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 A B S T R A C T

The term ‘‘scientific workflow’’ has evolved over the last two decades to encompass a broad range of 
compositions of interdependent compute tasks and data movements. It has also become an umbrella term 
for processing in modern scientific applications. Today, many scientific applications can be considered as 
workflows made of multiple dependent steps, and hundreds of workflow systems have been developed to 
manage and run these scientific workflows. However, no turnkey solution has emerged from the field to address 
the diversity of scientific processes and the infrastructure on which they are supposed to be implemented. 
Instead, new research problems requiring the execution of scientific workflows with some novel feature often 
lead to the development of an entirely new workflow system. A direct consequence of this situation is that 
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many existing workflow management systems (WMSs) share some salient features, offer similar functionalities, 
and can manage the same categories of workflows but at the same time also have some distinct capabilities 
that can be important for specific applications. This situation makes researchers who develop workflows face 
the complex question of selecting a WMS. This selection can be driven by technical considerations, to find 
the system that is the most appropriate for their application and for the computing and storage resources 
available to them, or other factors such as reputation, adoption, strong community support, or long-term 
sustainability. To address this problem, a group of WMS developers and practitioners joined their efforts 
to produce a community-based terminology of WMSs. This paper summarizes their findings and introduces 
this new terminology to characterize WMSs. This terminology is composed of fives axes: workflow structure 
and characteristics, composition, orchestration, data management, and metadata capture. Each axis comprises 
several concepts that capture the prominent features of WMSs. Based on this terminology, this paper also 
presents a classification of 23 existing WMSs according to the proposed axes and terms.
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1. Introduction

The concept of workflows, i.e., the execution of orchestrated and 
repeatable patterns of activity, dates back to the early 1900s when the 
engineering and manufacturing community introduced one of the ear-
liest examples of procedural workflow: the Ford assembly line adopted 
by automobile manufacturers to this date. Workflows has been used 
to model, analyze, and improve business processes, using tools such 
as flow charts, functional flow block diagrams, or control flow di-
agrams [1]. The database community has also used workflows to 
address the challenges of managing large datasets [2]. The capacity to 
describe and orchestrate such complex applications popularized work-
flows across multiple scientific domains. The term scientific workflow
itself was introduced in 1996 [3,4] to differentiate this specific type 
of workflow from the business and automation pipelines that inspired 
them. As scientific workflow may designate processes that go beyond 
science to cover more broadly defined research activities, we opted for 
the use of the term workflow in the remainder of this article with the 
following all-encompassing definition:
Definition. A workflow is a structured sequence of computational tasks 
or activities that achieve a research or analytical objective. Workflows 
define the flow of work, including the order of steps, the data and 
control dependencies between them, and the rules governing their exe-
cution. Modern workflows extend beyond traditional directed acyclic 
graphs to encompass dynamic, adaptive, and interactive processes 
that may include cycles, branches, and human-in-the-loop components. 
They span diverse domains, including scientific research, engineering, 
humanities, and business, and bridge heterogeneous computing en-
vironments from edge devices to high-performance computing (HPC) 
facilities and cloud infrastructure.

Over the past decades, workflows have become the predominant 
format for describing complex, multi-step, multi-domain scientific ap-
plications [5]. To manage the composition, planning, orchestration, 
2 
and automation of the efficient execution of such workflows on pow-
erful and often distributed compute infrastructures, a wide variety 
of workflow management systems (WMSs) have been proposed [6]. 
However, domain researchers who develop workflows and want to 
rely on a WMS to execute them often face the complex question of 
selecting a particular WMS. This selection can be driven by technical 
considerations, such as finding the most appropriate system for their 
application and for the computing and storage resources available to 
them, or factors such as reputation, adoption, community support, or 
long-term sustainability. The main reasons for this challenge are that 
no single ideal turnkey solution has emerged from the field to address 
the diversity of scientific processes and the heterogeneity of possible 
execution environments (both in terms of hardware and software). 
Instead, new research problems or new computer technologies related 
to the execution of workflows often lead to the development of an 
entirely new workflow management system.

A direct consequence of this situation is that many existing WMSs 
share some salient features, offer similar functionalities, and can man-
age the same categories of workflows, but often also have distinct 
features tailored for specific types of problems. This has been high-
lighted by different efforts to create taxonomies and characterizations 
of workflows and WMSs [7–15]. These efforts can help to provide 
workflow developers with some guidance when trying to select the 
appropriate tool to develop and execute their workflows, but they are 
also notoriously incomplete and quickly outdated in a fast-moving field. 
Consequently, decisions for specific systems are very often based on 
social aspects as much or more than on technical ones (e.g., previous ex-
perience in the community, word-of-mouth, comments in web forums, 
personal evaluation of a few known systems). Inspired by the work of 
the in situ processing community for data visualization and analysis 
systems [16], we propose in this article to go beyond a traditional 
taxonomy and develop a consistent terminology to describe WMSs. 
While it shares similarities with and builds on existing taxonomies, the 
driving principle of this effort was to determine terms that consensually 
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Fig. 1. Five axes that categorize workflows and workflow management systems, with each axis further delineated into corresponding terms and sub-terms to provide a structured 
and detailed terminology.
describe the high-level features of workflows and WMSs, rather than 
categorizing systems based on implementation details.

To this end, we gathered a group of workflow system developers 
and workflow practitioners, all members of the Workflows Community 
Initiative (WCI) [17], and followed a process similar to that in [16] 
to create a strong terminology for WMSs. This paper synthesizes the 
discussions initiated during the different editions of the Workflows 
Community Summit [18–23], which led to the writing of this paper. 
The main contribution of this paper is the identification of five axes to 
characterize WMSs (Fig.  1). Each axis comprises a series of concepts 
that capture the most salient features of WMSs. Based on the proposed 
terminology, our group analyzed 23 actively developed WMSs that are 
part of the WCI to determine which combination of terms can define 
each of them.

The remainder of this paper is organized as follows. Section 2 
defines the proposed five axes to describe a workflow system. Section 3 
reviews the 23 selected WMSs and classifies them according to the 
proposed axes and terms. Section 4 describes the process followed 
by members of the WCI to produce this terminology and Section 5 
discusses previous efforts to establish taxonomies of WMSs. Finally, 
Section 6 summarizes our work.

2. Axes of scientific workflow systems

WMSs often consist of subsystems that handle specific aspects of 
workflow management, such as resource allocation, task scheduling, 
or, data management. A WMS coordinates these subsystems to ensure 
efficient and robust execution. Additionally, characterizing a given 
workflow system requires considering the characteristics of the work-
flows it can support, as it often influences the design of the system. 
The primary goal of defining this terminology is to help scientists 
navigate the wide range of available tools [6] and better express their 
computational needs. To achieve this, we identified five key axes to 
describe a workflow system:

∙ Workflow Characteristics: This axis examines fundamental or-
ganizational aspects that impact how workflows operate and 
adapt. Specifically, it examines how execution is driven (by 
tasks or data), the level of complexity of individual components, 
the nature of dependencies between these components, and the 
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ability to modify execution paths at runtime. These structural 
elements significantly influence how WMSs optimize resource 
use and performance.

∙ Composition: This axis addresses how workflows are defined, 
organized, and configured by WMSs. It explores the methods 
used to describe workflows, the level of detail required in these 
descriptions, and how complex workflows can be shaped from 
simpler components. This axis helps to understand how acces-
sible and flexible different WMSs are for users with varying 
technical backgrounds.

∙ Orchestration: This axis covers the implementation and ex-
ecution management approaches for workflow components. It 
analyzes different methods for launching and coordinating tasks, 
from direct execution to more sophisticated approaches that 
leverage distributed resources, event-based triggers, or cloud ser-
vices. These orchestration strategies determine how efficiently 
workflows use available computing infrastructure.

∙ Data management: This axis focuses on how data is handled 
throughout the workflow lifecycle. It characterizes methods for 
moving data between workflow components, approaches to stor-
ing data at different stages, and techniques for optimizing data 
access patterns. These data management strategies significantly 
affect workflow performance, especially for data-intensive appli-
cations.

∙ Metadata capture: This axis explores additional contextual in-
formation collected during workflow execution. It covers meth-
ods for tracking workflow execution state, documenting prove-
nance, monitoring performance, and detecting anomalies. These 
capabilities ensure that workflows can be reliably executed, 
optimized, debugged, and reproduced.

Fig.  1 provides an overview of the terms used for each axis, and this 
section describes these terms in more detail. With this terminology, we 
can describe a WMS based on a selection of specific terms for each of 
the five identified axes. As sub-terms within an axis are not mutually 
exclusive, a WMS may be classified by a combination of sub-terms.

2.1. Workflow characteristics

The first axis is more focused on the type of workflows a workflow 
system can manage than on the characteristics of a system itself, in 
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other words, on what the workflow does. The large number of existing 
WMSs [6] indicates that there is no ‘‘one-size-fits-all’’ solution despite 
standardization and interoperability efforts [24]. In fact, the design and 
implementation of workflows is significantly influenced by structural 
aspects that are crucial to their efficiency, scalability, and adaptability. 
In this section, we characterize broad classes of workflows according 
to these defining features.

A prominent feature of a workflow is its flow, which has a direct 
impact on how WMSs optimize workflow execution. When workflow 
components receive inputs, process them, generate outputs, and then 
terminate, the workflow structure is defined by the composition of 
these tasks. WMSs are then responsible for orchestrating their execu-
tion, respecting their flow and control dependencies. They will also 
implement optimization strategies to improve workflow performance, 
such as minimizing the makespan or communication of the workflow. 
The different tasks that make up a workflow can also be executed mul-
tiple times in an iterative way. At each iteration, tasks are executed, 
terminated, and then wait to be invoked again. The structure and exe-
cution of the workflow can also be driven by the data flowing through 
the workflow components. These components are data operators that 
remain alive while there is data to process. In that case, WMSs aim to 
maximize the throughput of the workflow.

The structure of workflows also differs by the granularity of their 
individual tasks. Some workflows can compose some function calls 
to perform complex processing tasks. To some extent, a script or a 
program can be seen as a workflow and a runtime system as a workflow 
system. The most common definition of a workflow is a composition of 
standalone executables, which aggregate multiple functions calls to 
perform complex computations on a set of inputs and produce a set 
of outputs. With the increase in scale and complexity of computational 
problems, it is now common to express workflows as a hierarchical and 
modular composition of sub-workflows.

Another defining feature of workflows is the coupling of the tasks 
that compose them. This term defines the dependencies and interac-
tions between the different tasks. The tight coupling of some tasks 
indicates that these tasks must be executed concurrently, being co-
located on the same computing resources or running on different sets 
of processors. This is often caused by periodic data exchanges between 
tasks while they run. Conversely, a loose coupling of tasks does not 
impose any constraint on the concurrent execution of tasks, giving more 
flexibility to the WMS when scheduling the workflow.

The dynamicity of a workflow indicates its ability to modify its 
structure during its execution. Dynamic workflows can comprise sev-
eral conditional branches that are activated or not depending on the 
realization of a predefined condition or triggered by an external event. 
Such conditions can be related to changes observed in the processed 
datasets (e.g., a variable reaching a certain threshold, the convergence 
of an iterative process is reached), to changes in the status or availabil-
ity of compute, network, or storage resources, or to time-related events 
(e.g., it is too late to process a given execution path). Such conditional 
branches allow workflows and WMSs to efficiently react to changes and 
foster more robust, efficient, and flexible executions. A second type of 
dynamic behavior found in workflows is when a runtime intervention 
is needed. In that case, the workflow system gives the control back to 
the user who started the workflow or to an automated external decision 
process. Such interventions at runtime can modify the initial execution 
plan of a workflow in different ways (e.g., rerun certain tasks or an 
entire sub-workflow, modify task configuration, cut a given path or 
start exploring a new path, or trigger the early termination of the entire 
workflow).

Finally, it is possible to distinguish WMSs with respect to the 
domain they serve. Some systems are deeply rooted in a scientific 
community and thus mainly target domain-specific workflows, while 
others are more application-agnostic.
4 
2.2. Composition

Composition refers mainly to how a workflow system allows its 
users to describe the different components of the workflow, their con-
figuration and input parameters, and the data and control dependencies 
between these components. This axis also covers the coupling between 
the description of the workflow itself and that of the targeted hardware 
and software infrastructure on which to execute the workflow.

We identified three subcategories of description methods to com-
pose a workflow. The first, schema, refers to the case where the 
workflow is described in a text file, using a specific format (e.g., XML, 
JSON, YAML, or a domain-specific language) and syntax. We further 
decompose this category to distinguish that the syntax used by a WMS 
is ad-hoc, meaning that it can only be understood by this particular 
WMS, or part of a common standard shared by multiple WMSs, such 
as the Common Workflow Language (CWL) [24], the Interoperable 
Workow Intermediate Representation (IWIR) [25], or WfFormat [26]. 
Note that supporting a description standard may not always be possible, 
for instance, when a WMS implements significant features that cannot 
be easily expressed in the standard. The second subcategory includes 
WMSs that expose an API to describe workflows. This API builds on 
or extends one or more popular programming languages (e.g., Python, 
C++) or a text templating engine (e.g., jinja) to leverage loops and 
conditional statements and allow users to describe their workflows in 
a more compact and flexible way. The third subcategory corresponds 
to WMSs that rely on a graphical user interface (GUI).

Workflow composition can also be defined by the level of abstrac-
tion of the description provided by the user. A high-level abstract
composition will only focus on describing the logical structure of the 
task graph, a generic description of the data flowing through the 
workflow, and the amount of resources required by each component. 
This abstract description is generally independent of a specific instance 
of the workflow (i.e., that specifies all input parameters and com-
ponent configuration parameters) and of a specific target computing 
and storage infrastructure. The advantages of an abstract workflow 
composition are that it favors the reusability and portability of the 
workflow. However, it requires more effort from users or the workflow 
system to execute a specific instance on a specific infrastructure.

Some systems have an intermediate-level abstract composition. 
They allow for a high-level workflow description while requiring some 
execution details from the users. Systems with intermediate-level ab-
straction provide users with a balance between automation and manual 
fine-tuning, which can be advantageous when the application requires 
a higher level of execution control. This comes at the cost of lower 
portability when compared to fully abstract systems and possible per-
formance trade-offs (e.g., the responsibility of allocation optimization 
falls on the users in these systems).

Conversely, a concrete composition is more closely related to an 
instance and an infrastructure. All parameters are specified in the 
description, and the workflow can be deployed and run directly from 
it. Note that some WMSs allow to factor infrastructure related infor-
mation as a separate description, allowing users to port a workflow 
from one infrastructure to another without changing the high- or 
intermediate-level abstract composition of the workflow itself.

When an API is used to describe a workflow, the composition is 
implicit as the workflow’s structure is derived from the composition of 
the different function calls made by the user, or from metadata attached 
to a dataset to process, indicating for instance which files are needed 
and in what way.

Finally, we also distinguish composition methods with regard to 
their modularity. With the evolution of scientific applications from 
relatively simple workflows (e.g., data processing pipelines or fan-
out/fan-in execution patterns for ensemble runs) to more complex 
workflows composed of interconnected sub-workflows (i.e., workflow 
of workflows), the composition methods exposed by WMSs are also 
evolving from a flat description of a set of components to a more
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hierarchical description that enables modular and scalable design. This 
shift allows for better management of large-scale applications, where 
individual sub-workflows can be developed, tested, and optimized in-
dependently before integration. It also allows researchers to create 
new complex data analysis workflows by composing existing workflows 
developed in their community. However, such hierarchical composition 
introduces new challenges, such as dealing with an increased orchestra-
tion complexity, handling dependencies across nested workflows, and 
efficiently managing resource allocation. To address these, WMSs pro-
vide features such as parameterized workflow components and reusable 
templates that facilitate modular workflow design while maintaining 
scalability.

2.3. Orchestration

Orchestration refers to the method(s) employed by a workflow 
system to deploy, schedule, and execute the computational components 
of a workflow. In this section, we focus on the general functional 
features of WMSs rather than the specific technical details of their 
implementations. For instance, we leave optimization techniques, such 
as advanced, performance-oriented scheduling and resource allocation 
techniques and algorithms, out of the scope of this axis. However, we 
still consider it important to classify WMSs into three broad categories 
related to execution planning. Some systems impose a static planning 
of the workflow execution, i.e., all the decisions about when and 
where each task composing the workflow is executed must be taken 
before the execution starts. Conversely, some systems can make or 
adapt scheduling and resource allocation decisions during the execution 
of the workflow, hence implementing a dynamic planning strategy. 
(Note that certain systems implementing static planning may emulate 
dynamic planning through hierarchical workflows.) The third category 
encompasses WMSs that do not plan the workflow execution in advance 
but rather let the execution react to specific events and/or conditions 
that occur at runtime. In such event-driven execution, when a trigger 
condition or event is met, the workflow system automatically initiates 
subsequent, usually predefined, actions such as starting new tasks, 
notifying users, and adjusting the resource allocation. This type of 
automation minimizes manual intervention, making the orchestration 
less error-prone.

We identified three categories for the actual execution of the tasks 
that compose a workflow. WMSs might use one or more orchestration 
methods (see Table  2) to execute a workflow. The runner orchestration 
method refers to WMSs that are fully responsible for the acquisition of 
computing and storage resources and the management of the individual 
tasks that compose a workflow. It connects the high-level workflow 
definition (i.e., its composition, see Section 2.2) to the available re-
sources. A runner system ensures that tasks execute in the correct order, 
respecting their pre-defined control and flow dependencies. It oversees 
the life cycle of a task from the time it is dispatched and monitors it 
until it is completed according to its specifications.

Other WMSs delegate resource allocation and part of the manage-
ment of the execution of individual tasks to a resource manager. 
This orchestration method is typically used in HPC systems where 
the allocation of compute nodes is handled by a batch scheduler, or 
cloud systems, where container orchestration systems are used. The 
interactions between the workflow system and the underlying resource 
managers encompass ordering queue of jobs to execute in an ensem-
ble, controlling the release of limited quantities of tasks or data to 
not overwhelm the underlying execution system, or implementing a
pilot job [27] mechanism to reduce the queuing overhead caused by 
scheduling and executing tasks independently by grouping them within 
the pilot allocation.

The last orchestration method relies on a serverless execution of 
tasks. This refers to a cloud-based model in which the responsibility 
for infrastructure management, allocation scaling, and job execution is 
entirely delegated to a cloud service provider. A key distinction of this 
5 
model is that the user or WMS must first define one or more functions 
along with all of their software dependencies, and then the WMS may 
execute those functions to carry out the workflow. The cloud platform 
takes care of the provisioning and server management, abstracting 
the underlying computing and storage infrastructure entirely. In some 
cases, it can be the most cost effective orchestration method as users are 
usually only charged based on the actual usage of computing resources 
rather than maintaining servers always on, even when idle.

2.4. Data management

The data management axis characterizes the way WMSs transport, 
store, and manage the lifecycle of one of the key components of 
scientific workflows: data. Before detailing the different categories and 
terms related to data management, we make an important distinction 
between two types of data, as the way a workflow system manages each 
of them may differ. Input/output data respectively refer to the data 
needed at the beginning of the workflow and to the final outcomes of 
its execution, while intermediate data denotes every piece of data that 
did not exist before the beginning of the workflow and will not be kept 
after the end of this execution.

A first way to distinguish WMSs according to how they manage 
data is to consider the granularity at which these systems handle data 
management operations. A common approach followed by many WMSs 
is to consider the data operations of a workflow component at the 
granularity of a batch: all the needed input data are consumed before 
performing computations and all the output data is produced, and made 
available to subsequent components in the workflow, at the end of these 
computations.

Another approach is to consider a pipelined granularity in which 
workflow components periodically produce and/or consume individual 
records during their entire lifecycle. This is typically used to manage in 
situ processing workflows [28], where analysis and visualization com-
ponents are loosely coupled to a main data producer (i.e., a numerical 
simulation). In such workflows, data is consumed as it is produced, in 
opposition to a post-hoc approach in which analyses or visualization 
happens once the full dataset has been generated.

A third intermediate granularity is to consider data as partitioned, 
i.e., divided in groups of individual records, and to transfer these par-
titions across the workflow. This approach is particularly useful when 
individual records are small. Considering them individually would be 
very latency-sensitive and could negatively impact performance.

A second way to differentiate WMSs is by how they transport data 
from one workflow component to another. Again, a common approach 
is to rely on file-based transport, in which a workflow component that 
produces intermediate data will write them into a file(s) on a storage 
system. In contrast, a workflow component that consumes intermediate 
data will read it from file(s). An alternate approach is to directly stream 
intermediate data between components. Depending on the respective 
allocations of the producing and consuming components, it is possible 
to further refine these two broad approaches.

For WMSs that rely on the file-based transport approach, we can 
further distinguish them according to the storage they use. When 
workflow components are co-located on the same compute node, the 
workflow system can leverage the existence of a local file system, 
while when components are allocated to different nodes of the same 
compute cluster or to different clusters of the same computing facility, 
it will have to rely on a shared file system. Commonly used in 
collaborative or high-performance computing environments, shared file 
systems correspond to a centralized model where data is accessible 
by multiple systems or nodes simultaneously. They bring several ad-
vantages when executing workflows, such as simple and collaborative 
access to a unified storage space or good cost efficiency. They also 
come with different challenges, such as data consistency, performance 
bottlenecks, scalability, or security, that a WMS will have to face, and 
may address. In the extreme case where the execution of a workflow 
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Table 1
Classification of workflow management systems based on structure and characteristics. This classification represents the state at the time of publication, to the best of the authors 
knowledge. As many of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an up-to-date view of their capabilities and 
characteristics.
 Name Flow Granularity Coupling Dynamicity Domain  
 AiiDA [29] Task 

Iterative
Sub-workflows 
Executables 
Functions

Loose Branches 
Runtime intervention

Agnostic  

 AirFlow [30] Task Executables Loose Branches Agnostic  
 Apollo [31] Task 

Data 
Iterative

Functions 
Sub-workflows

Loose Branches Agnostic  

 COMPSs [32] Task 
Iterative

Functions 
Sub-workflows 
Executables

Loose Branches Agnostic  

 Cylc [33] Task 
Iterative

Executables
Sub-workflows

Loose Branches 
Runtime intervention

Agnostic  

 Dask [34] Data Executables Tight – Agnostic  
 EFFIS [35] Data Executables Tight 

Loose
– Specific  

 FireWorks [36] Task Sub-workflows Tight Branches Agnostic  
 Galaxy [37] Data Executables 

Sub-workflows
Loose Branches

Runtime intervention
Agnostic  

 Globus Compute [38] Data Functions 
Executables

Loose – Agnostic  

 HyperFlow [39] Data Functions 
Executables

Loose – Agnostic  

 Makeflow [40] Data Sub-workflows Loose – Agnostic  
 Merlin [41] Task 

Iterative
Sub-workflows Loose – Agnostic  

 MLFlow [42] Task 
Iterative

Executables Loose – Specific  

 Nextflow [43] Data Sub-workflows Loose Branches Agnostic  
 Parsl [44] Data Sub-workflows Loose Branches Agnostic  
 Pegasus [45] Data Sub-workflows 

Executables
Loose Branches Agnostic  

 Radical [46] Task 
Iterative

Functions Tight – Agnostic  

 Snakemake [47] Task 
Iterative

Sub-workflows 
Executables 
Functions

Loose 
Tight

Branches Agnostic  

 StreamFlow [48] Task 
Data 
Iterative

Sub-workflows 
Executables

Loose Branches Agnostic  

 Swift/T [49] Task 
Data

Functions Tight Branches 
Recursion

Agnostic  

 TaskVine [50] Task 
Iterative

Functions 
Executables

Loose – Agnostic  

 Toil [51] Data Sub-workflows Loose Branches Agnostic  
is distributed over multiple computing facilities, this approach can 
leverage a distributed storage space. This involves managing and 
storing data across multiple local and/or remote systems, enabling 
scalability, load balancing, resilience, and flexibility. Although it can 
resolve some issues of shared file systems, data consistency and security 
challenges persist. Furthermore, the management of such systems can 
be very complex, and data accesses may suffer from high latencies. 
An alternative approach in that case would be that the data-producing 
workflow components running in a given facility create one or several 
additional transfer tasks to send data to each their its data-consuming 
successors that run in another facility. Another common practice in dis-
tributed and shared systems targeted by WMSs is the use of replicated 
storage, which focuses on creating redundant copies of data to improve 
reliability, availability, and resilience. Such as the aforementioned 
storage solutions, replicated storage struggles with data consistency and 
complex data management, not to mention the increased storage costs 
and the write overhead created every time data needs to be updated.
6 
For the stream-based transport approach, when the producer and 
consumer are co-located on the same node, data transport can be 
carried out in-memory through a shared address space. Otherwise, it 
implies a network communication between the nodes that respectively 
hosts the data producer and consumer.

2.5. Metadata capture

The last axis of the terminology refers to the different categories 
of contextual information, or metadata, captured by WMSs during a 
workflow execution. Metadata constitute a critical layer of informa-
tion that describes, tracks, and contextualizes workflow aspects such 
as inputs/outputs, parameters, and dependencies. Through the extra 
information, the workflow engine can decide on the execution order 
based on the dependency information, parallelize tasks, and schedule 
resources according to the needs of the task. Therefore, metadata en-
ables efficient orchestration, automation, long-term data management, 
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and resource optimization. By capturing descriptive execution logs and 
storing full context results, metadata can improve troubleshooting, de-
bugging, and responsiveness. Overall, it can ensure scientific integrity, 
reproducibility, and reliability throughout the workflow’s lifecycle.

Workflows are typically large and complex applications designed for 
execution in distributed systems. Given their role in critical research 
and high-impact projects, the ability to reproduce results enables oth-
ers to validate the findings, build upon previous work, and promote 
collaboration to further scientific discovery.

A specific type of metadata is provenance data which can be fur-
ther decomposed into prospective and retrospective provenance data. 
Prospective provenance corresponds to maintaining detailed informa-
tion about the workflow design and structure, the configuration of the 
workflow system and the underlying computing and storage infrastruc-
ture, and the specific algorithms to be used and their parametrization. 
Prospective provenance is essential to facilitate reproducibility, espe-
cially for complex applications such as workflows [52]. Retrospective 
provenance data corresponds to what actually happened to the data 
processed by a workflow and captures everything related to a specific 
execution. It is usually extracted from execution logs to keep track 
of the data lineage (i.e., generation, transformation, and usage) and 
timestamps and runtime details. Retrospective provenance is particu-
larly useful for detecting any deviation from the expected execution 
plan and is often used for debugging purposes.

Another type of metadata captured during workflow executions is
monitoring of data, which comes from processes that oversee the 
workflow execution in real time. The data generated by monitoring 
provides critical insight into performance, resource utilization, and po-
tential bottlenecks. WMSs can leverage it to dynamically reconsider an 
initial execution plan by modifying resource allocations or scheduling 
decisions. The monitoring data can also be analyzed by researchers 
after a workflow execution to optimize the description of the workflow 
itself to improve its efficiency.

The final category on this axis is related to anomaly detection [53]. 
We consider that a workflow management system supports anomaly 
detection if it captures metadata that can be used to implement fault 
tolerance mechanisms. These mechanisms vary in sophistication: Some 
systems terminate execution and display an error message, while others 
complete the execution but log warnings about potentially incorrect 
data resulting from unexpected behavior. There are even systems that 
can distinguish between anomalies that can be handled automatically 
(e.g., task retries or by an optional branch from a task-failed trigger) 
and anomalies that the workflow is not designed to handle and thus 
require user intervention. In the latter case, the scheduler remains alive 
on a timeout in a ‘‘stalled’’ state, awaiting operator intervention.

3. Surveying existing workflow systems

This section considers 23 WMSs that are part of the Workflows 
Community Initiative (WCI). This selection is motivated by the fact 
that the WCI focuses on actively developed WMSs with a large user base. 
We also ensured that the selection made was not limited to a specific 
research community, a narrow set of origin countries, or a certain 
category of supported workflows to avoid biases in the definition of 
our terminology. Although this list represents only a small fraction 
of the vast number of existing WMSs [6] and is thus far from being 
exhaustive, we believe that it is still representative of the diversity of 
the available systems. Moreover, this initial list of analyzed systems is 
not definitive nor intended to be limited to WMSs affiliated to the WCI. 
We plan to make this terminology available on the WCI website and 
broadly advertise its existence so that the list of WMSs mapped to the 
terminology continues to grow.

For each WMS, we analyze their published work and incorporate 
feedback from community efforts over the past four years. Table  1 
summarizes the type of workflows each system is able to execute, 
while Table  2 highlights the primary characteristics of each system 
7 
according to the axes and terms summarized in Fig.  1 and detailed in 
Section 2. Table  2 also includes a column named extensions, which 
lists additional functionalities that WMSs can support beyond their 
default configurations. These extensions may include optional plugins, 
third-party integrations, or interoperability with cloud-based storage 
and computing resources.
Evolution of Workflow Characteristics. The evolution of WMSs in 
the past two decades reflects significant changes in computational 
approaches. Initially predominantly task-driven, workflows have ex-
panded to embrace data-driven processing pipelines with the rise of 
big data. Modern workflows now integrate both paradigms, particularly 
as AI becomes embedded in research, enabling complex analytical 
pipelines that respond dynamically to data while preserving the struc-
tured execution needed for reproducibility. The growing complexity 
of applications called for greater composability and modern WMSs 
now support hierarchical sub-workflows and iterative processes, which 
allows researchers to independently develop and optimize components 
before integration. These systems have also evolved to support more dy-
namic execution through conditional branches, runtime interventions, 
and adaptive processing. However, while technical capabilities con-
tinue to expand, the scientific domains supported by WMSs are often 
determined more by social dynamics than by technical limitations.
The Social Dynamics of Workflow System Selection. While the techni-
cal characteristics described in our terminology provide a foundation 
for evaluating WMSs, the actual selection process in practice is of-
ten significantly based on social factors. Our community observations 
reveal that researchers frequently choose WMSs based not solely on 
technical merits, but on established social patterns and connections. 
When confronted with multiple technically viable options, scientists 
typically gravitate toward systems already in use by their immediate 
collaborators, departmental colleagues, or disciplinary communities. 
This preference for socially validated tools creates adoption groups 
within research domains and institutions. The perceived credibility of 
a workflow system is substantially enhanced when it appears in trusted 
publications or receives endorsements from respected colleagues. In 
addition, institutional knowledge transfer plays a crucial role, as ex-
isting expertise and support infrastructures significantly lower the bar-
rier to adoption. These social dynamics create self-reinforcing adop-
tion patterns that can sometimes override purely technical consider-
ations, highlighting that workflow system selection exists within a 
complex socio-technical ecosystem where community practices, estab-
lished knowledge bases, and trusted relationships often determine final 
choices. Nevertheless, this understanding emphasizes why developing a 
common terminology is particularly valuable, i.e., it provides a frame-
work for discussing technical aspects objectively while acknowledging 
the legitimate influence of social factors on technology adoption.
Emerging Patterns in Modern Workflow Systems. Several significant 
trends are reshaping the landscape of WMSs. The traditional schema-
based approach to workflow composition is giving way to API-driven 
interfaces, reflecting broader programming paradigm shifts and re-
sulting in less abstract, more programmatic workflow descriptions. 
This transition enables finer control over workflow execution while 
sometimes sacrificing portability across environments. Simultaneously, 
WMSs are increasingly addressing the need for dynamic execution ca-
pabilities, responding to growing demands from scientific applications 
that require adaptive runtime behaviors and conditional processing 
paths. Data management approaches are also evolving in response 
to the explosive growth in data volumes and velocity; While file-
based transport remains common, streaming approaches are gaining 
traction for near real-time processing needs. When file handling is 
required, modern WMSs must navigate complex storage hierarchies 
and scale horizontally across distributed storage locations to maintain 
performance. These trends collectively point toward more sophisticated 
and flexible systems that can adapt to diverse scientific computing 
requirements while managing increasingly complex data ecosystems.
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Table 2
Categorization of various workflow systems with respect to their composition, orchestration, data management, and information capture. In addtion, the last column highlights 
exemplary extensions provided beyond this common terminology. This classification represents the state at the time of publication, to the best of the authors knowledge. As many 
of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an up-to-date view of their capabilities and characteristics.
 Name Composition Orchestration Data Management Metadata  
 Description Abstraction Modularity Planning Execution Transport Storage Capture Extensions  
 AiiDA API Intermediate Hierarchical Dynamic Runner File-based Shared Anomaly 

Provenance
Plugins 
Caching 
Fault tolerance 
HPC execution

 

 AirFlow API Intermediate Flat Static Runner Stream Shared Monitoring Dynamic pipelines  
 Apollo Ad-hoc 

Schema
Abstract Hierarchical Dynamic Resource 

Manager 
Serverless

Stream Distributed Monitoring Container/serverless
Multi-cloud
Edge/cloud
Multi-objective 
scheduling

 

 COMPSs API Intermediate Flat 
Hierarchical

Dynamic Resource 
Manager 
Serverless

Stream 
File-based

Local 
Shared 
Distributed

Anomaly 
Monitoring 
Provenance

Adaptive resource 
allocation 
HPC scalable 
Replicated storage

 

 Cylc Ad-hoc 
Schema 
API/
templating

Concrete Flat 
Hierarchical

Static 
Event-
driven

Runner 
Resource-
manager

File-based Shared Anomaly 
Provenance 
Monitoring

HPC Execution 
Plugins 
Config templating

 

 Dask API Concrete Flat Dynamic Runner Stream Shared 
Distributed

Anomaly 
Monitoring 
Metadata

Python Libraries 
Cluster Management
GPU Accel.

 

 EFFIS API Intermediate Flat Dynamic Resource 
Manager

Stream 
File-based

Shared 
Distributed 
Replicated

Anomaly 
Monitoring

 

 FireWorks API 
Ad-hoc 
Schema

Intermediate Hierarchical Dynamic Resource 
Manager

File-based Shared 
Replicated

Anomaly 
Monitoring 
Provenance

Multi-platform 
execution

 

 Galaxy GUI 
Ad-hoc 
Schema

Concrete Flat Event-
Driven

Runner Stream Shared Anomaly 
Monitoring 
Provenance

External Tools 
Execution API

 

 Globus
Compute

API Abstract Hierarchical Dynamic Resource 
Manager 
Serverless

Stream 
File-based

Shared Anomaly 
Monitoring

Distributed storage  

 HyperFlow Ad-hoc 
Schema

Intermediate Flat Static 
Dynamic

Runner Stream Shared 
Distributed

Provenance Replicated storage 
Cloud Integration 
Scalability

 

 Makeflow Standard 
(Make)

Abstract Hierarchical Static Runner File-based Shared 
Replicated

Anomaly 
Monitoring 
Provenance

Distributed storage
HPC execution

 

 Merlin Ad-hoc 
Schema

Intermediate Hierarchical Static Runner File-based Shared 
Distributed 
Replicated

Anomaly 
Monitoring 
Provenance

Cloud-native 
Support

 

 MLFlow API Intermediate Flat Static Runner File-based 
Stream

Shared 
Distributed

Monitoring  

 NextFlow Ad-hoc 
Schema

Abstract Hierarchical Dynamic Runner Stream 
File-based

Shared 
Distributed

Anomaly 
Monitoring 
Provenance

Replicated storage 
Container/Cloud 
Support 
HPC execution

 

 Parsl API Abstract Hierarchical Runner Dynamic Stream 
File-based

Shared 
Distributed

Anomaly 
Monitoring

Replicated storage 
Dynamic 
Parallelization 
Cloud/Grid Support

 

 Pegasus Ad-hoc 
Schema 
API

Abstract Hierarchical Static Runner File-based Shared 
Distributed

Anomaly 
Monitoring 
Provenance

Replicated storage 
Multi-level 
Scheduling

 

 Radical API Abstract Hierarchical Static Resource 
Manager

File-based Shared 
Distributed

Anomaly 
Monitoring 
Provenance 
Metadata

Replicated storage 
Scalable

 

 (continued on next page)
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Table 2 (continued).
 Snakemake Ad-hoc 

Schema
Abstract Flat 

Hierarchical
Static 
Dynamic 
Event-driven

Runner File-based Shared 
Distributed

Anomaly 
Monitoring 
Provenance

Plugins 
Scripting integration
Software 
deployment 
integration 
Interactive reporting

 

 StreamFlow Standard 
(CWL)

Abstract Hierarchical Dynamic Runner 
Resource 
Manager

File-based Distributed Anomaly 
Provenance

Replicated storage 
Cloud Integration

 

 Swift/T Ad-hoc 
Schema

High-level Flat Dynamic Resource 
Manager

Stream 
File-based

Shared Anomaly 
Monitoring

Local Storage [54] 
AI/ML Control [55] 
Parallel Tasks [56]

 

 Taskvine API Intermediate Flat Dynamic Resource 
Manager

File-based Shared 
Distributed 
Replicated

Anomaly 
Monitoring 
Provenance 

Serverless 
Autoscaling 
HPC Execution 
Recoverable storage

 

 Toil Standard
(CWL/WDL)

Abstract Hierarchical Static Runner Stream 
File-based

Shared 
Distributed

Anomaly 
Monitoring 
Provenance

Replicated storage 
Multi-Cloud Support

 

From Extensions to Building Blocks. As WMSs mature, developers 
increasingly extend their native capabilities through additional compo-
nents that address specific needs. This expansion has led to growing 
system complexity, challenging developers to maintain modular ar-
chitecture and avoid unwieldy monolithic designs. Rather than each 
system independently implementing similar functionalities, a promis-
ing approach for the workflow community involves identifying and 
developing shared building blocks, reusable components that provide 
common services across different WMSs [46,57,58]. This community-
based approach to the development of modular and interoperable com-
ponents [58] could significantly reduce duplication of efforts while im-
proving sustainability and adoption. Such standardized building blocks 
would address fundamental workflow needs like resource management, 
data movement, provenance tracking, and fault tolerance, allowing in-
dividual systems to focus on their unique strengths and domain-specific 
optimizations. The emergence of these community-maintained compo-
nents represents a potential path toward consolidation in a currently 
fragmented ecosystem of over 300 WMSs, promoting interoperability 
while preserving the specialized capabilities that particular scientific 
domains require.
Workflow Registries in the Scientific Workflow Ecosystem. In addi-
tion to the WMSs themselves, the scientific community has devel-
oped various workflow registries that serve as centralized locations 
to share, discover, and reuse workflow definitions in the workflow 
ecosystem. These registries complement WMSs by facilitating knowl-
edge exchange and promoting best practices across research domains. 
The nf-core [59] repository provides community-maintained curated 
Nextflow workflows for bioinformatics with continuous integration to 
ensure reproducibility. Similarly, the SnakeMake workflow catalog [60] 
offers domain-specific collections. WorkflowHub [61] provides a uni-
fied registry for all computational workflows that links to community 
repositories, making workflows findable, accessible, interoperable, and 
reusable (FAIR) according to the FAIR principles for workflows [62]. 
Unlike single-language workflow registries such as nf-core, the AiiDA 
plugin registry [63], and Galaxy Toolshed [64] that are associated 
with specific workflow platforms, WorkflowHub accepts workflows 
from any scientific domain, in any format and in any workflow lan-
guage. Repositories such as Dockstore [65] improve reproducibility 
by combining containers, descriptor languages, and test parameter 
files to simplify software reuse and dependency management. Dock-
store has facilitated large-scale biomedical research collaborations by 
using cloud technologies to increase the FAIRness of computational 
resources. WfInstances [26] is a key component of the WfCommons 
project that archives real-world workflow instances collected from 
workflow executions using various runtime systems. The repository 
ecosystem represents an important extension of the workflow land-
scape, bridging technical capabilities with community practices, and 
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helping scientists navigate the complex decision space of workflow 
selection and reuse while promoting the recognition of workflows as 
artifacts.

4. Process to define the terminology of workflow systems

The terminology for scientific workflow systems presented in this 
paper emerged from a systematic, community-driven approach initiated 
in 2021 through the Workflows Community Initiative (WCI) [17]. 
This collaborative effort united workflow system developers, domain 
scientists, and workflow practitioners in diverse scientific disciplines 
and computing facilities. Through a series of Workflows Community 
Summit events [18–23], participants engaged in structured discussions 
about key aspects of scientific workflow systems, including essential 
features, challenges in interoperability, data management approaches 
for execution models and reproducibility requirements. These discus-
sions were documented in technical reports that captured the evolving 
understanding of WMSs and established the foundations for a unified 
terminology, drawing inspiration from similar efforts in the in situ 
processing community [16].

The development of the terminology progressed through several 
phases, beginning with an analysis of summit reports and the existing 
literature on workflow taxonomies [7–15] to identify common patterns 
and classification schemes. A core working group then conceptualized 
the framework around five distinct axes to comprehensively cover the 
key aspects of workflows and WMSs, followed by the creation of a 
draft document defining these axes and their associated terms. This 
draft included an initial characterization of 23 representative WMSs 
and was circulated to workflow system developers and key stakeholders 
for critical feedback. Through multiple iterations of refinement based 
on community input, the working group adjusted definitions, added 
missing terms, and ensured that the terminology accurately represented 
the domain’s complexity while remaining both comprehensible and 
practical. The terminology was validated by applying it to classify the 
WMSs listed in Table  2, confirming its applicability while revealing 
its ability to highlight commonalities and distinctions among diverse 
systems.

Throughout this process, the working group adhered to the prin-
ciples of comprehensiveness, accessibility, neutrality, openness, and 
practicality. The terminology needed to cover the full spectrum of 
workflow system features without favoring particular implementation 
approaches, while remaining understandable to both experts and do-
main scientists. It was designed to be descriptive rather than prescrip-
tive, avoiding implications that certain approaches were inherently su-
perior and flexible enough to accommodate future innovations through 
the addition of new terms within the established axes. The resulting ter-
minology, as detailed in Section 2 and applied in Section 3, represents 
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the collective expertise of a broad community of workflow researchers 
and practitioners, providing a common language for discussing and 
comparing WMSs that facilitates both scientific communication and 
informed decision-making when selecting workflow technologies for 
specific research needs.

5. Related work

Over the past two decades, the scientific workflow community 
has proposed several taxonomies to structure the design space of 
WMSs. Early taxonomies introduced classification schemes based on 
architectural and infrastructural features, including workflow repre-
sentation models (e.g., DAGs versus non-DAGs), scheduling strategies 
(i.e., centralized, decentralized, or hierarchical), fault tolerance mech-
anisms (e.g., task retries, checkpointing, alternate resource usage), 
and data movement techniques (e.g., file staging, replication, stream-
ing) [7]. These taxonomies highlighted trade-offs between perfor-
mance, fault resilience, and scalability across grid environments. Later 
frameworks organized WMS features according to the workflow lifecy-
cle, encompassing composition interfaces (e.g., graphical editors, script-
ing APIs, domain-specific languages), resource mapping mechanisms 
(i.e., manual binding versus automated planners), execution engines 
(i.e., static versus dynamic schedulers), and provenance capture strate-
gies (i.e., retrospective and prospective metadata logging) [9]. These 
classifications helped emphasize usability and reproducibility as central 
design goals. More recent comparative analyses have expanded the 
evaluation criteria to cover support for heterogeneous execution models 
(including iterative, streaming, and conditionally adaptive workflows), 
deployment flexibility across HPC, cloud, and hybrid environments, 
and mechanisms for handling large-scale, data-intensive workloads 
with performance-aware orchestration and optimized I/O strategies [8,
12,13], or focusing on specific features such as fault tolerance [14] 
or provenance [15]. Such studies increasingly incorporate practical 
interoperability, expressiveness, and usability assessments to guide 
system selection in data-intensive scientific domains.

These taxonomies have provided valuable frameworks for evaluat-
ing and selecting WMSs, but they often emphasize either infrastructure-
level capabilities or comparisons based on the workflow lifecycle. 
This paper contributes a complementary approach by proposing a 
terminology instead of defining yet another hierarchical taxonomy. 
The objectives are to offer a vocabulary that captures the essential 
properties of WMSs in a flexible and non-prescriptive manner, sup-
port consistent descriptions across heterogeneous systems, and help 
researchers express requirements and understand systems’ capabilities 
more precisely. Thus, what distinguishes this work is its focus on 
standardizing language rather than classification alone. By moving 
away from rigid taxonomies and toward shared terms, we expect to 
enable clearer communication across domains and stakeholder groups, 
and support the design, comparison, and integration of next-generation 
WMSs. Grounded in broad community consensus, the proposed set of 
terms overlaps with the existing taxonomies, which shows its capacity 
to capture the main features of classical WMSs. However, it also reflects 
the evolution of workflow practices, with new terms including dy-
namic execution behaviors, modular reuse, and serverless orchestration 
models. 

6. Conclusion

In this paper, we have introduced a new terminology for scientific 
workflow systems. This terminology comprises five axes along which 
a workflow system can be characterized. Each axis is then refined via 
multiple associated terms. The development of this terminology is a 
community-based effort rooted in and supported by the Workflows 
Community Initiative (WCI). It summarizes the collective thinking of 
WMS developers and members of the leadership and steering commit-
tees of the Workflows Community Initiative and reflects the achieved 
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consensus around an initial set of terms. The main motivation for 
this work is to serve as a starting point for a uniformly understood 
vocabulary that would help workflow practitioners navigate the vast 
market of WMSs. To this end, we used this terminology to characterize 
a selection of existing WMSs, identify similarities and differences, and 
highlight some broad trends. This approach brought in many different 
perspectives and ensured that diverse perspectives were taken into 
account. It also provides this terminology with solid foundations and 
the backing of a significant number of workflow system developers 
and workflow practitioners. This will allow us to expose and explain 
the terminology to the respective user communities of the analyzed 
frameworks and foster its broader adoption. We also plan to gather and 
analyze user feedback and monitor the adoption of the terminology to 
conduct an empirical validation of the benefits of the proposed termi-
nology. A concrete metric of success for the adoption of the terminology 
will be to be referred to in scientific articles, not by citing this paper but 
by using the terminology to describe a WMS or a workflow and position 
contributions using a uniformly understood vocabulary accepted by a 
broad community.

This terminology should not be considered static. As new systems 
are developed and new trends emerge from the community, new terms 
and axes may be introduced. A new working group of the WCI will 
be formed, which will include this paper’s co-authors to ensure that 
the terminology evolves and keeps reflecting the state of the field. This 
group will also be in charge of extending the list of characterized WMSs 
beyond those that are part of the Workflows Community Initiative.
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