
X N_{P}+Y D_{P}=1
$$

With X and Y so chosen, we may describe the set of possible C that will stabilize P as a set:

$$
\begin{equation*}
C \in S(P)=\left\{\frac{X+R D_{P}}{Y-R N_{P}}\right\} . \tag{5.6}
\end{equation*}
$$

We may pick any transfer function R, as long as $R \in \mathbb{S}$. This method allows us great flexibility in picking a compensator. The downside is that, for a given $R \in \mathbb{S}$, we do not know what the properties of the system C or of the combined system will be. So this method is much different from the previously described methods that allow for the exact assignment of system eigenvalues. However, by treating our transfer functions as elements of \mathbb{S}, we may keep our compensator $C \in \mathbb{S}$. The ability to build stable compensators is beneficial for engineering reasons.

In order to ensure the stability of C, we first must show that P has the parity interlacing property. A transfer function has this property if for each pair of positive zeroes of P, there are an even number of poles in between. This property is necessary to find a function U that interpolates the values of $D_{P}\left(y_{i}\right)$ at the positive zeroes of $N_{P}\left(x_{i}\right)$, and has no positive poles. Given U, we have the compensator $C=\left(U-D_{P}\right) / N_{P}$.

Building the interpolant U is an n-step iterative process. Given the n pairs
$\left(x_{i}, y_{i}\right)$, we start by setting $U_{0}=y_{i}$. Then, we iterate over i :

$$
\begin{align*}
f & =\prod_{j=1}^{i-1} \frac{s-x_{j}}{s+1} ; \tag{5.7}\\
b & =\frac{\left(\frac{y_{i}+1}{U\left(x_{i+1}\right)}\right)^{1 / a}-1}{f\left(x_{i+1}\right)},|b|<\frac{1}{\|f\|}, a \in \mathbb{N} ; \tag{5.8}\\
U_{i+1} & =(1+b f)^{a} U_{i} . \tag{5.9}
\end{align*}
$$

So the next U_{i} may always be constructed in terms of two positive integers a, b, which must satisfy the constraint in the above inequality.

To satisfy this constraint, we must evaluate $\|f\| \in \mathbb{C}_{+}$, with f a rational function and the norm defined as:

$$
\begin{equation*}
\|f\|=\sup _{s \in C_{+}} f(s) . \tag{5.10}
\end{equation*}
$$

In general, this is very difficult or impossible to accomplish in exact arithmetic. However, any pair a, b that satisfies the constraints will work. So we just need to find a good floating point approximation of this value, then we can compare it to b. It turns out that due to the maximum modulus theorem, the maximum is guaranteed to be found along the imaginary axis. This allows us to use Maple to easily compute a useful approximation, resulting in an exact solution for C.

Although the solution for C can be computed exactly by Maple in a reasonable amount of time, the expressions involved get very large rather quickly. After the algorithm was implemented, elementary tests on $3^{\text {rd }}$ order systems, with length near 50 , resulted in output compensators of length over 700 .

5.4 Eigenvector Control

Thus far, we have discussed how the most important properties of a linear system may be modified by controlling the input so as to modify the eigenvalues of the closed-loop system. These properties include the speed of the response of the system to its input. In a SISO system, specifying the eigenvalues specifies the complete system, so there is no room for modification, but in the MIMO case, the eigenvectors may also be chosen to modify the shape of the response as well as the distribution of the response of the system components.

An algorithm from Moore [8] allows the user to specify not only the eigenvalues, but also the eigenvectors of the closed-loop system. The eigenvectors may be chosen freely as long as they meet a few constraints: linear independence, consistency with pairs of imaginary eigenvalues, and a third constraint that they must fall within a specified subspace.

Given the system (5.1), and desired system eigenvalues and eigenvectors $\left\{\lambda_{i}, v_{i}\right\}$, Moore's method desires to compute an $m \times n$ matrix F such that for $i=1 . . n$,

$$
\begin{equation*}
\left(\lambda_{i} I-(A+B F)\right) v_{i}=0 . \tag{5.11}
\end{equation*}
$$

The paper shows how matrix-vector multiplications and a single matrix inversion may be used to compute the matrix F.

This method was implemented in Maple and works well for small systems, however, for more complex systems the $n \times n$ matrix inversion becomes more difficult to perform.

Chapter 6

Conclusion

In this thesis, we have discussed a variety of control system concepts and algorithms. We began by describing control systems from an abstract perspective, and then described the mathematical model for such systems.

It is clear that such systems can be built up and expressed with computer algebra, in fact, for transfer functions computer algebra is an ideal environment. We have briefly shown how to perform certain elementary operations on control systems and synthesis of control systems.

We also described a software package that meets the basic needs of an engineer attempting to use computer algebra for control system computations. A highlight is the Routh-Hurwitz computation which allows the user to determine system stability exactly and efficiently. In addition, we demonstrated a package of plotting software that allows the user to visualize many aspects of the control system in the Maple system.

Another important tool in studying linear systems, the matrix exponential, was
investigated and various methods for computing it were compared in a symbolic context. We then showed how to perform a variety of eigenvalue and eigenvector assignment methods in exact arithmetic. With the implementation of these advanced methods we found that symbolic analysis was beneficial for small or sparse systems, but for larger systems expression swell quickly made the methods impossible to use.

In general, engineers can benefit from computer algebra analysis of control systems in the same way that scientific users benefit from computer algebra analysis in general: the input and output is exact, free variables may be kept through a computation, etc. In the case of feedback control, for example, a control system could be computed using free variables, resulting in a feedback operator valid for a whole class of systems. Using the rest of the given software, specific numbers could be substituted in and further investigated to test a variety of operating conditions.

A complete model for the analysis of control systems symbolically, or with exact arithmetic, is far from complete. Many of the inherent difficulties, such as exact computation of eigenvalues or other linear algebra limitations are difficult to work around. In this thesis, we have attempted to improve the control system functionality in Maple while leaving these problems unsolved.

There are many further enhancements to Maple that would benefit control system engineers. Some were overlooked in the CST package, such as the Nichols plot and miscellaneous eigenvalue assignment techniques. Other topics are more complex, such as algorithms to handle linear matrix equations and the algebraic Riccati equations, which would benefit the study of optimal control.

Bibliography

[1] J. E. Ackermann. Der entwerf linearer regelungs systems in zustandstraum. Regelungstech. Prozess-Datenverarb, 7, 1972.
[2] Panos J. Antsaklis and Anthony N. Michel. Linear Systems. McGraw-Hill, 1997.
[3] T. M. Apostol. Some explicit formulas for the matrix exponential $e^{t A}$. American Mathematical Monthly, 76, 1969.
[4] M. Chetty, K. P. Dabke, and B. Nath. Use of symbolic algebra toolbox in system simulation and control. Melbourne VIC, November 2000. Matlab 2000.
[5] Edward P. Fulmer. Computation of the matrix exponential. American Mathematical Monthly, 82, 1975.
[6] R. B. Kirchner. An explicit formula for $e^{A t}$. American Mathematical Monthly, 74, 1967.
[7] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco. Maple 8 Introductory Programming Guide. Waterloo Maple Inc., 2002.
[8] B. C. Moore. On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment. IEEE Transactions on Automatic Control, 21, 1976.
[9] B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear Algebra and its Applications, 14, 1976.
[10] E. J. Putzer. Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients. American Mathematical Monthly, 73, 1966.
[11] E. Routh. Advanced Dynamics of a System of Rigid Bodies. Macmillan, 1905.
[12] Stanley M. Shinners. Modern Control System Theory and Design. John Wiley Sons, Inc., 1998.
[13] M. Vidyasagar. Control System Synthesis: A Factorization Approach. The MIT Press, Cambridge, Massachusetts, 1985.
[14] W. M. Wonham. On pole assignment in multi-input controllable linear systems. IEEE Transactions on Automatic Control, 12, 1967.
[15] Allen D. Ziebur. On determining the structure of A by analyzing $e^{A t}$. SIAM Review, 12, 1970.

Appendix A

The CST Module

This appendix describes in more detail the Maple functions that were implemented in the course of developing this thesis.

The state space system of interest is reprinted here for convenience.

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{A.1}\\
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(t)
\end{align*}
$$

CST Package

- CST[toStateSpace] - convert a transfer function to a state space system Calling sequence
toStateSpace(tf)

Parameters

tf - transfer function in s

Description

- toStateSpace(tf) returns the state space system equivalent to the given transfer function $t f$.
- The output is the sequence A, B, C, D representing the state space system (A.1).
- As discussed in section 3.2.1.
- CST[toTransferFunction] - convert a state space system to a transfer function

Calling sequence

toTransferFunction(A, B, C, D)

Parameters

A $-n \times n$ Matrix
B $-n \times m$ Matrix
C $-m \times n$ Matrix
D $-m \times m$ Matrix

Description

- toTransferFunction(A, B, C, D) returns the transfer function or transfer function matrix equivalent to the system (A.1).
- The output is an $n^{\text {th }}$ degree rational function in s.
- As discussed in section 3.2.1.

- CST[ImpulseResponse]

CST[StepResponse]
CST[RampResponse]

Calling sequences

ImpulseResponse(tf, options)
StepResponse(tf, options)
RampResponse(tf, options)

Parameters

tf $\quad-$ transfer function in s to be plotted
options - (optional) list of equations of form keyword = value

Description

- ImpulseResponse(tf) returns plot representing the response of the transfer function system tf to the input $u(0)=1, u(t>0)=0$.
- StepResponse(tf) returns plot representing the response of the transfer function system tf to the input $u(t>=0)=1$.
- RampResponse(tf) returns plot representing the response of the transfer function system tf to the input $u(t>=0)=t$.
- As discussed in section 3.3.1.
- CST[ControllabilityMatrix]

CST[ObservabilityMatrix]

Calling sequences

ControllabilityMatrix(A,B) ObservabilityMatrix(A,C)

Parameters

A $-n \times n$ Matrix
B $-n \times m$ Matrix
C $-m \times n$ Matrix

Description

- ControllabilityMatrix(A,B) returns the $n \times n$ controllability matrix for the system (A.1).
- ObservabilityMatrix (A, C) returns the $n \times n$ observability matrix for the system (A.1).
- As discussed in section 3.2.2.
- CST[isControllable]

CST[isObservable]

Calling sequences

isControllable(A, B)
isObservable(A, C)

Parameters

A $-n \times n$ Matrix
B $-n \times m$ Matrix
C $-m \times n$ Matrix

Description

- IsControllable(A,B) returns a Boolean indicating whether or not the system (A.1) would be controllable given A,B.
- IsObservable(A,C) returns a Boolean indicating whether or not the system (A.1) would be observable given A,C.
- As discussed in section 3.2.2.

- CST[RootLocusPlot]

Calling sequences

RootLocusPlot(tf, options)

Parameters

tf $\quad-$ transfer function in s and K
options - (optional) list of equations of form keyword = value

Description

- RootLocusPlot(tf) returns a plot in the complex plane of the poles of the transfer function $t f$ for a range of values of K.
- The default range for values of K is $0 . .10$, but may be modified by using the argument Kvals $=$ Kmin. Kmax , where Kmin, Kmax are numbers to start and end the range of K.
- The argument view $=$ [xmin..xmax, ymin. .ymax] allows the user to specify the region of the plane shown.
- As discussed in section 3.3.2.

- CST[Nyquist]

Calling sequences

```
Nyquist(tf, options)
```


Parameters

```
tf - transfer function in }
    options - (optional) list of equations of form keyword = value
```


Description

- Nyquist(tf) returns a plot in the complex plane containing the Nyquist diagram of the transfer function $t f$.
- The argument view = [xmin..xmax, ymin..ymax] allows the user to specify the region of the plane shown.
- As discussed in section 3.3.3.
- CST[Bode]

Calling sequences

Bode[type](tf, options)

Parameters

type - the type of Bode plot, DB or DEG
tf \quad - transfer function in s
options - (optional) list of equations of form keyword = value

Description

- BodePlot(tf) returns the Bode plot on the semilog axis of the transfer function $t f$.
- The type specifier allows the user to create either the amplitude or degrees plot by specifying the symbol DB or DEG.
- The argument view = [xmin..xmax, ymin..ymax] allows the user to specify the region of the plane shown.
- As discussed in section 3.3.4.

- CST[FeedbackControl]

Calling sequences

FeedbackControl(A, B, eigs, options)

Parameters

A	$-n \times n$ Matrix
B	$-n \times m$ Matrix
eigs	$-n$-Vector
options	- (optional) list of equations of form keyword $=$ value

Description

- FeedbackControl(A, B, eigs) returns an $m \times n$ Matrix F such that

$$
\begin{equation*}
\text { Eigenvalues }(A+B . F)=\text { eigs } \tag{A.2}
\end{equation*}
$$

- The argument output = true returns any free variables as indexed symbols $f[i, j]$. The default behavior is to set these variables to 0 .
- If $m=1$ it is recommended to use CST [Ackermann].
- As discussed in section 5.2.

- CST[Ackermann]

Calling sequences

Ackermann(A, B, eigs)

Parameters

A $\quad-n \times n$ Matrix
B $\quad-n$-Vector
eigs - n-Vector

Description

- Ackermann(A, B, eigs) returns an n-row-Vector F to satisfy (A.2).
- As discussed in section 5.1.
- CST[StableCompensator]

Calling sequence
StableCompensator (P)

Parameters

P - rational function in s

Description

- StableCompensator (P) constructs a stable compensator C such that C, as well as the closed-loop system, $\frac{\mathrm{P}}{1+\mathrm{CP}}$, are stable.
- As discussed in section 5.3.

- CST[EigenvectorControl]

Calling sequences

EigenvectorControl(A, B, eigs, eigvs)
Parameters
A $\quad-n \times n$ Matrix
B $\quad-n \times m$ Matrix
eigs $\quad-n$-Vector
eigvs $-n$-list of n-Vectors

Description

- EigenvectorControl(A, B, eigs, eigvs) returns an $m \times n$ Matrix F such that:

$$
\begin{gather*}
\text { Eigenvalues }(A+B . F)=\text { eigs and } \tag{A.3}\\
\text { Eigenvectors }(A+B . F)=\text { eigvs } \tag{A.4}
\end{gather*}
$$

- As discussed in Chapter 5.
- CST[CSTI]

Calling sequences
CST[CSTI] (tf)

Parameters

tf - (optional) rational function in s

Description

- CSTI(tf) starts up the CSTI Maplet, which is a GUI that allows access to many of the graphical tools in the CST. The argument tf, if present, starts the Maplet with that function in the input box.
- As discussed in Chapter 3.

Appendix B

Vita

Justin Wozniak is a native of the state of Illinois in the USA. He graduated from St. Edwards High School, Elgin, IL, in 1996. His undergraduate degree in Mathematics and Computer Science with minors in Latin and Chemistry was awarded by the University of Illinois at Urbana-Champaign in 2000. He currently lives and works at the Hershey Montessori Farm School in Huntsburg, Ohio with his wife, Venus.

