
Programming Models for Parallel Computing

Edited by Pavan Balaji

The MIT Press
Cambridge, Massachusetts
London, England

Chapter 10 Swift: Extreme-scale, Implicitly Parallel Scripting

c� 2015 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

This book was set in LATEX by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

To be provided by MIT Press

10 9 8 7 6 5 4 3 2 1

10 Swift: Extreme-scale, Implicitly Parallel Scripting

Timothy Armstrong, The University of Chicago
Justin M. Wozniak, Argonne National Laboratory and The University of Chicago
Michael Wilde, Argonne National Laboratory and The University of Chicago
Ian T. Foster, Argonne National Laboratory and The University of Chicago

Scientists, engineers, and data analysts frequently find themselves needing to execute a
set of application tasks hundreds—or even millions—of times, for example to optimize
a design simulation or to process large collections of data records. Such activities can be
intellectually and administratively arduous, due to the need to orchestrate many data move-
ments and application execution tasks, and to track the resulting outputs, which themselves
often serve as inputs to further applications. Further complicating these activities is the fre-
quent need to leverage distributed and parallel computing resources in order to complete
computations in a timely manner.

Task-parallel programming models allow existing code (libraries or programs) to be
rapidly developed into scalable applications. However, they generally do not capture the
high-level workflow structure of the overall application. Concepts like iteration, recursion,
and reduction are lost if the user must coordinate tasks with the task-parallel library. It is
difficult to compactly express these abstractions in the event-handling style required by the
master-worker model. Additionally, data management is lost, and data dependencies must
be encoded in an ad hoc manner.

The Swift parallel scripting language represents a unique approach to this problem.
Swift transparently generates an task-parallel ADLB program (cf. Chapter 8) from a
high-level script, which contains data definitions, data dependencies, and links to exter-
nal native code (i.e., C/C++/Fortran). This program can then be run on an MPI-based
high-performance computer.

Like other scripting languages, Swift allows programmers to express computations via
the linking together of existing application code by, for example, specifying that the output
of program A be provided as input to tasks B and C, the outputs of which are then consumed
by task D. This approach has the advantages of allowing for rapid application development
and avoiding the need to modify existing programs. Swift supports concurrency implicitly,
so that in our example, if tasks B and C have no other dependencies, they can both execute
in parallel as soon as A completes. As described in the following, Swift is not limited to
directed acyclic graph (DAG) dependency expressions.

Additionally, Swift introduces a powerful data model that allows for typical scalars (in-
tegers, floats, strings), arrays, structs, and so on. Swift also supports an unformatted byte
array (called a blob for “binary large object”), which can hold arbitrary native data for mes-
saging from one task to the next. Furthermore, Swift represents external files as variables,
which can also be the subject of data dependent operation (similar to Makefiles). These
features together can reduce greatly the costs of developing and running computations such
as those referred to above.

220 Chapter 10

In this chapter, we introduce the Swift programming model and execution model. We
aim to provide enough information to allow the reader to write a Swift program. We
first use simple examples to introduce key Swift concepts and then introduce the language
syntax, demonstrating its broad applicability to highly productive large scale computation.
We finally describe the distributed architecture that is used to run applications on even the
largest parallel computers.

10.1 A First Example: Parallel Factorizations

We use a simple example to introduce the Swift language, computing the factors of all
numbers, up to N , in parallel, and then produce a histogram of the popularity of each
factor.

Swift script file: factors.swift

1 int N = parseInt(argv("N"));
2 bag<int> M[];
3 foreach i in [1:N] {
4 int factors[] = factorization(i);
5 foreach f in factors {
6 M[f] += 1;
7 }
8 }
9

10 foreach b,i in M {
11 printf("%i: %i", i, bagSize(b));
12 }

Swift usage in the shell:

1 > swift-t factors.swift -N=10 | sort -n
2 1: 10
3 2: 5
4 3: 3
5 4: 2
6 5: 2
7 6: 1
8 ...
9 10: 1

Figure 10.1: Swift example: Factorization

The Swift script is shown at the top of Figure 10.1 as factors.swift. This Swift
program has one link to an external function, factorization() (line 4), which could
be implemented in native code. This function returns all factors of a given integer, e.g.,

Swift: Extreme-scale, Implicitly Parallel Scripting 221

factorization(12)!1,2,3,4,6,12.

The program begins by obtaining N from the user (line 1), then looping (line 3) from
1 to N concurrently. Swift internally uses the Asynchronous Dynamic Load Balancing
(ADLB) model (Chapter 8) for task management. In this example, each loop iteration is
implemented as an ADLB task, executing somewhere in the system.

Each factorization(i) call then executes as a task (line 4), returning the array of
factors. Each factor must increment its count. This count is maintained in the bag for that
factor, i.e., M[f] is incremented each time f occurred as a factor (line 6). M[] is thus
defined as an array of bags, each containing integers (line 2). This structure should be rec-
ognizable as a MapReduce pattern; in fact, Swift can elegantly represent MapReduce [93]
and various of its generalizations [7, 103].

Swift execution is shown at the bottom of Figure 10.1. For N=10, the factor 1 ap-
pears 10 times, 2 appears 5 times (once for each even value of i), and so on. The out-
put is piped through sort because the printf() statements (line 11) execute in load-
balanced, system-defined order.

10.2 A Real-World Example: Crystal Coordinate Transformation

We use a second example to show how the Swift language can be used to analyze data:
in this case, to apply an data transformation to a 3D dataset. This example builds on the
concepts in the previous example, with only slight additional complexity.

This scientific use-case is from X-ray scattering at the Advanced Photon Source at Ar-
gonne National Laboratory. The task is to perform a coordinated transform on a three-
dimensional pixel array, converting the data from detector coordinates to real coordinates.
Each chunk of the input data contributes to some set of output chunks, but the precise map-
ping is not known in advance. Thus, the transform function returns the list of output chunk
identifiers as part of its output. Figure 10.2 shows an example use in two dimensions. The
diamond-hashed chunks (input chunks 3, 6, 8, 12, and 13) contribute to output chunk 2.
The transformed data from each is put in a bag and then merged into the output chunk.
This application also clearly has MapReduce-like behavior.

This pattern is represented in the Swift script in Figure 10.3. The program has four
external functions, implemented in C++, each prefixed with cctw . (The C++ version
is runnable as a stand-alone program, parallelized for a multicore machine with the Qt
Concurrent library. Swift enables this same code to run across multiple nodes.) For each
input chunk i, the input HDF file is read (line 3), obtaining the hyperslab corresponding
to chunk ID i: represented by a Swift blob. Then, the chunk is transformed (line 6),
producing arrays of output chunks and output IDs. For each output pair j (line 7), the

222 Chapter 10

Input chunks Output chunksBags (M)

1

11

9 10

2

181716

232221

14 15

4 5

7

12 13

31

11

9 10

2

6

18 191716

2523 242221

14 15

20

4 5

7 8

transform() merge()

M[16]

M[2]

Figure 10.2: Crystal coordinate transformation dataflow pattern.

chunk is appended to the corresponding bag (line 9). Thus, in this application, each bag
contains blobs (not integers as in the previous example).

Once each transform has completed, the blobs for each bag can be merged via a simple
weighted addition (line 13). Then, the output chunks can be written to the corresponding
HDF hyperslabs (line 14).

As in the factorization example, each call to an external function is run as concurrently
as possible, limited only by data dependency. This approach allows Swift to make good
use of massively parallel computers, without the direct use of lower-level libraries. Thus,
we see how existing program components (C++ components, in this case) can be used to
create a high-performance task-parallel computation through the use of a high-level script.
Note also how Swift’s bag, array, and blob features make it easy to distribute and compute
over binary data on parallel computers.

10.3 History of Swift

The original implementation of Swift (called Swift/K because it is based on a runtime sys-
tem called Karajan) was designed for coordination of large-scale distributed computations
that make use of multiple autonomous computing resources distributed over varied ad-
ministrative domains, such as clusters, clouds, and grids. Swift/K focused on reliability
and interoperability with many systems at the expense of performance: execution of the
program logic is confined to a single shared-memory master node, with calls to external ex-
ecutable applications dispatched to execution resources as parallel tasks over an execution
provider such as Coasters [135] or Falkon [236]. Even in favorable circumstances with
a fast execution provider executing tasks on a local cluster, at most 500–1000 tasks can
be dispatched per second by Swift/K. This rate is insufficient for applications with more
demanding performance needs such as a high degree of parallelism or short task duration.

Swift: Extreme-scale, Implicitly Parallel Scripting 223

1 bag<blob> M[];
2 foreach i in [1:n] {
3 blob inputChunk = cctw input("xray-data.hdf", i);
4 blob outputChunks[];
5 int outputIds[];
6 (outputIds, outputChunks) = cctw transform(i, b1);
7 foreach chunk, j in outputChunks {
8 int outputId = outputIds[j];
9 M[outputId] += chunk;

10 }
11 }
12 foreach g in M {
13 blob b = cctw merge(g);
14 cctw write(b);
15 }

Figure 10.3: Swift example: Crystal coordinate transformation

Optimizations to the language interpreter, network protocols, and other components
could increase throughput, but a single-master architecture ultimately limits scaling and
is unsuitable for applications with tasks with durations of hundreds of milliseconds or less
or with a high degree of parallelism (more than several thousand parallel tasks) [225].
Thus, in order to address the needs of many demanding parallel applications, the current
Swift implementation, sometimes called Swift/T (because it is based on a runtime system
called Turbine [296], which uses ADLB), achieves high-performance by parallelizing and
distributing script execution and task management across many nodes.

The current Swift language’s syntax and semantics are derived from, and remain close
to, the original Swift/K language. Swift focuses on enabling a hierarchical programming
model for high-performance fine-grained task parallelism, orchestrating large-scale com-
putations composed of external functions with in-memory data, computational kernels on
GPUs and other accelerators [164], and parallel functions implemented in lower-level par-
allel programming models—typically threads or message-passing. These functions and
kernels are integrated into the Swift language as typed leaf functions that encapsulate
computationally intensive code, leaving parallel coordination, task distribution, and data
dependency management to the Swift implementation.

Swift can be rigorously analyzed and enhanced by a range of compiler optimization tech-
niques to achieve high efficiency and scalability for a broad range of applications on mas-
sively parallel distributed-memory computers. Its design is motivated by the limitations
of current programming models for programming extreme-scale systems and addressing
emerging problems such as programmability for nonexpert parallel programmers, abstrac-
tion of heterogeneous compute resources, and the composition of heterogeneous task types

224 Chapter 10

into unified applications.
We next provide an overview of Swift syntax and semantics. We then present the design

and implementation of an efficient and scalable runtime system for this execution model,
and techniques for efficiently compiling Swift for this style of runtime system, including
compiler optimization techniques that allow applications developed in Swift to execute
efficiently on massively parallel distributed-memory systems.

10.4 Swift Language and Programming Model

The main features that characterize Swift are:

• A hierarchical programming model where computationally intensive code is writ-
ten in various other programming languages and parallel coordination is written in
Swift.

• Implicit parallelism and relaxed execution ordering constraints: program state-
ments can execute out-of-order, whenever input data is available.

• Control structures, including conditional if/switch statements and loop constructs,
that are semantically related to the equivalent imperative constructs, but are
adapted for implicit parallelism and monotonic data.

• Use of data types such as single-assignment variables with the property of mono-
tonicity, which can ensure that results of computations are deterministic even with
nondeterministic scheduling of tasks.

Swift can guarantee deterministic execution even with implicit parallelism because its
standard data types are monotonic; that is, they cannot be mutated in such a way that in-
formation is lost or overwritten. A monotonic variable starts off empty, then incrementally
accumulates information until it is frozen, whereupon it cannot be modified further. Pro-
grams that attempt to overwrite data will fail at runtime (or compile time, if the compiler
determines that the write is definitely erroneous). If write operations that modify mono-
tonic variables are commutative, then writes can be reordered without changing the final
result.

If reads to Swift data types are constrained so that transient states are not observable,
then we can achieve deterministic computation even with nondeterministic ordering of op-
erations. Swift programs using futures-based data types with these restrictions on reads
are deterministic by construction, up to the order of side-effects such as I/O. For example,
the output value of an arbitrarily complex function involving many data and control struc-
tures is deterministic, but the order in which, say, print statements execute depends on the

Swift: Extreme-scale, Implicitly Parallel Scripting 225

nondeterministic order in which tasks run. Further nondeterminism is introduced only by
non-Swift code, such as the implementation of builtins (the library function rand()), and
external functions (written in native code).

Basic Swift variables are single-assignment I-vars [216] (sometimes alternatively called
futures), which are frozen when first assigned. All basic scalar primitives in Swift are
semantically I-vars: ints, floats, booleans, and strings. Files can also be treated as I-vars,
with an I-var in the language mirroring a file in the file system to which it is mapped.
Assigning a mapped file variable in Swift then results in a file appearing at that path.

Composite data types can be incrementally assigned in parts but cannot be overwritten.
The only composite data types that Swift originally supported were structs and associative
arrays [292], both of which are monotonic futures-based data types. The associative array
is the most complex and heavily used of the two. Integer indices are the default, but other
index types including strings are supported. The array can be assigned all at once (e.g.,
int A[] = f();), or in parts (e.g., int A[]; A[i] = a; A[j] = b;). An
array lookup operation on A[i] will return when A[i] is assigned. An incomplete array
lookup does not prevent progress; other statements can execute concurrently.

The Swift language guarantees that variables are automatically frozen when the imple-
mentation is sure that no more writes will occur. This allows Swift code to refer directly to
properties such as the size of arrays and ensures that reads of nonexistent array keys will
eventually fail. The implementation of automatic freezing in Swift requires both compiler
analysis and runtime support.

We introduce the Swift language here through a series of examples that illustrate its
syntax and semantics. The examples use version 0.8.0 of Swift.1

10.4.1 Hello World

We begin with the Swift version of the classic “Hello, World” program in Figure 10.4,
which needs two lines of code: the import statement that imports the builtin io module,
then the call to the printf function from the io module to print a string.

1 import io;
2 printf("Hello World");

Figure 10.4: Swift example: Hello World.

Adding another printf in Figure 10.5 adds an interesting twist related to Swift’s im-
plicit parallelism (the following examples omit import statements to the Swift standard

1http://swift-lang.org/Swift-T

226 Chapter 10

library). In Swift, the statements are allowed to run in any order because there is no
data dependency between them: the program might print Hello World after Goodbye
World.

1 printf("Hello World");
2 printf("Goodbye World");

Figure 10.5: Swift example: Hello/Goodbye World.

10.4.2 Variables and Scalar Data Types

Variables in Swift are strongly and statically typed: each variable’s type is known at
compile time and automatic conversion between types happens in few cases. The ba-
sic data types in Swift, which are treated as scalar values, are: int (64-bit integer),
float (double-precision floating point), string (unicode string), blob (binary string),
boolean (boolean value), void (no value: used for signaling), and file (file variable
representing filesystem entry). Scalar variables are single-assignment I-vars: once a vari-
able is declared, it can be assigned at most once; a second assignment leads to a runtime
error. Figure 10.6 demonstrates various modes of declaration and assignment of variables.

1 // Declaration then assignment
2 int x;
3 x = 0;
4 printf(x);
5
6 // Combined declaration and assignment
7 float y = 2.0 + toFloat(x);
8
9 // Use before assignment is valid (dataflow is resolved at runtime)

10 string z;
11 printf(z);
12 z = "The quick brown fox jumped over the lazy dog";

Figure 10.6: Swift example: data types.

Variables can be assigned without being explicitly declared. If an variable name that
has not previously been declared is assigned, Swift creates a new variable in the current
scope with a type matching the expression on the right hand side of the assignment. This
technique can be used in many but not all cases. For example, in Figure 10.7, automatic
declaration can be used for x and condition, but y requires an explicit declaration
because the assignments are both in inner scopes.

Swift: Extreme-scale, Implicitly Parallel Scripting 227

1 // x is automatically declared as a string variable
2 x = "Hello" + " " + " World";
3
4 // x is automatically declared as a boolean
5 condition = true;
6
7 if (condition) {
8 y = x;
9 } else {

10 y = "";
11 }
12 // Error! y is not defined in this scope
13 printf(y);

Figure 10.7: Swift example: Automatic declaration.

10.4.3 Dataflow Execution

As mentioned earlier, Swift is implicitly parallel, with program execution ordered by data
dependencies. Thus, any two operators, function calls, or other parts of a Swift program
can execute in parallel if there is no direct or indirect data dependency between them.

In Figure 10.8, the two calls to f can execute in parallel because neither depends on data
produced by the other. The call to g, however, cannot execute in parallel with either f call
because it depends on the data produced by both of them.

1 x = f(0);
2 y = f(1);
3 z = g(x, y);
4
5 printf("%i %i %i", x, y, z);

Figure 10.8: Swift example: dataflow parallelism between statements.

Different subexpressions of the same expression can also be evaluated in parallel. For
example, Figure 10.9 implies the same pattern of parallelism as the previous example,
despite the calls to f and g being embedded in the same expression.

1 printf("%i", g(f(0), f(1)));

Figure 10.9: Swift example: dataflow parallelism among expressions.

228 Chapter 10

10.4.4 Conditional Statements

Conditional execution is supported by the if and switch statements. We omit discussion
of switch statements here for the sake of brevity. The if statement’s syntax is identical
to that used in many imperative programming languages, such as C, but it executes in a
data-dependent manner consistent with the rest of Swift. The condition of an if statement
is evaluated in parallel with other statements in the enclosing block. Once the value of the
condition is computed, the appropriate branch of the if statement is executed.

To illustrate how the if statement behaves in an implicitly parallel context, consider the
code in Figure 10.10, which executes two computationally intensive simulation functions
in parallel. After they finish, it compares the results and prints a message depending on
the outcome. The programmer does not have to write code to explicitly synchronize and
gather the results from the two parallel computations. Rather, the required synchronization
happens automatically as part of the evaluation of the if statement condition, so that the
message is printed once the outcome is known.

1 float f1, f2;
2
3 f1 = simulationA();
4 f2 = simulationB();
5
6 if (f1 > f2) {
7 printf("Simulation A won!")
8 } else {
9 printf("Simulation B won!")

10 }

Figure 10.10: Swift example: conditional execution with if statement.

10.4.5 Data-dependent Control Flow

The Swift wait statement and => chaining operator can be used to sequence statements
by introducing explicit dependencies into a program. Either construct can be used to make
a second statement depend explicitly on data produced by a first expression or statement,
so that the second executes only after the data produced by the first is frozen, even if the
second statement does not consume its value. This capability can used to add delays to a
program, sequence messages reporting progress, or accommodate side effects in external
functions. Note that, for these constructs to work, the statement that is to be waited on must
produce some output. Most Swift functions have at least one output argument; if they do

Swift: Extreme-scale, Implicitly Parallel Scripting 229

not, then it is straightforward to add a void output argument to signal when the function
finishes executing. Figure 10.11 demonstrates the use of these features.

1 // Chaining of multiple statements
2 printf("Going to sleep") =>
3 sleep(1) =>
4 printf("Woke up") =>
5 sleep(1) =>
6 printf("Woke up again");
7
8 x = compute something();
9

10 // The following forms are equivalent:
11 x => printf("Done!");
12
13 wait (x) {
14 printf("Done!");
15 }

Figure 10.11: Swift example: data-dependent control flow.

The two constructs differ subtly in several ways. => waits on a statement, while wait
waits on the expression supplied as its argument. Only statements that produce some kind
of output variable support chaining. => can have any statement on its right hand side,
while wait must be followed by a block enclosed in curly braces.

10.4.6 Foreach Loops and Arrays

Foreach loops are tied closely with Swift arrays, so we introduce both constructs simulta-
neously.

Arrays in Swift are associative arrays: finite maps of keys to values. The value type can
be any Swift type. The default key type is int and other scalar key types such as strings
are supported. Associative arrays with integer keys can also be viewed as sparse arrays:
arrays with integer keys that do not need to be contiguous. There are multiple ways to
declare and initialize arrays, as shown in Figure 10.12.

The workhorse control-flow construct in most Swift programs is the foreach loop for
parallel iteration over members of Swift data structures, including arrays. Iterations of
a foreach loop are independent and execute in parallel, provided that data dependencies
allow. Iteration over an array constructed with the [begin:end:{step}] syntax is the id-
iomatic way to iterate over a range of integers. In general, this syntax instructs Swift to
construct an array literal. However, when it is used in a loop iteration construct, Swift
avoids construction of the intermediate array and thus the idiom comes with no perfor-

230 Chapter 10

1 // Two equivalent ways of declaring an array A mapping integers to strings
2 string A[int];
3 string A[];
4
5 // Declaration of an array mapping strings to integers
6 int A2[string];
7
8 // Equivalent statements that initialize an array with the numbers from 1 to 4
9 B = [1, 2, 3, 4]; // List of values (keys 0-3 are implied)

10 B = [1:4]; // Integer range (keys 0-3 are implied)
11 B = [1:4:1]; // Integer range with explicit step of 1
12 B = { 0: 1, 1: 2, 2: 3, 3: 4 }; // Explicit keys
13 // Assigning piece-by-piece
14 B[0] = 1;
15 B[1] = 2;
16 B[2] = 3;
17 B[3] = 4;
18
19 // Declaring two-dimensional nested array
20 string C[][];
21 C[0][0] = "top-left";
22 C[0][1] = "top-right";
23 C[1][0] = "bottom-left";
24 C[1][1] = "bottom-right";

Figure 10.12: Swift example: array declarations.

mance penalty. To illustrate, Figure 10.13 shows code that builds an array by iterating over
a range of integers and then iterating over the constructed array.

The loop iterations in Figure 10.13 may execute in any order and thus the results will
likely not print in ascending order. In-order printing can be achieved by combining
for loops (a construct distinct from foreach) with explicit data-dependent control flow
(Section 10.4.5).

10.4.7 Swift Functions

So far we have only shown examples with Swift code at the top level of the program. Swift
code can also be enclosed in functions for encapsulation and reuse. Swift functions must
declare types and names of their input and output arguments. Functions return values by
assigning the output arguments in the function body. Recursive function calls are allowed
and tail recursion is supported in Swift: tail recursive calls of unlimited depth will not cause
Swift to run out of stack space. Figure 10.14 illustrates Swift functions through different
implementations of the factorial function.

Swift: Extreme-scale, Implicitly Parallel Scripting 231

1 // Get command-line argument n, default value of 100
2 int n = parseInt(argv("n", "100"));
3
4 float harmonic[];
5
6 // Compute the harmonic series.
7 // Note that this literally instructs Swift to construct an array containing
8 // integers 1 to n, then iterate over the constructed array. However, Swift/T
9 // always optimizes this to iterate over the range without building the array.

10 foreach i in [1:n] {
11 harmonic[i] = 1 / toFloat(i);
12 }
13
14 // Iterate over values and indices
15 foreach x, i in harmonic {
16 printf("H[%i] = %f", i, x);
17 }
18
19 printf("sum = %f", sum(harmonic));

Figure 10.13: Swift example: basic foreach loops.

Function bodies can begin executing as soon as the function is called, regardless of the
state of their input and output arguments. In Figure 10.15, assignment of each function
input is delayed by a different amount. The printf calls in the function will execute at
approximately one-second intervals once inputs are assigned.

10.4.8 External Functions

Swift is designed as a language for parallel coordination and scripting: the performance-
critical sequential computation work is typically outsourced to code written in other lan-
guages. Thus, Swift provides rich support for integration with external functions written
in programming languages including C, C++, Fortran, Python, R, Julia, Tcl, alongside the
command-line applications traditionally supported by Swift [292]. These functions can
be called from Swift code by declaring an external function with Swift input and output
argument types.

All external functions in native code (C/C++/Fortan) are called via bindings generated
with SWIG [28]. The Swift compiler automatically generates all necessary code to manage
data-dependent execution and marshal the input and output arguments.

Swift provides a high-level interface for Python, R, Tcl, and Julia, by providing builtin
functions that call to the appropriate interpreter, which may be optionally linked with Swift
at configure time [297]. These interpreters may, in turn, call language extensions written

232 Chapter 10

1 x val = parseInt(argv("x", "5"));
2
3 f1, f2 = fact2(x val);
4
5 printf("fact(%i) = %i", x val, f1);
6 printf("fact tail(%i) = %i", x val, f2);
7
8 // Recursive implementation of factorial.
9 (int result) fact(int x) {

10 if (x == 0) {
11 result = 1;
12 } else {
13 result = x * fact(x - 1);
14 }
15 }
16
17 // Tail-recursive implementation of factorial.
18 (int result) fact tail(int x, int accum) {
19 if (x == 0) {
20 result = accum;
21 } else {
22 result = fact tail(x - 1, accum * x);
23 }
24 }
25
26 // Compute factorial in two ways, illustrating multiple output arguments
27 (int r1, int r2) fact2(int x) {
28 r1 = fact(x);
29 r2 = fact tail(x, 1);
30 }

Figure 10.14: Swift example: basic Swift functions computing factorials.

1 print three(string x, string y, string z) {
2 printf("%s", x);
3 printf("%s", y);
4 printf("%s", z);
5 }
6
7 a = "Now";
8 sleep(1) => b = "Later" =>
9 sleep(1) => c = "Even later";

10
11 print three(a, b, c);

Figure 10.15: Swift example: delayed assignment of Swift function arguments illustrating
execution of Swift function body before arguments are all assigned.

Swift: Extreme-scale, Implicitly Parallel Scripting 233

in native code, creating a powerful hierarchical programming model. Figure 10.16 shows
a simple external function implemented in Tcl.

Swift also supports native-code parallel libraries written in MPI that accept a communi-
cator on which to execute [298]. When provided with such a function, Swift dynamically
creates a subcommunicator and runs the user code on it.

1 // Declaration of log to arbitrary base via Tcl
2 @pure @dispatch=WORKER
3 (float o) my log (float x, float base) "mypkg" "0.1"
4 ["set <<o>> [expr log(<<x>>)/log(<<base>>)]"];
5
6 printf("log10(100) = " + my log(100, 10));

Figure 10.16: Swift example: declaration of a external Tcl function. The Tcl fragment is
the string literal between the square brackets. Swift variables o, x, and base are marshaled
to and from Tcl with the angle bracket syntax. The syntax "mypkg" "0.1" loads the
Tcl package mypkg, version 0.1, allowing additional Tcl libraries and/or extensions (native
code libraries with Tcl bindings) to be referenced from the Tcl fragment.

The @pure function annotation, used in Figure 10.16, is used to assert that the function
is deterministic and has no side-effects. This annotation allows the Swift optimizer to reuse
results of the function instead of recomputing them, if needed. The function annotation,
@dispatch=WORKER, tells Swift that the function may take a little while to run and
should always be executed as an independent task. Other annotations are documented in
the Swift user guide [263].

10.4.9 Files and App Functions

Swift supports files as a first-class data type that can be treated similarly to a scalar value
in the program. It also supports app functions: command-line programs that are wrapped
as typed Swift functions. Thus, scripts manipulating files and invoking command-line
applications can be expressed with regular Swift variables and function calls, as shown in
Figure 10.17. This feature means that Swift can be used to develop file-based workflows,
as with Makefiles, with extreme scalability. For example, one user who wanted to test
a C compiler under a wide range of tuning parameters used Swift to distribute runs over
distributed-memory systems.

234 Chapter 10

1 app (file out) cat (file inputs[]) {
2 "/bin/cat" inputs @stdout=out
3 }
4
5 file inputs[] = glob("*.txt");
6 file joined <"joined.txt"> = cat(inputs);

Figure 10.17: Swift example: Concatenating all text files in a directory.

10.5 The Swift Execution Model

We briefly describe here Swift’s execution model for data-driven task parallelism. The ex-
ecution model provides a foundation for the semantics of the Swift programming language.
An important property of the model is that, subject to reasonable constraints, the result of
a computation in the execution model is deterministic even when tasks are executed in a
nondeterministic order or in a concurrent manner with interleaved reads and writes while
accessing a shared data store.

As mentioned earlier, Swift is runs on the Turbine distributed runtime system, which is
well suited for massively parallel distributed systems. The core component of Turbine is
ADLB; Turbine provides additional features to make it an attractive compiler target for the
Swift compiler (STC), providing a small set of primitives that enable Swift to run.

In data-driven task parallelism, all computation is performed by tasks, which are ab-
stracted as mathematical functions that take input values and compute outputs of various
kinds. Once executing, tasks run to completion and are not preempted. Tasks communi-
cate by reading and writing shared data that resides in a data store. A task declares a set of
shared data items that it will read and the computed output of a task includes a set of write
operations on shared data items. Shared data is also the main means of synchronization:
execution of a task can be made dependent on shared data so that the task does not run
until that data is available.

To visualize the execution model, we will use a graphical notation for trace graphs that
show the tasks, shared data, and dependencies that arise during execution. A trace graph,
such as Figure 10.18, illustrates a single runtime execution of a program. Note that a single
static graph cannot always serve as a specification of the data-driven tasks program because
dependencies emerge dynamically at runtime. Tasks may selectively read, write, or spawn
based on values computed at runtime: the tasks and relationships between tasks may vary
between different executions of the same program, e.g., if the input data is varied. A trace
graph never has cycles: in the case of deadlocks, deadlocked tasks will have fewer in-edges
than data dependencies.

Swift: Extreme-scale, Implicitly Parallel Scripting 235

Figure 10.18: Trace graph showing task and data dependencies at runtime in data-driven
task parallelism, forming a spawn tree rooted at task a. Data dependencies on shared data
defer execution of tasks until the variables in question are frozen. Thus, for example, task
h cannot execute until a data item is written by task c.

Figure 10.19: Task spawning two children that synchronize on an item of data.

Each task can spawn asynchronous child tasks, resulting in a spawn tree of tasks, as in
Figure 10.18. In practice, tasks can be implemented through a set of parameterized task
definitions that make up a program: at spawn time a task definition’s parameters are bound
to specific values by the parent to produce a child task. This allows parent tasks to pass
data directly to their child tasks. For example, this could be small data such as numbers or
short strings, along with references to arbitrary shared data. Shared data items can be read
or written by any task that obtains a reference to the data. Shared data items provide for
coordination between multiple tasks. For example, a task A can spawn two tasks, B and
C, passing both a reference to a shared data item, which B writes and C reads, as shown in
Figure 10.19. Data dependencies, which defer the execution of tasks, are the only way to
synchronize between tasks. The execution model permits a task to write (or not write) any
data it holds a reference to, allowing many runtime data dependency patterns beyond static
task graphs.

Figures 10.20 and 10.21 use an example to illustrate how Swift may be translated into
the execution model. The example application, an amalgam of several real scientific ap-
plications, runs an ensemble of simulations for many parameter combinations. The code

236 Chapter 10

1 blob models[], res[][];
2 foreach m in [1:N models] {
3 models[m] = load(sprintf("model%i.data", m));
4 }
5
6 foreach i in [1:M] {
7 foreach j in [1:N] {
8 // initial quick evaluation of parameters
9 p, m = evaluate(i, j);

10 if (p > 0) {
11 // run ensemble of simulations
12 blob res2[];
13 foreach k in [1:S] {
14 res2[k] = simulate(models[m], i, j, k);
15 }
16 res[i][j] = summarize(res2);
17 }
18 }
19 }
20
21 // Summarize results to file
22 foreach i in [1:M] {
23 file out<sprintf("output%i.txt", i)>;
24 out = analyze(res[i]);
25 }

Figure 10.20: Swift code for the data-driven task trace graph of Figure 10.21.

(Figure 10.20) executes with implicit parallelism, ordered by data dependencies. Data
dependencies are implied by reads and writes to scalar variables (e.g., p and m) and as-
sociative arrays (e.g., models and res). Swift semantics allow functions (e.g., load,
evaluate, and simulate) to execute in parallel when execution resources are available
and data dependencies are satisfied. This example illustrates the additional expressivity of
the execution model over some common alternatives such as static task graphs or dataflow
networks. Simulations are conditional on runtime values: data-driven task parallelism al-
lows dynamic runtime decisions about what tasks to create. The task graph (Figure 10.21)
shows an optimized translation to data-driven task parallelism. An unoptimized version
would comprise more variables and tasks.

10.6 A Massively Parallel Runtime System

The Turbine runtime system enhances the ADLB load-balancing library, by supporting
arbitrary user data, data dependencies, and miscellaneous builtin functions and other tools
to support Swift.

Early prototype versions of Turbine extended ADLB with required functionality, such
as a distributed data store and data-dependent task release [295]. Since then, we have
further extended and enhanced Turbine to produce a complete and scalable distributed
language runtime for Swift. This work includes task queue performance and scalability

Swift: Extreme-scale, Implicitly Parallel Scripting 237

Figure 10.21: Visualization of optimized parallel tasks and data dependencies for the
program of Figure 10.20, for parameters M = 2, N = 2, S = 3.

enhancements, work stealing to rebalance work between servers, richer data functionality,
and support for garbage collection through reference counting.

10.7 Runtime Architecture

The Turbine/ADLB runtime is a distributed system that allows many workers to cooper-
ate in executing massively parallel applications. It enables coordination between workers
through three core services that are implemented efficiently and scalably: a distributed
data store to store shared data, a distributed task queue to distribute work, and a dis-
tributed dependency engine that tracks data dependencies of tasks. Figure 10.22 illustrates
the interactions between these services. These services provide operations that support
distributed execution of Swift.

Task operations support adding and removing tasks from the distributed task queue. The
payload of each task is arbitrary binary data that can be interpreted in an application-
dependent way. The task operations support adding tasks: enqueuing a task in the depen-
dency engine or for immediate execution. “Get” operations remove a task from the queue
of the desired type. Different Get variations support nonblocking gets of tasks useful when
a worker can execute multiple tasks in parallel or when a programmer wants to overlap task
execution with task gets.

A model of differentiated task types is used to support GeMTC GPU tasks [164], task
dispatch to multiple worker types when integrated with the NAMD molecular dynamics
software [230], and integration with Coasters for execution of remote command-line ap-
plications [135]. Parallel tasks have many applications, such as running ensembles of the
OSUFlow particle tracing application [298]. The use of task priorities to prioritize criti-

238 Chapter 10

Figure 10.22: A view of the Swift distributed runtime (Turbine/ADLB) as distributed ser-
vices enabling coordination between workers. Tasks created by code running on workers
are passed to the dependency engine. The dependency engine holds tasks until required
input data are available, and then passes the tasks to the task queue. Tasks are then sent
from the task queue to workers to be executed. While executing, tasks can read and write
the distributed data store. Writes to the distributed data store can trigger notifications to
the dependency engine if the dependency engine has subscribed to that data.

cal tasks (e.g., tasks that are longer-running or on the critical path of the application) can
significantly improve system utilization and reduce time-to-solution [14, 17]. Rank and
node-level targeting—both Hard and Soft—have found applications in data-intensive
applications where data is stored locally on the compute node and the cost of remotely
reading data is significant [100, 299].

Runtime data operations allow creating, reading, writing, subscribing to, and reference
counting of shared data items in the data store.

In order to implement the three distributed services provided by the runtime system, MPI
processes are divided into two roles: workers and servers. Figure 10.23 shows a common
way of distributing servers: one server per node. The system can be scaled up arbitrarily
by proportionally adding processes of both types. Worker processes can execute any pro-
gram logic, coordinating with each other using the data and task operations provided by
distributed services. The distributed services are implemented by the server processes and
accessed with remote procedure calls (RPCs).

Implementation of an efficient and scalable task queue hinges on two key features: effi-
cient task-matching algorithms and data structures to maximize throughput per server, and
scalable work-distribution algorithms to handle load imbalances between servers. Task
matching only solves the problem of matching work on an individual server to that server’s
own workers. If a server runs out of work, then it must somehow acquire more work from
another server to prevent its workers from sitting idle. Such load imbalances are common

Swift: Extreme-scale, Implicitly Parallel Scripting 239

Worker 4Worker 4

Server 0Server 0 Server 1Server 1

Worker 8Worker 8

Worker 12Worker 12

Worker 16Worker 16

•
•
•

Worker 5Worker 5

Worker 9Worker 9

Worker 13Worker 13

Worker 17Worker 17

•
•
•

Server 3Server 3

Worker 7Worker 7

Worker 11Worker 11

Worker 15Worker 15

Worker 19Worker 19

•
•
•

Server 2Server 2

Worker 6Worker 6

Worker 10Worker 10

Worker 14Worker 14

Worker 18Worker 18

•
•
•

Node 0 Node 1 Node 2 Node 3

Figure 10.23: Runtime process layout on a distributed-memory system. Worker and server
processes are mapped onto multicore systems.

in practice, and thus moving work from overloaded to underloaded servers efficiently is
critical. Novel work stealing enhancements were used to address this problem [15].

The runtime’s data store implements a distributed data store with semantics based on the
abstract data store described below. Data store keys are 64-bit integers and the key space
is partitioned between servers in a round-robin manner. Multiple placement strategies are
possible when a worker calls Create. The current strategy used is to place the data on the
nearest server, which improves data locality, but can lead to problems with load imbalance.
Each data store key has an associated type tag. For compound data structures, additional
type information about members is stored in various ways.

Garbage collection and automatic freezing are supported by a reference counting mech-
anism. Data-dependent task release is based on a key/path pair becoming frozen. Release
is implemented efficiently through a subscription mechanism: any process in the system
can subscribe to a key/path pair. Subscriptions are tracked by the server to which the key
maps, and when the frozen state is entered, a notification message is set to the subscriber.

Efficient memory management is challenging in a distributed context, especially in the
highly dynamic execution model of data-driven task parallelism, because references to a
data item may be held by many processes at any given time. The classic memory man-
agement problem is generally formulated as the problem of detecting when no direct or
indirect references to a data item are held by the executing program. The variable freezing
problem can be formulated similarly: detecting when no Write references are held.

We tackle both problems with automatic distributed reference counting. We give each
shared data item two reference counts (refcount), one for read references and one for write
references. When a data item’s write refcount drops to zero, it is frozen and cannot be
written; when both refcounts drop to zero, the data can be deleted. Single-assignment
variables do not require special treatment, but for variables such as arrays, where multiple

240 Chapter 10

Figure 10.24: Runtime architecture showing distributed worker processes coordinating
through task and data operations. Ready/waiting tasks and shared data items are stored on
servers, with each server storing a subset of tasks and data. Servers must communicate
to redistribute tasks through work stealing, and to request/receive notifications about data
availability on other servers.

assignments are possible, refcounts must be correctly incremented and decremented to
track the number of tasks and data structures with references to a key. A well-known
weakness of reference counting is that it cannot handle cycles of references. The Swift
data model does not permit such reference cycles, which avoids the problem.

10.8 Performance

Large-scale experiments were performed on the Blue Waters supercomputer [109] using
Swift. Figure 10.25 shows our scalability and task throughput results obtained by running
an embarrassingly parallel Swift program that exercises task matching and work stealing.
Swift achieved a peak throughput of 1.47 billion tasks/s on 524,288 cores running the
Sweep benchmark [16]. Tasks of 1 ms or more achieve high efficiency; the servers are
lightly loaded and queuing delays are minimal.

Swift: Extreme-scale, Implicitly Parallel Scripting 241

Figure 10.25: Throughput and scaling of runtime system for varying task durations.

Figure 10.26: The STC compiler is in the middle of the Swift toolchain and translates
high-level Swift code into execution code for the Turbine runtime.

10.9 Compiling Swift for Massive Parallelism

STC is a whole-program optimizing compiler for Swift that compiles high-level Swift code
to run on the distributed runtime described in Section 10.6. STC generates code in the Tcl
scripting language that can execute on the distributed runtime system; the runtime exposes
ADLB and supporting libraries via Tcl bindings, enabling ease in the usage and debugging
of the generated code. Figure 10.26 illustrates how STC fits into the Swift toolchain. STC
implements optimizations aimed at reducing communication and synchronization without
loss of parallelism. An intermediate representation captures the execution model, allowing
optimization to reduce synchronization and runtime task/data operations involving shared

242 Chapter 10

Figure 10.27: STC compiler architecture. The frontend produces IR-1, which is increas-
ingly optimized by successive passes. Postprocessing adds intertask data passing and ref-
erence counting information to produce IR-2 for code generation.

data. It enables garbage collection by reference counting which is further optimized. We
briefly survey the effectiveness of the compiler optimizations on several benchmarks. Fur-
ther details of the compilation process can be found in an earlier paper [16] and Arm-
strong’s Ph.D. dissertation [15].

To optimize a wide range of data-driven task parallelism patterns, we need compiler op-
timization techniques that can understand the semantics of task parallelism and monotonic
variables in order to perform major transformations of the task structure of programs to
reduce synchronization and communication at runtime, while preserving parallelism. Ex-
cessive runtime operations impair program efficiency because tasks waste time waiting for
communication; they can also impair scalability by causing bottlenecks in the data store or
task queue services.

The STC compiler uses a medium-level intermediate representation (IR) that captures
the execution model of data-driven task parallelism. The tree structure of the intermediate
representation can be mapped to the spawn tree of tasks, and dependencies through single-
assignment data types are a first-class part of the IR. Two IR variants are used in STC, as
shown in Figure 10.27. IR-1 is generated by the compiler frontend and then optimized. IR-
2 includes additional information for code generation: explicit bookkeeping for reference
counts and data passing to child tasks.

Detailed measurements and a comparison to related compilation and optimization work
have been presented in prior publications [16, 15].

10.10 Related Work

Ousterhout [224] has written eloquently about the rationale and motivation for scripting
languages, the difference between programming and scripting, and the place of each in the

Swift: Extreme-scale, Implicitly Parallel Scripting 243

scheme of applying computers to solving problems.
Coordination languages such as Linda [8], Strand [110], and PCN [111] support the

composition of implicitly-parallel functions programmed in specific languages and linked
with the systems. In contrast, Swift coordinates the execution of what are typically legacy
applications coded in various programming languages. Linda defines primitives for con-
current manipulation of tuples in a shared “tuple-space”. Strand and PCN, like Swift, use
single-assignment variables as their coordination mechanism. Linda, Strand, PCN and
Swift are all dataflow-driven: processes execute only when data are available.

Swift has its origins in the Virtual Data Language (VDL) [112] developed within the
Grid Physics Network (GriPhyN) project for management of large-scale data analysis com-
putations. The term virtual data is intended to indicate that program rules define how data
is to be produced; required computations are then performed when the user calls for the
final data product.

Execution models and runtime systems combining task parallelism with data depen-
dencies for HPC applications have been explored by several groups [104]. Tarragon [79]
and DaGuE [49] implement efficient parallel execution of explicit dataflow DAGs of tasks
from within an MPI program. ParalleX [152] provides a programming model through a
C++ library that encompasses globally-addressable data and futures, with the ability to
launch tasks based on dataflow. StarPU [20] and OmPSS [56] both provide lower-level
library and pragma-based interfaces for executing tasks with data dependencies on CPUs
and accelerators on distributed-memory clusters.

Habanero Java [264] and Habanero C [77] support asynchronous task parallelism with
data dependencies on shared-memory nodes. Extensions to Habanero C support some
inter-node parallelism with integration between MPI primitives and Habanero C, although
this falls short of providing transparent task migration between nodes. X10 supports asyn-
chronous task parallelism, but synchronization is based on a finish statement and termina-
tion detection algorithms, instead of data-dependencies [265].

The Asynchronous Dynamic Load Balancer (ADLB) [182], the basis of our runtime
system, is highly scalable and has been successfully used by large-scale physics applica-
tions. However, its initial version did not support shared global data and the task queue
performance was significantly extended through its integration into Swift.

Scioto (Chapter 9) is a library for distributed memory dynamic load balancing of tasks,
similar to ADLB. Scioto implements work stealing among all nodes instead of the server-
worker design of ADLB. Scioto’s efficiency is impressive, but it does not provide features
required for Swift such as task priorities, work types, and targeted tasks.

Recent work on systems such as Sparrow [225], CloudKon [245], and Apollo [50] has
attempted to improve throughput of task schedulers in cloud computing to enable work-
loads composed of “tiny tasks” on large clusters. These systems must deal with problems

244 Chapter 10

such as unreliability of workers and the need to enforce scheduling policies for shared re-
sources. As a result of this and other implementation choices, they are unable to achieve
anywhere near the efficiency of our runtime system: typical per-task overhead is tens to
hundreds of milliseconds.

The MATRIX task scheduler [289], like Swift, seeks to implement high-performance
distributed task scheduling with policies such as data-aware scheduling. However, MA-
TRIX is built on a general-purpose key-value store. Our work shows that special-purpose
data structures for task matching are required to achieve high performance given schedul-
ing policies such as location-awareness and priorities.

10.11 Conclusion

We have described a hierarchical programming model for massively-parallel computing,
which uses a high-level implicitly parallel language, Swift, to orchestrate computational
tasks implemented in a range of other programming languages. This approach is a promis-
ing direction for addressing future systems challenges of unreliability and heterogeneity
while making it substantially easier for nonexpert programmers to construct highly scal-
able parallel applications.

Swift’s distributed Turbine runtime system faces many challenges, some of which—
scalable synchronization, task matching, and task distribution—have been addressed with
algorithms and data structures that address the problems of implicitly parallel dataflow-
based programming models. These new approaches enabled great improvements in run-
time performance and made the programming model performant and scalable enough to
be attractive for many applications that fit the execution model.

Our experience with Swift provides strong evidence that that a combination of runtime
algorithms and compiler techniques can enable high-level implicitly parallel code to drive
fine-grained task-parallel execution at massive scales, rivaling the efficiency and scalability
of hand-written parallel coordination code for common patterns of parallelism at scales
from tens of cores to half a million cores and for a range of task-parallel application patterns
including iterative optimization, tree search, and parallel reductions.

The system described in this chapter has been used for production science applications
running on over 100,000 cores in production and over 500,000 cores in testing. Application
of both compiler and runtime techniques was essential to reaching this scale. The Swift
programming model offers a combination of ease of development and scalability that has
proven valuable for developers who need to rapidly develop and scale-up applications, and
do not have the time, expertise, or need to implement, optimize and debug applications in a
lower-level distributed-memory programming model like MPI. Applying Swift to new and
different problems will reveal further strengths, weaknesses, and opportunities.

Swift: Extreme-scale, Implicitly Parallel Scripting 245

Swift is an open source project with documentation, source code, and downloads for
Swift/K and Swift/T available at http://www.swift-lang.org.

Acknowledgments

This research was supported in part by NSF grants OCI-721939 and OCI-0944332 and
by the U.S. Department of Energy under contract DE-AC02-06CH11357. Computing re-
sources were provided by the Argonne Leadership Computing Facility, XSEDE, Open
Science Grid, the UChicago/Argonne Computation Institute’s Beagle supercomputer, and
the Amazon Web Services Education allocation program.

We gratefully acknowledge the contributions of current and former Swift team members,
collaborators, and users: Glen Hocky, Hemant Sharma, Jun Park, Jon Almer, Ray Osborn,
Guy Jennings, Jonathan Ozik, Sarah Kenny, Allan Espinosa, Zhao Zhang, Luiz Gadelha,
David Kelly, Milena Nokolic, Jon Monette, Aashish Adhikari, Marc Parisien, Michael
Andric, Steven Small, John Dennis, Mats Rynge, Michael Kubal, Tibi Stef-Praun, Xu Du,
Yadu Nand Babuji, Ketan Maheshwari, Joshua Elliott, Zhengxiong Hou, and Xi Li. The
initial implementation of Swift was the work of Yong Zhao and Mihael Hategan; Karajan
was designed and implemented by Hategan under an effort led by Gregor von Laszewski.
Swift/T is the work of Justin Wozniak and Timothy Armstrong, with contributions by Yadu
Nand Babuji.

