
Evaluating Cloud Computing Techniques for Smart Power Grid Design
Using Parallel Scripting

Ketan Maheshwari‡, Ken Birman∗, Justin M. Wozniak‡, Devin Van Zandt†
∗Department of Computer Science

Cornell University, Ithaca, NY 14853
†GE Energy Management, Schenectady, NY 12345
‡MCS Division, Argonne National Laboratory

Argonne, IL 60439

Abstract—Applications used to evaluate next-generation elec-
trical power grids (“smart grids”) are anticipated to be
compute and data-intensive. In this work, we parallelize and
improve performance of one such application which was
run sequentially prior to the use of our cloud-based con-
figuration. We examine multiple cloud computing offerings,
both commercial and academic, to evaluate their potential
for improving the turnaround time for application results.
Since the target application does not fit well into existing
computational paradigms for the cloud, we employ parallel
scripting tool, as a first step toward a broader program of
adapting portable, scalable computational tools for use as
enablers of the future smart grids. We use multiple clouds as
a way to reassure potential users that the risk of cloud-vendor
lock-in can be managed. This paper discusses our methods and
results. Our experience sheds light on some of the issues facing
computational scientists and engineers tasked with adapting
new paradigms and infrastructures for existing engineering
design problems.

Keywords-Parallel scripting, cloud computing, smart grid

I. INTRODUCTION

With the advent of cloud computing, users from multiple
application areas are becoming interested in leveraging in-
expensive, “elastic” computational resources from external
services. Engineers designing an autonomic electrical power
grid (“smart grid”) constitute one such user group. The
smart grid will require major technological steps, such as
the deployment of synchrophasor based monitoring tech-
nologies that could enable real-time grid-state estimation
on the production and delivery side of the equation, and
the widespread use of smart-meter based technologies to
optimize behavior on the consumption side [1]–[3]. As the
size of the systems modeled by the software and the number
of sensitivities increase, the need to improve computation
time for the analysis engines has become crucial.

Our overarching premise is that cloud computing may
be best matched to the computation and data management
needs of the smart grid, but also that a step-by-step process
will be required to learn to carry out tasks familiar from
other settings in a smart-grid environment and that, over
time, a series of increasingly difficult problems will arise.

In this paper we describe our experience in deploying
one representative commercial smart grid application to
the cloud, and leveraging resources from multiple cloud
allocations seamlessly with the help of the Swift parallel
scripting framework [4]. The application is used for planning
and currently has a time horizon suited primarily to relatively
long-term resource allocation questions. Our goal here is to
show that cloud resources can be exploited to gain massive
speedups without locking the solution to any specific cloud
vendor. We present the following

1) A seamless approach for leveraging cloud resources
from multiple vendors to perform smart grid applica-
tions;

2) A use case that involved parallelizing an existing smart
grid application and deploying it on cloud resources;

3) An evaluation of the resulting paradigm for portability
and usability to novel application areas.

Applications from many engineering and scientific fields
show similar complexities in their characteristics and com-
putational requirements. Thus, one such deployment brings
the promise for more applications. The potential benefit is
that once the applications are coded, the effort invested pays
itself off over a long period by applying the same pattern to
similar applications. At the same time, however, we attempt
to reduce the complexity of application development by
using parallel scripting.

Scripting has been a popular method of automation among
computational users. Parallel scripting builds on the same
familiar practice, with the advantage of providing paral-
lelization suitably interfaced to the underlying computational
infrastructures. Adapting applications to these models of
computation and then deploying the overall solution, how-
ever, is still a challenge. Parallel scripting has reasonably
addressed this challenge by playing a role in deployment
of many solutions on HPC platforms [5]. A familiar C-like
syntax and known semantics of parallel scripting make the
process usable and adaptable. Its flexibility and expressibility
far exceed that of rigid frameworks such as MapReduce.

Traditionally, such applications have been run on es-



tablished computing facilities. However, organizations have
either halted acquisition of new clusters or downsized ex-
isting clusters because of their high maintenance costs.
Clouds are different from organizational clusters: from a
management point of view, the cloud resource provisioning
model is accounted at fine granularity of resources; from
a computational point of view, the work cycles are readily
available with virtualized resources and absence of shared
scheduling. In certain contexts, clouds present a model
of computation infrastructure management where clusters
might not be suitable [6].

In practice, cloud allocations are granted to groups in
institutions and often a group ends up having its slice from
multiple cloud allocations pies. Furthermore, one is limited
by the allocation policies on how much of the resources
one can obtain simultaneously from a single allocation. For
instance, standard Amazon EC2 allocation allows only 20
cloud instances per allocation for a region at a time [7].
Even when cloud resources are virtualized, accessing re-
sources across multiple clouds is not trivial and involves
specialized setup, configuration, and administrative routines
posing significant challenges.

In our implementation, we seamlessly and securely span
application runs to multiple clouds. We use Amazon’s EC2,
Cornell’s RedCloud (www.cac.cornell.edu/redcloud), and the
NSF-funded FutureGrid (portal.FutureGrid.org) cloud in
this study. Using Swift, we orchestrate the application tasks
that they run on multiple clouds in parallel while preserving
the application semantics.

II. APPLICATION CHARACTERIZATION

The GE Energy Management’s Energy Consulting group
has developed the Concorda Software Suite, which includes
the Multi Area Production Simulation (MAPS) and the Multi
Area Reliability Simulation (MARS). These products are
internationally known and widely used [8] for planning
and simulating smart power grids, assessing the economic
performance of large electricity markets, and evaluating
generation reliability.

The MARS modeling software enables the electric utility
planner to quickly and accurately assess the ability of a
power system, comprising a number of interconnected areas,
to adequately satisfy the customer load requirements. Based
on a full, sequential Monte Carlo simulation model [9],
MARS performs a chronological hourly simulation of the
system, comparing the hourly load demand in each area
with the total available generation in the area, which has
been adjusted to account for planned maintenance and ran-
domly occurring forced outages. Areas with excess capacity
will provide emergency assistance to those areas that are
deficient, subject to the transfer limits between the areas.

MARS consists of two major modules: an input data pro-
cessor and the Monte Carlo simulator. The input processor
reads and checks the study data, and arranges it into a

format that allows the Monte Carlo module to quickly and
efficiently access the data as needed for the simulation.
The Monte Carlo module reads the data from the input
processor and performs the actual simulation, replicating the
year until the stopping criterion is satisfied. The execution
of MARS can be divided by executing each replication–
marsMain separately and merging marsOut, the generated
output for all replications at the end.

Figure 1: Characterization of the GE MARS application
dataflow

A dataflow characterization diagram of MARS is shown
in Figure 1. The application is a two-stage computational
application involving data flow characteristics. The input to
first stage consists of raw data, control files, and a license
file. The input amounts to 6.1 MB in size. The output
to this stage consists of the intermediate results of each
replica. The size of outputs varies between 193 and 352 MB,
amounting to 275 MB on average. For a medium-sized run,
100 such instances are executed followed by one merge task,
totalling 101 jobs. This size could expand to between 1,000
and 10,000 runs in practice. The execution time of each
marsMain job on a lightly (load average between 0.0 and
0.5) and heavily loaded (load average between 2.0 and 3.5)
local host is 35.65 and 37.5 seconds, respectively. However,
the time varies significantly depending on the processor
load and available compute cycles on the target virtualized
environment. See table I for execution time averaged over
100 runs on individual cloud instances for the three cloud
infrastructure subjects of this experiment. The marsOut stage
is highly optimized data merging stage, which takes between
5 and 15 seconds on the resources used for this study. One
marsMain job submitted from a submit-host will involve the
following steps: (1) stage in the 6.2 MB of input data from
submit-host to cloud instance; (2) execute the marsMain job;
and (3) stage out the 275 MB of intermediate results from
cloud instance to the submit-host. These steps are performed
each time the marsMain application is invoked (100 times
in this study). The intermediate results are important for
application and used for analysis and archival purposes.
The marsOut stage requires a partial subset of intermediate
results, which amounts to 150 MB for a single run. The ul-
timate result of marsOut amounts to 5.6 MB. Consequently
the marsOut application run involves the following steps: (1)



stage in the 150 MB of input data from submit-host to cloud
instance; (2) execute the marsOut job; and (3) stage out the
5.6 MB of results from cloud instance to the submit-host.

III. CLOUD INFRASTRUCTURES

In this section, we briefly describe the cloud infrastruc-
tures used in the current work and their key properties.

Amazon EC2: Amazon EC2 is a large-scale commer-
cial cloud infrastructure (aws.amazon.com/ec2/ ). Amazon
offers compute resources on demand from its virualized
infrastructures spanning eight centers from worldwide ge-
ographical regions. Three of the centers are in the United
States, two in Asia, and one each in the EU, South America,
and Australia. An institutional allocation from Amazon will
typically allow one to acquire 20 instances of any size
per region. In addition, Amazon provides a mass storage
device called S3, which can be configured to be mounted
on instances as a local file-system. For the current work, we
considered the US-based regions mainly for the proprietary
and secondly for performance reasons. Consequently, we
were limited to a maximum of 60 instances from the Ama-
zon EC2 cloud. Amazon provides a web-based console and
a native command-line implementation to create, configure,
and destroy resources.

Cornell RedCloud: Cornell’s Advanced Computing
Center offers a small-scale cloud computing infrastructure
through its RedCloud facility . One RedCloud allocation typ-
ically allows a maximum of 35 cloud instances drawn from
a single 96-core physical HPC cluster on a multi-Gigabit
network backbone. The resources are managed through a
command-line implementation of the Eucalyptus [10] mid-
dleware tool.

NSF FutureGrid Cloud: The NSF-funded FutureGrid
cloud is administered by Indiana University. It offers a
variety of resources via a multitude of interfaces. Cur-
rently, it offers cloud resources via three different interfaces:
Eucalyptus, Nimbus (www.nimbusproject.org), and Open-
Stack (www.openstack.org). The total number of resources
at FutureGrid is close to 5000 CPU cores and 220 TB
of storage from more than six physical clusters. We use
the resources offered by one such cluster via the Nebula
middleware.

Neither RedCloud nor FutureGrid offers a web-based
interface to manage resources similar to the one offered by
Amazon EC2.

IV. PARALLEL SCRIPTING IN CLOUDS

We parallelize our application using the parallel scripting
paradigm for high performance computing. Swift has been
traditionally used on clusters, supercomputers, and computa-
tional grids. Recently, it also has gained momentum on cloud
environments. In the present work, we employ Swift to run
our application on multiple clouds in a seamless fashion. We
use Swift and related technologies to express, configure, and
orchestrate the application tasks.

Swift script: Swift script provides an efficient and com-
pact C-like syntax and advanced parallel semantics to ex-
press an application’s tasks and dataflow. Parallel constructs
such as foreach and future variables provide for implicit
parallelism. Advanced mappers and app definitions easily
map script variables to application data and executables,
respectively.

Coasters: The Swift Coasters [11] framework provides
a service-worker interfaced with Swift task dispatching
framework on the inside and a variety of computing infras-
tructures from the outside. The execution provider schedules
and coordinates application execution on target infrastruc-
ture. The data provider stages data. Coaster services connect
to worker agents on remote nodes securely using ssh tunnels,
thus providing crucial data communications security across
clouds.

Collective Data Management: Collective data man-
agement (CDM) [5] techniques improve the data staging
performance when data is available on shared filesystems. It
creates symbolic links instead of actually moving data, thus
saving on data staging time.

Karajan Execution Engine: The Karajan engine [12]
orchestrates the tasks defined and ensures the right connec-
tions between the tasks dictated by dataflow semantics of
application.

V. EXPERIMENTS: SETUP AND IMPLEMENTATION

In this section, we describe the experiments conducted on
cloud infrastructures via a parallel scripting implementation
and execution of GE MARS application using the Swift
framework.

Bringing up cloud instances: Suitable “machine-
images” were prepared in advance for each of the cloud
infrastructures. This is a one-time activity: the images can
be stored in the cloud account and reused to create instances.
The application binaries and supporting libraries were pre-
installed to these images. No special software was required
for Swift, since coaster workers run standard Perl, which
is installed by default. Data is largely dynamic, so it is of
little practical value to have data on the images. A separate
Swift script was used to run in parallel to bring up the cloud
instances on multiple clouds. In our case, parameterized
commands to the cloud middleware run in parallel to bring
up a desired combination of cloud instances.

Data movement: The data from the first stage of
computation, marsMain, is required as input to the second
stage, marsOut. Since there are 100 instances of results from
first stage, they all would be required to stage at the location
of the execution of second stage. In order to avoid this
expensive staging, the lightweight marsOut was set up to
run on the submit-host.

Security and firewalls: Each of the cloud environments
we used has its own security policies; and in all cases the
connection to outside world were closed, which required



localhost1 localhost2 Amazon EC2 Cornell RedCloud FutureGrid
35.65 ±5.01 49.62 ±7.41 68.49 ±11.43 55.21 ±10.41 47.89 ±7.71

Table I: Average execution time in seconds of a single marsMain task with standard deviation on the three cloud instances

special configuration to open. However, the port 22 for
secure ssh connections was open for all cases. We used the
ssh port forwarding and tunneling strategy, which saved us
the effort of configuring firewalls on each of the instances
while providing a secure data channel.

Distributed file system: A parallelizing environment
must run efficiently in both a shared and a distributed file
system. In order to form run strategies that spans multiple
infrastructures.

Network bias: In order to avoid a network affinity bias,
the experiments were conducted from a remote machine out-
side the network domains of the target cloud infrastructures,
especially the Cornell RedCloud.

1 type file;
app (file _maino,file _res[],file _binres) marsmain (...){

3 mars @_mainctl stdout=@_maino stdin="/dev/null";
}

5 app (file _outo, file _outres[]) marsout (...){
marsout @_outctl stdout=@_outo;

7 }
// list of control files

9 string ctlfilelist[] = readData ("ctlfilelist.txt");

11 //map the items in above list to actual files
file ctl[]<array_mapper; files=ctlfilelist>;

13 file inp[]<filesys_mapper; location="infiles/">;
file out[]<simple_mapper; location="outs">;

15

string binresfilelist[] = readData ("binresfilelist.txt");
17 file binres[]<array_mapper; files=binresfilelist>;

// Licence file
19 file licence<single_file_mapper; file="MARS-LIC">;

foreach ctlfile, i in ctl {
21 file res[]<ext; exec="mapper.sh", arg=i>;

(out[i],res,binres[i]) = marsmain (ctlfile,licence,inp);
23 }

file outo<"outo.txt">;
25 file outctl<"mars-out.ctl">;

file msgerr<"result0/mars.ot09">;
27 string outresfilelist[] = readData("outresfilelist.txt");

file outres[]<array_mapper; files=outresfilelist>;
29 (outo, outres)=marsout (outctl, binres, msgerr);

Listing 1: A Swift script specification of GE MARS appli-
cation: lines 2-7 define app calls; lines 20-23 make parallel
calls to marsMain.

In less than 30 lines of code, Swift can specify the
application flow. Although the real work is done by the Swift
framework and application code, the abstraction helps users
rapidly express, parallelize, and productionalize applications.

VI. RESULTS

In this section, we present the results we obtained by
parallelizing the application and deploying it on multiple
clouds: Amazon EC2, Cornell’s RedCloud, and NSF-funded
FutureGrid cloud.

We first present the cloud characterization results by
measuring network and data-movement properties of clouds.
We then perform our application execution on incrementally
sophisticated scenarios: starting from a single localhost to
single cloud in serial mode to multiple clouds in task-
parallel mode. The application submission was done from
a single remote submit-host. The application data resides
on the submit-host, and the executables with supporting
libraries were preinstalled on cloud images from which cloud
instances were spawned.

Figure 2 shows an asymmetric bandwidth matrix between
the cloud instances and the submit-host considered in this
work. All measurements are obtained by using the Linux
“iperf” network performance measurement utility. The rows
are servers and the columns are clients. Separate measure-
ments of 20 iperf sessions were recorded over 20 days. Mean
and standard deviation of bandwidths were recorded. A
spectrum of bandwidth values across the cloud instances and
between the instances of the same cloud is seen. Some of the
measurements that go beyond 1 Gbit gives an indication that
those instances are probably sliced from a single high-speed
cluster or even a single physical machine. The bandwidth
between two regions of Amazon EC2 was observed to be
significantly and unusually lower compared with that of
other pairs.

Figure 2: Heatmap for intercloud network performance ma-
trix. The measurements are average bandwidths in Mbits/sec
over 20 readings with standard deviation. Color blue indi-
cates a low bandwidth, while red indicates a high bandwidth.

Shown in Figure 3 are the performance results of moving
data in different sized files (1 M to 1000 M) to different
cloud locations. Note that the plot is in log scale. The
measurements were made for the Linux scp secure copy
utility. In the special case of Amazon S3, the system was



mounted on a running cloud instance using the “fuse” [13]
software service. The data was written to the S3 mount point
by using the Linux “dd” utility. We use the measurements
over local file system as benchmarks and see that a locally
mounted S3 drive performs worst for 10 M and only second
from worst for the 1000 M case.

Figure 3: Plot showing data movement times across file
systems.

The plot shown in Figure 4 is the application performance
on a single host. The host has 32 CPU cores and was set up
to run on successively higher degrees of parallelism utilizing
from 1 to 32 cores. The application was run in two modes:
a simple file-based data staging and under the CDM mode
where in the input files were symbolically linked to the
execution directory for each run (this saved 100 × 6.2 M
of data movement for complete application run). We see
significant improvement in performance for up to 8 cores
however, no performance gain was achieved beyond this
because of a high volume of disc I/O dominating the run.

Figure 4: Performance on a single large machine (32 cores).
Shown here is performance on an increasing number of cores
in two modes of file movement: staging and Collective Data
Management (CDM).

The plots in Figure 5 show the time to bring up the cloud
instances after the command was invoked, reflecting the

elasticity of each cloud. We see a marked increase in time to
an order of magnitude between those of Amazon EC2 com-
pared with RedCloud and FutureGrid clouds (Y axis being
in logscale). Note that by default, FutureGrid running the
Nimbus interface does not have a means to submit multiple
requests in parallel; therefore, a semi-parallel method had
to be implemented, running requests in close succession to
each other in order to avoid instance-ids to collide.

Figure 5: Elasticity measurement for clouds.

Figure 6 shows the application’s performance on individ-
ual cloud resources using a single core in a sequential data
staging and execution order versus a parallel execution and
data staging on 10 cores. While we clearly get an advantage
in speed for parallel execution, a significant performance
variation is also seen in serial execution among the cloud
infrastructures.

Figure 6: Performance on individual cloud infrastructures:
serial on single instance versus parallel on ten instances.

The plot in Figure 7 shows the timeline for the serial
execution on cloud shown in Figure 6 (FutureGrid). The
time line is plotted from an analysis of the Swift log for
this run. In terms of percentage, stage-in activity is 1.08%,
stage-out is 48.8%, and execution is 50.06% of the time.



Note that the stage-in stage completes rapidly and does not
get recorded for most instances. A zoomed-in version of a
small interval shows the stage-in stage with respect to the
adjacent running and stage-out stages. The time line shows
potentials for parallelization not only in application execu-
tion but also data staging. The parallel version of application
execution performs a configurable number of stagings and
executions in parallel. This is especially beneficial in cases
where staging time is almost equal to or is greater than the
execution time.

Figure 7: Serial execution timeline on FutureGrid showing
intervals for application run, data stage-in and stage-out.

Figure 8 shows application performance results on dif-
ferent combinations on instances on multiple clouds. We
notice a significant performance improvement going from
10 to 20 instances. However, the performance improvements
are not linearly proportional as we increase the number of
cloud instances successively. This behavior is caused by a
significant stage-out time in the run which is bound to a
single input channel of fixed bandwidth coming into the
submit-host.

Figure 8: Performance on combinations of instances from
multiple clouds.

VII. RELATED WORK

Our work concerns the three broad research areas, cloud
computing, parallel and distributed application orchestration,
and smart power grid computations. In this section, we
discuss related work from each area.

A. Cloud Computing

A large section of the community has a collective vi-
sion [14]–[17] for the near and long-term future of dis-
tributed and cloud computing comprising the following
salient points:

1) A wide scale spread and adaptation of cloud models
of computation across HPC and HTC infrastructures

2) Economical utilization of storage space and com-
putational power by adapting more and more new
application areas to run in clouds

Workflow-oriented applications have been reported to be
specially suited to the cloud environment [18], [19]. Swift
has been ported and interfaced to one cloud [20]. Ours is
the first multi-cloud implementation.

Cloud performance issues have been studied in the
past [17], [21]. Our work covers these areas, albeit with
a finer view of evaluating cloud characteristics for a new
application area. With this approach, we attempt to validate
the community vision while at the same time solve a real-
world problem.

B. Parallel and Distributed Application Orchestration

Interoperability among multiple distributed systems has
been a hot topic in distributed computing community. The
recent SHIWA [22] project addressed many of the challenges
facing users seamlessly running precoded workflow applica-
tions on multiple distributed computing infrastructures. The
dominant approach in SHIWA has been to wrap the work-
flow expression in order achieve interoperable workflows on
top of already-running workflows ported to selected infras-
tructures. We believe that the scripting approach to work-
flow [23] and the coaster mechanism makes interoperability
easier by providing a portable and compact representation of
application ready to be interfaced to infrastructure without
wrappers.

MapReduce [24] is a system designed to run two function
combinators in a distributed environment. Modern MapRe-
duce distributions such as Hadoop (hadoop.apache.org)
come with many components that have their own adapta-
tion curve involving learning, familiarizing, installation and
setup. These steps often prove to be barriers to effective
usage by scientific end-users.

Swift is a Turing-complete language that can run arbi-
trary compositions of applications on a distributed system,
including MapReduce-like systems. In short, Swift can
do MapReduce, but MapReduce cannot do Swift. Some
attempts have been made to improve the applicability of
MapReduce to scientific applications, such as the addition
of features to support iteration [25]. We feel, however, that
the conventional control constructs (foreach loops, if
blocks) in Swift enable a more natural, expressive language
for quickly constructing scientific workflow prototypes or
adding to existing scripts.



C. Smart Power Grid Applications

The timely availability of processed data, supporting con-
figuration, and application libraries is a key to performance
computing for smart grid applications. Many smart grid
applications are inherently distributed in nature because of
a distributed deployment of devices and buses. The work
described in [26] is the closest treatment of steering smart
grid computations into the clouds. The work analyzes smart
grid application use-cases and advocates a generic cloud-
based model. In this regard, our work verifies the practical
aspects of the model presented, by evaluating various aspects
of clouds.

VIII. EVALUATION

In this section we present an evaluation of the cloud in-
frastructure characteristics and parallel scripting paradigm in
light of our experience deploying the GE-MARS application.

A. Usability

Clouds present a familiar usage model of traditional
clusters with an advantage of direct, super-user, scheduler-
less access to the virtualized resources. This gives the users
much required control over the resources and simplifies the
computing without jeopardizing the system security.

We do observe disparities between the commercial and
academic clouds in terms of elasticity and performance. Net-
work bandwidth plays a crucial role in improving application
performance. Data movement in clouds is only as fast as
the underlying network bandwidths. Bandwidth disparities
in clouds and those between regions of a single cloud must
be taken into account before designing an application distri-
bution strategy. In a mixed model such as ours, prioritizing
tasks could alleviate many of these disparities.

Swift is easy to set up. Installation is required only
on the submit host. Coasters uses the native, local file
system and dynamically installs worker agents to run on the
target cloud instances. Swift is less invasive of applications
compared with systems such as Hadoop which requires
close integration with applications and a customized file
system installation on resources. However, it is a relatively
new paradigm of parallel computing. This arguably poses
adaptability challenges for new applications. The concept
of a highly expressive yet implicitly parallel programming
language does impose a learning curve on the users used
to traditional imperative scripting paradigms. Debugging in
such scenarios is one of the biggest challenges for users.
However, the returns on investment are expected to be
positive as many applications in the smart grid domain
exhibit similar patterns [27].

B. Economy

The economy of computation in presence of commercial-
academic collaboration is especially notable. Thanks to
a universal, pay-as-you-go model of computation, we are

not dealing with cluster maintenance and cross-institutional
access issues. With the ability to run the application on
multiple clouds, we can move on to another cloud if need
be and avoid vendor lock-in. A high-level policy and usage
agreement allows the costs of cloud allocation to be shared
among multiple parties having stakes in the same research.

IX. CONCLUSIONS AND ONGOING WORK

In this paper we discuss and evaluate the cloud side of a
network-intensive problem characterized by wide-area data
collection and processing. We use a representative parallel
scripting paradigm. We analyze the properties of multiple
cloud systems as applied to our problem space. One notable
limitation of each of the environments is that they do
not have efficient support for fault tolerance and seamless
assurance of data availability in the event of failure.

Not only computational but performant bandwidth re-
sources are needed in order to achieve desired application
performance. Apart from a basic application execution, in
a complex and networked environment, additional require-
ments are foreseen. These requirements include high as-
surance, dynamic configuration, fault tolerance, transparent
connection migration, distributed data repository, and overall
task coordination and orchestration of computation. Not
all requirements are addressed in this work. However, the
resource provision model of our implementation forms a
strong basis to address these requirements.

The intercloud bandwidth analysis is useful for large
scale task placement. Each independent instance of pipelines
could be placed on nodes showing high affinity in terms of
bandwidth. Additionally, future work is taking advantage of
specialized multi-core platforms offered by cloud vendors,
usage of efficient distributed caching technologies offered
by tools such as memcached.

ACKNOWLEDGMENT

We thank our colleague Robbert van Renesse for his
valuable inputs. This work was partially supported by the
U.S. Department of Energy, under Contract No. DE-AC02-
06CH11357.

REFERENCES

[1] A. Bose, “Smart transmission grid applications and their
supporting infrastructure,” IEEE Transactions on Smart Grid,
vol. 1, no. 1, pp. 11–19, Jun. 2010.

[2] J. Hazra, K. Das, D. P. Seetharam, and A. Singhee, “Stream
computing based synchrophasor application for power grids,”
in Proceedings of the first international workshop on
High Performance Computing, Networking and Analytics
for the Power Grid, ser. HiPCNA-PG ’11. New York,
NY, USA: ACM, 2011, pp. 43–50. [Online]. Available:
http://doi.acm.org/10.1145/2096123.2096134

[3] E. Lightner and S. Widergren, “An orderly transition to a
transformed electricity system,” Smart Grid, IEEE Transac-
tions on, vol. 1, no. 1, pp. 3–10, Jun. 2010.



[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S.
Katz, and I. Foster, “Swift: A language for distributed
parallel scripting,” Parallel Computing, vol. 39, no. 9, pp.
633–652, September 2011. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167819111000524

[5] J. M. Wozniak and M. Wilde, “Case studies in storage access
by loosely coupled petascale applications,” in Proc. Petascale
Data Storage Workshop at SC’09, 2009.

[6] S. Jha, D. S. Katz, A. Luckow, A. Merzky, and K. Sta-
mou, “Understanding scientific applications for cloud envi-
ronments,” in Cloud Computing: Principles and Paradigms,
R. Buyya, J. Broberg, and A. M. Goscinski, Eds., March
2011, ch. 13, p. 664.

[7] “Amazon EC2 FAQ.” [Online]. Available:
http://aws.amazon.com/ec2/faqs/#How many instances
can I run in Amazon EC2

[8] L. A. Freeman, D. T. Van Zandt, and L. J. Powell, “Using
a probabilistic design process to maximize reliability and
minimize cost in urban central business districts,” in 18th
International Conference and Exhibition on Electricity Dis-
tribution, 2005. CIRED 2005., june 2005, pp. 1–5.

[9] J. S. Liu and R. Chen, “Sequential monte carlo methods
for dynamic systems,” Journal of the American Statistical
Association, vol. 93, pp. 1032–1044, 1998.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” in 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID
’09), May 2009, pp. 124–131.

[11] M. Hategan, J. Wozniak, and K. Maheshwari, “Coasters:
uniform resource provisioning and access for scientific com-
puting on clouds and grids,” in Proc. Utility and Cloud
Computing, 2011.

[12] G. von Laszewski, M. Hategan, and D. Kodeboyina, “Java
CoG kit workflow,” in Workflows for e-Science, I. Taylor,
E. Deelman, D. Gannon, and M. Shields, Eds. Springer,
2007, ch. 21, pp. 341–356.

[13] “FUSE: Filesystem in Userspace.” [Online]. Available:
http://fuse.sourceforge.net/

[14] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic, “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the
5th utility,” Future Generation Computer Systems, vol. 25,
no. 6, pp. 599–616, 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X08001957

[15] K. Yelick, S. Coghlan, B. Draney, and R. S. Canon, “The
Magellan Report on Cloud Computing for Science,” US
Department of Energy, Washington DC, USA, Tech. Rep.,
Dec. 2011. [Online]. Available: http://www.nersc.gov/assets/
StaffPublications/2012/MagellanFinalReport.pdf

[16] D. S. Katz, S. Jha, M. Parashar, O. Rana, and J. B. Weissman,
“Survey and analysis of production distributed computing
infrastructures,” CoRR, vol. abs/1208.2649, 2012.

[17] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing
services for many-tasks scientific computing,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 6,
pp. 931–945, june 2011.

[18] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang,
M. Kang, D. Modium, K. Singh, J. Suh, and J. Walters,
“Heterogeneous cloud computing,” in IEEE International
Conference on Cluster Computing (CLUSTER), sep 2011, pp.
378–385.

[19] Y. Zhao, X. Fei, I. Raicu, and S. Lu, “Opportunities and
challenges in running scientific workflows on the cloud,”
in Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2011 International Conference on, oct.
2011, pp. 455 –462.

[20] K. Maheshwari, J. M. Wozniak, A. Espinosa, D. Katz, and
M. Wilde, “Flexible cloud computing through Swift Coast-
ers,” in Proc. Cloud Computing and its Applications, 2011.

[21] A. Iosup, M. Yigitbasi, and D. Epema, “On the performance
variability of production cloud services,” in 11th IEEE/ACM
Int’l Symp. on Cluster, Cloud, and Grid Computing
(CCGrid). IEEE, May 2011, pp. 104–113. [Online].
Available: http://dx.doi.org/10.1109/CCGrid.2011.22

[22] V. Korkhov, D. Krefting, J. Montagnat, T. Truong Huu,
T. Kukla, G. Terstyanszky, D. Manset, M. Caan, and
S. Olabarriaga, “SHIWA workflow interoperability solutions
for neuroimaging data analysis,” Stud Health Technol Inform,
vol. 175, 2012.

[23] K. Maheshwari and J. Montagnat, “Scientific workflows
development using both visual-programming and scripted
representations,” in International Workshop on Scientific
Workflows(SWF’10), ser. . Miami, FL.: IEEE, Jul.
2010. [Online]. Available: http://hal.archives-ouvertes.fr/
hal-00677817/PDF

[24] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327492

[25] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox, “Twister: A runtime for iterative
MapReduce,” in Proc. of 19th ACM Intl. Symp. on
High Performance Distributed Computing, ser. HPDC ’10.
New York: ACM, 2010, pp. 810–818. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851593

[26] S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data
cloud: A model for utilizing cloud computing in the smart
grid domain,” in 2010 First IEEE International Conference on
Smart Grid Communications (SmartGridComm), Oct. 2010,
pp. 483–488.

[27] K. Maheshwari, M. Lim, L. Wang, K. Birman, and R. van
Renesse, “Toward a reliable, secure and fault tolerant smart
grid state estimation in the cloud,” in Innovative Smart Grid
Technologies. Washington DC, USA: IEEE-PES, Feb. 2013.


