Software Monsters: Quantifying, Reporting,
and Controlling Composite Applications

Justin M. Wozniak, Computer Scientist
Data Science and Learning Division
Argonne National Laboratory
(630) 252-3351 — woz@anl.gov

CHALLENGE

Exciting new scientific applications that are rapidly
developed to attack new, critical, and dynamic
application spaces are predominantly large com-
posite applications (or workflows) that integrate
a great deal of software together. New computa-
tional paradigms, such as the prevalence of maching
learning techniques, uncertainty quantification, and
design optimization add to the importance of pro-
gramming at this level. Applications thus face chal-
lenges when integrating the significantly different
paradigms of high-performance computing (HPC),
big data analysis, and the machine learning tool-
boxes emerging today. We propose that fundamen-
tal software metrics can be brought into innovative
programming models to address the construction
and execution of scientific applications.

Consider the recent (2020-2021) Gordon Bell
finalists for the COVID-19 Special Prize. These
applications are generally phrased as workflows,
as they combine ensembles of simulations coupled
with learning, analysis, and visualization. One such
application with an complex machine learning com-
ponent [1] utilized a custom R installation to per-
form a novel multi-objective optimization scheme;
the R library size to perform these optimizations
contains 112 packages totaling 321 MB, and this
was for software generally understood and directly
used by the developers. More opaque packages
such as TensorFlow reside in Python installations
totalling 20 GB or more.

These monstrous software dependencies and in-
tegrations pose a critical challenge to forward
progress in scalable scientific applications. They
create difficulties maintaining and validating scien-
tific results over non-trivial time scales, and must
be better understood.

OPPORTUNITY

“If you can’t measure it you can’t manage it.”

The first step toward a scientific study of changes
in culture affecting scientific software development
and use is quantifying those changes. We propose
that a software score report can be used to rapidly
convey key statistics about the software used by
a composite application. But the key observation
here is not the static report itself but the changes
over time to capture developments that involve
new risk to an application. Such reports could be
automatically generated by a system that under-
stands software dependencies (e.g., Spack [2] or an
extension to it).

Traditional software metrics include lines of
code, code points, number of packages, the com-
piled size of packages, and code coverage metrics.
Key questions that can be addressed herein include:

1) How many lines of code are written by the
user?

2) How many interface points are there between
user code and library code?

3) What is the code coverage of the user and
library code?

4) What is the code coverage of the user and
library code on the current hardware?

5) What is the code coverage of the user and
library code on the current application prob-
lem?

The measured numbers, however, should not be
immediately interpreted as good or bad but moni-
tored for trends over time. These can be collected
with respect to changing application structure as
components are added or removed and compared
against, for example, test suite results. We envision
that they could be captured by automated continu-
ous integration tools (e.g. GitLab).

“What just broke?”

A second step toward is the construction of soft-
ware structure graphs using Al-based techniques.
Deep learning systems have been used for graph
analytics for some time, and can be used to ex-
pose underlying features in structure and key latent
variables. [3] The graph structure of dependencies
and calls in a composite application could reveal
metrics for change over time, while also exposing
structural qualities (broad vs. deep structures) and
the encounter of new structures not seen before,
revealing the associated risks and opportunities.
Structure graph fingerprints could thus be compiled
and exchanged. These graphs allow software met-
rics from software dependencies to be immediately
made available to higher-level packages, thus mak-
ing score reports easy to generate and understand
as software changes.

Software structure graphs are a first step toward
Al-driven development tools and best practice iden-
tification for scientific software development. Struc-
ture graphs collected from ECP-related applications
along with user-labeled tags could be analyzed to
rapidly reveal software structural practices that are
likely to produce good outcomes. At the lowest
level, the graph would contain entries for vendor-
provided tools for messaging, operating system
services, and so on. Structure graphs could be ex-
tended to include hardware components, including
accelerators or other exotic devices.

Structure graphs could also be used to as-
sist in the automatic generation of auto-tuning
schemes for performance, accuracy, or multi-
objective schemes [4]. Identifying the most critical
and/or sensitive parameters in library software is
challenging. Composite application tuning is thus
a structured optimization problem in which some
subproblems have already been (partially?) solved.
If these parameters and knowledge bases could
be exposed to higher-level packages, auto-tuning
problems could be automatically generated from
the structure graphs, while gaining the acceleration
from prior dependency optimization runs.

We stress that this kind of reporting could be
seen as time-consuming and tedious. To bring Al
into the software analysis loop, however, we see
that some fundamental metrics must be exposed
for automated analysis, and this workshop could
be critical in identifying those.

TIMELINESS

“Given enough eyeballs, all bugs are shallow.”

This type of software analysis is needed im-
mediately as the rapid adoption and longevity
of advanced machine learning libraries developed
by small disparate teams and/or corporate giants
become critical to scientific applications. These
projects must be manageable, and fundamental to
that is understanding application structure.

The expected outcome of this approach will ease
the development and validation of complex studies
that integrate domain science with data science
and machine learning techniques. Multiple pro-
posed computer science investigations will result,
including fundamentals in Al understanding and
information extraction from reports and graphs, as
well as software challenges in producing the raw
data from existing package managers. The work
proposed here will lay the groundwork for future
programming models and methods that will allow
a wide range of application domains to rapidly
adopt hierarchical programming and reduce the
complexity and of application-specific testing and
evaluation.

This level of programming will become critically
important as complex model exploration studies and
deep-learning-infused workflows are deployed on
exascale systems. In the absence of a comparable
systems and methodologies, researchers will have
difficulty developing and deploying composite ap-
plications. Developments in community software
packages will be unmanageable. Software manage-
ment for advanced scientific computing will be left
in the human bandwidth-limited status quo.

REFERENCES

[1] J. Ozik, J. M. Wozniak, N. Collier, C. M. Macal,
and M. Binois, “A population data-driven workflow for
COVID-19 modeling and learning,” International Journal
of High Performance Computing Applications (Finalist for
Gordon Bell COVID-19 Special Prize), 2021.

[2] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and W. S. Futral, “The Spack
package manager: Bringing order to HPC software chaos,”
in Proc. SC, 2015.

[3] B. Perozzi, R. Al-Rfou,
walk,” Proceedings of the 20th ACM SIGKDD
international conference on Knowledge Discovery
and Data Mining, Aug 2014. [Online]. Available:
http://dx.doi.org/10.1145/2623330.2623732

and S. Skiena, “Deep-

[4] T. Shu, Y. Guo, J. M. Wozniak, X. Ding, 1. Foster, and
T. Kurc, “Bootstrapping in-situ workflow auto-tuning via
combining performance models of component applica-
tions,” in Proc. SC, 2021.

