
Reusability in Science: From Initial User
Engagement to Dissemination of Results

Ketan Maheshwari∗, David Kelly∗, Scott J. Krieder†, Justin M. Wozniak∗,
Daniel S. Katz‡, Mei Zhi-Gang§, Mainak Mookherjee¶

∗MCS Division, Argonne National Laboratory
†Department of Computer Science, Illinois Institute of Technology

‡Computation Institute, University of Chicago & Argonne National Laboratory
§Nuclear Engineering Division, Argonne National Laboratory

¶Department of Earth and Atmospheric Sciences, Cornell University

Abstract—Effective use of parallel and distributed computing
in science depends upon multiple interdependent entities and
activities that form an ecosystem. Active engagement between
application users and technology catalysts is a crucial activity
that forms an integral part of this ecosystem. Technology catalysts
play a crucial role benefiting communities beyond a single user
group. An effective user-engagement, use and reuse of tools and
techniques has a broad impact on software sustainability. From
our experience, we sketch a life-cycle for user-engagement activity
in scientific computational environment and posit that application
level reusability promotes software sustainability. We describe
our experience in engaging two user groups from different
scientific domains reusing a common software and configuration
on different computational infrastructures.

Index Terms—Technology-catalyst, user-engagement, scientific
computation

I. INTRODUCTION

Domain scientists often have limited time to investigate the
capabilities that a large scale computing and data-handling
infrastructure combined with a high performance software
framework could bring to their scientific activities. Technology
catalysts help speed up the tedious process of organizing
scientific computations such that they can be easily mapped
onto computational infrastructure. However, this is an iterative
process and not free of pitfalls. The source of these pitfalls
can be the scientific process itself or a mismatch in technical
requirements mapping to computational infrastructures.

This presents a challenge: enabling effective reuse of exist-
ing user-engagement patterns and related products for a new
scientific user. If this challenge can be met, it could lead to
a considerable acceleration in the process of conceptualizing,
describing, defining, deploying, and executing scientific exper-
iments. Reuse of data and software libraries is fairly common.
Reuse of enabled applications across scientific domains is
not as common. A successful execution of such applications
might require tuning specific to the application requirements.
However, with familiarization from previous engagements,
much of this process can be expedited.

A widely reused system has a higher sustainability as a
community supports its maintenance. Enabling application
level reuse promotes sustainability of the entire ecosystem of

Fig. 1. Activities and transitions in user engagement cycle.

modern science. In this experience paper, we report on the
following:

1) Experience in scientific community engagement describ-
ing activities performed at different levels in order to
support scientific users with applications deployed onto
new, larger and faster systems.

2) A sketch and demonstration the elements of a successful
scientific application deployment cycle.

3) Enhancements of an enabling software framework based
on user feedback resulting in a software with improved
usability.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the user engagement cycle that provides a
context to the human aspects of our work. In Section III, we
describe the applications on which our experience is based and
in which we apply software reuse techniques. In Section IV,
we describe the hardware and software complexities that make
software maintenance strategies important. In Section VI, we
summarize some related work, and in Section VII we offer
concluding remarks.

II. USER ENGAGEMENT CYCLE

User engagement with technical catalysts is a complex
social process that differs with respect to institutions, culture,
and technical practices. A distillation of key points in the
process is diagrammed in Figure Fig. 1. The cycle con-
sists of four phases and transition activities between these
phases. It starts with user-catalyst communication involving
familiarizing the domain science and technology from the

ar
X

iv
:1

30
9.

18
13

v1
  [

cs
.S

E
] 

 7
 S

ep
 2

01
3



user side and computational tools and technology from the
catalyst side with each other. The result is a map of scientific
tools onto the computational infrastructure. The next phase
is application deployment and execution on these resources.
Enabling software tools are put into practice in this phase.
This ends in post-processing activity involving collection,
pruning, structuring of results. The next phase is the results-
dissemination phase. During this phase, the science results
obtained in the previous activity are presented to the scientific
user. Adaptive users often do further analysis themselves and
trigger a next stage via their feedback. The feedback results
in technological improvements and adjustments to better suite
the requirements of application on hand.

In our experience, demonstrating the results of engagement
with one user-group to the other has significantly inspired, and
aroused interests in adapting modern high performance com-
putational techniques. This method led to a productive cycle
of defining and executing experiments which has benefited
both groups. This affirms the role of technology catalysts by
enabling the use of cross-application knowledge.

From a software sustainability perspective, identifying soft-
ware patterns and applying them into new applications is an
opportunity to maximize the initial investment in the software
research, as well as speed progress in later projects. An
example of this process, based on application experience, is
described in the next section.

III. USER GROUPS

In this section we describe the two user groups we engaged
with in this work. First, the Mineral Physics Group at the
Department of Earth and Atmospheric Science at Cornell
University, and second, the Material Science Group at Argonne
National Laboratory. As described below, the application areas
differ greatly (geological research vs. nuclear energy), yet the
underlying software tools and challenges have much to gain
from software reuse.

A. Mineral Physics

Rocks and minerals exposed at the surface of the Earth are
in constant interaction with the overlying hydrosphere. Over
geological time scales, this leads to stabilization of hydrous
mineral phases such as serpentine [1]. These lock up oceanic
water. These minerals are then dragged down along subduction
zones. This process has a long term influence on the global
sea levels. In order to understand how much water is dragged
into the deep interior of the Earth, one must have a better
understanding of the energetics and thermo-elasticity of these
hydrous phases stable at subduction zone conditions.

We use ab-initio simulations based on density functional
theory to understand the energetics and thermo-elasticity of
hydrous mineral phases relevant to the subduction zone con-
ditions. The mineral phases stable at the subduction zone
conditions often have lower space-group symmetry and a large
number of atoms in their unit cell. The compute requirements
of simulations are directly proportional to the number of atoms

Fig. 2. Constant volume Fe3S unit-cell experiments: (a) Plot of computational
time as a function of cut-off energy for a constant k-point mesh of 3x3x6;
(b) plot of computational time vs. irreducible k-points for a constant cut-off
energy.

in a unit cell of a mineral. Consequently the simulations are
computationally intensive.

For our research we use the Vienna Ab-initio Simulation
Package (VASP) [2] software suite. VASP has been quite suc-
cessful in predicting band structure, ground state energy, and
physical properties including elasticity. From our experience
using institutional resources, we find that a simulation for a
system-size of approximately 100 atoms requires 24 hours of
CPU time. For a single mineral phase, we typically need 40-
50 simulations to determine the full elastic constant tensor
and its pressure dependence. One comprehensive analysis on
a mineral phase requires a combination of parameters to
test for convergence of ground state energy. This requires
intensive use of computational resources. In addition, we
explore solid-solution thermodynamics across various end-
member chemistry of the mineral phases.

The initial, relatively small study with 32 atoms was con-
ducted in two stages. First, a determination of volume at which
the energy is minimum was conducted. From this, the unit cell
volume of 200 angstroms was chosen for further analysis over
a constant 3-D volumetric mesh (Fig. 2-a) and constant energy
(Fig. 2-b). Fig. 2-b shows that over five hours of normalized
CPU time is required for a single cell volume analysis.

B. Material Science

Cerium dioxide (CeO2) is an important material with a
wide range of technological applications. It is used as an
electrolyte in solid oxide fuel cells (SOFCs), as a catalytic
converter in the automotive industry, and as a model material
for PuO2 in nuclear energy applications. It has a fluorite
structure and can develop a complex pattern of defects, de-
pending on temperature and oxygen pressure [3]. In order
to fully understand and to be able to accurately predict the
micro-structural evolution under irradiation, elucidating the
underlying formation mechanisms of the extended defects is
important.

The purpose of this study is to provide a unified view
of the effect of non-stoichiometry and temperature on the
formation and evolution of nano-scaled defects, i.e., defect
clusters, voids and fission gas bubbles, in irradiated Ceria using
existing experimental data, multiscale modeling, and computer
simulations.



The migration barriers calculations using the DFT-NEB
(Density Functional Theory-Nudged Elastic Band) method and
the defect structure evolution calculations using molecular
dynamics are computationally expensive. The computations
require a two-stage interdependent execution of VASP over
the material structure definition. The first stage performs
relaxation and static calculations to predict atomic positions.
The second stage DFT-NEB calculations rely on the structures
produced by the previous stage. A few hundred thousand CPU
hours are expected for the calculations. Currently, we are using
high performance computing clusters with more than 2,000
cores connected by fast InfiniBand.

C. Computational Tools and Techniques

While the two applications belong to different scientific
domains, their computational profile is similar. Both use the
VASP software tool with similar input data structures and
computational stages. Both applications first run a calibra-
tion stage to find a close structural range before moving to
a final compute intensive stage. Consequently, the general
computational structure of the applications is similar, and they
can be run using the same computational tools, specifically
the Swift [4] parallel scripting tool. Because a full technical
description of Swift is out of scope for this paper, the following
points summarize Swift’s capabilities.
• Swift is an open-source, Apache-licensed software frame-

work for distributed computing designed for scientific
users. A C-like scripted language expresses applications
as workflows.

• Swift makes it easy to run ordinary application programs
on parallel and remote computers (from laptops to super-
computers).

• Swift works with a variety of resource managers and file
transfer protocols. It uses ssh, PBS, Condor, SLURM,
LSF, SGE, Cobalt, and Globus to run applications, and
scp, http, ftp, and GridFTP to move data.

• Swift’s foreach statement is the main workhorse of the
language; it executes all iterations of a loop concurrently.
The actual number of tasks executed in parallel is based
on available resources and settable “throttles”.

Workflows in the form of scripts result in portable and
flexible expressions of applications. For instance, running a
single study using different simulation/software packages from
different vendors or calculation approaches becomes conve-
nient without changing the application logic. Additionally,
portable expression of workflows enables the use of multiple
computational infrastructures, as described in the next section.

IV. CYBERINFRASTRUCTURES AND TECHNOLOGY

In both of our application cases, users were introduced
to new computational infrastructures, in our case the NSF-
funded XSEDE and the Argonne Laboratory Computing Re-
source Center (LCRC) Blues systems. The minor adaptation
of highly portable application Swift scripts resulted in minimal
application porting delays before making use of these systems,

demonstrating software sustainability in the scripts and other
technological investments.

In the rest of this section we describe the enhancements in
Swift triggered directly or indirectly as a result of the user
engagement activities.

A. Configuration

With a complex set of communication and execution meth-
ods on local and remote systems, Swift offers a highly sophis-
ticated, fine tuned to-the-core configuration options to users.
However, the disadvantage of this that users often have to
adjust parameters in different configuration files. To get around
these inconveniences, a unified and abstracted approach to
configuration was designed. Under this approach, a single file,
structured as name-value pairs, is employed to record diverse
properties such as execution sites, data management, appli-
cation management and miscellaneous configuration options
(e.g. retry counts). Additionally, predefined templates with a
spectrum of configurations help users select one (out of the
box) that works for their requirements.

B. Galaxy

While a textual representation of application and a terminal
based execution like in Swift gives users flexibility and more
control, often a visual interface carries more appeal to users.
With this requirement in mind, we have conceptualized an
integration of Swift with the Galaxy portal environment [5].
The integration offers users an interactive, visual interface to
large scale computational systems while benefiting from both
Swift’s and Galaxy’s strengths in the scientific community.
With this development, independent Swift applications can
be turned into Galaxy executable tools and used from within
the Galaxy environment. A user dialog enables users to enter
application and high-level execution parameters such as the
target execution site on which to run the application.

C. Accelerators

Special hardware systems such as accelerators are gaining
prominence in HPC systems. The host CPU offloads work
to an accelerator such as a graphics processing unit (GPU)
which relieves the CPU of precious compute cycles. However,
code reusability on these systems is essentially non-existent,
resulting in customized porting issues of codes written using
specific programming languages that are capable of targeting
accelerators (e.g., CUDA, OpenCL, OpenACC). Additionally,
there are performance, portability, and programmability issues
arising from conflicting architectures (e.g., NVIDIA vs. AMD
vs. Intel Xeon Phi). One solution so far has been modular code,
with clearly defined inputs and outputs. VASP and related
software [6] have been extended to work with NVIDIA GPUs
through use of CUDA [7]. Since computation is dependent on
architecture, codes have to be maintained for all of these archi-
tectures, reducing portability. GeMTC (GPU Enabled Many-
Task Computing) addresses these issues from a Many-Task
Computing approach, by developing a library of GPU kernels
that are callable from Swift. The effort targets the lowest



level of hardware and is working towards a maintainable and
runnable architecture-agnostic high-level software tool [8].

V. SOFTWARE REUSE

In this section, we show a snapshot of Swift and wrapper
scripts used and reused in the two engagements. The code
below shows Swift’s ‘app’ definition for VASP call.

1 app (file o, file e, file outcar, file contcar)
2 run_vasp (file vasp_incar, file vasp_poscar,
3 file vasp_potcar, file vasp_kpoints,
4 string _dir, string _subdir)
5 {
6 runvasp @vasp_incar @vasp_poscar
7 @vasp_potcar @vasp_kpoints
8 _dir _subdir stdout=@o stderr=@e;
9 }

Swift binding to VASP program

The following Swift code snippet is used for mineral physics
application.

1 string dirs[] = [ "300", "400", "500", ... ];
2 file out[]<simple_mapper;
3 location="stdouts",
4 prefix="vasp", suffix=".out">;
5 foreach dir, i in dirs {
6 file incar<dir,"/","INCAR">;
7 file kpoints<dir,"/","KPOINTS">;
8 file potcar<dir,"/","POTCAR">;
9 file poscar<dir,"/","POSCAR">;

10 out[i] = vasp(incar, kpoints, potcar, poscar);
11 }

VASP usage by minerals physics application

The following Swift code snippet is used for materials science
applications respectively.

1 string dirs[] = [ "0L", "1L1", "1L3", ...];
2 string subdirs[] = ["pos0","pos1"];
3
4 foreach dir in dirs {
5 foreach subdir in subdirs {
6
7 /* file declarations omitted
8 for brevity */
9

10 (output, error, outcar, contcar) =
11 runvasp(incar_relax, poscar, potcar,
12 kpoints, dir, subdir);
13 }}

VASP usage by materials science application

The following code shows the common wrapper script used.
1 #!/bin/bash
2
3 incar=$1
4 poscar=$2
5 potcar=$3
6 kpoints=$4
7 dirname=$5
8 subdirname=$6
9

10 mpiexec -machinefile $PBS_NODEFILE \
11 /blues/nfs/home/jlow/vasp/vasp.5.3/vasp
12
13 cp OUTCAR output/vasp-outcar-$dirname.$subdirname
14 cp CONTCAR output/vasp-contcar-$dirname.$subdirname

Reusable shell script to launch parallel VASP under Swift

VI. RELATED WORK

The challenges and value of developing robust software for
scientific computing has been documented in the past [9].
The idea of workflows as enablers of reusable software

is well embedded in scientific community. The subject of
reusable and sustainable tools has been addressed by the
Taverna [10] and Cactus [11] developments. A library of
scientific workflow components, acting as a virtual shelf of
applications, has been conceived in the past. Pegasus [12] is
a framework for mapping complex scientific workflows onto
distributed systems. Pegasus combined with HUBzero[13], an
online platform for dissemination and collaboration, provides
a mechanism for enabling the masses to utilize scientific
workflows [14]. RunMyCode.org [15] is cloud-based tool to
expedite the process of reproducing results. Researchers share
their software with collaborators and reviewers who can easily
test and evaluate the work without concern for the underlying
hardware or environment.

VII. CONCLUSION

In this paper, we presented our experience of engagement
between technology catalysts and scientific users. We describe
the process of application-level reusability via a typical case
wherein the commonalities between two distinct applications
benefited the respective user communities. Additionally, we
described how Swift is a simple and effective tool for task
parallel computing on high-performance and/or distributed
systems that offers unique capabilities to promote software
sustainability.

Two aspects of the experience in this work helped improve
the Swift framework: identifying usage patterns and science
user feedback. We expect the Swift usability enhancements
will enable wider community adoptation and improve ease
of conducting science on multiple infrastructures. We expect
such a collaborative science to have short and long term
benefits by inspiring similar efforts in the broader community
across disciplines. Our experience demonstrates that effective
reusability of software in science is crucial and involves much
more than just the technical aspects.

VIII. ACKNOWLEDGMENTS

This work was partially supported by the U.S. Department
of Energy, under Contract No. DE-AC02-06CH11357. Some
work by DSK was supported by the National Science Founda-
tion, while working at the Foundation. Any opinion, finding,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] M. Mookherjee and L. Stixrude, “Structure and elasticity of serpentine
at high-pressure,” Earth and Planetary Science Letters, vol. 279, no.
1-2, pp. 11–19, 2009.

[2] G. Kresse and J. Furthmüller, “Software VASP, vienna (1999),” Phys.
Rev. B, vol. 54, no. 11, p. 169, 1996.

[3] D. S. Aidhy, D. Wolf, and A. El-Azab, “Comparison of point-
defect clustering in irradiated CeO2 and UO2: A unified view
from molecular dynamics simulations and experiments,” Scripta
Materialia, vol. 65, no. 10, pp. 867 – 870, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1359646211004507

[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Par.
Comp., vol. 37, pp. 633–652, 2011.

http://www.sciencedirect.com/science/article/pii/S1359646211004507


[5] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor et al., “Galaxy: A platform
for interactive large-scale genome analysis,” Genome research, vol. 15,
no. 10, pp. 1451–1455, 2005.

[6] F. Spiga and I. Girotto, “phiGEMM: A CPU-GPU library for porting
Quantum ESPRESSO on hybrid systems,” in Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro International
Conference on. IEEE, 2012, pp. 368–375.

[7] M. Hutchinson and M. Widom, “VASP on a GPU: Application to exact-
exchange calculations of the stability of elemental boron,” Computer
Physics Communications, vol. 183, no. 7, pp. 1422–1426, 2012.

[8] S. J. Krieder and I. Raicu, “Towards the support for many-task
computing on many-core computing platforms,” Doctoral Showcase,
IEEE/ACM Supercomputing/SC, 2012.

[9] D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. D.
Haddock, K. Huff, I. Mitchell, M. Plumbley, B. Waugh, E. P. White,
G. Wilson, and P. Wilson, “Best practices for scientific computing,”
CoRR, vol. abs/1210.0530, 2012.

[10] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat et al., “Taverna: A
tool for the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[11] G. Allen, T. Goodale, F. Lffler, D. Rideout, E. Schnetter, and E. L.
Seidel, “Component specification in the Cactus Framework: The Cactus
Configuration Language,” CoRR, vol. abs/1009.1341, 2010. [Online].
Available: http://dblp.uni-trier.de/db/journals/corr/corr1009.html

[12] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[13] M. McLennan and R. Kennell, “HUBzero: A platform for dissemination
and collaboration in computational science and engineering,” Computing
in Science & Engineering, vol. 12, no. 2, pp. 48–53, 2010.

[14] M. McLennan, S. Clark, E. Deelman, M. Rynge, K. Vahi, F. McKenna,
D. Kearney, and C. Song, “Bringing scientific workflow to the masses
via Pegasus and HUBzero,” parameters, vol. 13, p. 14.

[15] V. Stodden, C. Hurlin, and C. Perignon, “RunMyCode.org: A novel dis-
semination and collaboration platform for executing published compu-
tational results,” in E-Science (e-Science), 2012 IEEE 8th International
Conference on, 2012, pp. 1–8.

http://dblp.uni-trier.de/db/journals/corr/corr1009.html

	I Introduction
	II User Engagement Cycle
	III User Groups
	III-A Mineral Physics
	III-B Material Science
	III-C Computational Tools and Techniques

	IV Cyberinfrastructures and Technology
	IV-A Configuration
	IV-B Galaxy
	IV-C Accelerators

	V Software reuse
	VI Related Work
	VII Conclusion
	VIII Acknowledgments
	References

