
 Turbine: A distributed-memory dataflow engine

 for extreme-scale many-task applications

Justin M Wozniak, Timothy G. Armstrong, Ketan Maheshwari,
Ewing L. Lusk, Daniel S. Katz, Michael Wilde, and Ian T. Foster

Argonne National Laboratory and the University of Chicago

 Presented at:

SWEET
Scottsdale, AZ – May 20, 2012

Outline

 Scientific applications

– Batches, ensembles, parameter studies,

– Scientific scripting tools to construct studies

 Performance challenges

 Dataflow computing

 Translation techniques

 Performance results

 Summary

May 20, 2012

Turbine

2

Parameter studies

 Treat each application invocation as a function evaluation in a higher-level
method

 Run the same application with varying input parameters

– Parameter sweep: cover a known range of inputs to obtain outputs and produce
statistical information or visualization

– Parameter search/optimization: find inputs that produce interesting/extreme
outputs

– Application script: evaluate arbitrary user script

 Many scientific applications can be expressed at a high level as relatively
simple, iterative sweeps of inputs to an function

May 20, 2012
3

Turbine

 Original Swift/Karajan implementation
was designed for the grid

 Supported file/task model directly in
the language

app (file output) sim(file input) {

namd2 @input @output

}

 Provide natural concurrency through
automatic data flow analysis and task
scheduling

file o11 = sim(input1);

file o12 = sim(input2);

file m = exchange(o11, o12);

file i21 = create(o11, m);

file o21 = sim(i21);

...

Scientific scripting – Swift background

May 20, 2012

Turbine

4

 Separated application script from
site configuration details

 Supported scientific data sets in
the language through language
constructs such as structs, arrays,
mappers, etc.

Swift Execution…

sim

sim

e
x
c
h
a
n
g
e

input1
o11

m

input2 o12

sim o21

sim
i22

create

create

i21

o22

script apps sites

Swift/Karajan architecture

 Tasks may be generated by a simple list or by a running program or
workflow

 Workflow execution produces “job specifications”- user tasks to be
executed on the available infrastructure

May 20, 2012

Turbine

5

Task generation

(workflow)

Task distribution

Task execution

~500 tasks/s
~3000 tasks/s

(Falkon)
Rate dependent on I/O

 Swift/Turbine moves the task generation and distribution workload
to the scalable infrastructure

Submit site (1 node) Service site (1 node) Compute sites
(1000’s of nodes)

Performance challenges for large batches

 Evaluation of dataflow program is expensive

– Complex data structures are constructed to maintain program state

– Each task is represented in memory (typically bound to single node)

 For small application run times, the cost of application start-up, small I/O,
library searches, etc. is expensive

 Existing HPC schedulers do not support this mode of operation

– Difficult to use traditional scripting languages

– Traditional scripting languages do not represent large external concurrency
anyway (Cf. PyDFlow)

 Solution pursued by Turbine:

– Allocate Turbine processes en masse

– Use a specialized user scheduler (ADLB) to rapidly submit user work to agents

– Process the dataflow program as an ADLB application

May 20, 2012

Turbine

6

Swift/Turbine architecture

 Launch the whole thing as a big MPI program

 Tasks may be generated by a simple list or by a running program or
workflow

 Workflow execution produces “leaf functions”- user tasks to be executed on
the available infrastructure in the form of C/C++ function calls

May 20, 2012

Turbine

7

Task generation

(Turbine)

Task distribution

(ADLB)

Task execution

(ADLB)

~1000 tasks/s
per engine

~10,000 tasks/s
per server

very fast

 Swift/Turbine moves the task generation and distribution workload
to the scalable infrastructure

Engine processes
(1000’s)

Server processes
(1000’s)

Worker processes
(100,000’s)

Performance target

8
May 20, 2012

Turbine

 Need to utilize O(106) concurrency

 For batch of 1000 tasks per core

– 10 seconds per task

– 2 hour, 46 minute batch

 Tasks: O(109)

 Tasks/s: O(105)

 Divide cores into workers and control cores

– Allocate 0.1% as control cores, O(103)

– Each control core must produce O(100) tasks/second

Performance requirements for distributing the work of Swift-like task
generation for an ADLB-like task distributor on an example exascale
system:

Turbine: High level design features

 Provide a simple compiler target for Swift scripts

– Natural representation of data-dependent functions

– Emphasis on calls to external functions

– Represent script variables, data structures

 Enable fast dataflow processing

– Data-driven execution actions

– Subscribe/notify model on any script variable

– Load balance everything with ADLB

 Integrate with ADLB

– Asynchronous Dynamic Load Balancer: an MPI library

• Distributes discrete work units to participating processes

• Provides advanced features: work types, priorities, location-specific tasks

• Turbine implementation started with a Tcl extension for ADLB

• ADLB known to scale to 128,000 processes on IBM Blue Gene/P

– Turbine evaluates a data flow program in distributed memory using
ADLB primitives

May 20, 2012

Turbine

9

Turbine: User interaction

 Typical compile/run interface

– Compiler is highly portable, Turbine code is not machine-specific

– Runs on x86 clusters, SiCortex, Cray XE6, Blue Gene/P, etc.

May 20, 2012

Turbine

10

Turbine: Architecture

 User starts by developing Swift script

– Script may be run on any system with any MPI process management settings:
number of processes, process distribution, etc.

May 20, 2012
11

Turbine

– User specifies number of
engines, servers, etc. at run
time

– Dataflow engines
communicate using ADLB
work units – “control tasks”

– Leaf functions execute on
workers – “worker tasks”

– Tasks can execute anywhere
because data is globally
accessible

Turbine: Program evaluation

 Swift is a naturally concurrent, functional language

– Syntactically looks like C, Java, etc.

– Consists of composite functions and leaf functions

• Leaf functions are external programs / function calls to C/C++

• Composite functions evaluate Swift code

 “Fundamental Theorem of Swift/Turbine”

– For generic Swift function call (multiply-valued):
(y1, y2) = f(x1, x2, x3);

– Turbine:

• Creates a record for statement – a “rule”

• Subscribes to x1, x2, x3

• When notified, call f()

– If f() is composite function, load balance body of f() as control task

» f() is evaluated on an available engine, resulting in more rules

– If f() is leaf function, load balance f() as worker task

• Store outputs, resulting in notifications

– This works for all Swift expressions and control constructs

– Compiler may need to generate additional composite functions for constructs

May 20, 2012

12

Turbine

Turbine: Distributed Future Store

 The distributed-memory data-driven progress model represents a scalable,
globally-accessible future store

– Future: “An object that acts as a proxy for a result that is initially unknown, usually
because the computation of its value is yet incomplete” (Wikipedia)

– Turbine implements futures in distributed memory

 Fast dataflow processing

– Pending actions are indexed and stored in minimal memory

– Notification is handled elegantly by ADLB tasks

 Data services were patched into ADLB servers

– Script variables identified by 64-bit integers – Turbine data - TDs

– Typed: integers, floats, strings as atomic, write-once units

– Containers: FS-like links

• Container TD + subscript _ Member TD

• Allows for arrays, etc.

– Generic ADLB data API could conceivably be used directly by ADLB applications

– API includes, create, store, retrieve, subscribe, insert, etc.

May 20, 2012

Turbine

13

Simple data flow example

Model m[];

Analysis a[];

Validity v[];

Plot p[];

int n;

foreach i in [0:n-1] {

 // run model with random seed

 m[i] = runModel(i);

 a[i] = analyze(m[i]);

 v[i] = validate(m[i]);

 p[i] = plot(a[i], v[i]);

}

May 20, 2012

Turbine

14

Nx

Application concept:

Turbine engine records:

Turbine example: Arithmetic

int i = 3, j = 4, k;

k = i + j;

trace(k);

allocate i integer 3

allocate j integer 4

allocate k integer

call_builtin plus_integer [$k] [$i $j]

call_builtin trace [] [$k]

 Dataflow processing enables typical arithmetic, etc.

 plus_integer is just a Turbine wrapper around Tcl’s +

 Variables are in distributed memory: accessible by distributed tasks

May 20, 2012

Turbine

15

S
w

i
f
t

T
u
r
b
i
n
e

Turbine example: Conditional program flow

c = extractStatistic(a);

if (c) {

 trace("Warning: c is non-zero");

}

... # open code

 call_app extractStatistic [$c] [$a]

 statement [$c] " if-1 $c"

}

proc if-1 { c } {

 set v:c [retrieve_integer $c]

 if (v:c) {

 allocate s string "Warning: c is non-zero"

 call_builtin trace [] [$s]

 }

}

May 20, 2012

Turbine

16

S
w

i
f
t

T
u
r
b
i
n
e

• Compiler generates data-
dependent function for if
block body

• Body is dependent on
condition value

• Body could conceivably
execute anywhere

Turbine example: Composite functions

(int f) fib(int n) {

 if (n > 2)

 f = fib(n-1) + fib(n-2);

 ...

}

proc fib { n f } {

 ...

 call_builtin minus_integer [$t1] [$n $t0]

 # fib(n-1)

 call_composite fib [$t2] [$t1]

 ...

 # fib(n-2)

 call_composite fib ...

 call_builtin plus_integer [$f] [$t2 ...]

 ...

}

May 20, 2012

Turbine

17

S
w

i
f
t

T
u
r
b
i
n
e

• Example omits Turbine conditional
• Recursive calls are submitted to ADLB

for load balancing

• fib() scales to at least 64K processes
on the BG/P (Armstrong, 2012)

Turbine example: Data structures

(int a[][]) eye2() {

 a[0][0] = 1;

 a[0][1] = 0;

 a[1][0] = 0;

 a[1][1] = 1;

}

proc eye2 { a } {

 allocate_container a

 allocate_container t1

 allocate_container t2

 allocate i0 integer 0

 allocate i1 integer 1

 container_insert_imm $a 0 $t1

 container_insert_imm $t1 0 $i0

 container_insert_imm $t1 1 $i1

 ...

}

May 20, 2012

Turbine

18

S
w

i
f
t

T
u
r
b
i
n
e

• Turbine containers can implement
Swift’s complex data structures

• Assignment into an array is a link, not
a copy

• Data-dependent container operations
were necessary to implement Swift
semantics

Turbine example: Loops

int b[];

foreach i, v in a {

 b[i] = f(a[i]);

}

 allocate_container b

 loop a [a] loop_1

}

inputs: loop counter, loop variable and additionals

proc loop_1 { i v a b } {

 set t1 [container_lookup_imm $a $i]

 allocate t2 integer

 call_composite f [$t2] [$t1]

 container_insert_imm $b $i $t2

}

May 20, 2012

Turbine

19

S
w

i
f
t

T
u
r
b
i
n
e

• Loop body is implemented as
compiler-generated function

• Loop variables are real Turbine data

Performance: Goals

 Underlying services:

– How fast can ADLB distribute tasks?

– How fast can we access variables in distributed memory?

 Turbine:

– How fast can we generate a large data structure of futures?

– How fast can we traverse a large data structure of futures?

 Only measure engine dataflow-related operations: ignore the effect of
generated user work

– Attempt to generate task rates sufficient to utilize >100,000 workers

 All results obtained on the SiCortex

– 6-core nodes at 633 MHz, 4 GB RAM

– 1 ms latency

– Somewhat obsolete, but useful for these benchmarks

May 20, 2012

Turbine

20

Performance: Raw ADLB operations

 ADLB configured with
single server

 No Turbine features

 ADLB application

if { $rank == 0 } {

 set batchfile [lindex $argv 0]

 set fd [open $batchfile r]

 while { true } {

 gets $fd line

 adlb::put $line

 if { [eof $fd] } { break }

 }

}

while { true } {

 set work [adlb::get]

 if { [string length $work] } {

 eval exec $work

 } else { break }

}

May 20, 2012

Turbine

21

• Single server maxes out at
just over 20,000 tasks/s

Performance: Raw data operations

 ADLB configured with
servers == clients

 No Turbine features

 ADLB application

if { [adlb::amserver] } {

 adlb::server

} else {

 set r [expr $mpi_rank + 1]

 for { set id $r } { $id <= $count } { incr id $mpi_size } {

 adlb::create $id $adlb::STRING

 adlb::store $id $adlb::STRING "data"

 }

}

May 20, 2012

Turbine

22

Turbine: Distributed data structures

 Need to access large containers- do not want a single
container to become a bottleneck

 Use a container-of-containers approach

May 20, 2012

Turbine

23

Server 1 Server 2

Server 4

Server 3

C0 C1

Server 5 Server 6

C

D0 D2 D1

Performance: Distributed range creation

 Swift:
int A[] = [1:100*1000*1000];

 Turbine creates the containers automatically

May 20, 2012

Turbine

24

Performance: Distributed loop iteration

 Swift:
int A[] = [1:100*1000*1000];

for i in A {

 i;

 }

May 20, 2012

Turbine

25

Musings: Threads vs. Rule engine

 Turbine engines are single-threaded

 We do not use a thread abstraction

 Typical approach with futures is to spawn many threads, then just
block the threads on the futures

– Requires lightweight threading mechanism

– Karajan provides this nicely

– Swift/Karajan used this with success, but constrained to single node

– Memory is a constraint (Stratan, 2008)

 Swift semantics do not require a full threaded model

– Function calls are referentially transparent – do not need stack

– Turbine rule engine chains data dependencies to actions with low overhead

– Nice for distributed memory

May 20, 2012

Turbine

26

Musings: Can Turbine replace Karajan?

 Karajan enables the use of all the CoG providers:

– Globus, PBS, SGE, Cobalt, SSH, staging, GridFTP, etc.

 Turbine can spawn external processes on its workers but would need
significant work to plug into these remote execution techniques

 Would enable highly scalable dataflow processing for the grid

May 20, 2012

Turbine

27

Engine

Turbine (now) Karajan

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Engine

Worker

Worker

Engine

Worker

Worker

Engine

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Remote:

Local:

Turbine/Grid

Engine

Worker

Engine

Worker
Future
work

Submit the
whole thing

ExM solution

 We are currently deploying MosaStore file system services on the Blue Gene/P
compute nodes

 This will allow external application programs to interact with file data without
disk congestion

May 20, 2012

Turbine

28

Scalable many-task execution (Swift/Turbine)

Scalable cache filesystem (MosaStore)

Recap and further reading…

 Case studies in storage access by loosely coupled petascale applications
Petascale Data Storage Workshop at SC’09

 JETS: Language and system support for many-parallel-task computing
Proc. Workshop on Parallel Programming Models and Systems Software for
High-End Computing at ICPP, 2011.

 A workflow-aware storage system: An opportunity study
Proc. CCGrid, 2012.

 ExM: High level dataflow programming for extreme-scale systems
Proc. HotPar (short paper in poster series), 2012.

May 20, 2012

Turbine

29

Task generation

Task distribution

Task execution

Swift, Turbine Coasters, ADLB, JETS Collective Data
Management

Thanks

 Thanks to the organizers

 Grants:
This research is supported by the DOE Office of Science, Advanced Scientific Computing Research X-
Stack program, under contracts DE-AC02-06CH11357 FWP 57810 and DE-FC02-06ER25777.

May 20, 2012
30

Turbine

Questions

May 20, 2012
31

Turbine

