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Outline 

 Scientific applications 

– Batches, ensembles, parameter studies, 

– Scientific scripting tools to construct studies 
  

 Performance challenges 
 

 Dataflow computing 

 

 Translation techniques 

 

 Performance results 

 

 Summary 
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Parameter studies 

 Treat each application invocation as a function evaluation in a higher-level 
method 

 

 Run the same application with varying input parameters  

– Parameter sweep: cover a known range of inputs to obtain outputs and produce 
statistical information or visualization 

– Parameter search/optimization: find inputs that produce interesting/extreme 
outputs 

– Application script: evaluate arbitrary user script 
 

 Many scientific applications can be expressed at a high level as relatively 
simple, iterative sweeps of inputs to an function 
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 Original Swift/Karajan implementation 
was designed for the grid 
 

 Supported file/task model directly in 
the language 

 
app (file output) sim(file input) { 

namd2 @input @output 

} 

 

 Provide natural concurrency through 
automatic data flow analysis and task 
scheduling 

 

file o11 = sim(input1); 

file o12 = sim(input2); 

file m   = exchange(o11, o12); 

file i21 = create(o11, m); 

file o21 = sim(i21); 

... 

 

Scientific scripting – Swift background 
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 Separated application script from 
site configuration details 

 

 

 

 

 Supported scientific data sets in 
the language through language 
constructs such as structs, arrays, 
mappers, etc. 

Swift Execution… 
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Swift/Karajan architecture 

 Tasks may be generated by a simple list or by a running program or 
workflow 

 Workflow execution produces “job specifications”- user tasks to be 
executed on the available infrastructure 
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Task generation 

(workflow) 

 
Task distribution 

 

 
Task execution 

 

~500 tasks/s 
~3000 tasks/s 

(Falkon) 
Rate dependent on I/O 

 Swift/Turbine moves the task generation and distribution workload   
to the scalable infrastructure  

Submit site (1 node) Service site (1 node) Compute sites  
(1000’s of nodes) 



Performance challenges for large batches 

 Evaluation of dataflow program is expensive 

– Complex data structures are constructed to maintain program state 

– Each task is represented in memory (typically bound to single node) 
 

 For small application run times, the cost of application start-up, small I/O, 
library searches, etc. is expensive 

 

 Existing HPC schedulers do not support this mode of operation 

– Difficult to use traditional scripting languages 

– Traditional scripting languages do not represent large external concurrency 
anyway (Cf. PyDFlow) 

 

 Solution pursued by Turbine: 

– Allocate Turbine processes en masse 

– Use a specialized user scheduler (ADLB) to rapidly submit user work to agents 

– Process the dataflow program as an ADLB application 
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Swift/Turbine architecture 

 Launch the whole thing as a big MPI program 

 Tasks may be generated by a simple list or by a running program or 
workflow 

 Workflow execution produces “leaf functions”- user tasks to be executed on 
the available infrastructure in the form of C/C++ function calls 
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Task generation 

(Turbine) 

 
Task distribution 

(ADLB) 

 
Task execution 

(ADLB) 

~1000 tasks/s 
per engine 

~10,000 tasks/s 
per server 

very fast 

 Swift/Turbine moves the task generation and distribution workload   
to the scalable infrastructure  

Engine processes 
(1000’s) 

Server processes 
(1000’s) 

Worker processes 
(100,000’s) 



Performance target 

8 
May 20, 2012 

Turbine 

 Need to utilize O(106) concurrency 
 

 For batch of 1000 tasks per core 

– 10 seconds per task 

– 2 hour, 46 minute batch 
 

 Tasks: O(109) 
 

 Tasks/s: O(105) 
 

 Divide cores into workers and control cores 

– Allocate 0.1% as control cores, O(103) 

– Each control core must produce O(100)  tasks/second 

 

Performance requirements for distributing the work of Swift-like task 
generation  for an ADLB-like task distributor on an example exascale 
system: 



Turbine: High level design features 

 Provide a simple compiler target for Swift scripts 

– Natural representation of data-dependent functions 

– Emphasis on calls to external functions 

– Represent script variables, data structures 
 

 Enable fast dataflow processing 

– Data-driven execution actions  

– Subscribe/notify model on any script variable 

– Load balance everything with ADLB 

 

 Integrate with ADLB 

– Asynchronous Dynamic Load Balancer: an MPI library 

• Distributes discrete work units to participating processes 

• Provides advanced features: work types, priorities, location-specific tasks 

• Turbine implementation started with a Tcl extension for ADLB 

• ADLB known to scale to 128,000 processes on IBM Blue Gene/P 

– Turbine evaluates a data flow program in distributed memory using  
ADLB primitives 
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Turbine: User interaction 

 Typical compile/run interface 

– Compiler is highly portable, Turbine code is not machine-specific 

– Runs on x86 clusters, SiCortex, Cray XE6, Blue Gene/P, etc. 
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Turbine: Architecture 

 User starts by developing Swift script 

– Script may be run on any system with any MPI process management settings: 
number of processes, process distribution, etc.  
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– User specifies number of 
engines, servers, etc. at run 
time 

– Dataflow engines 
communicate using ADLB 
work units – “control tasks” 

– Leaf functions execute on 
workers – “worker tasks” 

– Tasks can execute anywhere 
because data is globally 
accessible 

 

 

 



Turbine: Program evaluation 

 Swift is a naturally concurrent, functional language 

– Syntactically looks like C, Java, etc. 

– Consists of composite functions and leaf functions 

• Leaf functions are external programs / function calls to C/C++ 

• Composite functions evaluate Swift code 
 

 “Fundamental Theorem of Swift/Turbine” 

– For generic Swift function call (multiply-valued):  
(y1, y2) = f(x1, x2, x3); 

– Turbine:  

• Creates a record for statement – a “rule” 

• Subscribes to x1, x2, x3 

• When notified, call f() 

– If f() is composite function, load balance body of f() as control task 

» f() is evaluated on an available engine, resulting in more rules 

– If f() is leaf function, load balance f() as worker task 

• Store outputs, resulting in notifications 

– This works for all Swift expressions and control constructs 

– Compiler may need to generate additional composite functions for constructs 
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Turbine: Distributed Future Store 

 The distributed-memory data-driven progress model represents a scalable, 
globally-accessible future store 

– Future: “An object that acts as a proxy for a result that is initially unknown, usually 
because the computation of its value is yet incomplete” (Wikipedia) 

– Turbine implements futures in distributed memory 
 

 Fast dataflow processing 

– Pending actions are indexed and stored in minimal memory 

– Notification is handled elegantly by ADLB tasks 

 

 Data services were patched into ADLB servers 

– Script variables identified by 64-bit integers – Turbine data - TDs 

– Typed: integers, floats, strings as atomic, write-once units 

– Containers: FS-like links  

• Container TD + subscript   _  Member TD 

• Allows for arrays, etc. 

– Generic ADLB data API could conceivably be used directly by ADLB applications 

– API includes, create, store, retrieve, subscribe, insert, etc.  
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Simple data flow example 

 

Model m[]; 

Analysis a[]; 

Validity v[]; 

Plot p[]; 

int n; 

foreach i in [0:n-1] { 

  // run model with random seed 

  m[i] = runModel(i); 

  a[i] = analyze(m[i]); 

  v[i] = validate(m[i]); 

  p[i] = plot(a[i], v[i]); 

} 

 

May 20, 2012 

Turbine 

14 

Nx 

Application concept: 

Turbine engine records: 



Turbine example: Arithmetic 

 

int i = 3, j = 4, k; 

k = i + j; 

trace(k); 

 

 

allocate i integer 3 

allocate j integer 4 

allocate k integer 

call_builtin plus_integer [ $k ] [ $i $j ] 

call_builtin trace [ ] [ $k ] 

 

 Dataflow processing enables typical arithmetic, etc. 

 plus_integer is just a Turbine wrapper around Tcl’s + 

 Variables are in distributed memory: accessible by distributed tasks 
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Turbine example: Conditional program flow 

 

c = extractStatistic(a); 

if (c) { 

  trace("Warning: c is non-zero"); 

} 

 

... # open code 

  call_app extractStatistic [ $c ] [ $a ] 

  statement [ $c ] " if-1 $c"  

} 

 

proc if-1 { c } { 

    set v:c [ retrieve_integer $c ] 

    if (v:c) { 

        allocate s string "Warning: c is non-zero" 

        call_builtin trace [ ] [ $s ] 

    } 

} 
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• Compiler generates data-
dependent function for if 
block body 

• Body is dependent on 
condition value 

• Body could conceivably 
execute anywhere 



Turbine example: Composite functions 

(int f) fib(int n) { 

  if (n > 2) 

  f = fib(n-1) + fib(n-2); 

  ... 

} 

 

proc fib { n f } { 

    ... 

    call_builtin minus_integer [ $t1 ] [ $n $t0 ] 

    # fib(n-1) 

    call_composite fib [ $t2 ] [ $t1 ] 

    ... 

    # fib(n-2) 

    call_composite fib ... 

    call_builtin plus_integer [ $f ] [ $t2 ... ] 

    ... 

} 
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• Example omits Turbine conditional 
• Recursive calls are submitted to ADLB 

for load balancing 
 

• fib() scales to at least 64K processes 
on the BG/P (Armstrong, 2012) 



Turbine example: Data structures 

(int a[][]) eye2() { 

  a[0][0] = 1; 

  a[0][1] = 0; 

  a[1][0] = 0; 

  a[1][1] = 1; 

} 

 

 

proc eye2 { a } { 

    allocate_container a 

    allocate_container t1 

    allocate_container t2 

    allocate i0 integer 0 

    allocate i1 integer 1 

    container_insert_imm $a 0 $t1 

    container_insert_imm $t1 0 $i0 

    container_insert_imm $t1 1 $i1 

    ... 

} 
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• Turbine containers can implement 
Swift’s complex data structures 

• Assignment into an array is a link, not 
a copy 

• Data-dependent container operations 
were necessary to implement Swift 
semantics 



Turbine example: Loops 

  

int b[]; 

foreach i, v in a { 

  b[i] = f(a[i]); 

} 

 

 

    allocate_container b 

    loop a [ a ] loop_1 

} 

 

# inputs: loop counter, loop variable and additionals 

proc loop_1 { i v a b } { 

    set t1 [ container_lookup_imm $a $i ] 

    allocate t2 integer 

    call_composite f [ $t2 ] [ $t1 ] 

    container_insert_imm $b $i $t2 

} 
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• Loop body is implemented as 
compiler-generated function 

• Loop variables are real Turbine data 



Performance: Goals 

 Underlying services:  

– How fast can ADLB distribute tasks? 

– How fast can we access variables in distributed memory?  

 

 Turbine:  

– How fast can we generate a large data structure of futures?  

– How fast can we traverse a large data structure of futures? 

 

 Only measure engine dataflow-related operations: ignore the effect of 
generated user work 

– Attempt to generate task rates sufficient to utilize >100,000 workers 

 

 All results obtained on the SiCortex 

– 6-core nodes at 633 MHz, 4 GB RAM 

– 1 ms latency 

– Somewhat obsolete, but useful for these benchmarks 
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Performance: Raw ADLB operations 

 ADLB configured with  
single server 

 No Turbine features 

 ADLB application 
 

if { $rank == 0 } { 

    set batchfile [ lindex $argv 0 ] 

    set fd [ open $batchfile r ] 

    while { true } { 

        gets $fd line 

        adlb::put $line  

        if { [ eof $fd ] } { break } 

    } 

} 

while { true } { 

        set work [ adlb::get ] 

        if { [ string length $work ] } { 

            eval exec $work 

        } else { break } 

} 
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• Single server maxes out at 
just over 20,000 tasks/s  



Performance: Raw data operations 

 ADLB configured with  
servers == clients 

 

 No Turbine features 
 
 
 
 

 ADLB application 
 

if { [adlb::amserver] } { 

    adlb::server 

} else { 

    set r [ expr $mpi_rank + 1 ] 

    for { set id $r } { $id <= $count } { incr id $mpi_size } { 

        adlb::create $id $adlb::STRING 

        adlb::store  $id $adlb::STRING "data" 

    } 

} 
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Turbine: Distributed data structures 

 Need to access large containers- do not want a single 
container to become a bottleneck 

 

 Use a container-of-containers approach 
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Performance: Distributed range creation 

 Swift:  
int A[] = [1:100*1000*1000]; 
 

 Turbine creates the containers automatically 
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Performance: Distributed loop iteration 

 Swift:  
int A[] = [1:100*1000*1000]; 

for i in A { 

      i; 

   } 
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Musings: Threads vs. Rule engine 

 Turbine engines are single-threaded 

 We do not use a thread abstraction  

 

 Typical approach with futures is to spawn many threads, then just  
block the threads on the futures 

– Requires lightweight threading mechanism 

– Karajan  provides this nicely 

– Swift/Karajan used this with success, but constrained to single node 

– Memory is a constraint  (Stratan, 2008) 

 

 Swift semantics do not require a full threaded model  

– Function calls are referentially transparent – do not need stack 

– Turbine rule engine chains data dependencies to actions with low overhead 

– Nice for distributed memory 
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Musings: Can Turbine replace Karajan? 

 Karajan enables the use of all the CoG providers: 

– Globus, PBS, SGE, Cobalt, SSH,  staging, GridFTP, etc. 

 Turbine can spawn external processes on its workers but would need 
significant work to plug into these remote execution techniques 

 Would enable highly scalable dataflow processing for the grid 
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Engine 
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ExM solution 

 We are currently deploying MosaStore file system services on the Blue Gene/P 
compute nodes 

 

 This will allow external application programs to interact with file data without 
disk congestion 
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Scalable many-task execution (Swift/Turbine) 

 

 
Scalable cache filesystem (MosaStore) 

 



Recap and further reading… 

 Case studies  in storage access by loosely coupled petascale applications  
Petascale Data Storage Workshop at SC’09 
 

 JETS: Language and system support for many-parallel-task computing  
Proc. Workshop on Parallel Programming Models and Systems Software for  
High-End Computing at ICPP, 2011.  

 

 A workflow-aware storage system: An opportunity study 
Proc. CCGrid, 2012. 

 

 ExM: High level dataflow programming for extreme-scale systems  
Proc. HotPar (short paper in poster series), 2012.  
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Task generation 

 

 
Task distribution 

 

 
Task execution 

 

Swift, Turbine Coasters, ADLB, JETS Collective Data 
Management 



Thanks 

 

 Thanks to the organizers 
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Questions 
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