
Parsl: Pervasive Parallel Programming in Python
Yadu Babuji

University of Chicago
yadunand@uchicago.edu

Anna Woodard
University of Chicago

annawoodard@uchicago.edu

Zhuozhao Li
University of Chicago

zhuozhao@uchicago.edu

Ben Clifford
University of Chicago
bzc@uchicago.edu

Rohan Kumar
University of Chicago

rohankumar@uchicago.edu

Lukasz Lacinski
University of Chicago
lukasz@uchicago.edu

Ryan Chard
Argonne National Laboratory

rchard@anl.gov

Justin M. Wozniak
Argonne National Laboratory

woz@anl.gov

Ian Foster
University of Chicago

foster@anl.gov

Michael Wilde
ParallelWorks

wilde@parallelworks.com

Daniel S. Katz
University of Illinois at
Urbana-Champaign
d.katz@ieee.org

Kyle Chard
University of Chicago
chard@uchicago.edu

ABSTRACT
High-level programming languages such as Python are increasingly
used as intuitive interfaces to libraries written in lower-level lan-
guages and for assembling applications from various components.
This migration towards orchestration rather than implementation,
coupled with the growing need for parallel computing (e.g., due to
big data and the end of Moore’s law), necessitates rethinking how
parallelism is expressed in programs. Here, we present Parsl, a paral-
lel scripting library that augments Python with simple, scalable, and
flexible constructs for encoding parallelism. These constructs allow
Parsl to construct a dynamic dependency graph of components that
it can then execute efficiently on one or many processors. Parsl is
designed for scalability, with an extensible set of executors tailored
to different use cases, such as low-latency, high-throughput, or
extreme-scale execution. We show, via experiments on the Blue Wa-
ters supercomputer, that Parsl executors can allow Python scripts
to execute components with as little as 5ms latency, scale to more
than 250 000 workers across more than 8000 nodes, and process
upward of 1200 tasks per second. Other Parsl features simplify the
construction and execution of composite programs by supporting
elastic provisioning and scaling of infrastructure, fault-tolerant ex-
ecution, and integrated wide-area data management. We show that
these capabilities satisfy the needs of a broad range of many-task,
interactive, online, and machine learning applications in fields such
as biology, cosmology, and materials science.

KEYWORDS
Parsl, parallel programming, compositionality, Python

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPDC-28, June 2019, Phoenix, Arizona USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

ACM Reference Format:
Yadu Babuji, Anna Woodard, Zhuozhao Li, Ben Clifford, Rohan Kumar,
Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael Wilde,
Daniel S. Katz, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming
in Python. In Proceedings of ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC-28). ACM, New York, NY, USA, Article 4,
12 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The past decade has seen a major transformation in the nature
of programming. Software is increasingly constructed by using a
high-level language to integrate components from many sources.
In other words, much software is not so much written as assembled.
Additionally, as data sizes increase and sequential processing power
plateaus there is a growing need to make use of parallel hardware
such as specialized accelerators and distributed computing systems.
As a contribution to a merging of these two trends, we present here
methods that allow for the natural expression of parallelism within
a popular high-level language, Python, in such a way that programs
can express opportunities for parallelism that can then be realized,
at execution time, using different execution models on different
parallel platforms.

Specifically, we present Parsl, a parallel scripting library that
defines and implements Python decorators that developers can
use to express parallelism with Python programs. We show how
programmers can thus easily create programs composed of both
Python functions and components written in other languages, with
opportunities for parallel execution expressed in a way that allows
for efficient implementation on a variety of architectures. Parsl
thus implements a form of compositionality, in which a program is
constructed by composing component programs in parallel. This
approach to parallelism is in contrast to prior efforts that rely on
domain specific languages (DSL) [23, 35], configuration-based mod-
els [1, 22, 28], Python-based graph descriptions [4, 30], and compiled
language extensions [17] to support such composition. We choose
to extend Python for several reasons: it is widely used for program-
ming; as an interpreted language it can be easily extended (without

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

requiring compiler modifications); and while not considered a func-
tional programming language it lends itself well to a functionally
influenced style that fits our model of parallelism.

Parsl enables a simple functional programming model at the
task level while still retaining procedural Python code for other
aspects of the program. That is, it allows developers to declare
the logic of a program, without explicitly describing how compo-
nents are executed, by chaining together functions with defined
input and output objects. Developers simply annotate functions
in a Python script as Apps, indicating that these functions (either
pure Python or components in other languages) can be executed
concurrently, if permitted by data dependencies. Parsl composes
a dynamic dependency graph and maps the task graph to arbi-
trary execution resources, exploiting parallelism where possible by
tracking the the creation of data (objects or files) and determining
when dependencies are met. The explicit input/output specifica-
tion for Apps, immutable input and output object passing, and
dependency-based execution model provides the ability for users
to construct safe and deterministic parallel programs. Parsl is in-
herently flexible and scalable. Its modular execution architecture
supports a variety of execution models—from pilot jobs to extreme
scale distributed execution—and execution providers—from laptops
to supercomputers. Finally, Parsl separates code from configuration.
This allows, parallelism to be provided in different ways on differ-
ent resources, without changing program code. This combination
of features ensures that Parsl enables simple, safe, scalable, and
flexible parallelism.

The fact that Parsl extends Python offers many advantages over
alternative approaches. For example, Parsl can be easily configured
on a variety of computers (including in virtual Python environ-
ments), as Python is part of standard distributions and is already
deployed in many environments. Parsl allows users to express par-
allelism in familiar Python code, without needing to learn new
syntax. Developers familiar with Python can, in a matter of min-
utes, learn the additional constructs offered by Parsl. Parsl scripts
provide unobstructed access to the vibrant and diverse Python and
scientific Python (SciPy) ecosystems, which provide an enormous
range of libraries and tools for scientific computing (e.g., Pandas
dataframes, Scikit-learn, Jupyter notebooks, and Python interfaces
to other tools like Tensorflow).

Further, when using Parsl, users are not constrained to the spe-
cific constructs made available by the system, but instead, they
have the complete power of Python to implement sequential func-
tionality (e.g., argument parsing, logging, visualization libraries).
Developers can also exploit powerful language features such as
conditional and loop constructs, complex datatypes, generators, list
comprehensions, and other object-oriented functionality. Finally,
in many cases, parallelism is simply one part of a program, rather
than the entire program. Parsl embraces this idea, making it easy to
augment Python programs with Parsl-based parallel components,
rather than relying on complex nesting or specifications defined in
terms of markup languages.

In this paper we describe our motivation for developing Parsl,
the design decisions that influenced the model, and its architecture.
We evaluate the scalability of Parsl on a campus cluster and a
supercomputer, showing that its high-throughout executor can
scale to more than 30,000 concurrent workers with throughput

greater than 1,000 tasks/second, that its extreme-scale executor can
scale to more than 250,000 concurrent workers over 8,000 nodes,
and that its low-latency executor can execute components within
5ms, far exceeding what other Python-based systems can achieve.

This paper is structured as follows. In §2.1 we outline five use
cases that motivated the development of Parsl. In §3 and §4 we
outline the design and architecture of Parsl, respectively. In §5
we evaluate the scalability and performance of Parsl. We present
related work in §6. Finally, in §7 we summarize our contributions.

2 MOTIVATION
To motivate our approach we first highlight five scientific use cases
that exhibit a variety of workflow requirements, including the man-
agement of progress, concurrency, and data. We then describe the
advantages of implementing Parsl as an extension to Python.

2.1 Use Cases
Parsl has been designed to support a broad range of science and
engineering use cases, from traditional many-task computing to
new computational modes such as interactive computing (e.g., in
Jupyter notebooks), machine learning (training and inference), and
online computing. Here we outline several of the scientific use cases
that jointly motivated Parsl’s architecture, and we summarize the
requirements for each use case in Table 1.

A common many-task application is DNA sequence analy-
sis, which is computationally-intensive, data-intensive, and re-
quires multiple processing steps using various processing tools
(e.g., alignment, quality control, variant calling, etc.) One specific
large-scale next generation sequencing analysis pipeline is Swift-
Seq [33], which combines many processing tools and performs
highly parallel execution on clouds, clusters, and supercomputers.
SwiftSeq allows researchers to specify analysis requirements (e.g.,
analysis type, tools to be used, tool parameters) and then dynam-
ically generates a many-task workflow for processing. SwiftSeq
is implemented in Python, and requires a simple way of express-
ing parallelism for its processing tools and sequencing data. It is
intended for analysis of thousands of genomes, each several GBs
in size, and with processing tools that run for minutes to hours.
These long-running tools require fault tolerance. Efficient use of
infrastructure requires that individual tasks be partitioned, where
possible, and placed across multiple nodes and even sites.

An example of a bag-of-tasks application isML inference. In-
creasingly, science is performed through multi-tenant, service-
oriented platforms, such as scientific portals and gateways. These
services provide on-demand access to the data, tools, and infrastruc-
ture required for thousands of researchers to concurrently perform
analyses. The Data and Learning Hub for science (DLHub) [19]
is one such service designed to publish and serve ML models for
parallel inference by a community of researchers. DLHub requires
methods to manage many short-duration inference requests using a
bag-of-tasks execution model. Unlike other bag-of-tasks workloads,
DLHub is used in a variety of real-time workloads that require
low-latency responses for example to detect errors. Finally, task
isolation, via containers, is desirable to accommodate the vanguard
requirements of diverse ML models.

Parsl: Pervasive Parallel Programming in Python HPDC-28, June 2019, Phoenix, Arizona USA

Table 1: Requirements from five different use cases for a canonical workflow campaign. HTC=High Throughput Computing;
FaaS=Function as a Service.

Sequence analysis ML inference Materials science Neuroscience Cosmology
Pattern dataflow bag of tasks dataflow sequential dataflow
Paradigm HTC FaaS Interactive Batch HTC
O(Nodes) hundreds tens tens tens thousands
O(Tasks) thousands thousands hundreds hundreds millions
O(Duration) days seconds minutes hours day
O(Data) TB KB MB GB TB
Latency Sensitive no yes yes no no

An example of interactive computing in material science is
modeling stopping power. Because traditional time-dependent den-
sity functional theory (TD-DFT) computations are expensive, re-
searchers are developing machine learning methods to augment
TD-DFT simulations. For example, researchers use existing DFT
data stored in the Materials Data Facility (MDF) [15] to create
surrogate models that predict stopping power in different direc-
tions. During the model development phase, researchers use Jupyter
notebooks to develop models, and evaluate accuracy from many
directions. They therefore require methods that make it easy to
parallelize these processes, low-latency responses when exploring
modeling approaches in an interactive manner, and scalability to
exploit HPC resources for final model execution.

Experimental research processes often integrate computational
analyses for error checking, quality control, and experiment steer-
ing. For example, neuroscience researchers use x-ray microto-
mography at the Advanced Photon Source to characterize the neu-
roanatomical structure of brain volumes to study brain aging and
disease [20]. They combine analysis processes, in near-real time, to
reconstruct 3-dimensional images during the experiments for error
detection and sample orientation. Such analyses are implemented
as a multi-step workflow that first identifies the center of imaged
samples from amongst hundreds of 2-dimensional slices, applies a
machine learning model to identify the highest quality slices, and
then uses tomographic reconstruction to create a 3Dmodel from the
slides. Depending on the experiment, the resulting reconstruction
can then be used with segmentation models to characterize cells,
visualization, and to analyze the composition of the brain tissue. To
reliably perform such workflows in a timely manner, researchers
must be able to leverage the largest computing resources available
to them, such as those at Argonne’s Leadership Computing Facility.

Workflows can also have unpredictable performance. An ex-
ample is a cosmology analysis workflow that aims to produce
simulated images from the Large Synoptic Survey Telescope (LSST)
for subsequent processing. To create these simulated images, Dark
Energy Science Collaboration researchers first construct instance
catalogs of cosmological objects using observation parameters (e.g.,
time, altitude, temperature, telescope configuration) and astrophysi-
cal inputs (e.g., stars, galaxies). The workflow uses these catalogs to
simulate images acquired from each of the telescope’s 189 sensors.
It runs the simulation on each of 10 000s of catalogs to simulate
portions of the sky under various conditions. The workflow relies
on a set of pre-existing Python-based simulation tools that are made
available in Singularity containers. Given that the workflow can
occupy the full capacity of a leadership class supercomputer for

weeks, the workflow execution system must be capable of main-
taining high utilization at scale. For example, as execution time
is dependent on the number of objects included in a sensor/cat-
alog, there is potential for significant imbalance throughout the
workflow, thus the workflow must group (and rebalance) tasks into
appropriate sized bundles for a given processing node (e.g., 64 tasks
for a 64-core processor).

2.2 Why build on Python?
Python, first released in 1991, has become a lingua franca in many
domains. Many developers, scientists, and analysts use Python ex-
tensively as it is straightforward to learn, well documented, and
reliable. Python is a powerful programming language with sophis-
ticated features that need neither be reimplemented by Parsl nor
relearned by programmers: for example, if statements, loops, gen-
erators, objects, and list comprehensions. Python also has a rich
and vibrant ecosystem with many useful libraries.

We briefly outline here some of the advantages of implementing
Parsl as a library for Python.

Parsl semantics differ from those of Python only where
necessary. Everything else stays the same and need not be de-
signed, implemented, or learned. Although Parsl focuses on task-
oriented parallel computation, a program needs to do other things—
often relatively trivial booking-keeping work that should rightly be
implemented easily. As a tradeoff, reasoning about the program as
a whole can be harder (affecting the correctness of checkpointing
and retries, for example).

A single language for the implementation of Parsl and for
writing programs. Parsl blurs the line between library and pro-
grams written with the library. For example, the LSST workflow
above can use a small, straightforward piece of Python code to
rate limit and rewrite the program’s work queue and thus influ-
ence Parsl’s scheduling in a non-trivial, program-specific manner.
Such behavior is not expressible as part of the dataflow depen-
dency graph; but being application specific, neither would it be
appropriate for it to be part of the core Parsl library.

Workflows benefit from features for programming in the
large. Like any other Python code, Parsl can be used to create pro-
grams, and standard libraries of Parsl Apps for particular domains
can be developed and shared. These libraries can then be easily
be composed with other code to create new programs. The Parsl
runtime can execute code from many such libraries, keeping all the
benefits of Parsl task execution for the program as a whole. Parsl
apps look like Python function calls; asynchronously computed
result values look like Python values and can be passed around

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

and stored as such. Artificial barriers caused by one component
of an program ending and another beginning can be avoided: as
the whole program can be written in one language, the runtime
can manage the execution of all tasks, no matter the component
from which those tasks originates, and can run tasks from different
components in parallel on the same resource.

Programming language features are useful for program-
ming in the small.As features develop, domain-specific workflow
languages designed to manage progress and concurrencymay strug-
gle to solve simple problems that are easily managed in sequential
scripting languages. For example, a DAG-based language may need
to choose a later action based on an earlier result. In a generic im-
perative programming language, a simple if statement suffices; a
DAG-based approach to the same problem may require generating
workflows inside other workflows, or embedding a richer language
deep inside the outer DAG description. Similarly, a loop over a
dynamically generated dataset can be accomplished with a simple
for statement in Python; in a DAG-based language, it might require
a separate workflow generation stage that cannot be scheduled as
part of the main workflow. It is access to these Python language
constructs that contributes to Parsl’s generality and learnability.

3 DESIGN
Parsl is designed to address the requirements of the scientific work-
flows outlined in the previous section. Specifically, we focus on
five core design challenges: enabling the intuitive description of
parallelism in Python; decomposing dataflow dependencies into a
dynamic task graph for efficient execution; abstracting task execu-
tion mechanisms and environments to enable workflow portability;
supporting execution of heterogeneous workloads that range from
short-running to long-running tasks, from few to millions of tasks,
and from small-scale to large-scale resources; and enabling reliable
parallel program execution.

3.1 Programming with Parsl
Parsl is designed for Python. When facing design decisions, we
have chosen to be minimally invasive, ensuring that Parsl scripts re-
main Pythonic and require little knowledge beyond regular Python
programming.

At the core of Parsl are two constructs that introduce asyn-
chronosity into Python: The App decorator and future object that
can be used together to compose arbitrary programs. These con-
structs allow Python functions to be executed asynchronously, in
parallel, and potentially in a different execution location.

3.1.1 Apps. Parsl uses decorators to intercept and modify the be-
havior of Python functions. In Parsl two kinds of decorators are
supported: the @python_app decorator for pure Python functions
and @bash_app decorator that is used to execute shell commands.

When either a Python App or Bash App is invoked, an asynchro-
nous task is registered with Parsl and a future object is returned
immediately, in lieu of the results of the computation. Eventually
Parsl executes the task and results are made available through the
future. To guarantee safety in a concurrent setting, Parsl Apps
must be pure functions, acting only on their input arguments. The
following is a minimal example of a Python App.

@python_app

def hello1(name):

return "Hello {}".format(name)

As for Bash Apps, the Python code that forms the body of the
function should return a fragment of Bash shell code. That shell
code will be executed in a sandbox environment. Input and out-
put handling behaves as with Python apps, although the return
value from Bash Apps are UNIX return codes that indicate only
whether the application succeeded. The Bash App also can be fur-
ther configured using special keywords that allow for redirection
of STDOUT/STDERR streams to files. The following is an example.

@bash_app

def hello2(name , stdout=None , stderr=None):

return "echo 'Hello {}'".format(name)

Apps of either type can be invoked with standard Python syntax:

f1 = hello1("World")

f2 = hello2("World")

Thus, Parsl App functions invoked this way automatically follow
Parsl semantics, without Parsl syntax at the call site. This is achieved
through Parsl’s use of futures and a parallel runtime.

3.1.2 Futures. We saw earlier that invoking Parsl Apps return
futures. A future is an object that can be used to access the
results of an asynchronous computation. Parsl futures implement
a synchronous blocking method future.result() that will wait
until the computation has yielded results or raised an exception.
A non-blocking method future.done() returns immediately with
the state of the computation (e.g., running, failed, done).

Since a future is created and updated only by a specific App
invocation, it acts as a single-update variable, as commonly used in
task-parallel systems [17, 25, 35]. Futures are the only synchroniza-
tion primitive offered by Parsl.

3.2 Input and output data
Any input data required by the App must be passed as input pa-
rameters to the invocation. While this represents a familiar way for
Python users to pass objects, we note that other ways of passing in-
formation to Python function invocations, such as global variables,
cannot be used: a price paid to allow for easy movement of tasks
among execution resources. Similarly, any output from the App
invocation needs to be explicitly passed back—as a return value or
as an output file. Writing to global or arbitrary filesystem locations
is not supported.

The following three Python types can be passed as inputs or
outputs, with caveats:

Python objects. Any Python object that can be serialized (for
e.g using Python’s pickle library [5], or dill [31]), can be passed
as an input parameter. Most Python objects that represent “data”
(rather than, for example, file descriptors or threads) can be serial-
ized. Objects passed as inputs should be treated as immutable: their
contents should not be modified on either the submitting or execut-
ing side, as non-deterministic behavior can result otherwise: Parsl
does not attempt to provide any richer distributed object model.

Parsl: Pervasive Parallel Programming in Python HPDC-28, June 2019, Phoenix, Arizona USA

Files are declared using a Parsl File object, which can represent
a remote file using various protocols. Parsl stages in file inputs
and translate paths transparently so that they are available in the
runtime environment of executing program. Parsl provides conve-
nience keyword arguments inputs and outputs in App functions
that allow developers to dynamically specify collections of input
and output files. Code should not modify input files, and should
not make assumptions about visibility of modifications between
App invocations: see §4.5.

Futures will eventually contain some value, which may be of
any of the above types.

Parsl is not unnecessarily strict about enforcing these rules: for
example, a shared filesystem is available in many execution envi-
ronments, in which case Parsl file staging is not necessary. However,
if a programmer chooses to make that tradeoff, the resulting code
will be less able to run in an arbitrary environment.

3.2.1 Compositionality. Parsl allows applications to be composed
by passing futures betweenApps. An arbitrary number of futures
can be passed to an App as arguments, implicitly indicating de-
pendencies on the asynchronous execution of all Apps whose fu-
tures were passed as arguments. Since Apps can be invoked asyn-
chronously, an arbitrarily large task graph can be constructed with
minimal compute cost. Parsl can then execute these tasks based on
the available parallelism within the task graph.

3.3 Runtime
Parsl’s runtime is responsible for managing the parallel execution of
Parsl-annotated components in a program on configured resources.
To do so, Parsl assembles and dynamically updates a task depen-
dency graph. This graph contains all state for the program and
can be efficiently introspected and mapped to available execution
resources. The task graph is represented as a directed acyclic graph
(DAG) in which the nodes represent tasks and the edges represent
the input/output objects or files exchanged between tasks. The
advantage of using a dynamic task graph is twofold: first, the execu-
tion of tasks may start as soon as the first task is identified, rather
than waiting for the entire task graph to be formed before execu-
tion; and second, it allows for complex logic to be implemented in
the program such as loops and conditionals as well as for tasks to
generate new tasks during execution.

3.4 Separation of Code and Configuration
Parsl separates program logic from execution configuration, with
the latter described by a Python object so that developers can easily
introspect permissible options, validate settings, and retrieve/edit
configurations dynamically during execution. A configuration spec-
ifies details of the provider, executors, connection channel, alloca-
tion size, queues, durations, and data management options. Listing 1
illustrates a basic configuration for the Stampede2 supercomputer.
This configuration uses the HighThroughputExecutor to submit
tasks from a login node (LocalChannel). It requests an allocation of
128 nodes, from the skx-normal partition, for up to 12 hours.

Many use cases require the ability to mix-and-match execu-
tion resources in various ways. For example, using GPU nodes
for GPU-optimized codes and CPU nodes for others; combining

Listing 1: Parsl configuration for Stampede2.
config = Config(

executors =[

HighThroughputExecutor(

label="stampede2_htex",

address=address_by_hostname (),

provider=SlurmProvider(

channel=LocalChannel (),

nodes_per_block =128,

init_blocks =1,

partition="skx -normal",

walltime="12:00:00"

)

)

]

)

thread-based execution of lightweight tasks with cluster-based exe-
cution of larger tasks; or even executing tasks across a number of
computing resources wherever allocations may be available. Parsl
supports these requirements by enabling “multi-site” execution via
specification of more than one executor in the configuration.

3.5 Scalable Execution
Parsl is designed to support a wide range of use cases, from few long
tasks to millions of short tasks. A system designed to address any
such requirement individually is likely to be unsuitable for other
use cases. We focus instead on providing a generic and extensible
model for supporting these varying use cases. Such generalizability
impacts the DFK, task graph, and execution level.

Parsl’s modular provider interface is designed to support differ-
ent mechanisms for managing the execution of tasks. The executor
controls the process by which the task is transported to configured
resources, executed on that resource, and results are communicated
back to Parsl. In §4.3 we describe a set of executors that provide
high-throughput, low-latency, and extreme-scale execution.

As execution progresses the resources required can vary. For
example, the map-reduce pattern, common in many-task work-
flows, starts with a large set of map tasks, the results of which
are combined by a smaller number of reduce tasks. To minimize
resource wastage, Parsl is designed to automatically provision and
de-provision execution resources. This elasticity component is con-
trolled by an extensible strategy module within Parsl. The strategy
module tracks outstanding tasks and available capacity on con-
nected executors. Depending on user-defined scaling limits, it can
then communicate with the connected providers to automatically
scale to match real-time requirements.

3.6 Fault-Tolerant Execution
A Parsl program may fail due to failure of one of its Apps or of a
node used for execution. As analysis sizes increase, so too does the
likelihood of failure. In order for Parsl to be usable, it must expect
failures and respond accordingly. For example, when re-executing a
branch of failed execution, a user is unlikely to want to re-execute
another branch that completed successfully.

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

Parsl provides fault-tolerance at the level of programs rather than
Apps. That is, it treats tasks as the basic unit for fault tolerance, en-
abling checkpointing of execution state whenever a task completes.
This ensures that, if desired, a user may re-execute a program and
any Apps that are called with the same arguments need not be
re-executed. While Parsl provides no App-level fault-tolerance, it
works with Apps that implement their own fault-tolerance, e.g., via
checkpointing; such methods are opaque to Parsl. We consider a
more integrated model of fault-tolerance as future work.

4 ARCHITECTURE AND IMPLEMENTATION
Figure 1 shows Parsl’s high-level architecture. In this section we
briefly outline its core components and capabilities.

Figure 1: Parsl architecture. The DataFlowKernel stores the
task graph and manages execution via one or more con-
nected executors, of which three are shown here.

4.1 DataFlowKernel
The DataFlowKernel (DFK), Parsl’s execution management engine,
is responsible for constructing and orchestrating the execution of
the task graph. DFK tracks task information (nodes in the task
graph) in a Python data structure. Dependencies between Apps
are implicitly derived from the passing of futures between Apps.
Edges in the task graph are encoded as asynchronous callbacks on
a dependent future, allowing DFK to be event driven, with each
node in the task graph being considered upon resolution of its
edges. Launching a task incurs a small fixed cost, as does triggering
each outgoing edge when a task succeeds. Thus the execution time
complexity of a task graph with n tasks and e edges is O(n + e).

Once all of a task’s dependencies have resolved successfully,
DFK schedules the task for execution on a configured executor. If
multiple executors are available, and the task contains no execution
hints, an executor is picked at random. The executor responds with
its own future that DFK associates with the future that was created
when the App was invoked.

DFK tracks task state and waits for the future to be resolved, or
a timeout period to elapse. In the case an App fails, as indicated by

an exception in the resulting future or timeout, Parsl is able to retry
the task by resubmitting it to an executor. If retries are disabled, or
if the number of retries is exceeded, DFK wraps the exception (e.g.,
App execution errors, remote system failure, etc.) and associates it
with the future. When memoization or checkpointing is used, DFK
computes a hash of the App’s function body and performs a lookup
in a checkpoint file or memoization table using the function name,
body hash, and arguments as the key. If the lookup succeeds, the
result from the checkpoint file or memoization table is returned.

4.2 Providers
Clouds, supercomputers, and local PCs offer vastly different modes
of access. To overcome these differences, and present a single uni-
form interface, Parsl implements a simple provider abstraction. This
abstraction is key to Parsl’s ability to enable scripts to be moved
between resources. While there have been many prior efforts to im-
plement standard interfaces for accessing various resources [26, 27],
we chose to develop a lightweight abstraction entirely in Python for
Parsl. The provider interface is based on three core actions: submit a
job for execution (e.g., sbatch for the Slurm resource manager), re-
trieve the status of an allocation (e.g., squeue), and cancel a running
job (e.g., scancel). Parsl implements providers for local execution
(fork), for various cloud platforms using cloud-specific APIs, and
for clusters and supercomputers that use a Local Resource Manager
(LRM) to manage access to resources. Given the simplicity of the
provider interface, it is easy to add new providers. Currently, Parsl
implements providers for Slurm, Torque/PBS, HTCondor, Cobalt,
AWS, Google Cloud, Jetstream, Kubernetes, and GridEngine.

Each provider implementation may allow users to specify addi-
tional parameters for further configuration. Parameters are gener-
ally mapped to LRM submission script or cloud API options. Ex-
amples of LRM-specific options are partition, walltime, scheduler
options (e.g., #SBATCH arguments for Slurm), and worker initializa-
tion commands (e.g., loading a shared conda environment). Cloud
parameters include access keys, instance type, and spot bid price.

4.2.1 Channels. Parsl scripts may be executed locally (e.g., on a
login node or notebook server at an HPC center) or remotely (e.g.,
on a laptop, another cluster, or even a laptop). To support these
different scenarios, Parsl introduces the notion of a Channel that
describes how Parsl should authenticate and connect to the provider.
Parsl includes two primary channels: LocalChannel for execution
on a local resource, where the execution node has direct queue
access, and SSHChannel, when executing remotely.

4.2.2 Launchers. Many LRMs offer mechanisms for spawning ap-
plications across nodes inside a single job and for specifying the
resources and task placement information needed to execute that
application at launch time. Common mechanisms include srun (for
Slurm), aprun (for Crays), and mpirun. The Parsl Launcher abstracts
these system-specific launcher systems used to start workers across
cores and nodes. Users may optionally specify a launcher in the
provider configuration to control how Parsl communicates with
the LRM. Parsl currently supports the following launchers: fork,
srun, aprun, mpiexec, and GNU parallel.

Parsl: Pervasive Parallel Programming in Python HPDC-28, June 2019, Phoenix, Arizona USA

4.2.3 Resource management. One significant challenge when de-
signing a system that makes use of heterogeneous execution re-
source types is the need to provide a uniform representation of
resources. Consider that single requests on clouds return individual
nodes, clusters and supercomputers provide batches of nodes, grids
provide cores, and workstations provide a single multicore node.
To further complicate matters, some batch systems enforce policies
that restrict the number of nodes permitted in a job (e.g., min, max,
or in common groupings) From a scheduling perspective, the re-
sources required by each task that is to be scheduled may range
from a fraction of a node through to multiple nodes in the case
of MPI-based applications, creating a bin-packing problem. Parsl
defines a resource unit abstraction called a block as the most basic
unit of resources to be acquired from a provider. A block contains
one or more nodes and maps to the different provider abstractions.
In a cluster, a block corresponds to a single allocation request to a
scheduler. In a cloud, a block corresponds to a single API request
for one or more instances. Blocks are also used as the basis for
elasticity on batch scheduling systems. Any scaling in/out must
occur in units of blocks, as this is the most basic unit by which Parsl
communicates with the scheduler. This abstraction also allows Parsl
to avoid limitations on the number of nodes that may be allocated
concurrently or on the number of jobs that may be queued and/or
running concurrently.

4.3 Executors
As illustrated in §2.1, Parsl’s use cases vary widely in terms of their
execution requirements. Individual Apps may run for milliseconds
or days, and available parallelism can vary between none for se-
quential programs to millions for “pleasingly parallel” programs.
Executors, as the name suggests, execute Apps on one or more
target execution resources such as multi-core workstations, clouds,
or supercomputers. As it appears infeasible to implement a single
execution strategy that will meet so many diverse requirements on
such varied platforms, Parsl provides a modular executor interface
and a collection of executors that are tuned for common execution
patterns. Figure 2 shows three such executors: high throughput,
extreme scale, and low latency.

Parsl executors extends the Executor class offered by Python’s
concurrent.futures library, which allows us to use several existing
solutions in the Python Standard Library (e.g., ThreadPoolExecutor)
and from other packages such as IPyParallel [10]. Parsl extends the
concurrent.futures executor interface to support additional capabil-
ities such as automatic scaling of execution resources, monitoring,
deferred initialization, and methods to set working directories.

All executors share a common execution kernel that is responsi-
ble for deserializing the task (i.e., the App and its input arguments)
and executing the task in a sandboxed Python environment.

4.3.1 High Throughput Executor. The High Throughput Executor
(HTEX) is a general-purpose executor, designed to enable high
throughput execution of tasks using a pilot job model. It is engi-
neered to support up to 2000 nodes, millions of sub-second tasks,
and multi-day workflow campaigns, all while providing a high level
of fault-tolerance. The HTEX architecture (see Figure 2a) has three
major components: executor client, interchange, and managers.

HTEX managers (pilot agents) are deployed onto one or more
nodes by the provider. Each manager is a multi-threaded agent
responsible for a single node, initializing workers based on HTEX
configuration (i.e., workers_per_node) It advertises available ca-
pacity, and receives batches of tasks from the interchange which are
distributed to worker processes. Similarly, results are aggregated
from workers and sent to the interchange in batches. The manager
uses configurable batching and prefetching of tasks to minimize
communication overheads.

The interchange is a hub to which the executor client and reg-
istered managers connect using ZeroMQ [29] queues. The inter-
change acts as a broker, matching available tasks to managers with
advertised capacity, while using a randomized selection method to
ensure fairness in task distribution.

Managers and the interchange exchange periodic heartbeat mes-
sages for fault tolerance purposes. If either party does not receive a
message before a configurable threshold, the counterpart is assumed
to be lost. Managers, upon losing contact with the interchange, exit
immediately to avoid resource wastage. If the interchange detects
the loss of a manager that had outstanding tasks, an exception is
sent to the executor so that DFK can make appropriate decisions,
such as scaling resources to match lost capacity and retrying failed
tasks. HTEX also provides a separate command channel that can be
used to perform administrative actions in a synchronous fashion.
For example, the interchange can be asked for outstanding task
information, to blacklist managers, or to shutdown the executor.

4.3.2 Extreme Scale Executor. The Extreme Scale Executor (EXEX)
is designed to support the largest supercomputers—machines with
thousands of nodes, hundreds of thousands of cores, and with spe-
cialized network architectures optimized for MPI. EXEX leverages
MPI communication (using mpi4py [21]) to exploit the highly opti-
mized network infrastructure to manage distributed execution.

The EXEX architecture (see Figure 2b) has three major compo-
nents: EXEX executor client, interchange, and workers. EXEX is de-
ployed as a multi-node batch job, that uses MPI for manager-worker
communication and ZeroMQ for manager-interchange communica-
tion. EXEX uses a hierarchical task distribution model, where the
managers communicate with the interchange on behalf of workers.
Upon deployment, rank 0 of the MPI communicator takes the role
of the manager, while all other ranks assume the role of workers.

Production runs over thousands of nodes are expensive, and
unfortunately the likelihood of machine faults increase with scale.
The primary drawback of using MPI as the communication fabric is
that it reduces fault tolerance in the context of many-task applica-
tions [24]. Job and node failures can result in the loss of the entire
MPI application. To alleviate these risks, we recommend that users
break their allocation into several smaller MPI worker pools within
a single scheduler job. EXEX is able to detect failures via the same
heartbeat system described in §4.3.1.

4.3.3 Low Latency Executor. The Low Latency Executor (LLEX) is
designed for use cases that require low latency function execution,
but do not necessarily need high-throughput or fault-tolerance.
Since the goal of LLEX is to minimize the round-trip-time for
tasks, the execution model is designed to be as minimal as pos-
sible, thus sacrificing features such as reliability and automated
resource-provisioning for lower latency.

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

(a) HTEX: High Throughput Executor (b) EXEX: Extreme Scale Executor (c) LTEX: Low Latency Executor

Figure 2: Architecture of Parsl’s high throughput, extreme scale, and low latency executors.

The LLEX architecture (see Figure 2c) has three major compo-
nents: executor client, interchange, and workers. To execute tasks,
the LLEX client forwards task information to the interchange, which
in turn buffers and routes tasks to available workers. Results from
workers are aggregated by the interchange and returned to the
client. All network communication and routing of messages are
handled by ZeroMQ. The interchange does not do any task track-
ing, and simply acts as a relay between clients and workers. This
means that the routing logic is completely stateless and opaque to
the interchange. As a result, while latency is reduced by avoiding
task-tracking overhead on the interchange, failures such as worker
loss cannot be detected by LLEX.

Unlike other executors, workers connect to the interchange di-
rectly. While this design requires a socket for each worker, message
hops are reduced by one each way, reducing latency. Since tasks are
short duration, reliable execution can be guaranteed with minimal
cost, even on unreliable nodes, by timed-retries and replication

Finally, to meet high availability and latency requirements, LLEX
assumes that it is operating on a fixed set of compute resources. Pro-
visioning and relinquishing resources can take seconds to minutes
on clouds and clusters, severely affecting task latencies.

4.4 Elasticity
Workload resource requirements often vary over time. For exam-
ple, in the map-reduce paradigm the map phase may require more
resources than the reduce phase. In general, reserving sufficient
resources for the widest parallelism will result in underutilization
during periods of lower load; conversely, reserving minimal re-
sources for the thinnest parallelism will lead to optimal utilization
but also extended execution time. In addition, even simple bag-of-
task applications may have tasks of different durations, leading to
trailing tasks with a thin workload [14].

Parsl implements a cloud-like elasticity model in which resource
blocks are provisioned/deprovisioned in response to workload pres-
sure. Parsl provides an extensible strategy interface by which users
can implement their own elasticity logic. By default, the elasticity
strategy can be configured with a parallelism parameter that de-
scribes how aggressively the resources should grow and shrink in

response to waiting tasks. Given the general nature of the imple-
mentation, Parsl can provide elastic execution on clouds, clusters,
and supercomputers. Of course, in an HPC setting, elasticity may
be complicated by queue delays.

4.5 Data management
Many use cases in §2.1 include Apps that pass files to/from one
another. Hard coding file paths (either local or remote) breaks the
execution location independence of a Parsl program. Parsl provides
a file abstraction to allow file references between Apps. Parsl’s data
manager is responsible for transferring the file to where it is needed
and for transparently translating the physical location as needed.

Parsl files can be defined either locally or using one of three data
access protocols: HTTP, FTP, and Globus [18]. When a remote file
is passed to/from an App, the Parsl data manager first inspects the
file to see if it is available on the compute resource. If the file is not
yet available, Parsl created a dynamic data dependency between
the App(s) that require the file as input and a new (transparent)
data transfer task. When the transfer is complete, the dependent
App(s) are then able to execute. Parsl translates the file reference
to a local path via which the App can access the file.

The data manager performs slightly different actions depending
on the access protocol. In the case of HTTP and FTP files, the data
manager creates a transfer task that is executed on the selected
executor, that is it is itself a task that is executed the same way as
any other task. Globus does not require the task to be executed
on the execution resource as it supports third party data transfer.
Like the previous approach, when a Globus file is used, Parsl will
introduce a transfer task into the graph; however, in this case the
task is executed directly by the data manager which allows the
deferment of resource provisioning until the data has been staged
to the target resource.

4.6 Additional features
Parsl provides a range of other features that are desirable when
developing parallel programs.

Authentication: Parsl integrates with Globus Auth [13] as a
“native app.” This allows users to authenticate in a program, either

Parsl: Pervasive Parallel Programming in Python HPDC-28, June 2019, Phoenix, Arizona USA

using interactive web-based login or cached access tokens. After
authentication, access tokens are stored by Parsl, and these tokens
are then used to securely access Globus Auth-enabled services (e.g.,
to transfer data or SSH to a compute resource).

Containers: Parsl allows workers to be launched inside a pre-
defined container, allowing tasks to be executed in a customized
environment. Parsl also allows containers to be used to execute
tasks such that each invocation of a task will run a new container.
Containers provide a popular way to package and distribute soft-
ware and to deploy it in heterogeneous environments.

Monitoring: To enable both real-time and post-completion anal-
ysis and introspection of execution information, DFK logs execution
metadata and task state transitions, and workers log task execution
information, including resource usage. A modular DFK interface al-
lows monitoring information to be stored in a SQL database, Elastic
Search, or files. Logged data can be viewed via Parsl’s web-based
visualization server.

Memoization: Parsl Apps can specify different levels of memo-
ization to avoid repeated execution of the same App with the same
input arguments. Memoization can be defined at both the program
and individual App levels. This flexibility allows developers to se-
lect which Apps should be memoized, as memoization is rarefy
useful for non-deterministic apps. Parsl then maintains a cache of
executed Apps, function body hash, and arguments.

5 EVALUATION
We evaluated the performance of Parsl with respect to latency, weak
scaling, strong scaling, and elasticity using experiments conducted
on two testbeds:

We use the “broadwl" partition of theMidway campus cluster at
the University of Chicago [11], each node of which has 28 Intel E5-
2680v4 cores running at 2.4 GHz with 64 GB RAM, interconnected
with Infiniband. The average network round trip time between two
nodes was measured as 0.07 ms.

The Blue Waters supercomputer at the National Center for
Supercomputing Applications [16] is a 13 petaFLOP Cray XE/XK
hybrid system comprising 22 636 XE compute nodes (362 240 cores)
and 4288 XK compute nodes (33 792 cores) with an additional 4228
Kepler Accelerators. We used the XE component. Each XE node has
16 AMD Interlargos cores (32 integer scheduling units) running at
2.3 GHz with 64 GB RAM, interconnected with the low-latency 3D
Torus architecture. The average network round trip time between
two nodes was measured as 0.04 ms.

We also compare Parsl against three popular parallel comput-
ing libraries for Python. IPyParallel (IPP) [10] enables IPython to
support parallel computing. We compare against an IPP-based ex-
ecutor for Parsl (since deprecated). FireWorks [30] is a Python-
based workflow management system. It consists of a centralized
MongoDB-based “LaunchPad” to store tasks, and allows connected
“FireWorkers” to query tasks from LaunchPad for execution. Dask
distributed [9] is a framework for parallel computing in Python.
It consists of a centralized scheduler that enables task submission,
makes scheduling decisions, and executes tasks on connected work-
ers.

5.1 Latency
We evaluated single task latency using the executors described in
§4.3. The experiment was performed on two Midway nodes: one
to run the Parsl program and the other to run a worker. To avoid
including overhead, we first deployed the worker and waited for
it to connect to Parsl. We then launched 1000 tasks sequentially,
recording for each the time from submission until completion. For
comparison, we also measured execution times for the same sce-
nario on a single node using the ThreadPool executor, for IPP with
Parsl on two nodes, and for Dask on two nodes. Figure 3 shows the
distribution of task latencies in each case.

Our results show that LLEX (avg: 3.47 ms) is considerably faster
and has lower latency variability than the other executors. LLEX
is only approximately 2.43 ms slower than the local ThreadPool
executor. As expected, HTEX (avg: 6.87 ms) and EXEX (avg: 9.83
ms) exhibit larger latencies due to the additional complexity of
their respective executor architectures. The Parsl executors all have
lower latencies than IPP (avg: 11.72 ms) and Dask (avg: 16.19 ms).

0 2 4 6 8 10 12 14 16 18 20
Latency (ms)

0

200

400

600

800

1000

Fr
eq

ue
nc

y
ThreadPool
LLEX
IPP
HTEX
EXEX
Dask

Figure 3: Distributions of task latencies when running 1000
tasks on Midway with different executors.

5.2 Scalability
We study strong and weak scaling on BlueWaters. In strong scaling,
the total problem size is fixed; in weak scaling, the problem size per
CPU core is fixed. In both cases, we measure completion time as a
function of number of CPU cores. An ideal framework should scale
linearly, which for strong scaling means that speedup scales with
the number of cores, and for weak scaling means that completion
time remains constant as the number of cores increases.

To measure the strong and weak scaling of Parsl executors, we
created Parsl programs to run tasks with different durations, rang-
ing from a “no-op”—a Python function that exits immediately—to
tasks that sleep for 10, 100, and 1000 ms. For each executor we
deploy a worker per core on each node. For EXEX we start with 32
workers, as it is not designed for small-scale use cases.

We compare the scalability of Parsl with IPP on Parsl, FireWorks,
and Dask distributed. We launched the LaunchPad/scheduler of
Fireworks and Dask distributed on one compute node, and the work-
ers on the other compute nodes. For fair comparison, we deployed
each worker process on one core and disabled caching (if available).

Strong scaling. We launched 5,000 independent tasks of differ-
ent durations (no-op and 10, 100, 1000 ms) on an increasing number

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

10
0

10
1

10
2

10
3

10
4

10
5

Number of workers

10
1

10
0

10
1

10
2

10
3

10
4

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask

10
0

10
1

10
2

10
3

10
4

10
5

Number of workers

10
1

10
0

10
1

10
2

10
3

10
4

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

10
0

10
1

10
2

10
3

10
4

10
5

Number of workers

10
1

10
0

10
1

10
2

10
3

10
4

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

10
0

10
1

10
2

10
3

10
4

10
5

Number of workers

10
1

10
0

10
1

10
2

10
3

10
4

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

10
0

10
1

10
2

10
3

10
4

Number of workers

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

(a) no-op

10
0

10
1

10
2

10
3

10
4

Number of workers

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

(b) sleep(10 ms)

10
0

10
1

10
2

10
3

10
4

Number of workers

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

(c) sleep(100 ms)

10
0

10
1

10
2

10
3

10
4

Number of workers

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

10
0

10
1

10
2

10
3

10
4

Number of workers

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
)

IPP
HTEX
EXEX
FireWorks
Dask
Ideal

(d) sleep(1000 ms)

Figure 4: Top row: time to execute 5000 tasks over all workers (strong scaling). Bottom row: time to execute 10 tasks per worker
(weak scaling). For each row, plots are for (from left to right) tasks of 0, 10, 100, and 1000 ms. Legend is at bottom right.

of workers and with different Parsl executors as well as IPP, Fire-
Works, and Dask distributed. Notice that the measurements for
“no-op" tasks essentially reflect the overhead of the executor.

The top row of Figure 4 show the strong scaling results. HTEX
provides the best performance in all cases, slightly exceeding what
is possible with EXEX, while EXEX scales to significantly more
workers than the other executors and frameworks. Encouragingly,
both HTEX and EXEX remain nearly constant indicating that they
likely can be scaled further. We have observed scaling of HTEX to
2048 nodes in other deployments. In comparison with the other
frameworks, FireWorks has the highest overhead—almost an or-
der of magnitude greater than the other executors/frameworks.
Both IPP and Dask distributed exhibit a similar trend of increasing
overhead as the number of workers increases beyond 256. Dask
distributed slightly outperforms HTEX and EXEX when there are
fewer than 256 workers.

Weak scaling. Here, we launched 10 tasks per worker, while
increasing the number of workers. (We limited experiments to 10
tasks per worker, as on 3125 nodes, that already represents 3125
nodes × 32 workers/node × 10 tasks/worker=1M tasks.) The bottom
row of Figure 4 shows our results. While all frameworks exhibit
similar trends, with completion time remaining close to constant
initially and increasing rapidly as the number of workers increases,
some executors/frameworks exhibit sublinear scaling more quickly
than others. FireWorks scales sublinearly from around 32 workers,
IPP at 256 workers (8 nodes), and Dask distributed, HTEX, and
EXEX at 1024 workers (32 nodes).

Maximum number of workers. To further investigate scala-
bility we now consider the maximum number of workers that can
be connected without failure. To do so, we configured the executors
on Blue Waters and continued to add workers until we observed
errors. The maximum number of connected workers we observed
are summarized in Table 2. We were able to launch 2048 workers
on 64 nodes with IPP, 32 768 workers on 1024 nodes with HTEX,
and 262 144 workers on 8192 nodes with EXEX. For HTEX and
EXEX we were not able to force an error and were instead limited
by the number of nodes we could provision in our allocation. Dask

Table 2: Capabilities and capacities of different Parsl ex-
ecutors and other parallel Python tools.

Framework Maximum Maximum Maximum
of workers† # of nodes† tasks/second‡

Parsl-IPP 2048 64 330
Parsl-HTEX 32 768 1024* 1181
Parsl-EXEX 262 144 8192* 1176
FireWorks 1024 32 4

Dask distributed 4096 128 2617
* Limited by the the number of nodes we could allocate on Blue
Waters during our experiments; it is not a scalability limit.

† These results are specific to Blue Waters, one core per worker, and
using default configuration as in each framework’s documentation.

‡ The results in this column are collected on Midway.

distributed scaled to 4096 workers on 128 nodes, after which we
observed errors due to the fact that each worker must connect to
the centralized scheduler, which can handle only a limited number
of connections. FireWorks scaled to 1024 workers on 32 nodes, al-
though at this point we observed slow performance and a variety
of errors, such as time outs from its MongoDB server.

5.3 Throughput
Wemeasured the maximum throughput of all the Parsl executors, as
well as IPP with Parsl, Dask distributed, and FireWorks, on Midway.
To do so, we ran 5000 “no-op" tasks on a varying number of workers
and recorded the completion times. The throughout is computed
as the number of tasks divided by the completion time.

As shown in Table 2, IPP, HTEX, and EXEX achieved maximum
throughputs of 330, 1181, and 1176 tasks/s, respectively. Dask dis-
tributed had the highest throughput, of 2617 tasks/s, likely as it is
optimized for short duration jobs on small clusters. FireWorks had
the lowest throughout due to its slow centralized database.

5.4 Elasticity
We used the four-stage workflow shown in Figure 5 to study the
efficacy of Parsl’s elastic resource management. The first and third

Parsl: Pervasive Parallel Programming in Python HPDC-28, June 2019, Phoenix, Arizona USA

stages have the widest parallelism, with 20 tasks, while the second
and fourth stage are reduce-like stages with a single task each. Every
task is a sleep task and expends the capacity of a single worker
for the specified duration (100 or 50 seconds). We executed this
workflow onMidwaywith andwithout elasticity enabled and report
the overall worker utilization of the acquired resources, calculated
as the ratio of total wallclock time of tasks to that of the workers.

…

Task
dependency

…

100-second task

50-second task

20

Stage1 Stage2 Stage3 Stage4

Figure 5: Workflow graph used in elasticity study.

Figure 6 shows worker utilization when elasticity is enabled.
Without elasticity, we observe average worker utilization of 68.15%
and a makespan of 301s. The worker utilization is poor during
the reduce stages, wasting computing resources. In contrast, with
elasticity enabled, average worker utilization is 84.28%, because
Parsl can scale the number of blocks used dynamically, based on
the workload. The makespan is slightly increased to 331s. Overall,
in this example, utilization is increased by 23.6% at the expense of
a 9.9% increase in makespan.

0

5

10

15

20

25

W
or

ke
rs

Active workers Workers in use

0 50 100 150 200 250 300
Time (seconds)

0

10

20

30

40

Ta
sk

 ID

Executing
Pending

Figure 6: Utilization with elasticity. Above: Number of work-
ers active and in use over time. Below: Task lifecycle, includ-
ing both time waiting in a queue and time executing.

6 RELATEDWORK
Analytics platforms. Hadoop [7] and Spark [8] are popular data-
parallel systems for data analytics. Both follow the map-reduce
model and are primarily designed for I/O-intensive applications,
such as sorting, counting and aggregation. In contrast, Parsl presents
a more general approach to parallelism, enabling various types of
parallelism to be expressed in Python.

Scientific workflow engines.Many workflow systems—238 at
the time of writing [2]—enable the orchestrated execution of multi-
ple applications. Examples are Pegasus [22], Galaxy [28], Swift [35],
NextFlow [23], FireWorks [30], and Apache Airflow [6].

Pegasus and Galaxy implement a static DAG model in which
users define a DAG, using an XML document or GUI, and subse-
quently execute that DAG. To address the growing number of static
workflow description representations, the Common Workflow Lan-
guage (CWL) [1] was defined following a simple YML specification.
These systems take a different approach to addressing parallelism,
requiring static, upfront definition of a workflow. Parsl instead aug-
ments Python, offering the full power of the Python programming
language to create dynamic, parallel applications.

Swift and NextFlow [23] rely on custom DSLs to express paral-
lelism. While they provide for excellent performance; they have a
steep learning curve, and a limited set of programming constructs
from which to create programs.

Python-based workflow systems such as FireWorks, Airflow, and
Luigi [4] enable the explicit description of dependency graphs in
Python, rather than the ability to augment Python with parallelism.
FireWorks focuses on fault-tolerance, rather than scalability and
performance, relying on a persistent MongoDB to communicate
task state. Airflow relies on a centralized scheduler that processes
the task graph and manages execution on connected workers. Luigi,
requires parallelism to be represented in classes, where a task de-
scribes its explicit input/output objects.When executed, Luigi builds
a graph by introspecting the connected classes.

Parallel computing in Python. The Dask [3] Python library
supports parallel computing for data analytics. Unlike Parsl, Dask
focuses on implementing parallel versions of common Python li-
braries, such as NumPy, Pandas, and Scikit-learn. Dask also offers
low-level APIs for composing custom parallel systems, with con-
structs such as “delayed” for wrapping function calls, and futures
for developing asynchronous programs. Dask distributed [9] ex-
tends Dask’s execution model to support distributed execution on
small clusters. It relies on a centralized scheduler that coordinates
task submission and dynamic scheduling across multiple nodes.
While Parsl and Dask share common features, Dask is primarily
focused on data parallelism via high level libraries and on local or
small-scale distributed execution environments.

Ray [32] is a distributed system designed to support training,
serving, and simulation for reinforcement learning applications.
Ray can execute millions of short-duration tasks. To achieve this
performance it relies on a distributed scheduler and a distributed
Redis-based fault-tolerant metadata store. The global control store
maintains the entire state of the system, allowing the distributed
scheduler to make rapid scheduling decisions based on global state.
Ray implements a unified interface that enables expression of both
actor and task-parallel abstractions for representing parallelism.

PyCOMPSs [34], a Python interface around the COMPSs system,
is a framework for parallel computing in Python. As with Parsl,
users decorate functions with constructs to aid workflow assembly
and execution. COMPSs is responsible for interpreting the task
graph and scheduling tasks to available resources.

While these frameworks implement a task graph model, Parsl
focuses on a broader problem of enabling parallelism in Python.
Parsl therefore tackles problems that range from many short tasks

HPDC-28, June 2019, Phoenix, Arizona USA Y. Babuji et al.

LLEX for interactive computations on ≤10 nodes.
HTEX for batch computations on ≤1000 nodes. (For good perfor-

mance, you want task-duration / # nodes ≥ 0.01: e.g., on 10
nodes, tasks ≥ 0.1 s.)

EXEX for batch computations on >1000 nodes. (For good perfor-
mance, you want task durations of a minute or more.)

Figure 7: Guidelines for selecting Parsl executors.

through to long tasks executing at extreme scale. The underlying
model employed by Parsl could be used by many of these compara-
ble frameworks to enable parallelism at a higher level.

Machine learning frameworks. TensorFlow [12] focuses on
machine learning applications and can achieve high performance
for linear algebra and other numerical computations. It represents
computation as a dataflow graph, mapping each graph node to
different machines or computational units (e.g., CPU and GPU).
However, TensorFlow provides little support for more general par-
allelism, task composition, or other execution models.

7 SUMMARY
Parsl addresses two major trends in programming: the increasing
use of high level languages, such as Python, to compose rather than
write software; and the growing need for parallel computing in
analysis and simulation. Parsl allows parallelism to be expressed via
the use of simple decorators that enable safe, deterministic parallel
programs; supports scalable execution from laptops to supercom-
puters; and provides a flexible architecture that can address the
varied requirements of scientific analyses.

Our performance studies highlight the unique position in the
parallel Python ecosystem that Parsl fills. Systems like FireWorks
support use cases that require concurrent execution of few (<1000)
long-running tasks (>100 seconds) [30]. Dask distributed can man-
age short tasks efficiently, but is designed for small-scale cluster
deployments of fewer than 100 nodes. Parsl, and its flexible ex-
ecutor model, effectively fill the unmet needs of a variety of use
cases, enabling efficient scalability up to ∼8000 nodes (and likely
more if allocations permit), execution latency within 5ms, and
high-throughput execution of ∼1200 tasks per second. We provide
guidelines for selecting Parsl executors in Figure 7.

Our future work focuses on expanding Parsl capabilities. Having
developed a flexible and general-purpose parallelism library, we
next aim to investigate constructs for delivering parallelism such
as maps and additional synchronization primitives such as barriers.
We are particularly interested in supporting parallelism in higher-
level libraries and domain-science libraries. We are also working to
expand Parsl’s data management capabilities, including by enabling
direct data staging between nodes, ephemeral caching of data on
nodes, and optional sandboxing environments.

Parsl is implemented entirely in Python as an open source project
available on GitHub: https://github.com/Parsl/parsl.

REFERENCES
[1] Common Workflow Language Specifications, v1.0.2. https://www.commonwl.

org/v1.0/. Accessed Jan 1, 2019.
[2] Computational Data Analysis Workflow Systems. https://s.apache.org/

existing-workflow-systems. Accessed Jan 1, 2019.
[3] Dask. http://docs.dask.org/en/latest/. Accessed Jan 1, 2019.

[4] Luigi. https://github.com/spotify/luigi. Accessed Jan 1, 2019.
[5] Pickle. https://docs.python.org/3/library/pickle.html. Accessed Jan 1, 2019.
[6] Airflow. https://airflow.apache.org/. Accessed Jan 1, 2019.
[7] Apache Hadoop. https://hadoop.apache.org/. Accessed Jan 1, 2019.
[8] Apache Spark. https://spark.apache.org/. Accessed Jan 1, 2019.
[9] Dask distributed. http://distributed.dask.org/en/latest/. Accessed Jan 1, 2019.
[10] IPython.parallel. https://github.com/ipython/ipyparallel. Accessed Jan 1, 2019.
[11] Midway at University of Chicago Research Computing Center. https://rcc.

uchicago.edu/docs/using-midway/index.html. Accessed Jan 1, 2019.
[12] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. 2016. TensorFlow: A system for large-scale machine
learning. In OSDI-16. 265–283.

[13] R. Anathankrishnan, K. Chard, I. Foster, M. Lidman, B. McCollam, S. Rosen, and S.
Tuecke. 2016. Globus Auth: A research identity and access management platform.
In 16th Intl Conf. on e-Science.

[14] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde, and I. T. Foster. 2010. Scheduling
many-task workloads on supercomputers: Dealing with trailing tasks. In IEEE
Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS). 1–10.

[15] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, and I. Foster.
2016. The Materials Data Facility: Data services to advance materials science
research. JOM 68, 8 (2016), 2045–2052.

[16] B. Bode, M. Butler, T. Dunning, T. Hoefler, W. Kramer, W. Gropp, and W.-m. Hwu.
2013. The Blue Waters super-system for super-science. In Contemporary High
Performance Computing. Chapman and Hall/CRC, 339–366.

[17] K. M. Chandy and C. Kesselman. 1993. Compositional C++: Compositional
parallel programming. In Languages & Compilers for Parallel Computing. Springer,
124–144.

[18] K. Chard, S. Tuecke, and I. Foster. 2014. Efficient and secure transfer, synchro-
nization, and sharing of big data. IEEE Cloud Computing 1, 3 (2014), 46–55.

[19] R. Chard, Z. Li, K. Chard, L. T. Ward, Y. N. Babuji, A. Woodard, S. Tuecke, B.
Blaiszik, M. J. Franklin, and I. T. Foster. 2019. DLHub: Model and data serving for
science. In 33rd IEEE International Parallel and Distributed Processing Symposium.

[20] R. Chard, R. Vescovi, M. Du, H. Li, K. Chard, S. Tuecke, N. Kasthuri, and I. Foster.
2018. High-throughput neuroanatomy and trigger-action programming: a case
study in research automation. In 1st International Workshop on Autonomous
Infrastructure for Science. ACM, 1.

[21] L. Dalcín, R. Paz, and M. Storti. 2005. MPI for Python. J. Parallel and Distrib.
Comput. 65, 9 (2005), 1108–1115. https://doi.org/10.1016/j.jpdc.2005.03.010

[22] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling, R. Mayani,
W. Chen, R. da Silva, M. Livny, et al. 2015. Pegasus, a workflow management
system for science automation. Future Gen. Comp. Sys. 46 (2015), 17–35.

[23] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and C.
Notredame. 2017. Nextflow enables reproducible computational workflows.
Nature Biotechnology 35, 4 (2017), 316.

[24] M. Dorier, J. M. Wozniak, and R. Ross. 2017. Supporting task-level fault-tolerance
in HPC workflows by launching MPI jobs inside MPI jobs. In 12th Workshop on
Workflows in Support of Large-Scale Science. 5.

[25] I. Foster and S. Taylor. 1990. Strand: New concepts in parallel programming.
Prentice Hall (1990).

[26] GFD-R-P.231 2016. Distributed Resource Management Application API Version 2.2
(DRMAA). Recommendation. Open Grid Forum.

[27] GFD-R-P.90 2013. A Simple API for Grid Applications (SAGA). Specification. Open
Grid Forum.

[28] J. Goecks, A. Nekrutenko, and J. Taylor. 2010. Galaxy: A comprehensive approach
for supporting accessible, reproducible, and transparent computational research
in the life sciences. Genome Biology 11, 8 (2010), R86.

[29] P. Hintjens. 2013. ZeroMQ: Messaging for Many Applications. O’Reilly.
[30] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G.

Petretto, G.-M. Rignanese, G. Hautier, et al. 2015. FireWorks: A dynamic workflow
system designed for high-throughput applications. Concurrency and Computation:
Practice and Experience 27, 17 (2015), 5037–5059.

[31] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. Aivazis. 2012. Building
a framework for predictive science. arXiv preprint arXiv:1202.1056 (2012).

[32] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, et al. 2018. Ray: A distributed framework for emerging AI
applications. In OSDI-13. 561–577.

[33] J. J. Pitt. 2017. Deciphering Cancer Development and Progression through Large-
Scale Computational Analyses of Germline and Somatic Genomes. Ph.D. Disserta-
tion. University of Chicago. http://dx.doi.org/10.6082/M19K48BS.

[34] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes, and
J. Labarta. 2017. PyCOMPSs: Parallel computational workflows in Python. Intl
Journal of High Performance Computing Applications 31, 1 (2017), 66–82.

[35] M. Wilde, M. Hategan, J. Wozniak, B. Clifford, D. Katz, and I. Foster. 2011. Swift: A
language for distributed parallel scripting. Parallel Comput. 37, 9 (2011), 633–652.

https://github.com/Parsl/parsl
https://www.commonwl.org/v1.0/
https://www.commonwl.org/v1.0/
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
http://docs.dask.org/en/latest/
https://github.com/spotify/luigi
https://docs.python.org/3/library/pickle.html
https://airflow.apache.org/
https://hadoop.apache.org/
https://spark.apache.org/
http://distributed.dask.org/en/latest/
https://github.com/ipython/ipyparallel
https://rcc.uchicago.edu/docs/using-midway/index.html
https://rcc.uchicago.edu/docs/using-midway/index.html
https://doi.org/10.1016/j.jpdc.2005.03.010
http://dx.doi.org/10.6082/M19K48BS

	Abstract
	1 Introduction
	2 Motivation
	2.1 Use Cases
	2.2 Why build on Python?

	3 Design
	3.1 Programming with Parsl
	3.2 Input and output data
	3.3 Runtime
	3.4 Separation of Code and Configuration
	3.5 Scalable Execution
	3.6 Fault-Tolerant Execution

	4 Architecture and implementation
	4.1 DataFlowKernel
	4.2 Providers
	4.3 Executors
	4.4 Elasticity
	4.5 Data management
	4.6 Additional features

	5 Evaluation
	5.1 Latency
	5.2 Scalability
	5.3 Throughput
	5.4 Elasticity

	6 Related work
	7 Summary
	References

