
Extending the Galaxy portal with parallel and distributed
execution capability

Ketan Maheshwari,∗ Alex Rodriguez,† David Kelly,† Ravi Madduri,∗
Justin M. Wozniak,∗ Michael Wilde,∗ Ian Foster∗

∗Mathematics and Computer Science Division †Computation Institute
Argonne National Laboratory University of Chicago

Argonne, IL USA Chicago, IL USA
ketan,madduri,wozniak,wilde,foster@mcs.anl.gov arodri7,davidk@ci.uchicago.edu

ABSTRACT
The Galaxy platform is a web-based science portal for sci-
entific computing supporting the life sciences user commu-
nity. While user-friendly and intuitive for doing small to
medium-scale computations, it currently has limited sup-
port for large-scale parallel and distributed computing. The
Swift parallel scripting framework is capable of composing
ordinary applications into parallel scripts that can be run
on multiscale distributed and performance computing plat-
forms. In complex distributed environments, often the user
end of the application lifecycle slows because of the technical
complexities brought in by the scale, access methods, and
resource management nuances. Galaxy offers a simple way
of designing, composing, executing, reusing, and reproduc-
ing application runs. An integration between the Swift and
Galaxy systems can accelerate science as well as bring the
respective user communities together in an interactive, user-
friendly, parallel and distributed data analysis environment
enabled on a broad range of computational infrastructures.

Keywords
Swift, Galaxy, Big Data, scientific applications

1. INTRODUCTION
The advent and impact of big data are evident from the ever
increasing growth of data generation. Vast amounts of scien-
tific data lie unexplored even as more algorithms and codes
are developed to analyze big data in novel ways. Compu-
tational science today increasingly is converging to big data
analytics. Furthermore, scientific applications are expand-
ing their domains, resulting in an increase in the genera-
tion and processing of data and in the burgeoning demands
on computational resources. Web based collaboration, on-
line processing, and sharing of applications via portal-based
environments have become commonplace. Furthermore, re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

quirements such as analysis of results with visual aids, post-
processing of execution traces, and customized visualization
have added to the complexity.
The Galaxy [3] system addresses many of these demands,
offering a web-based, interactive platform for data analysis
via reusable and reproducible workflows. While excelling in
the usability aspects, the Galaxy environment has however
a limited parallelism capabilities and limited capabilities for
interfacing with diverse, scalable computing infrastructures.
The user can draw workflows in which multiple copies of a
task are created to operate on multiple inputs at once, but
this is not a scalable approach. Thus, integration with an
existing highly distributed, portable system is desirable.
Swift [8] is a scripting framework for concurrent execution
of ordinary programs. The Swift runtime contains a pow-
erful platform for running user programs on a broad range
of computational infrastructures, such as clouds, grids, clus-
ters, and supercomputers, out of the box. Users rapidly pro-
totype complex application flows on small, local resources
and then deploy them on a diverse range of remote com-
putation systems. Compact, C-like Swift scripts provide
powerful semantics to exploit nonobvious concurrencies in
complex application flows. The concise and powerful fore-
ach loop can be used to generate thousands of concurrent
tasks with just two lines of code. Thus, highly concurrent
applications may be constructed in a small amount of script
logic without explicitly managing process ids, batch queues,
graph construction, or other tedious details.
Moreover, the Swift framework is specialized to run scien-
tific computations on multiple, remote resources while being
well interfaced with diverse schedulers, transport protocols,
and security measures. Swift handles the data movement
among distributed file systems and can leverage powerful
data movement mechanisms. Swift works well with ssh,
PBS, Condor, SLURM, LSF, SGE, Cobalt, and Globus to
run applications and with scp, http, ftp, and GridFTP to
move data.
In this paper, we report on our efforts to extend the Galaxy
environment with parallel and distributed execution systems
via the Swift framework. The result is an integrated envi-
ronment with the same user-friendly Galaxy frontend and
Swift as a backend. We motivate the integration by arguing
that a combination of the best of both worlds will result in a
powerful solution useful to the wider user community (§2).
We support our argument with a description of various in-
tegration schemes and resulting benefits (§3). We describe

our experience with some real-world application implemen-
tations (§4). We provide perspectives on related systems
by comparison with similar work (§5). Finally, we conclude
with a summary and a description of current and future
work (§6).

2. MOTIVATION
More and more computational resources are being acquired
by organizations such as universities, national laboratories
and research consortia to meet an increasing demand for
computational and storage capabilities for big data ana-
lytics. Similarly, private owners such as Amazon, Google,
and Microsoft have started offering resources in the form
of clouds. Science users are likely to have allocations from
many of these resources with heterogeneous architectures,
accessibility modes, and resource managers. Thus, to effec-
tively use each system in isolation or in combination, users
need to expend additional efforts that can be a significant
distraction and may require special expertise. Consequently,
just the provision of resources is not sufficient. While the
demand for computational resources is being met, a wide
gap still exists between effective utilization of these systems
by end-users. Portal-based systems such as Galaxy special-
ize in providing user-friendly computational analysis envi-
ronments. Galaxy workflows largely run on local resources.
Galaxy providers offer their own servers as execution plat-
forms. As the number of users increases however, servers
face spikes in demands. As a result, Galaxy offers a cloud-
based solution such that users run their own Galaxy servers
in cloud and manage cloud resources (e.g. via ad hoc Con-
dor pools). Although community developments are aimed at
running Galaxy tools on clusters, using them requires special
tool configurations and constraints, for example, a shared file
system between Galaxy server and the target cluster.
The following points summarize the motivation behind our
conceptualization of the Swift-Galaxy integration.

• Benefits to users from the Galaxy community in inter-
facing their computations to large-scale parallel sys-
tems will include remote clusters, clouds, and super-
computers. An interactive distributed and parallel
computing environment resulting in powerful capabil-
ities of defining computations, orchestrating tasks to
remote machines and monitoring the executions and
results from a portal-based platform will give unprece-
dented power to Galaxy users.

• Swift users will be able to easily manage their applica-
tions and workflows. Swift users can share, reuse, and
publish their distributed computations with Galaxy-
style conventions and practices that are well adapted
by a large user base. This can result in a wider commu-
nity uptake of new computational codes and expansion
of existing capabilities.

• The integration will result in a clear separation of con-
cerns. Task coordination and orchestration will be
handled by Galaxy while parallel execution on remote
nodes and related data management will be handled
by the Swift engine. Application developments benefit
by this clean separation of responsibilities; distribution
will be readily available without additional configura-
tion on either side.

• Currently, the Galaxy server is operated on a single
cluster at the University of Pennsylvania. With an
expanding user community and increasing demand for
computational resources, a broader capacity of resources
and capability of execution will help meet this demand.
This will result in a productive cycle where the growing
demand in computation is met by deploying Galaxy
servers on diverse systems, thus reaching wider sci-
ence and engineering domains and resulting in more
such deployments.

3. INTEGRATION SCHEMES
Both the Swift and Galaxy systems are powerful in different
and complementary aspects, since they were designed with
different goals in mind. Galaxy is a web-based portal for
visual workflow composition, execution, and data analysis.
Swift is a distributed computing framework for text-based
workflow composition. The Galaxy environment is easy to
adapt, simple, with limited control over resources. Swift is
flexible, implicitly parallel, and robustly interfaced to a wide
range of execution platforms. Clearly they form two differ-
ent paradigms of computing for addressing the challenges
faced in data science.
Swift and Galaxy workflows can interoperate because of
their similar model of basic interactions with external sys-
tems.
A unit of execution in Galaxy, called a “tool”, is defined
by an XML document describing the command line, exe-
cutable, interpreter to execute the command line, and any
required inputs and outputs. The user controls tool inputs
and outputs through the Galaxy workspace interface. Tools
are composed together into workflows described internally as
JSON [1] documents. The Galaxy engine processes the con-
nections between the tools, identifies dependencies among
tools, and schedules them for execution accordingly. Work-
flow execution results are saved as reproducible “histories”,
which may be shared among multiple users.
Both Swift and Galaxy operate on executables by invoking
them via operating system utilities. The overarching goal
of our integration is to enable a powerful environment by
combining the strengths of each of the systems. We aim to
achieve this with minimal modification of either systems. In
other words, we take both systems “as is” and explore ways
to integrate them. The basic mechanism we employ is to use
Swift as the internal, low-level execution engine and to use
Galaxy as the higher-level, external, user-visible framework.

Figure 1: Swift acting as an interface between lo-
cally installed Galaxy tools and remotely located re-
sources.

Figure 1 shows a general scheme of Swift’s role in extending
Galaxy to a wide range of scientific tools and computational

resources. Under this scheme, we are developing modalities
through which a variety of Swift-enabled applications will
be readily used as Galaxy tools. The execution starts from
a local host as a local Galaxy run. The Galaxy tool invokes
Swift application, using preconfigured application libraries
written in Swift. The Swift engine in turn orchestrates and
sends tasks to remote resources.
In the rest of this section we describe our experience in inte-
grating the Swift and Galaxy gateways. We develop different
schemes of integration and discuss the benefits of each.

Figure 2: Swift-Galaxy integration view: custom
Galaxy tools call Swift.

3.1 Scheme 1: Swift as Galaxy tool
As a first integration scheme, we developed a generic tool
with a capability of executing user-provided arbitrary Swift
scripts. The tool is set up such that users can select various
configuration parameters from available choices. This capa-
bility allows users to provide arbitrary parameters specific to
the application and the execution-specific parameters such
as target compute site.
Figure 2 presents the user view of the Galaxy interface with
preset, static Swift-wrapped tools that are available for use
individually or as part of workflows. In addition to the tool’s
own configurable properties, Swift-specific properties allow
users to choose the remote resource on which to run the
tools with custom configuration such as desired degree of
parallelism, and job distribution among sites. With this
scheme users can run individual tools as Swift scripts, as
well as stitch tools together running a workflow made up of
other Galaxy tools and Swift tools.

3.2 Scheme 2: Translating Galaxy to Swift

Figure 3: Interoperability between Galaxy work-
flows to Swift scripts.

Figure 3 shows a scheme where predefined Galaxy workflows
are transliterated into Swift scripts via a post processing
script. This development will enable interoperability be-
tween the two platforms. Galaxy workflows are currently
expressed as JSON [1] documents linking the Galaxy tools,
which are expressed as XML documents. Swift scripts are
expressed as C-like programs. A two-way translator will
enable the workflows to be expressed in either format thus
being able to run under two environments. Additionally, the
fact that Swift scripts are translated into intermediate XML

representation makes this process easier in that no effort is
required to write new modules in either of the workflow en-
gines.

3.3 Scheme 3: Data splitting within tool

Figure 4: Swift wrapper to Galaxy tool. Input data
from the Galaxy tool input is split, the base tool is
run under a Swift foreach on each fragment, and the
results are merged and presented as the Galaxy tool
output.

Figure 4 shows a scheme of running Galaxy tools wrapped
into a Swift foreach parallel loop. The scheme enables run-
ning ordinary sequential tools that perform homogeneous
processing on a large dataset to run in parallel on a split
dataset. The results of individual operations then get merged
and emerge as output for consumption downstream. The
scheme resembles the popular MapReduce computational
paradigm. The implementation of this scheme is straight-
forward thanks to Swift’s indexed arrays that map to files.
The splits and merge on data can be organized into arrays
that map to file fragments and can be processed in the Swift
script as variables. For this tool to be successfully applied,
the operations on split data must be associative.

4. EXPERIENCE
We describe our experience in running applications encoded
as Swift scripts running on large-scale remote resources from
within the Galaxy environment. In our work to date, we
have run Swift-Galaxy applications on two institutional clus-
ters and one XSEDE system: the University of Chicago Mid-
way and UC3 clusters and the XSEDE Stampede cluster.
RCC Midway (rcc.uchicago.edu) is the University of Chicago
Research Computing Center cluster supporting university-
wide high-end computational needs. The cluster has multi-
ple resource partitioning dedicated to specialized computing
such as HPC, HTC, and GPU computing and runs a SLURM
batch queue scheduler. The UC3 cluster (uc3.uchicago.edu)
at the University of Chicago is an open computing frame-
work for connecting users to shared distributed high-throughput
computing resources, both on and off campus. The cluster
runs Condor DRM capable of flexibly extending compute re-
sources to the OSG environment. XSEDE (www.xsede.org)
is an NSF-funded, national cyberinfrastructure comprising
multiple large-scale computation systems on sites across the
United States. Stampede is one of the supercomputing sys-
tems offered by XSEDE. Stampede runs the SLURM sched-
uler for submitting user jobs.
Figure 5 shows a screen capture of an application workspace
interface. The drop-down dialog allows users to select re-
sources for a run. The rest of the text dialog provides an
interface to enter application-specific values. Parameter val-
ues provided through this interface are passed to Swift via
the Galaxy tool runner. Galaxy runs the tool that in turn

Figure 6: Screen capture of a post execution view of a Swift tool. The plot shows the number of parallel
active jobs during the run of a 2000-task application.

Figure 5: Screen capture of the Swift Galaxy tool
showing the tool workspace options: target execu-
tion site and application specific options.

calls a Swift wrapper that in turn runs the application and
relinquishes control back to Galaxy after the execution is
completed. Figure 6 shows a screen capture of a post exe-
cution view for a Swift tool. The plot shows the number of
parallel active jobs during the run of a 2000-task application
on Midway. More than 120 active parallel jobs run at once
over a period of 55 seconds to complete the 2,000 tasks. On
the right pane is the history of this run captured by Galaxy
that shows the standard output and an HTML page that has
links to the results (not shown in figure) of the execution.
A brief description of applications enabled and ongoing work
with the Swift-Galaxy interface follows.

Power Grid Analysis.
Large-scale analysis of power grid quantities is emerging as
an important engineering application of national interest.
Applications have many stakeholders, including the govern-
ment, power companies, ISOs, and domestic and industrial
consumers. In this work we enable an application concern-
ing inference analysis of stochastic unit commitment mod-
els. The application involves hierarchical stochastic compu-
tations over a range of samples and batches. The code in
Listing 1 shows a Swift script representation of the core ap-

plication logic. A three-level-deep nested foreach loop gen-
erates about 100K concurrent tasks for a sample size of 5
and a batch comprising sizes (10, 20, and 30). Currently we
implement the application under Scheme 1 described above
running on institutional and XSEDE resources.

1 foreach S, idxs in nS{
2 o = gensample (wind_data);
3 foreach B, idxb in [10:30:10]{
4 foreach k in [0:B]{
5 o = gensample (S, wind_data);
6 obj_out_l[idxs][idxb][k] = ampl_app_L(params);
7 o = gensample (S, wind_data);
8 obj_out_u[idxs][idxb][k] = ampl_app_U(params);
9 }}}

Listing 1: Swift code for power grid analysis appli-
cation.

Climate Models.
The Decision Support System for Agrotechnology Transfer
(DSSAT) application analyzes the effects of climate change
on agricultural production [4]. Projections of crop yields at
regional scales are carried out by running simulation ensem-
ble studies on available datasets of land cover, soil, weather,
management, and climate. The computational framework
starts with the DSSAT crop systems model and evaluates
this model in parallel. One study involves analysis of cli-
mate impact for a single crop (maize) across the contermi-
nous USA (120K cells) with daily weather data and climate
model output spanning 120 years (1981-2100) and 16 differ-
ent configurations of fertilizer, irrigation, and cultivar choice.
Currently, the climate model runs as a single, generic Galaxy
tool wrapped via a shell script and callable by Galaxy as a
tool.

Genomics.
A large section of the Galaxy community is geared toward
genomics data analysis, mainly next-generation sequencing
data (NGS). Many tools working on all aspects of genomics
analysis are currently used, and many new tools are be-
ing developed. The analysis of NGS data can be parti-

tioned into a series of steps common among the multiple
NGS applications (i.e., transcriptome, whole-exome, whole
genome). One of the most popular applications for accu-
rate variant calling of exome data is the Genome Analysis
Toolkit (GATK) from the Broad Institute [2], which pro-
vides a best practices pipeline with optimal parameters in
each step of the process. The pipeline includes running a
number of GATK applications that can be computationally
demanding and in some cases can be parallelized. As an
ongoing development, a Swift-enabled GATK best practices
pipeline is being integrated into Galaxy. We are currently
porting the application using a combination of Scheme 1
and Scheme 3 described in §3.
The Unified Genotyper (UG) tool analyzes multiple chromo-
somes. By splitting the analysis by chromosome, we intend
to run a foreach loop over chromosomes. The workflow
consists of 123 input human genome files containing 23 chro-
mosomes each. Thus UG can be run 23 times for individual
chromosomes.

5. RELATED WORK
In this section, we briefly present our perspectives on related
work. Many scientific gateways and portals are in use glob-
ally. Historically, problem-solving environments (PSEs) can
be considered as ancestors of portal-based science gateways.
With the advent of fast networks and sophisticated web pro-
gramming technologies, PSEs have evolved into portals.
The driving force behind many separate developments can
be attributed to user communities bonded by a scientific
domain or adapted to a particular set of tools.
The GPSI [7] portal is a prototype portal using Swift as its
workflow engine. A Python-driven web environment allows
users to submit their Swift scripts to distributed resources
and to manage their data from within the web-based envi-
ronment.
Integration of the Vbrowser portal with the MOTEUR work-
flow engine [6] is another example of similar work geared
toward combining network-based portals with a task orches-
tration engine. The target execution infrastructure in this
case is the European Grid environment, and the target com-
munity is the medical imaging community. Nanohub [5] is
another recent portal focused on the nanotechnology com-
munity.

6. CONCLUSIONS AND FUTURE WORK
In this paper we motivate the benefits of integrating portal-
based execution frameworks with a large-scale parallel pro-
gramming framework. We demonstrate the integration with
Galaxy as a representative of the former and Swift of the
latter.
The following points summarize the features of Swift inte-
gration with Galaxy:

• A generic Galaxy tool with the ability to run arbitrary
Swift scripts from within a Galaxy interface.

• Static application tools for special-purpose execution
with flexibility of user-provided application parame-
ters, and execution site.

• Capability to arbitrarily select remote execution sites
from a drop-down list of the tool’s visual representa-
tion.

• Post execution analysis of runs and plots of job com-
pletion rate and parallel tasks.

• Capability to bring results into the Galaxy dataset sys-
tem for reuse and publishing.

The following activities summarize our future work.

• Extending and combining of the integration schemes
into a toolkit capable of encapsulating arbitrary Galaxy
tools into Swift.

• Finer integration of external Swift data and managed
Galaxy dataset system.

• Deeper integration of the Swift engine into the Galaxy
framework. This will enable Galaxy workflows to be
orchestrated as a Swift execution, retaining the Galaxy
visual framework.

Acknowledgments
This work was supported in part by the NIH through the
NHLBI grant: The Cardiovascular Research Grid (R24HL085343)
and by the U.S. Department of Energy under contract DE-
AC02-06CH11357. We are grateful to Amazon, Inc., for an
award of Amazon Web Services time that facilitated early
experiments. We thank Gail Pieper for proofreading help.

7. REFERENCES
[1] D. Crockford. RFC 4627: The application/json media

type for JavaScript Object Notation (JSON). 2006.

[2] GATK Best Practices.
www.broadinstitute.org/gatk/guide/best-practices.

[3] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans,
L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg,
I. Albert, J. Taylor, et al. Galaxy: a platform for
interactive large-scale genome analysis. Genome
research, 15(10):1451–1455, 2005.

[4] J. W. Jones, G. Hoogenboom, P. Wilkens, C. Porter,
and G. Tsuji, editors. Decision Support System for
Agrotechnology Transfer Version 4.0: Crop Model
Documentation. University of Hawaii, 2003.

[5] G. Klimeck, M. McLennan, S. P. Brophy, G. B. Adams,
and M. S. Lundstrom. nanohub.org: Advancing
education and research in nanotechnology. Computing
in Science & Engineering, 10(5):17–23, 2008.

[6] S. D. Olabarriaga, T. Glatard, and P. T. de Boer. A
virtual laboratory for medical image analysis.
Information Technology in Biomedicine, IEEE
Transactions on, 14(4):979–985, 2010.

[7] T. D. Uram, M. E. Papka, M. Hereld, and M. Wilde. A
solution looking for lots of problems: Generic portals
for science infrastructure. Salt Lake City, UT, June
2011. ACM.

[8] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Par. Comp., 37:633–652,
2011.

