
Future Generation Computer Systems 174 (2026) 107974

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Review Article

A terminology for scientific workflow systemsI

Frédéric Suter a ,∗, Tainã Coleman b,∗, İlkay Altintaş b, Rosa M. Badia c , Bartosz Balis d,
Kyle Chard e, Iacopo Colonnelli f , Ewa Deelman g, Paolo Di Tommaso h, Thomas Fahringer i,
Carole Goble j, Shantenu Jha k, Daniel S. Katz l , Johannes Kösterm , Ulf Leser n,
Kshitij Mehta a , Hilary Oliver o , J.-Luc Peterson p, Giovanni Pizzi q , Loïc Pottier p,
Raül Sirvent c , Eric Suchyta a , Douglas Thain r, Sean R. Wilkinson a , Justin M. Wozniak s ,
Rafael Ferreira da Silva a
a Oak Ridge National Laboratory, TN, USA
b University of California, San Diego, CA, USA
c Barcelona Supercomputing Center, Barcelona, Spain
d AGH University of Krakow, Krakow, Poland
e University of Chicago, Chicago, IL, USA
f University of Torino, Torino, Italy
g Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
h Seqera Labs, Barcelona, Spain
i University of Innsbruck, Institute of Computer Science, Innsbruck, Austria
j University of Manchester, Manchester, United Kingdom
k Rutgers University-New Brunswick; Princeton Plasma Physics Laboratory; Princeton University, NJ, USA
l NCSA & School of Computing and Data Science & iSchool, University of Illinois Urbana-Champaign, IL, USA
m University of Duisburg–Essen, Essen, Germany
n Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
o National Institute of Water and Atmospheric Research, Wellington, New Zealand
p Lawrence Livermore National Laboratory, Livermore, CA, USA
q PSI Center for Scientific Computing, Theory and Data, Villigen, Switzerland
r University of Notre Dame, Notre Dame, IN, USA
s Argonne National Laboratory, Lemont, IL, USA

A R T I C L E I N F O

Keywords:
Scientific workflows
Workflow management systems
Community-based terminology

 A B S T R A C T

The term ‘‘scientific workflow’’ has evolved over the last two decades to encompass a broad range of
compositions of interdependent compute tasks and data movements. It has also become an umbrella term
for processing in modern scientific applications. Today, many scientific applications can be considered as
workflows made of multiple dependent steps, and hundreds of workflow systems have been developed to
manage and run these scientific workflows. However, no turnkey solution has emerged from the field to address
the diversity of scientific processes and the infrastructure on which they are supposed to be implemented.
Instead, new research problems requiring the execution of scientific workflows with some novel feature often
lead to the development of an entirely new workflow system. A direct consequence of this situation is that

I This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan).
∗ Corresponding authors.
E-mail addresses: suterf@ornl.gov (F. Suter), t1coleman@ucsd.edu (T. Coleman), ialtintas@ucsd.edu (İ. Altintaş), rosa.m.badia@bsc.es (R.M. Badia),

balis@agh.edu.pl (B. Balis), chard@uchicago.edu (K. Chard), iacopo.colonnelli@unito.it (I. Colonnelli), deelman@isi.edu (E. Deelman), paolo@seqera.io
(P. Di Tommaso), Thomas.Fahringer@uibk.ac.at (T. Fahringer), Carole.Goble@manchester.ac.uk (C. Goble), shantenujha@acm.org (S. Jha), d.katz@ieee.org
(D.S. Katz), johannes.koester@uni-due.de (J. Köster), leser@informatik.hu-berlin.de (U. Leser), mehtakv@ornl.gov (K. Mehta), hilary.oliver@niwa.co.nz
(H. Oliver), peterson76@llnl.gov (J.-L. Peterson), giovanni.pizzi@psi.ch (G. Pizzi), pottier1@llnl.gov (L. Pottier), Raul.Sirvent@bsc.es (R. Sirvent),
suchytaed@ornl.gov (E. Suchyta), dthain@nd.edu (D. Thain), wilkinsonsr@ornl.gov (S.R. Wilkinson), woz@anl.gov (J.M. Wozniak), silvarf@ornl.gov
(R. Ferreira da Silva).

https://doi.org/10.1016/j.future.2025.107974
Received 24 April 2025; Received in revised form 8 June 2025; Accepted 9 June 2025
vailable online 24 June 2025
167-739X/Published by Elsevier B.V.

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974

many existing workflow management systems (WMSs) share some salient features, offer similar functionalities,
and can manage the same categories of workflows but at the same time also have some distinct capabilities
that can be important for specific applications. This situation makes researchers who develop workflows face
the complex question of selecting a WMS. This selection can be driven by technical considerations, to find
the system that is the most appropriate for their application and for the computing and storage resources
available to them, or other factors such as reputation, adoption, strong community support, or long-term
sustainability. To address this problem, a group of WMS developers and practitioners joined their efforts
to produce a community-based terminology of WMSs. This paper summarizes their findings and introduces
this new terminology to characterize WMSs. This terminology is composed of fives axes: workflow structure
and characteristics, composition, orchestration, data management, and metadata capture. Each axis comprises
several concepts that capture the prominent features of WMSs. Based on this terminology, this paper also
presents a classification of 23 existing WMSs according to the proposed axes and terms.

Contents

1. Introduction .. 2
2. Axes of scientific workflow systems... 3

2.1. Workflow characteristics ... 3
2.2. Composition... 4
2.3. Orchestration ... 5
2.4. Data management .. 5
2.5. Metadata capture ... 6

3. Surveying existing workflow systems ... 7
4. Process to define the terminology of workflow systems... 9
5. Related work... 10
6. Conclusion .. 10
 CRediT authorship contribution statement ... 10
 Declaration of competing interest .. 10
 Acknowledgments .. 10
 Data availability .. 11
 References... 11
1. Introduction

The concept of workflows, i.e., the execution of orchestrated and
repeatable patterns of activity, dates back to the early 1900s when the
engineering and manufacturing community introduced one of the ear-
liest examples of procedural workflow: the Ford assembly line adopted
by automobile manufacturers to this date. Workflows has been used
to model, analyze, and improve business processes, using tools such
as flow charts, functional flow block diagrams, or control flow di-
agrams [1]. The database community has also used workflows to
address the challenges of managing large datasets [2]. The capacity to
describe and orchestrate such complex applications popularized work-
flows across multiple scientific domains. The term scientific workflow
itself was introduced in 1996 [3,4] to differentiate this specific type
of workflow from the business and automation pipelines that inspired
them. As scientific workflow may designate processes that go beyond
science to cover more broadly defined research activities, we opted for
the use of the term workflow in the remainder of this article with the
following all-encompassing definition:
Definition. A workflow is a structured sequence of computational tasks
or activities that achieve a research or analytical objective. Workflows
define the flow of work, including the order of steps, the data and
control dependencies between them, and the rules governing their exe-
cution. Modern workflows extend beyond traditional directed acyclic
graphs to encompass dynamic, adaptive, and interactive processes
that may include cycles, branches, and human-in-the-loop components.
They span diverse domains, including scientific research, engineering,
humanities, and business, and bridge heterogeneous computing en-
vironments from edge devices to high-performance computing (HPC)
facilities and cloud infrastructure.

Over the past decades, workflows have become the predominant
format for describing complex, multi-step, multi-domain scientific ap-
plications [5]. To manage the composition, planning, orchestration,
2
and automation of the efficient execution of such workflows on pow-
erful and often distributed compute infrastructures, a wide variety
of workflow management systems (WMSs) have been proposed [6].
However, domain researchers who develop workflows and want to
rely on a WMS to execute them often face the complex question of
selecting a particular WMS. This selection can be driven by technical
considerations, such as finding the most appropriate system for their
application and for the computing and storage resources available to
them, or factors such as reputation, adoption, community support, or
long-term sustainability. The main reasons for this challenge are that
no single ideal turnkey solution has emerged from the field to address
the diversity of scientific processes and the heterogeneity of possible
execution environments (both in terms of hardware and software).
Instead, new research problems or new computer technologies related
to the execution of workflows often lead to the development of an
entirely new workflow management system.

A direct consequence of this situation is that many existing WMSs
share some salient features, offer similar functionalities, and can man-
age the same categories of workflows, but often also have distinct
features tailored for specific types of problems. This has been high-
lighted by different efforts to create taxonomies and characterizations
of workflows and WMSs [7–15]. These efforts can help to provide
workflow developers with some guidance when trying to select the
appropriate tool to develop and execute their workflows, but they are
also notoriously incomplete and quickly outdated in a fast-moving field.
Consequently, decisions for specific systems are very often based on
social aspects as much or more than on technical ones (e.g., previous ex-
perience in the community, word-of-mouth, comments in web forums,
personal evaluation of a few known systems). Inspired by the work of
the in situ processing community for data visualization and analysis
systems [16], we propose in this article to go beyond a traditional
taxonomy and develop a consistent terminology to describe WMSs.
While it shares similarities with and builds on existing taxonomies, the
driving principle of this effort was to determine terms that consensually

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
Fig. 1. Five axes that categorize workflows and workflow management systems, with each axis further delineated into corresponding terms and sub-terms to provide a structured
and detailed terminology.
describe the high-level features of workflows and WMSs, rather than
categorizing systems based on implementation details.

To this end, we gathered a group of workflow system developers
and workflow practitioners, all members of the Workflows Community
Initiative (WCI) [17], and followed a process similar to that in [16]
to create a strong terminology for WMSs. This paper synthesizes the
discussions initiated during the different editions of the Workflows
Community Summit [18–23], which led to the writing of this paper.
The main contribution of this paper is the identification of five axes to
characterize WMSs (Fig. 1). Each axis comprises a series of concepts
that capture the most salient features of WMSs. Based on the proposed
terminology, our group analyzed 23 actively developed WMSs that are
part of the WCI to determine which combination of terms can define
each of them.

The remainder of this paper is organized as follows. Section 2
defines the proposed five axes to describe a workflow system. Section 3
reviews the 23 selected WMSs and classifies them according to the
proposed axes and terms. Section 4 describes the process followed
by members of the WCI to produce this terminology and Section 5
discusses previous efforts to establish taxonomies of WMSs. Finally,
Section 6 summarizes our work.

2. Axes of scientific workflow systems

WMSs often consist of subsystems that handle specific aspects of
workflow management, such as resource allocation, task scheduling,
or, data management. A WMS coordinates these subsystems to ensure
efficient and robust execution. Additionally, characterizing a given
workflow system requires considering the characteristics of the work-
flows it can support, as it often influences the design of the system.
The primary goal of defining this terminology is to help scientists
navigate the wide range of available tools [6] and better express their
computational needs. To achieve this, we identified five key axes to
describe a workflow system:

∙ Workflow Characteristics: This axis examines fundamental or-
ganizational aspects that impact how workflows operate and
adapt. Specifically, it examines how execution is driven (by
tasks or data), the level of complexity of individual components,
the nature of dependencies between these components, and the
3
ability to modify execution paths at runtime. These structural
elements significantly influence how WMSs optimize resource
use and performance.

∙ Composition: This axis addresses how workflows are defined,
organized, and configured by WMSs. It explores the methods
used to describe workflows, the level of detail required in these
descriptions, and how complex workflows can be shaped from
simpler components. This axis helps to understand how acces-
sible and flexible different WMSs are for users with varying
technical backgrounds.

∙ Orchestration: This axis covers the implementation and ex-
ecution management approaches for workflow components. It
analyzes different methods for launching and coordinating tasks,
from direct execution to more sophisticated approaches that
leverage distributed resources, event-based triggers, or cloud ser-
vices. These orchestration strategies determine how efficiently
workflows use available computing infrastructure.

∙ Data management: This axis focuses on how data is handled
throughout the workflow lifecycle. It characterizes methods for
moving data between workflow components, approaches to stor-
ing data at different stages, and techniques for optimizing data
access patterns. These data management strategies significantly
affect workflow performance, especially for data-intensive appli-
cations.

∙ Metadata capture: This axis explores additional contextual in-
formation collected during workflow execution. It covers meth-
ods for tracking workflow execution state, documenting prove-
nance, monitoring performance, and detecting anomalies. These
capabilities ensure that workflows can be reliably executed,
optimized, debugged, and reproduced.

Fig. 1 provides an overview of the terms used for each axis, and this
section describes these terms in more detail. With this terminology, we
can describe a WMS based on a selection of specific terms for each of
the five identified axes. As sub-terms within an axis are not mutually
exclusive, a WMS may be classified by a combination of sub-terms.

2.1. Workflow characteristics

The first axis is more focused on the type of workflows a workflow
system can manage than on the characteristics of a system itself, in

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
other words, on what the workflow does. The large number of existing
WMSs [6] indicates that there is no ‘‘one-size-fits-all’’ solution despite
standardization and interoperability efforts [24]. In fact, the design and
implementation of workflows is significantly influenced by structural
aspects that are crucial to their efficiency, scalability, and adaptability.
In this section, we characterize broad classes of workflows according
to these defining features.

A prominent feature of a workflow is its flow, which has a direct
impact on how WMSs optimize workflow execution. When workflow
components receive inputs, process them, generate outputs, and then
terminate, the workflow structure is defined by the composition of
these tasks. WMSs are then responsible for orchestrating their execu-
tion, respecting their flow and control dependencies. They will also
implement optimization strategies to improve workflow performance,
such as minimizing the makespan or communication of the workflow.
The different tasks that make up a workflow can also be executed mul-
tiple times in an iterative way. At each iteration, tasks are executed,
terminated, and then wait to be invoked again. The structure and exe-
cution of the workflow can also be driven by the data flowing through
the workflow components. These components are data operators that
remain alive while there is data to process. In that case, WMSs aim to
maximize the throughput of the workflow.

The structure of workflows also differs by the granularity of their
individual tasks. Some workflows can compose some function calls
to perform complex processing tasks. To some extent, a script or a
program can be seen as a workflow and a runtime system as a workflow
system. The most common definition of a workflow is a composition of
standalone executables, which aggregate multiple functions calls to
perform complex computations on a set of inputs and produce a set
of outputs. With the increase in scale and complexity of computational
problems, it is now common to express workflows as a hierarchical and
modular composition of sub-workflows.

Another defining feature of workflows is the coupling of the tasks
that compose them. This term defines the dependencies and interac-
tions between the different tasks. The tight coupling of some tasks
indicates that these tasks must be executed concurrently, being co-
located on the same computing resources or running on different sets
of processors. This is often caused by periodic data exchanges between
tasks while they run. Conversely, a loose coupling of tasks does not
impose any constraint on the concurrent execution of tasks, giving more
flexibility to the WMS when scheduling the workflow.

The dynamicity of a workflow indicates its ability to modify its
structure during its execution. Dynamic workflows can comprise sev-
eral conditional branches that are activated or not depending on the
realization of a predefined condition or triggered by an external event.
Such conditions can be related to changes observed in the processed
datasets (e.g., a variable reaching a certain threshold, the convergence
of an iterative process is reached), to changes in the status or availabil-
ity of compute, network, or storage resources, or to time-related events
(e.g., it is too late to process a given execution path). Such conditional
branches allow workflows and WMSs to efficiently react to changes and
foster more robust, efficient, and flexible executions. A second type of
dynamic behavior found in workflows is when a runtime intervention
is needed. In that case, the workflow system gives the control back to
the user who started the workflow or to an automated external decision
process. Such interventions at runtime can modify the initial execution
plan of a workflow in different ways (e.g., rerun certain tasks or an
entire sub-workflow, modify task configuration, cut a given path or
start exploring a new path, or trigger the early termination of the entire
workflow).

Finally, it is possible to distinguish WMSs with respect to the
domain they serve. Some systems are deeply rooted in a scientific
community and thus mainly target domain-specific workflows, while
others are more application-agnostic.
4
2.2. Composition

Composition refers mainly to how a workflow system allows its
users to describe the different components of the workflow, their con-
figuration and input parameters, and the data and control dependencies
between these components. This axis also covers the coupling between
the description of the workflow itself and that of the targeted hardware
and software infrastructure on which to execute the workflow.

We identified three subcategories of description methods to com-
pose a workflow. The first, schema, refers to the case where the
workflow is described in a text file, using a specific format (e.g., XML,
JSON, YAML, or a domain-specific language) and syntax. We further
decompose this category to distinguish that the syntax used by a WMS
is ad-hoc, meaning that it can only be understood by this particular
WMS, or part of a common standard shared by multiple WMSs, such
as the Common Workflow Language (CWL) [24], the Interoperable
Workow Intermediate Representation (IWIR) [25], or WfFormat [26].
Note that supporting a description standard may not always be possible,
for instance, when a WMS implements significant features that cannot
be easily expressed in the standard. The second subcategory includes
WMSs that expose an API to describe workflows. This API builds on
or extends one or more popular programming languages (e.g., Python,
C++) or a text templating engine (e.g., jinja) to leverage loops and
conditional statements and allow users to describe their workflows in
a more compact and flexible way. The third subcategory corresponds
to WMSs that rely on a graphical user interface (GUI).

Workflow composition can also be defined by the level of abstrac-
tion of the description provided by the user. A high-level abstract
composition will only focus on describing the logical structure of the
task graph, a generic description of the data flowing through the
workflow, and the amount of resources required by each component.
This abstract description is generally independent of a specific instance
of the workflow (i.e., that specifies all input parameters and com-
ponent configuration parameters) and of a specific target computing
and storage infrastructure. The advantages of an abstract workflow
composition are that it favors the reusability and portability of the
workflow. However, it requires more effort from users or the workflow
system to execute a specific instance on a specific infrastructure.

Some systems have an intermediate-level abstract composition.
They allow for a high-level workflow description while requiring some
execution details from the users. Systems with intermediate-level ab-
straction provide users with a balance between automation and manual
fine-tuning, which can be advantageous when the application requires
a higher level of execution control. This comes at the cost of lower
portability when compared to fully abstract systems and possible per-
formance trade-offs (e.g., the responsibility of allocation optimization
falls on the users in these systems).

Conversely, a concrete composition is more closely related to an
instance and an infrastructure. All parameters are specified in the
description, and the workflow can be deployed and run directly from
it. Note that some WMSs allow to factor infrastructure related infor-
mation as a separate description, allowing users to port a workflow
from one infrastructure to another without changing the high- or
intermediate-level abstract composition of the workflow itself.

When an API is used to describe a workflow, the composition is
implicit as the workflow’s structure is derived from the composition of
the different function calls made by the user, or from metadata attached
to a dataset to process, indicating for instance which files are needed
and in what way.

Finally, we also distinguish composition methods with regard to
their modularity. With the evolution of scientific applications from
relatively simple workflows (e.g., data processing pipelines or fan-
out/fan-in execution patterns for ensemble runs) to more complex
workflows composed of interconnected sub-workflows (i.e., workflow
of workflows), the composition methods exposed by WMSs are also
evolving from a flat description of a set of components to a more

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
hierarchical description that enables modular and scalable design. This
shift allows for better management of large-scale applications, where
individual sub-workflows can be developed, tested, and optimized in-
dependently before integration. It also allows researchers to create
new complex data analysis workflows by composing existing workflows
developed in their community. However, such hierarchical composition
introduces new challenges, such as dealing with an increased orchestra-
tion complexity, handling dependencies across nested workflows, and
efficiently managing resource allocation. To address these, WMSs pro-
vide features such as parameterized workflow components and reusable
templates that facilitate modular workflow design while maintaining
scalability.

2.3. Orchestration

Orchestration refers to the method(s) employed by a workflow
system to deploy, schedule, and execute the computational components
of a workflow. In this section, we focus on the general functional
features of WMSs rather than the specific technical details of their
implementations. For instance, we leave optimization techniques, such
as advanced, performance-oriented scheduling and resource allocation
techniques and algorithms, out of the scope of this axis. However, we
still consider it important to classify WMSs into three broad categories
related to execution planning. Some systems impose a static planning
of the workflow execution, i.e., all the decisions about when and
where each task composing the workflow is executed must be taken
before the execution starts. Conversely, some systems can make or
adapt scheduling and resource allocation decisions during the execution
of the workflow, hence implementing a dynamic planning strategy.
(Note that certain systems implementing static planning may emulate
dynamic planning through hierarchical workflows.) The third category
encompasses WMSs that do not plan the workflow execution in advance
but rather let the execution react to specific events and/or conditions
that occur at runtime. In such event-driven execution, when a trigger
condition or event is met, the workflow system automatically initiates
subsequent, usually predefined, actions such as starting new tasks,
notifying users, and adjusting the resource allocation. This type of
automation minimizes manual intervention, making the orchestration
less error-prone.

We identified three categories for the actual execution of the tasks
that compose a workflow. WMSs might use one or more orchestration
methods (see Table 2) to execute a workflow. The runner orchestration
method refers to WMSs that are fully responsible for the acquisition of
computing and storage resources and the management of the individual
tasks that compose a workflow. It connects the high-level workflow
definition (i.e., its composition, see Section 2.2) to the available re-
sources. A runner system ensures that tasks execute in the correct order,
respecting their pre-defined control and flow dependencies. It oversees
the life cycle of a task from the time it is dispatched and monitors it
until it is completed according to its specifications.

Other WMSs delegate resource allocation and part of the manage-
ment of the execution of individual tasks to a resource manager.
This orchestration method is typically used in HPC systems where
the allocation of compute nodes is handled by a batch scheduler, or
cloud systems, where container orchestration systems are used. The
interactions between the workflow system and the underlying resource
managers encompass ordering queue of jobs to execute in an ensem-
ble, controlling the release of limited quantities of tasks or data to
not overwhelm the underlying execution system, or implementing a
pilot job [27] mechanism to reduce the queuing overhead caused by
scheduling and executing tasks independently by grouping them within
the pilot allocation.

The last orchestration method relies on a serverless execution of
tasks. This refers to a cloud-based model in which the responsibility
for infrastructure management, allocation scaling, and job execution is
entirely delegated to a cloud service provider. A key distinction of this
5
model is that the user or WMS must first define one or more functions
along with all of their software dependencies, and then the WMS may
execute those functions to carry out the workflow. The cloud platform
takes care of the provisioning and server management, abstracting
the underlying computing and storage infrastructure entirely. In some
cases, it can be the most cost effective orchestration method as users are
usually only charged based on the actual usage of computing resources
rather than maintaining servers always on, even when idle.

2.4. Data management

The data management axis characterizes the way WMSs transport,
store, and manage the lifecycle of one of the key components of
scientific workflows: data. Before detailing the different categories and
terms related to data management, we make an important distinction
between two types of data, as the way a workflow system manages each
of them may differ. Input/output data respectively refer to the data
needed at the beginning of the workflow and to the final outcomes of
its execution, while intermediate data denotes every piece of data that
did not exist before the beginning of the workflow and will not be kept
after the end of this execution.

A first way to distinguish WMSs according to how they manage
data is to consider the granularity at which these systems handle data
management operations. A common approach followed by many WMSs
is to consider the data operations of a workflow component at the
granularity of a batch: all the needed input data are consumed before
performing computations and all the output data is produced, and made
available to subsequent components in the workflow, at the end of these
computations.

Another approach is to consider a pipelined granularity in which
workflow components periodically produce and/or consume individual
records during their entire lifecycle. This is typically used to manage in
situ processing workflows [28], where analysis and visualization com-
ponents are loosely coupled to a main data producer (i.e., a numerical
simulation). In such workflows, data is consumed as it is produced, in
opposition to a post-hoc approach in which analyses or visualization
happens once the full dataset has been generated.

A third intermediate granularity is to consider data as partitioned,
i.e., divided in groups of individual records, and to transfer these par-
titions across the workflow. This approach is particularly useful when
individual records are small. Considering them individually would be
very latency-sensitive and could negatively impact performance.

A second way to differentiate WMSs is by how they transport data
from one workflow component to another. Again, a common approach
is to rely on file-based transport, in which a workflow component that
produces intermediate data will write them into a file(s) on a storage
system. In contrast, a workflow component that consumes intermediate
data will read it from file(s). An alternate approach is to directly stream
intermediate data between components. Depending on the respective
allocations of the producing and consuming components, it is possible
to further refine these two broad approaches.

For WMSs that rely on the file-based transport approach, we can
further distinguish them according to the storage they use. When
workflow components are co-located on the same compute node, the
workflow system can leverage the existence of a local file system,
while when components are allocated to different nodes of the same
compute cluster or to different clusters of the same computing facility,
it will have to rely on a shared file system. Commonly used in
collaborative or high-performance computing environments, shared file
systems correspond to a centralized model where data is accessible
by multiple systems or nodes simultaneously. They bring several ad-
vantages when executing workflows, such as simple and collaborative
access to a unified storage space or good cost efficiency. They also
come with different challenges, such as data consistency, performance
bottlenecks, scalability, or security, that a WMS will have to face, and
may address. In the extreme case where the execution of a workflow

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
Table 1
Classification of workflow management systems based on structure and characteristics. This classification represents the state at the time of publication, to the best of the authors
knowledge. As many of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an up-to-date view of their capabilities and
characteristics.
 Name Flow Granularity Coupling Dynamicity Domain
 AiiDA [29] Task

Iterative
Sub-workflows
Executables
Functions

Loose Branches
Runtime intervention

Agnostic

 AirFlow [30] Task Executables Loose Branches Agnostic
 Apollo [31] Task

Data
Iterative

Functions
Sub-workflows

Loose Branches Agnostic

 COMPSs [32] Task
Iterative

Functions
Sub-workflows
Executables

Loose Branches Agnostic

 Cylc [33] Task
Iterative

Executables
Sub-workflows

Loose Branches
Runtime intervention

Agnostic

 Dask [34] Data Executables Tight – Agnostic
 EFFIS [35] Data Executables Tight

Loose
– Specific

 FireWorks [36] Task Sub-workflows Tight Branches Agnostic
 Galaxy [37] Data Executables

Sub-workflows
Loose Branches

Runtime intervention
Agnostic

 Globus Compute [38] Data Functions
Executables

Loose – Agnostic

 HyperFlow [39] Data Functions
Executables

Loose – Agnostic

 Makeflow [40] Data Sub-workflows Loose – Agnostic
 Merlin [41] Task

Iterative
Sub-workflows Loose – Agnostic

 MLFlow [42] Task
Iterative

Executables Loose – Specific

 Nextflow [43] Data Sub-workflows Loose Branches Agnostic
 Parsl [44] Data Sub-workflows Loose Branches Agnostic
 Pegasus [45] Data Sub-workflows

Executables
Loose Branches Agnostic

 Radical [46] Task
Iterative

Functions Tight – Agnostic

 Snakemake [47] Task
Iterative

Sub-workflows
Executables
Functions

Loose
Tight

Branches Agnostic

 StreamFlow [48] Task
Data
Iterative

Sub-workflows
Executables

Loose Branches Agnostic

 Swift/T [49] Task
Data

Functions Tight Branches
Recursion

Agnostic

 TaskVine [50] Task
Iterative

Functions
Executables

Loose – Agnostic

 Toil [51] Data Sub-workflows Loose Branches Agnostic
is distributed over multiple computing facilities, this approach can
leverage a distributed storage space. This involves managing and
storing data across multiple local and/or remote systems, enabling
scalability, load balancing, resilience, and flexibility. Although it can
resolve some issues of shared file systems, data consistency and security
challenges persist. Furthermore, the management of such systems can
be very complex, and data accesses may suffer from high latencies.
An alternative approach in that case would be that the data-producing
workflow components running in a given facility create one or several
additional transfer tasks to send data to each their its data-consuming
successors that run in another facility. Another common practice in dis-
tributed and shared systems targeted by WMSs is the use of replicated
storage, which focuses on creating redundant copies of data to improve
reliability, availability, and resilience. Such as the aforementioned
storage solutions, replicated storage struggles with data consistency and
complex data management, not to mention the increased storage costs
and the write overhead created every time data needs to be updated.
6
For the stream-based transport approach, when the producer and
consumer are co-located on the same node, data transport can be
carried out in-memory through a shared address space. Otherwise, it
implies a network communication between the nodes that respectively
hosts the data producer and consumer.

2.5. Metadata capture

The last axis of the terminology refers to the different categories
of contextual information, or metadata, captured by WMSs during a
workflow execution. Metadata constitute a critical layer of informa-
tion that describes, tracks, and contextualizes workflow aspects such
as inputs/outputs, parameters, and dependencies. Through the extra
information, the workflow engine can decide on the execution order
based on the dependency information, parallelize tasks, and schedule
resources according to the needs of the task. Therefore, metadata en-
ables efficient orchestration, automation, long-term data management,

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
and resource optimization. By capturing descriptive execution logs and
storing full context results, metadata can improve troubleshooting, de-
bugging, and responsiveness. Overall, it can ensure scientific integrity,
reproducibility, and reliability throughout the workflow’s lifecycle.

Workflows are typically large and complex applications designed for
execution in distributed systems. Given their role in critical research
and high-impact projects, the ability to reproduce results enables oth-
ers to validate the findings, build upon previous work, and promote
collaboration to further scientific discovery.

A specific type of metadata is provenance data which can be fur-
ther decomposed into prospective and retrospective provenance data.
Prospective provenance corresponds to maintaining detailed informa-
tion about the workflow design and structure, the configuration of the
workflow system and the underlying computing and storage infrastruc-
ture, and the specific algorithms to be used and their parametrization.
Prospective provenance is essential to facilitate reproducibility, espe-
cially for complex applications such as workflows [52]. Retrospective
provenance data corresponds to what actually happened to the data
processed by a workflow and captures everything related to a specific
execution. It is usually extracted from execution logs to keep track
of the data lineage (i.e., generation, transformation, and usage) and
timestamps and runtime details. Retrospective provenance is particu-
larly useful for detecting any deviation from the expected execution
plan and is often used for debugging purposes.

Another type of metadata captured during workflow executions is
monitoring of data, which comes from processes that oversee the
workflow execution in real time. The data generated by monitoring
provides critical insight into performance, resource utilization, and po-
tential bottlenecks. WMSs can leverage it to dynamically reconsider an
initial execution plan by modifying resource allocations or scheduling
decisions. The monitoring data can also be analyzed by researchers
after a workflow execution to optimize the description of the workflow
itself to improve its efficiency.

The final category on this axis is related to anomaly detection [53].
We consider that a workflow management system supports anomaly
detection if it captures metadata that can be used to implement fault
tolerance mechanisms. These mechanisms vary in sophistication: Some
systems terminate execution and display an error message, while others
complete the execution but log warnings about potentially incorrect
data resulting from unexpected behavior. There are even systems that
can distinguish between anomalies that can be handled automatically
(e.g., task retries or by an optional branch from a task-failed trigger)
and anomalies that the workflow is not designed to handle and thus
require user intervention. In the latter case, the scheduler remains alive
on a timeout in a ‘‘stalled’’ state, awaiting operator intervention.

3. Surveying existing workflow systems

This section considers 23 WMSs that are part of the Workflows
Community Initiative (WCI). This selection is motivated by the fact
that the WCI focuses on actively developed WMSs with a large user base.
We also ensured that the selection made was not limited to a specific
research community, a narrow set of origin countries, or a certain
category of supported workflows to avoid biases in the definition of
our terminology. Although this list represents only a small fraction
of the vast number of existing WMSs [6] and is thus far from being
exhaustive, we believe that it is still representative of the diversity of
the available systems. Moreover, this initial list of analyzed systems is
not definitive nor intended to be limited to WMSs affiliated to the WCI.
We plan to make this terminology available on the WCI website and
broadly advertise its existence so that the list of WMSs mapped to the
terminology continues to grow.

For each WMS, we analyze their published work and incorporate
feedback from community efforts over the past four years. Table 1
summarizes the type of workflows each system is able to execute,
while Table 2 highlights the primary characteristics of each system
7
according to the axes and terms summarized in Fig. 1 and detailed in
Section 2. Table 2 also includes a column named extensions, which
lists additional functionalities that WMSs can support beyond their
default configurations. These extensions may include optional plugins,
third-party integrations, or interoperability with cloud-based storage
and computing resources.
Evolution of Workflow Characteristics. The evolution of WMSs in
the past two decades reflects significant changes in computational
approaches. Initially predominantly task-driven, workflows have ex-
panded to embrace data-driven processing pipelines with the rise of
big data. Modern workflows now integrate both paradigms, particularly
as AI becomes embedded in research, enabling complex analytical
pipelines that respond dynamically to data while preserving the struc-
tured execution needed for reproducibility. The growing complexity
of applications called for greater composability and modern WMSs
now support hierarchical sub-workflows and iterative processes, which
allows researchers to independently develop and optimize components
before integration. These systems have also evolved to support more dy-
namic execution through conditional branches, runtime interventions,
and adaptive processing. However, while technical capabilities con-
tinue to expand, the scientific domains supported by WMSs are often
determined more by social dynamics than by technical limitations.
The Social Dynamics of Workflow System Selection. While the techni-
cal characteristics described in our terminology provide a foundation
for evaluating WMSs, the actual selection process in practice is of-
ten significantly based on social factors. Our community observations
reveal that researchers frequently choose WMSs based not solely on
technical merits, but on established social patterns and connections.
When confronted with multiple technically viable options, scientists
typically gravitate toward systems already in use by their immediate
collaborators, departmental colleagues, or disciplinary communities.
This preference for socially validated tools creates adoption groups
within research domains and institutions. The perceived credibility of
a workflow system is substantially enhanced when it appears in trusted
publications or receives endorsements from respected colleagues. In
addition, institutional knowledge transfer plays a crucial role, as ex-
isting expertise and support infrastructures significantly lower the bar-
rier to adoption. These social dynamics create self-reinforcing adop-
tion patterns that can sometimes override purely technical consider-
ations, highlighting that workflow system selection exists within a
complex socio-technical ecosystem where community practices, estab-
lished knowledge bases, and trusted relationships often determine final
choices. Nevertheless, this understanding emphasizes why developing a
common terminology is particularly valuable, i.e., it provides a frame-
work for discussing technical aspects objectively while acknowledging
the legitimate influence of social factors on technology adoption.
Emerging Patterns in Modern Workflow Systems. Several significant
trends are reshaping the landscape of WMSs. The traditional schema-
based approach to workflow composition is giving way to API-driven
interfaces, reflecting broader programming paradigm shifts and re-
sulting in less abstract, more programmatic workflow descriptions.
This transition enables finer control over workflow execution while
sometimes sacrificing portability across environments. Simultaneously,
WMSs are increasingly addressing the need for dynamic execution ca-
pabilities, responding to growing demands from scientific applications
that require adaptive runtime behaviors and conditional processing
paths. Data management approaches are also evolving in response
to the explosive growth in data volumes and velocity; While file-
based transport remains common, streaming approaches are gaining
traction for near real-time processing needs. When file handling is
required, modern WMSs must navigate complex storage hierarchies
and scale horizontally across distributed storage locations to maintain
performance. These trends collectively point toward more sophisticated
and flexible systems that can adapt to diverse scientific computing
requirements while managing increasingly complex data ecosystems.

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
Table 2
Categorization of various workflow systems with respect to their composition, orchestration, data management, and information capture. In addtion, the last column highlights
exemplary extensions provided beyond this common terminology. This classification represents the state at the time of publication, to the best of the authors knowledge. As many
of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an up-to-date view of their capabilities and characteristics.
 Name Composition Orchestration Data Management Metadata
 Description Abstraction Modularity Planning Execution Transport Storage Capture Extensions
 AiiDA API Intermediate Hierarchical Dynamic Runner File-based Shared Anomaly

Provenance
Plugins
Caching
Fault tolerance
HPC execution

 AirFlow API Intermediate Flat Static Runner Stream Shared Monitoring Dynamic pipelines
 Apollo Ad-hoc

Schema
Abstract Hierarchical Dynamic Resource

Manager
Serverless

Stream Distributed Monitoring Container/serverless
Multi-cloud
Edge/cloud
Multi-objective
scheduling

 COMPSs API Intermediate Flat
Hierarchical

Dynamic Resource
Manager
Serverless

Stream
File-based

Local
Shared
Distributed

Anomaly
Monitoring
Provenance

Adaptive resource
allocation
HPC scalable
Replicated storage

 Cylc Ad-hoc
Schema
API/
templating

Concrete Flat
Hierarchical

Static
Event-
driven

Runner
Resource-
manager

File-based Shared Anomaly
Provenance
Monitoring

HPC Execution
Plugins
Config templating

 Dask API Concrete Flat Dynamic Runner Stream Shared
Distributed

Anomaly
Monitoring
Metadata

Python Libraries
Cluster Management
GPU Accel.

 EFFIS API Intermediate Flat Dynamic Resource
Manager

Stream
File-based

Shared
Distributed
Replicated

Anomaly
Monitoring

 FireWorks API
Ad-hoc
Schema

Intermediate Hierarchical Dynamic Resource
Manager

File-based Shared
Replicated

Anomaly
Monitoring
Provenance

Multi-platform
execution

 Galaxy GUI
Ad-hoc
Schema

Concrete Flat Event-
Driven

Runner Stream Shared Anomaly
Monitoring
Provenance

External Tools
Execution API

 Globus
Compute

API Abstract Hierarchical Dynamic Resource
Manager
Serverless

Stream
File-based

Shared Anomaly
Monitoring

Distributed storage

 HyperFlow Ad-hoc
Schema

Intermediate Flat Static
Dynamic

Runner Stream Shared
Distributed

Provenance Replicated storage
Cloud Integration
Scalability

 Makeflow Standard
(Make)

Abstract Hierarchical Static Runner File-based Shared
Replicated

Anomaly
Monitoring
Provenance

Distributed storage
HPC execution

 Merlin Ad-hoc
Schema

Intermediate Hierarchical Static Runner File-based Shared
Distributed
Replicated

Anomaly
Monitoring
Provenance

Cloud-native
Support

 MLFlow API Intermediate Flat Static Runner File-based
Stream

Shared
Distributed

Monitoring

 NextFlow Ad-hoc
Schema

Abstract Hierarchical Dynamic Runner Stream
File-based

Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Container/Cloud
Support
HPC execution

 Parsl API Abstract Hierarchical Runner Dynamic Stream
File-based

Shared
Distributed

Anomaly
Monitoring

Replicated storage
Dynamic
Parallelization
Cloud/Grid Support

 Pegasus Ad-hoc
Schema
API

Abstract Hierarchical Static Runner File-based Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Multi-level
Scheduling

 Radical API Abstract Hierarchical Static Resource
Manager

File-based Shared
Distributed

Anomaly
Monitoring
Provenance
Metadata

Replicated storage
Scalable

 (continued on next page)
8

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
Table 2 (continued).
 Snakemake Ad-hoc

Schema
Abstract Flat

Hierarchical
Static
Dynamic
Event-driven

Runner File-based Shared
Distributed

Anomaly
Monitoring
Provenance

Plugins
Scripting integration
Software
deployment
integration
Interactive reporting

 StreamFlow Standard
(CWL)

Abstract Hierarchical Dynamic Runner
Resource
Manager

File-based Distributed Anomaly
Provenance

Replicated storage
Cloud Integration

 Swift/T Ad-hoc
Schema

High-level Flat Dynamic Resource
Manager

Stream
File-based

Shared Anomaly
Monitoring

Local Storage [54]
AI/ML Control [55]
Parallel Tasks [56]

 Taskvine API Intermediate Flat Dynamic Resource
Manager

File-based Shared
Distributed
Replicated

Anomaly
Monitoring
Provenance

Serverless
Autoscaling
HPC Execution
Recoverable storage

 Toil Standard
(CWL/WDL)

Abstract Hierarchical Static Runner Stream
File-based

Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Multi-Cloud Support

From Extensions to Building Blocks. As WMSs mature, developers
increasingly extend their native capabilities through additional compo-
nents that address specific needs. This expansion has led to growing
system complexity, challenging developers to maintain modular ar-
chitecture and avoid unwieldy monolithic designs. Rather than each
system independently implementing similar functionalities, a promis-
ing approach for the workflow community involves identifying and
developing shared building blocks, reusable components that provide
common services across different WMSs [46,57,58]. This community-
based approach to the development of modular and interoperable com-
ponents [58] could significantly reduce duplication of efforts while im-
proving sustainability and adoption. Such standardized building blocks
would address fundamental workflow needs like resource management,
data movement, provenance tracking, and fault tolerance, allowing in-
dividual systems to focus on their unique strengths and domain-specific
optimizations. The emergence of these community-maintained compo-
nents represents a potential path toward consolidation in a currently
fragmented ecosystem of over 300 WMSs, promoting interoperability
while preserving the specialized capabilities that particular scientific
domains require.
Workflow Registries in the Scientific Workflow Ecosystem. In addi-
tion to the WMSs themselves, the scientific community has devel-
oped various workflow registries that serve as centralized locations
to share, discover, and reuse workflow definitions in the workflow
ecosystem. These registries complement WMSs by facilitating knowl-
edge exchange and promoting best practices across research domains.
The nf-core [59] repository provides community-maintained curated
Nextflow workflows for bioinformatics with continuous integration to
ensure reproducibility. Similarly, the SnakeMake workflow catalog [60]
offers domain-specific collections. WorkflowHub [61] provides a uni-
fied registry for all computational workflows that links to community
repositories, making workflows findable, accessible, interoperable, and
reusable (FAIR) according to the FAIR principles for workflows [62].
Unlike single-language workflow registries such as nf-core, the AiiDA
plugin registry [63], and Galaxy Toolshed [64] that are associated
with specific workflow platforms, WorkflowHub accepts workflows
from any scientific domain, in any format and in any workflow lan-
guage. Repositories such as Dockstore [65] improve reproducibility
by combining containers, descriptor languages, and test parameter
files to simplify software reuse and dependency management. Dock-
store has facilitated large-scale biomedical research collaborations by
using cloud technologies to increase the FAIRness of computational
resources. WfInstances [26] is a key component of the WfCommons
project that archives real-world workflow instances collected from
workflow executions using various runtime systems. The repository
ecosystem represents an important extension of the workflow land-
scape, bridging technical capabilities with community practices, and
9
helping scientists navigate the complex decision space of workflow
selection and reuse while promoting the recognition of workflows as
artifacts.

4. Process to define the terminology of workflow systems

The terminology for scientific workflow systems presented in this
paper emerged from a systematic, community-driven approach initiated
in 2021 through the Workflows Community Initiative (WCI) [17].
This collaborative effort united workflow system developers, domain
scientists, and workflow practitioners in diverse scientific disciplines
and computing facilities. Through a series of Workflows Community
Summit events [18–23], participants engaged in structured discussions
about key aspects of scientific workflow systems, including essential
features, challenges in interoperability, data management approaches
for execution models and reproducibility requirements. These discus-
sions were documented in technical reports that captured the evolving
understanding of WMSs and established the foundations for a unified
terminology, drawing inspiration from similar efforts in the in situ
processing community [16].

The development of the terminology progressed through several
phases, beginning with an analysis of summit reports and the existing
literature on workflow taxonomies [7–15] to identify common patterns
and classification schemes. A core working group then conceptualized
the framework around five distinct axes to comprehensively cover the
key aspects of workflows and WMSs, followed by the creation of a
draft document defining these axes and their associated terms. This
draft included an initial characterization of 23 representative WMSs
and was circulated to workflow system developers and key stakeholders
for critical feedback. Through multiple iterations of refinement based
on community input, the working group adjusted definitions, added
missing terms, and ensured that the terminology accurately represented
the domain’s complexity while remaining both comprehensible and
practical. The terminology was validated by applying it to classify the
WMSs listed in Table 2, confirming its applicability while revealing
its ability to highlight commonalities and distinctions among diverse
systems.

Throughout this process, the working group adhered to the prin-
ciples of comprehensiveness, accessibility, neutrality, openness, and
practicality. The terminology needed to cover the full spectrum of
workflow system features without favoring particular implementation
approaches, while remaining understandable to both experts and do-
main scientists. It was designed to be descriptive rather than prescrip-
tive, avoiding implications that certain approaches were inherently su-
perior and flexible enough to accommodate future innovations through
the addition of new terms within the established axes. The resulting ter-
minology, as detailed in Section 2 and applied in Section 3, represents

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
the collective expertise of a broad community of workflow researchers
and practitioners, providing a common language for discussing and
comparing WMSs that facilitates both scientific communication and
informed decision-making when selecting workflow technologies for
specific research needs.

5. Related work

Over the past two decades, the scientific workflow community
has proposed several taxonomies to structure the design space of
WMSs. Early taxonomies introduced classification schemes based on
architectural and infrastructural features, including workflow repre-
sentation models (e.g., DAGs versus non-DAGs), scheduling strategies
(i.e., centralized, decentralized, or hierarchical), fault tolerance mech-
anisms (e.g., task retries, checkpointing, alternate resource usage),
and data movement techniques (e.g., file staging, replication, stream-
ing) [7]. These taxonomies highlighted trade-offs between perfor-
mance, fault resilience, and scalability across grid environments. Later
frameworks organized WMS features according to the workflow lifecy-
cle, encompassing composition interfaces (e.g., graphical editors, script-
ing APIs, domain-specific languages), resource mapping mechanisms
(i.e., manual binding versus automated planners), execution engines
(i.e., static versus dynamic schedulers), and provenance capture strate-
gies (i.e., retrospective and prospective metadata logging) [9]. These
classifications helped emphasize usability and reproducibility as central
design goals. More recent comparative analyses have expanded the
evaluation criteria to cover support for heterogeneous execution models
(including iterative, streaming, and conditionally adaptive workflows),
deployment flexibility across HPC, cloud, and hybrid environments,
and mechanisms for handling large-scale, data-intensive workloads
with performance-aware orchestration and optimized I/O strategies [8,
12,13], or focusing on specific features such as fault tolerance [14]
or provenance [15]. Such studies increasingly incorporate practical
interoperability, expressiveness, and usability assessments to guide
system selection in data-intensive scientific domains.

These taxonomies have provided valuable frameworks for evaluat-
ing and selecting WMSs, but they often emphasize either infrastructure-
level capabilities or comparisons based on the workflow lifecycle.
This paper contributes a complementary approach by proposing a
terminology instead of defining yet another hierarchical taxonomy.
The objectives are to offer a vocabulary that captures the essential
properties of WMSs in a flexible and non-prescriptive manner, sup-
port consistent descriptions across heterogeneous systems, and help
researchers express requirements and understand systems’ capabilities
more precisely. Thus, what distinguishes this work is its focus on
standardizing language rather than classification alone. By moving
away from rigid taxonomies and toward shared terms, we expect to
enable clearer communication across domains and stakeholder groups,
and support the design, comparison, and integration of next-generation
WMSs. Grounded in broad community consensus, the proposed set of
terms overlaps with the existing taxonomies, which shows its capacity
to capture the main features of classical WMSs. However, it also reflects
the evolution of workflow practices, with new terms including dy-
namic execution behaviors, modular reuse, and serverless orchestration
models.

6. Conclusion

In this paper, we have introduced a new terminology for scientific
workflow systems. This terminology comprises five axes along which
a workflow system can be characterized. Each axis is then refined via
multiple associated terms. The development of this terminology is a
community-based effort rooted in and supported by the Workflows
Community Initiative (WCI). It summarizes the collective thinking of
WMS developers and members of the leadership and steering commit-
tees of the Workflows Community Initiative and reflects the achieved
10
consensus around an initial set of terms. The main motivation for
this work is to serve as a starting point for a uniformly understood
vocabulary that would help workflow practitioners navigate the vast
market of WMSs. To this end, we used this terminology to characterize
a selection of existing WMSs, identify similarities and differences, and
highlight some broad trends. This approach brought in many different
perspectives and ensured that diverse perspectives were taken into
account. It also provides this terminology with solid foundations and
the backing of a significant number of workflow system developers
and workflow practitioners. This will allow us to expose and explain
the terminology to the respective user communities of the analyzed
frameworks and foster its broader adoption. We also plan to gather and
analyze user feedback and monitor the adoption of the terminology to
conduct an empirical validation of the benefits of the proposed termi-
nology. A concrete metric of success for the adoption of the terminology
will be to be referred to in scientific articles, not by citing this paper but
by using the terminology to describe a WMS or a workflow and position
contributions using a uniformly understood vocabulary accepted by a
broad community.

This terminology should not be considered static. As new systems
are developed and new trends emerge from the community, new terms
and axes may be introduced. A new working group of the WCI will
be formed, which will include this paper’s co-authors to ensure that
the terminology evolves and keeps reflecting the state of the field. This
group will also be in charge of extending the list of characterized WMSs
beyond those that are part of the Workflows Community Initiative.

CRediT authorship contribution statement

Frédéric Suter: Writing – review & editing, Writing – original draft,
Project administration, Methodology, Conceptualization. Tainã Cole-
man: Writing – review & editing, Writing – original draft, Methodology,
Conceptualization. İlkay Altintaş: Writing – review & editing. Rosa M.
Badia: Writing – review & editing. Bartosz Balis: Writing – review &
editing. Kyle Chard: Writing – review & editing. Iacopo Colonnelli:
Writing – review & editing. Ewa Deelman: Writing – review & editing.
Paolo Di Tommaso: Writing – review & editing. Thomas Fahringer:
Writing – review & editing. Carole Goble: Writing – review & editing.
Shantenu Jha: Writing – review & editing. Daniel S. Katz: Writing –
review & editing. Johannes Köster: Writing – review & editing. Ulf
Leser: Writing – review & editing. Kshitij Mehta: Writing – review
& editing. Hilary Oliver: Writing – review & editing. J.-Luc Peterson:
Writing – review & editing. Giovanni Pizzi: Writing – review & editing.
Loïc Pottier: Writing – review & editing. Raül Sirvent: Writing –
review & editing. Eric Suchyta: Writing – review & editing. Douglas
Thain: Writing – review & editing. Sean R. Wilkinson: Writing –
review & editing. Justin M. Wozniak: Writing – review & editing.
Rafael Ferreira da Silva: Writing – review & editing, Writing – original
draft, Project administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors express their deepest appreciation for the insightful
review and comments from Khalid Belhajjame of the University Paris-
Dauphine (France); Luiz Gadelha of the German Cancer Research Cen-
ter (DKFZ, Germany); Johan Gustafsson of Australian BioCommons and
Sehrish Kanwal of the Centre for Cancer Research at the University of
Melbourne (Australia); and Mahnoor Zulfiqar and Stuart Owen of the
University of Manchester (United Kingdom).

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
This research used resources of the Oak Ridge Leadership Comput-
ing Facility at the Oak Ridge National Laboratory, supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725. BSC authors acknowledge projects CEX2021-
001148-S and PID2023-147979NB-C21 from the MCIN/AEI and MI-
CIU/AEI/10.13039/501100011033 and by FEDER, UE, and by the
Departament de Recerca i Universitats de la Generalitat de Catalunya,
research group MPiEDist (2021 SGR 00412). Ewa Deelman is funded
by the U.S. Department of Energy, United States under grant No.
DE-SC0024387 and by the U.S. National Science Foundation under
grant No. 2138286. This work was performed under the auspices
of the US Department of Energy (DOE) by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344. This work has
been supported by the LDRD at Lawrence Livermore National Lab-
oratory (24-SI-005). Giovanni Pizzi acknowledges financial support
from the NCCR MARVEL , a National Centre of Competence in Re-
search, funded by the Swiss National Science Foundation, Switzerland
(grant number 205602), by the Open Research Data Program of the
ETH Board (project ‘‘PREMISE’’: Open and Reproducible Materials
Science Research) and by the SwissTwins project, funded by the Swiss
State Secretariat for Education, Research and Innovation (SERI). Bar-
tosz Balis is funded by the European Union through the Horizon Eu-
rope CLOUDSTARS project (101086248). Douglas Thain acknowledges
support from National Science Foundation, United States Grant OCI-
2411436. Thain, Chard, Jha, and da Silva acknowledge support from
National Science Foundation, United States grant TIP-2346119.

Data availability

No data was used for the research described in the article.

References

[1] S. Williams, Business process modelling improves administrative control,
Automation (1967) 44–50.

[2] J. Wiener, Y. Ioannidis, A moose and a fox can aid scientists with data
management problems, in: Proceedings of the Fourth International Workshop
on Database Programming Languages, 1994, pp. 376–398, http://dx.doi.org/10.
1007/978-1-4471-3564-7_21.

[3] J. Wainer, M. Weske, G. Vossen, C.B. Medeiros, Scientific workflow systems,
in: Proceedings of the NSF Workshop on Workflow and Process Automation
Information Systems, 1996.

[4] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J.
Wileden, A. Wolf, Report from the NSF workshop on workflow and process
automation in information systems, ACM SIGMOD Rec. 25 (1996) 55–67, http:
//dx.doi.org/10.1145/245882.245903.

[5] R.M. Badia Sala, E. Ayguadé Parra, J.J. Labarta Mancho, Workflows for science:
A challenge when facing the convergence of hpc and big data, Supercomput.
Front. Innov. 4 (1) (2017) 27–47.

[6] P. Amstutz, M. Mikheev, M. Crusoe, N. Tijanić, S. Lampa, et al., Existing work-
flow systems, 2024, [Online] https://s.apache.org/existing-workflow-systems.
(Accessed 23 April 2025) Updated 17 March 2025.

[7] J. Yu, R. Buyya, A taxonomy of scientific workflow systems for grid comput-
ing, SIGMOD Rec. 34 (3) (2005) 44–49, http://dx.doi.org/10.1145/1084805.
1084814.

[8] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, E. Deelman, A
characterization of workflow management systems for extreme-scale applications,
Future Gener. Comput. Syst. 75 (2017) 228–238, http://dx.doi.org/10.1016/j.
future.2017.02.026.

[9] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-science: An
overview of workflow system features and capabilities, Future Gener. Comput.
Syst. 25 (5) (2009) 528–540, http://dx.doi.org/10.1016/j.future.2008.06.012.

[10] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A survey of data-intensive scientific
workflow management, J. Grid Comput. 13 (4) (2015) 457–493, http://dx.doi.
org/10.1007/s10723-015-9329-8.

[11] E.M. Bahsi, E. Ceyhan, T. Kosar, Conditional workflow management: A survey
and analysis, Sci. Program. 15 (4) (2007) 680291, http://dx.doi.org/10.1155/
2007/680291.

[12] A.D. Kiran, M.C. Ay, J. Allmer, Criteria for the evaluation of workflow manage-
ment systems for scientific data analysis, J. Bioinform. Syst. Biol. 6 (2) (2023)
16–31.
11
[13] Z. Ahmad, A.I. Jehangiri, M.A. Ala’anzy, M. Othman, R. Latip, S.K.U. Zaman,
A.I. Umar, Scientific workflows management and scheduling in cloud computing:
Taxonomy, prospects, and challenges, IEEE Access 9 (2021) 53491–53508, http:
//dx.doi.org/10.1109/ACCESS.2021.3070785.

[14] D. Poola, M.A. Salehi, K. Ramamohanarao, R. Buyya, Chapter 15 - A taxonomy
and survey of fault-tolerant workflow management systems in cloud and dis-
tributed computing environments, in: I. Mistrik, R. Bahsoon, N. Ali, M. Heisel,
B. Maxim (Eds.), Software Architecture for Big Data and the Cloud, Morgan
Kaufmann, Boston, 2017, pp. 285–320, http://dx.doi.org/10.1016/B978-0-12-
805467-3.00015-6.

[15] S.M. Serra da Cruz, M.L.M. Campos, M. Mattoso, Towards a taxonomy of
provenance in scientific workflow management systems, in: 2009 Congress on
Services - I, 2009, pp. 259–266, http://dx.doi.org/10.1109/SERVICES-I.2009.18.

[16] H. Childs, S. Ahern, J. Ahrens, A. Bauer, J. Bennett, et al., A terminology for in
situ visualization and analysis systems, Int. J. High- Perform. Comput. Appl. 34
(6) (2020) 676–691, http://dx.doi.org/10.1177/1094342020935991.

[17] Workflows community initiative, 2025, https://workflows.community. (Online
Last Accessed March 2025).

[18] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R.M. Badia, B. Balis,
T.a. Coleman, F. Coppens, F. Di Natale, B. Enders, T. Fahringer, R. Filgueira,
G. Fursin, D. Garijo, C. Goble, D. Howell, S. Jha, D.S. Katz, D. Laney, U. Leser,
M. Malawski, K. Mehta, L. Pottier, J. Ozik, J.L. Peterson, L. Ramakrishnan, S.
Soiland-Reyes, D. Thain, M. Wolf, A community roadmap for scientific workflows
research and development, in: Proceedings of the IEEE Workshop on Workflows
in Support of Large-Scale Science, 2021, pp. 81–90, http://dx.doi.org/10.1109/
WORKS54523.2021.00016.

[19] R. Ferreira da Silva, H. Casanova, K. Chard, T. Coleman, D. Laney, D. Ahn,
S. Jha, D. Howell, S. Soiland-Reys, I. Altintas, et al., Workflows community
summit: Advancing the state-of-the-art of scientific workflows management
systems research and development, 2021, arXiv preprint arXiv:2106.05177.

[20] R. Ferreira da Silva, H. Casanova, K. Chard, D. Laney, D. Ahn, S. Jha, C. Goble,
L. Ramakrishnan, L. Peterson, B. Enders, et al., Workflows community summit:
Bringing the scientific workflows community together, 2021, arXiv preprint
arXiv:2103.09181.

[21] R. Ferreira Da Silva, K. Chard, H. Casanova, D. Laney, D. Ahn, S. Jha, W.E.
Allcock, G. Bauer, D. Duplyakin, B. Enders, et al., Workflows community summit:
Tightening the integration between computing facilities and scientific workflows,
2022, arXiv preprint arXiv:2201.07435.

[22] R. Ferreira da Silva, R.M. Badia, V. Bala, D. Bard, T. Bremer, I. Buckley, S.
Caino-Lores, K. Chard, C. Goble, S. Jha, D.S. Katz, D. Laney, M. Parashar, F.
Suter, N. Tyler, T. Uram, I. Altintas, et al., Workflows Community Summit 2022:
A Roadmap Revolution, Tech. Rep. ORNL/TM-2023/2885, Oak Ridge National
Laboratory, 2023, http://dx.doi.org/10.5281/zenodo.7750670.

[23] R. Ferreira Da Silva, D. Bard, K. Chard, S. De witt, I. Foster, T. Gibbs, C. Goble,
W. Godoy, J. Gustafsson, U.-U. Haus, et al., Workflows Community Summit 2024:
Future Trends and Challenges in Scientific Workflows, Tech. Rep., Oak Ridge
National Laboratory (ORNL, 2024, http://dx.doi.org/10.2172/2474744.

[24] M.R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić, H. Ménager,
S. Soiland-Reyes, B. Gavrilović, C. Goble, et al., Methods included: standardizing
computational reuse and portability with the common workflow language,
Commun. ACM 65 (6) (2022) 54–63.

[25] K. Plankensteiner, J. Montagnat, R. Prodan, IWIR: a language enabling portability
across grid workflow systems, in: Proceedings of the 6th Workshop on Workflows
in Support of Large-Scale Science, 2011, pp. 97–106, http://dx.doi.org/10.1145/
2110497.2110509.

[26] T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, R. Ferreira da
Silva, WfCommons: A framework for enabling scientific workflow research and
development, Future Gener. Comput. Syst. 128 (2022) 16–27, http://dx.doi.org/
10.1016/j.future.2021.09.043.

[27] M. Turilli, M. Santcroos, S. Jha, A comprehensive perspective on Pilot-Job
systems, ACM Comput. Surv. 51 (2) (2018) http://dx.doi.org/10.1145/3177851.

[28] S. Caino-Lores, M. Cuendet, J. Marquez, E. Kots, T. Estrada, E. Deelman,
H. Weinstein, M. Taufer, Runtime steering of molecular dynamics simulations
through in situ analysis and annotation of collective variables, in: Proceedings
of the Platform for Advanced Scientific Computing Conference, ACM, 2023,
http://dx.doi.org/10.1145/3592979.3593420.

[29] S.P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch,
T. Müller, A.V. Yakutovich, C.W. Andersen, F.F. Ramirez, C.S. Adorf, F. Gargiulo,
S. Kumbhar, E. Passaro, C. Johnston, A. Merkys, A. Cepellotti, N. Mounet, N.
Marzari, B. Kozinsky, G. Pizzi, AiiDA 1.0, a scalable computational infrastructure
for automated reproducible workflows and data provenance, Sci. Data 7 (1)
(2020) 300, http://dx.doi.org/10.1038/s41597-020-00638-4.

[30] P. Singh, Airflow, A Press, Berkeley, CA, 2019, pp. 67–84, http://dx.doi.org/10.
1007/978-1-4842-4961-1_4.

[31] F. Smirnov, C. Engelhardt, J. Mittelberger, B. Pourmohseni, T. Fahringer, Apollo:
Towards an efficient distributed orchestration of serverless function compositions
in the cloud-edge continuum, in: Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing, 2021, pp. 1–10.

[32] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo, D.
Lezzi, R. Sirvent, D. Talia, R.M. Badia, Servicess: An interoperable programming
framework for the cloud, J. Grid Comput. 12 (2014) 67–91.

F. Suter, T. Coleman et al. Future Generation Computer Systems 174 (2026) 107974
[33] H. Oliver, M. Shin, D. Matthews, O. Sanders, S. Bartholomew, A. Clark, B.
Fitzpatrick, R. van Haren, R. Hut, N. Drost, Workflow automation for cycling
systems, Comput. Sci. Eng. 21 (4) (2019) 7–21, http://dx.doi.org/10.1109/MCSE.
2019.2906593.

[34] M. Rocklin, et al., Dask: Parallel computation with blocked algorithms and task
scheduling, in: SciPy, 2015, pp. 126–132.

[35] E. Suchyta, S. Klasky, N. Podhorszki, M. Wolf, A. Adesoji, C. Chang, J. Choi, P.
Davis, J. Dominski, S. Ethier, I. Foster, K. Germaschewski, B. Geveci, C. Harris,
K. Huck, Q. Liu, J. Logan, K. Mehta, G. Merlo, S. Moore, T. Munson, M. Parashar,
D. Pugmire, M. Shephard, C. Smith, P. Subedi, L. Wan, R. Wang, S. Zhang, The
exascale framework for high fidelity coupled simulations (EFFIS): Enabling whole
device modeling in fusion science, Int. J. High Perform. Comput. Appl. 36 (1)
(2022) 106–128.

[36] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman,
G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, K. Persson, FireWorks: a
dynamic workflow system designed for high-throughput applications, Concurr.
Comput.: Pr. Exp. 27 (17) (2015) 5037–5059, http://dx.doi.org/10.1002/cpe.
3505.

[37] J. Goecks, A. Nekrutenko, J. Taylor, G.T. team@ galaxyproject. org, Galaxy: a
comprehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences, Genome Biol. 11 (2010) 1–13.

[38] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Foster, K.
Chard, Funcx: A federated function serving fabric for science, in: Proceedings of
the 29th International Symposium on High-Performance Parallel and Distributed
Computing, 2020, pp. 65–76.

[39] B. Balis, HyperFlow: A model of computation, programming approach and
enactment engine for complex distributed workflows, Future Gener. Comput.
Syst. 55 (2016) 147–162, http://dx.doi.org/10.1016/j.future.2015.08.015.

[40] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: a portable abstraction
for data intensive computing on clusters, clouds, and grids, in: Proceedings of
the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and
Technologies, 2012, http://dx.doi.org/10.1145/2443416.2443417.

[41] J.L. Peterson, B. Bay, J. Koning, P. Robinson, J. Semler, J. White, R. Anirudh,
K. Athey, P.-T. Bremer, F. Di Natale, D. Fox, J. Gaffney, S. Jacobs, B. Kailkhura,
B. Kustowski, S. Langer, B. Spears, J. Thiagarajan, B. Van Essen, J.-S. Yeom,
Enabling machine learning-ready HPC ensembles with Merlin, 2021, http://dx.
doi.org/10.48550/arXiv.1912.02892.

[42] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S.A. Hong, A. Konwinski, S.
Murching, T. Nykodym, P. Ogilvie, M. Parkhe, et al., Accelerating the machine
learning lifecycle with mlflow, IEEE Data Eng. Bull. 41 (4) (2018) 39–45.

[43] P. Di Tommaso, M. Chatzou, E. Floden, P. Prieto Barja, E. Palumbo, C.
Notredame, Nextflow enables reproducible computational workflows, Nat.
Biotechnol. 35 (4) (2017) 316–319, http://dx.doi.org/10.1038/nbt.3820.

[44] Y. Babuji, A. Woodard, Z. Li, D. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard,
J. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Pervasive parallel programming
in python, in: Proceedings of the 28th ACM International Symposium on
High-Performance Parallel and Distributed Computing, 2019, pp. 25–36.

[45] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. Ferreira da Silva, G. Papadimitriou,
M. Livny, The evolution of the pegasus workflow management software, Comput.
Sci. Eng. 21 (4) (2019) 22–36, http://dx.doi.org/10.1109/MCSE.2019.2919690.

[46] M. Turilli, V. Balasubramanian, A. Merzky, I. Paraskevakos, S. Jha, Middleware
building blocks for workflow systems, Comput. Sci. Eng. 21 (4) (2019) 62–75.

[47] F. Mölder, K. Jablonski, L. Brice, M. Hall, C. Tomkins-Tinch, V. Sochat,
J. Forster, S. Lee, S. Twardziok, A. Wilm, M. Holtgrewe, S. Rahmann, S.
Nahnsen, Sustainable data analysis with snakemake, 2021, http://dx.doi.org/10.
12688/f1000research.29032.2, F1000Research 10:33 [version 2; peer review: 2
approved].

[48] I. Colonnelli, B. Cantalupo, I. Merelli, M. Aldinucci, StreamFlow: Cross-breeding
cloud with HPC, IEEE Trans. Emerg. Top. Comput. 9 (4) (2021) 1723–1737,
http://dx.doi.org/10.1109/TETC.2020.3019202.

[49] J. Wozniak, T. Armstrong, M. Wilde, D. Katz, E. Lusk, I. Foster, Swift/T: Large-
scale application composition via distributed-memory dataflow processing, in:
Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, 2013, pp. 95–102.
12
[50] B. Sly-Delgado, T.S. Phung, C. Thomas, D. Simonetti, A. Hennessee, B. Tovar, D.
Thain, TaskVine: Managing in-cluster storage for high-throughput data intensive
workflows, in: Proceedings of the 18th Workshop on Workflows in Support of
Large-Scale Science, 2023.

[51] J. Vivian, A.A. Rao, F.A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil,
J. Narkizian, A.D. Deran, A. Musselman-Brown, et al., Toil enables reproducible,
open source, big biomedical data analyses, Nature Biotechnol. 35 (4) (2017)
314–316.

[52] S. Leo, M.R. Crusoe, L. Rodríguez-Navas, R. Sirvent, A. Kanitz, P. De Geest, R.
Wittner, L. Pireddu, D. Garijo, J.M. Fernández, et al., Recording provenance of
workflow runs with RO-Crate, PLoS One 19 (9) (2024) e0309210.

[53] K. Raghavan, G. Papadimitriou, H. Jin, A. Mandal, M. Kiran, P. Balaprakash, E.
Deelman, Advancing anomaly detection in computational workflows with active
learning, Future Gener. Comput. Syst. 166 (2025) 107608, http://dx.doi.org/10.
1016/j.future.2024.107608.

[54] F.R. Duro, J.G. Blas, F. Isaila, J. Carretero, J.M. Wozniak, R. Ross, Experimental
evaluation of a flexible I/O architecture for accelerating workflow engines in
ultrascale environments, Parallel Comput. 61 (2017) http://dx.doi.org/10.1016/
j.parco.2016.10.003.

[55] J. Ozik, N.T. Collier, J.M. Wozniak, C. Macal, G. An, Extreme-scale dynamic
exploration of a distributed agent-based model with the EMEWS framework, IEEE
Trans. Comput. Soc. Syst. 5 (3) (2018).

[56] J.M. Wozniak, M. Dorier, R. Ross, T. Shu, T. Kurc, L. Tang, N. Podhorszki,
M. Wolf, MPI jobs within MPI jobs: A practical way of enabling task-level
fault-tolerance in HPC workflows, Futur. Gener. Comput. Syst. 101 (2019) http:
//dx.doi.org/10.1016/j.future.2019.05.020.

[57] M. Hategan-Marandiuc, A. Merzky, N. Collier, K. Maheshwari, J. Ozik, M. Turilli,
A. Wilke, J.M. Wozniak, K. Chard, I. Foster, et al., Psi/j: A portable interface
for submitting, monitoring, and managing jobs, in: 2023 IEEE 19th International
Conference on E-Science (E-Science), IEEE, 2023, pp. 1–10.

[58] A. Alsaadi, M. Hategan-Marandiuc, K. Maheshwari, A. Merzky, M. Titov, M.
Turilli, A. Wilke, J.M. Wozniak, K. Chard, R.F. da Silva, S. Jha, D. Laney,
Exascale workflow applications and middleware: An exaworks retrospective,
2024, arXiv:2411.10637 URL https://arxiv.org/abs/2411.10637.

[59] P.A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm, M.U. Garcia,
P. Di Tommaso, S. Nahnsen, The nf-core framework for community-curated
bioinformatics pipelines, Nature Biotechnol. 38 (3) (2020) 276–278.

[60] S. Grayson, D. Marinov, D.S. Katz, R. Milewicz, Automatic reproduction of work-
flows in the snakemake workflow catalog and nf-core registries, in: Proceedings
of the 2023 ACM Conference on Reproducibility and Replicability, 2023, pp.
74–84.

[61] O.J.R. Gustafsson, S.R. Wilkinson, F. Bacall, S. Soiland-Reyes, S. Leo, L. Pireddu,
S. Owen, N. Juty, J. Fernández, T. Brown, H. Ménager, B. Grüning, S. Capella-
Gutierrez, F. Coppens, C. Goble, Workflowhub: a registry for computational
workflows, Sci. Data 12 (1) (2025) 837, http://dx.doi.org/10.1038/s41597-025-
04786-3.

[62] S.R. Wilkinson, M. Aloqalaa, K. Belhajjame, M.R. Crusoe, B. de Paula Kinoshita,
L. Gadelha, D. Garijo, O.J.R. Gustafsson, N. Juty, S. Kanwal, F.Z. Khan, J.
Köster, K.P. von Gehlen, L. Pouchard, R.K. Rannow, S. Soiland-Reyes, N. Soranzo,
S. Sufi, Z. Sun, B. Vilne, M.A. Wouters, D. Yuen, C. Goble, Applying the
FAIR principles to computational workflows, Sci. Data 12 (1) (2025) 328,
http://dx.doi.org/10.1038/s41597-025-04451-9.

[63] [Online] https://aiidateam.github.io/aiida-registry/.
[64] D. Blankenberg, G. Von Kuster, E. Bouvier, D. Baker, E. Afgan, N. Stoler, G.

Team, J. Taylor, A. Nekrutenko, Dissemination of scientific software with galaxy
toolshed, Genome Biol. 15 (2014) 1–3.

[65] D. Yuen, L. Cabansay, A. Duncan, G. Luu, G. Hogue, C. Overbeck, N. Perez,
W. Shands, D. Steinberg, C. Reid, et al., The dockstore: enhancing a community
platform for sharing reproducible and accessible computational protocols, Nucleic
Acids Res. 49 (W1) (2021) W624–W632.

