
PSI/J: A Portable Interface for Submitting,
Monitoring, and Managing Jobs

Mihael Hategan-Marandiuc1,4, Andre Merzky3, Nicholson Collier1,4, Ketan Maheshwari6, Jonathan Ozik1,4

Matteo Turilli3,5, Andreas Wilke1,4, Justin M. Wozniak4, Kyle Chard1,4, Ian Foster1,4, Rafael Ferreira da Silva6

Shantenu Jha3,5, Daniel Laney2
1University of Chicago, Chicago, IL, USA 2Lawrence Livermore National;Laboratory, Livermore, CA, USA

3Brookhaven National Laboratory, Upton, NY, USA; 4Argonne National Laboratory, Lemont, IL, USA
5Rutgers, New Brunswick, NJ, USA; 6Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract—It is generally desirable for high-performance com-
puting (HPC) applications to be portable between HPC systems,
for example to make use of more performant hardware, make ef-
fective use of allocations, and to co-locate compute jobs with large
datasets. Unfortunately, moving scientific applications between
HPC systems is challenging for various reasons, most notably
that HPC systems have different HPC schedulers. We introduce
PSI/J, a job management abstraction API intended to simplify
the construction of software components and applications that
are portable over various HPC scheduler implementations. We
argue that such a system is both necessary and that no viable
alternative currently exists. We analyze similar notable APIs and
attempt to determine the factors that influenced their evolution
and adoption by the HPC community. We base the design of PSI/J
on that analysis. We describe how PSI/J has been integrated in
three workflow systems and one application, and also show via
experiments that PSI/J imposes minimal overhead.

I. INTRODUCTION

A portable HPC application, intended to submit and manage
jobs across multiple HPC systems, each with a potentially
different local resource manager (LRM), such as Slurm and
PBS, must be able to generate job descriptions for each LRM
type and know how to interact with each LRM’s tools (e.g.,
qsub, qstat) or APIs. The semantics of these operations are,
to a large extent, the same across the various LRMs and
the differences are to be found in the details of how LRMs
expose their functionality. Consequently, reasonable software
architecture practices dictate that a portable HPC application
be designed such that all the logic that is not specific to a
given LRM be handled on an abstract level and the relevant
translation to specific LRMs be done as low as possible in the
application’s component hierarchy. That is, under reasonable
assumptions, every application intended to be portable across
multiple LRMs must have a component that translates abstract
job information into specific LRM scripts, commands, or API
calls. For convenience, we will call such a component a Job
Abstraction API (or, in short, JAAPI).

Without a common JAAPI, portable HPC applications have
no choice but to implement their own custom solution. This
leads to unnecessary redundancy, which could potentially be
overlooked if the effort required to implement and maintain
a JAAPI was negligible. However, evidence gathered from
known past JAAPIs shows no indication of triviality in either
design, implementation, or maintenance. On the contrary, it

appears that the complexity of JAAPIs is frequently underes-
timated. This costly redundancy underlines the need for both
reusable JAAPIs as well as an understanding of how their
adoption can be facilitated and what prevents it.

The previous statements are abstract and do not do justice to
just how prevalent this problem is. To provide some context,
nearly every project that is incidental to our team’s work
(Balsam [1], Maestro [2], Parsl [3], RADICAL-Pilot [4],
Swift/T [5]) has, separately, needed to design and implement
a JAAPI, with little or no coordination but with very similar
functionality, as shown in Table I. And every JAAPI designed
and implemented as part of such a project represents a hidden
cost that must be funded but is rarely acknowledged as more
than part of the normal cost of writing higher level HPC
tools [6].

A number of JAAPIs are known to have emerged over
time. Of those that are still actively maintained or developed,
none show evidence of widespread adoption. This is in direct
contradiction with the clear need for a JAAPI. In this paper,
we attempt to examine the causes of this contradiction and use
our conclusions to provide insight and possible suggestions
for facilitating the adoption of reusable JAAPIs as well as
presenting recommendations for aiding in the survivability of
JAAPIs. Informed by our analysis, we propose PSI/J: an open,
language-agnostic, and minimalistic JAAPI that is meant to
satisfy most of the needs of portable HPC applications while
also providing pass-trough capability for more advanced usage
scenarios.

We discuss past (and some present) similar efforts in an
attempt to gain some insight into the reasons behind their
limited availability and/or adoption in Section II. With the
wisdom gained in Section II, we outline the design of the
PSI/J API in Section III as well as the relevant details of the
Python binding [7] and the testing infrastructure in Section IV.
We proceed with a number of examples of applications that
are using PSI/J in Section V and report performance num-
bers meant to illustrate the overhead that our PSI/J Python
implementation imposes in Section VI. We conclude with a
discussion of the potential opportunities and obstacles that lie
ahead in Section VII.



Application Schedulers Supported Language Remote

Balsam [1] Local, Cobalt, LSF, PBSPro, Slurm Python No
Maestro [2] Local, Slurm, LSF, Flux Python No

Parsl [3] Cobalt, HTCondor, LSF, PBSPro, SGE,
Slurm, Torque, AWS, Azure, Google
Cloud, Kubernetes

Python Yes

RADICAL-Pilot [4] Cobalt, Condor, CPI, LoadLeveler,
LSF, PBS, PBSPro, SGE, Slurm,
Torque

Python Yes

Swift/T [5] Cobalt, AWS, LSF, PBS, SGE, Slurm Java, C, Tcl No

TABLE I
SELECT PORTABLE HPC APPLICATIONS AND CHARACTERISTICS OF THEIR EMBEDDED JAAPIS.

JAAPI Type Schedulers Supported A/Synchronous Languages Remote Last Updated

DRMAA [8] Spec. & Impl. SGE, HTCondor, PBS, LSF, GridWay,
LoadLeveler, Slurm, Unicore

Async. C, Perl, Python,
Ruby, Java, Go,
Erlang

Varies Varies, 2017 (PBS),
2018 (Python)

Globus GRAM [9] Impl. PBS, SGE, LSF, Condor Both C, Python, Java Yes 2018
Unicore [10] Impl. PBS, LoadLeveler, LSF, Slurm Both Java Yes 2023

HTCondor [11] Impl. PBS, LSF, SGE, AWS Both C, Python Yes 2023
SAGA [12] Spec. & Impl. SSH, HTCondor, PBS, SGE, Slurm,

LSF, LoadLeveler, EC2
Both Python, C++, Java Yes 2023 (Python)

Java CoG API Impl. PBS, Cobalt, HTCondor, SGE, Slurm,
LSF, AWS, GCE, Globus GRAM, SSH

Both Java Yes 2017

TABLE II
A LIST OF WELL KNOWN JAAPIS. UNICORE, HTCONDOR, AND RADICAL-SAGA ARE BEING ACTIVELY MAINTAINED AT THE TIME OF THIS WRITING.

II. BACKGROUND AND RELATED WORK

In this section we describe both previous and current
JAAPIs, discuss factors that influence the adoption and sustain-
ability of JAAPI implementations, and analyze characteristics
necessary to create a sustainable JAAPI.

A. Previous and current efforts

The idea of a unified JAAPI is far from new. During
the golden era of Grid Computing, there were a number of
high profile JAAPIs. Perhaps one of the most notable was
the Globus Toolkit [13] and, specifically, Globus GRAM [9].
While now end-of-life, the Globus Toolkit is, directly and
indirectly, a major source of inspiration for PSI/J.

Globus GRAM offers a set of services for submitting and
monitoring jobs on diverse LRMs. Implemented as a set of
services, and with a custom protocol and resource specifica-
tion, GRAM offers a complete ecosystem for job management.
GRAM is designed for Grid environments, and thus focuses
on remote submission via integration of components for grid
security, file transfer, and enforcement of authorization and
access policies. GRAM is designed for deployment in multi-
user environments and thus requires administrator privileges
for deployment. At its peak, GRAM was deployed widely
both in the US and internationally as an interface to different
LRMs on many HPC clusters, including most of the leading
supercomputers. Some of the ideas included in Globus con-

tinue today in the cloud-hosted Globus service [14] and in the
Globus Compute service [15].

After the first generation of Grid Computing tools, an effort
emerged to build community consensus on Grid protocols
and tools. This effort, the Open Grid Forum (OGF), was the
birthplace of another major JAAPI: the Simple API for Grid
Applications (SAGA) [12]. An OGF standard, SAGA was
implemented in C++ [16], Java [17] and, lastly, in Python via
RADICAL-SAGA [18]. RADICAL-SAGA is still maintained
and used by RADICAL-Pilot [4] and a few other distributed
computing projects [18] to interface with LRMs. SAGA and
RADICAL-SAGA have directly inspired the design of PSI/J.
OGF promoted a number of other notable efforts, of which
we mention OGSA BES [19] and JSDL [20]. In the European
Union, the UNICORE project [10] provided a JAAPI in the
form of the UNICORE Abstract Job Object.

At about the same time that SAGA was being designed,
the Java CoG Kit [21], which started as a pure Java im-
plementation of the Globus client suite, developed an “ab-
straction API” [22] for various job execution implementations,
including Globus GRAM versions 2 and 3, SSH, LRMs, etc.
This abstraction API would later be used by the Swift/K [23]
workflow system both directly and indirectly as part of the
Coaster pilot job system [24]. Along with SAGA, it remains
one of the main sources of inspiration for PSI/J.

Another product of the OGF is the Distributed Resource

2



Management Application API [8] (DRMAA), which is an
API that is meant to be exposed by HPC schedulers such
that applications can submit and manage jobs through the
DRMAA API rather than by interacting directly with the job
scheduler. Applications are expected to link with the local
DRMAA shared library and gain access to the local scheduler
functionality. Implementations for DRMAA exist in C for
Slurm, PBS/Torque, LSF. Wrappers for the C libraries can
be found for Python, Perl, Ruby, Erlang, and Go. Since the
peak days of the OGF, the HPC community seems to have
moved forward and some of the C DRMAA implementations
for certain LRMs have not been updated in more than 8 years.
Nonetheless, DRMAA appears to be the most widely used
JAAPI in existence.

B. The JAAPI condition

We now consider the factors that can influence the adoption
and survivability of a JAAPI. We can classify relevant factors
into two categories: intrinsic to a particular design and/or
implementation or extrinsic. Intrinsic factors are factors that
are almost entirely under the control of the team or orga-
nization enacting the design or implementation of a JAAPI,
whereas extrinsic factors are a result of the circumstances
under which the enactment takes place and for which the
team or organization can at most produce mitigating strategies.
This distinction between intrinsic and extrinsic factors can
sometimes be blurry, but, in most cases, a dominant direction
can be distinguished. In what follows, we will attempt to
enumerate and discuss prominent factors. We caution the
reader that this discussion is not meant as authoritative, but
as a starting point for future discourse and, in the case of
PSI/J, as the lens through which we perceive the suitability
of a JAAPI solution. We will discuss extrinsic factors first,
since they influence the intrinsic factors: complexity of the
problem, funding structure, and the research nature of JAAPIs.
We follow with the intrinsic factors: complexity of design,
design inflexibility, and implementation quality.

1) Problem complexity: Designing and implementing a
JAAPI is made complex by two characteristics of HPC sys-
tems: the heterogeneity of HPC sites and the stringent security
associated with accessing most HPC sites. Even when different
sites use the same LRM (e.g., Slurm), experience shows that
there is significant variability in how LRMs are configured
across sites. The assurance that a JAAPI functions properly
on an HPC site rarely arises from it working on a similar site
and is more often contingent on the JAAPI being tested on the
specific HPC site. Consequently, ensuring that a JAAPI works
in general requires that it be tested on a significant subset
of the target set of HPC sites. But because of the stringent
security policies associated with HPC sites, it is virtually
impossible for a small development team to gain access to
such a significant set of HPC sites.

We arrive at an odd intersection: nearly every portable HPC
application that manages jobs needs to have a component
that is nearly impossible to test adequately. Furthermore, the
inability to test a component that sits at the base of the

component hierarchy of an application has consequences for
the entire application. While speculative, it does not stretch
the imagination to picture why most HPC workflow systems,
written with ad-hoc JAAPIs, fail to get traction outside the
organizations in which they were created.

2) Funding structure: One of the major barriers to adoption
of a JAAPI is the natural desire of adopters to have some
confidence that the JAAPI will continue to be supported and
maintained for the lifetime of the project that the JAAPI is
meant to be integrated into. As it is undesirable to foresee
the demise of one’s own project, it follows that JAAPIs are
expected to be supported for the foreseeable future in order
for them to be a compelling target for adoption. Unfortunately,
JAAPIs are mostly the products of research funding, which
is, by nature, limited to a few years. Even if new funds
are received, they must be justified in terms of an active
research goal. This situation is problematic and leaves no
room to the possibility of funding needed infrastructure. It is
akin to requiring that highways be re-built with new materials
or receive significant technological improvements every few
years in order for them to continue to be in a usable state.
Unfortunately, this results in higher overall costs, since lower
quality JAAPIs now become a hidden cost of all portable HPC
applications. Pushing the highway metaphor a bit further, it is
like governments opting to fund multiple parallel roads for
use by individual companies in order to avoid the costs of
maintaining a single common road.

3) Research nature of JAAPIs: Traditionally, the largest
customers of HPC resources have been scientific research
projects. The biggest supercomputers are overwhelmingly as-
sociated with academic or research institutions. The ecosystem
surrounding HPC resources and applications is, unsurprisingly,
also tightly coupled with the research world. One of the
main outputs in the research world are academic publications.
Infrastructure software, such as JAAPIs, should have stability
as one of their main goals. Stability implies changes that
are limited to marginal improvements and the addressing of
defects, changes that are rarely interesting enough to align
with notable novelty that would result in research output. This
leads to a conflict that, simultaneously, pushes JAAPIs towards
stability and towards re-inventing themselves, which can add
unnecessary complexity over time. Further, it encourages
developers to focus on novelty, exploring new, yet untested,
approaches necessary for publication.

4) Complexity of design: Complexity is perhaps one of the
most visible aspects of a JAAPI solution. An overly complex
design leads to difficulties in implementation, maintenance,
and deployment. A complex design can arise in many ways.
An often encountered scenario is that in which a large collab-
oration attempts to create an all-encompassing design. This
leads to the inclusion of legitimate but rarely needed features
that a compliant implementation is then forced to deliver. For
example, the SAGA specification mandates that certain classes
be implemented in versions that allow both synchronous and
asynchronous invocation of their methods, even when such
methods implement fast operations. Complexity of design is

3



not limited to a JAAPI specification and can apply equally to
implementations.

5) Design inflexibility: Design inflexibility is the inability
of a JAAPI design to adapt to changes in the software
ecosystem used to enact implementations. It was typical of the
JAAPIs that were products of the OGF and which included
remote job submission to do so using an extensive stack of
XML technologies which have since experienced a significant
decline in adoption for new implementations. A subcategory
of design inflexibility is programming language specificity,
which explicitly or indirectly biases a design towards a specific
programming language that may be subject to a decline in
popularity.

6) Implementation quality: All JAAPI implementations are,
in the end, software products. And, like other software prod-
ucts, they get consciously or subconsciously evaluated with
respect to what potential users expect from a software product.
Along with functional metrics, such as lack of errors, weight
is also given to non-functional aspects such as code quality,
presentation, documentation, ease of use, support, and so on.
Ensuring that a well rounded software product is put forward
requires team discipline that is often difficult to find in the
research world where it is not uncommon for teams to consist
of collaborations that are put together as part of a single
funded project and where no clear organizational structure
exists except PIs and not-PIs.

C. Discussion

We now turn towards an analysis of known JAAPIs as seen
through the prism of the earlier considerations. We argue that
a successful JAAPI must exhibit most of the desirable qualities
mentioned previously while avoiding or suitably compensating
for the difficulties. We, again, caution the reader: this analysis
suffers heavily from survival bias as we only discuss JAAPIs
that has managed to achieve sufficient prominence.

Perhaps the most successful JAAPI still in existence is
DRMAA. The DRMAA specification is focused on a single
problem and avoids many of the complexities associated with
JAAPIs by only mandating local access to LRMs. While the
DRMAA specification allows for implementations in multiple
languages, it is primarily geared towards the C language,
which is a form of design inflexibility. Libraries exist for all
major LRMs, which, in large part, is a consequence of the
DRMAA specification being written by representatives from
LRM suppliers, some of which provide DRMAA libraries
with LRM releases. The existence of the C libraries allow
wrappers for other languages to be written without needing
a full re-implementation. Nonetheless, the choice of most
LRM specific DRMAA libraries to use proprietary APIs to
communicate with the scheduler makes community support
difficult, which is necessary without a continued source of
funding or commitment from LRM suppliers. It also makes
it challenging to maintain multiple LRM adapters as part of
a single effort, which implies that some internal routines are
duplicated across adapters and come with separate and often
dissimilar characteristics. This appears to be a consequence

of a design that fails to see beyond the implementation of
DRMAA for a single LRM.

Still under active support, RADICAL-SAGA is an imple-
mentation of the SAGA specification. The SAGA specification
is an extensive document that encompasses job management,
file management, data stream management, remote procedure
calls, and more. RADICAL-SAGA suffers from the rigidity
imposed by having to adhere to this complex standard. For
example, compliance requires a relatively complex implemen-
tation that limits portability and results in implementation
quality issues, such as difficulty in tracing errors. In other
words, the likelihood that a third party will implement SAGA
and maintain the resulting library is significantly reduced.
Indeed, the team maintaining RADICAL-SAGA, who are co-
authors to this paper, have contributed significantly to the
SAGA specification and maintain its Python implementation.
Furthermore, RADICAL-SAGA’s Grid Computing origins de-
manded a vast array of capabilities that are currently available
through third party libraries. .

Globus GRAM was an integral part of the Globus Toolkit.
It allowed remote job submission when most people still
accessed the Internet by dial-up. Implementing a remote-
capable JAAPI required solving a number of security and
networking problems for which no off-the-shelf solutions were
readily available. Consequently, a great deal of complexity
went into writing and maintaining it, which had ripple effects
for maintenance costs. Additionally, in normal usage scenarios,
the Globus GRAM server required a non-trivial amount of
effort from HPC cluster administrators to be installed and sup-
ported. It was also initially closed-source, which contributed to
the improbability of being supported by the community in the
event of a funding shortage. Subsequent versions addressed
the issue of community openness by releasing specifications
through the OGF.

HTCondor started out as a cycle-stealing batch scheduling
system, but has since grown into a system supporting the
routing of jobs to other LRMs as part of a federated HTCondor
pool. Various large Condor pools exist, including the Open
Science Grid [25], but it is rare for leading HPC resources to
be part of a HTCondor pool. HTCondor is a large and complex
project with over 1.5k C++ source files and with many
contributors. As a consequence, installing and configuring a
local HTCondor pool that can act as a JAAPI is rarely the
primary way in which portable HPC applications implement
LRM abstraction.

The Java CoG Kit abstraction API was an implementation-
only JAAPI that included support for job, file transfers, and
remote filesystem access. While the Java GoG Kit abstraction
API was, at first, a standalone product under the umbrella of
the Java GoG Kit, it reached maturity almost exclusively as
part of the Swift/K system at a time when Grid Computing
was being slowly phased out. Combined with the fact that
it was a Java-only implementation and that it suffered from
implementation quality issues, such as poor documentation and
support, it failed to gain widespread adoption.

The UNICORE (Uniform Interface to Computing Re-

4



sources) project developed an end-to-end middleware to enable
users to execute many-task applications on Grid computing
infrastructures. Evolved into a solution supporting general-
purpose distributed computing, it requires root privileges on
a cluster login nodes in order to deploy and run its server
components on HPC platforms. Further, integration with each
HPC cluster requires complex and specific customization. This
imposes rigid constraints in terms of security, portability, and
resource requirements and is an example of design complex-
ity.

III. DESIGN

In this section we describe the goals that motivated PSI/J,
the resulting specification, and the reference implementation.

A. Design Goals

The PSI/J API [26] is designed as a minimal interface
to submitting and monitoring jobs and their execution state.
The need for minimalism is informed, in part, by the ob-
servations in Section II that complexity is unlikely to lead
to a successful JAAPI solution in the long term. That is
coupled with the observation that many custom JAAPIs (e.g.,
Parsl [3], Swift/K [23], Swift/T [5], Balsam, RADICAL-Pilot)
are focused almost exclusively on submitting and monitoring
jobs with no further adornments. Therefore we believe that
maintaining an orthogonal and therefore simple API is funda-
mental in facilitating both use and implementation.

The PSI/J API is also designed to allow scalable imple-
mentations where scalability is targeted both in the number of
handled jobs and in the rate of job submission. Suggestions
for implementers relevant to scalable implementations are
provided in the specification document. Our reference Python
PSI/J implementation makes full use of the scalability features
of the API. Specifically, the API is asynchronous in order to
support threadless use. The choice of asynchronous API is
also motivated by the fact that one can easily transform an
asynchronous API into a synchronous one, without incurring a
performance penalty. However, the opposite is not true: adding
an asynchronous layer on top of a synchronous API does not
remove the one-to-one correspondence between threads and
jobs at the synchronous API level.

In PSI/J, the simplicity of the API is favored over that
of the implementation if a reasonable implementation choice
exists for a given design goal [27]. This is motivated by the
fact that implementation complexity can be addressed with
reusable solutions that multiple implementations can share,
whereas API complexity translates into a pervasive overhead
for users of the API. For example, bulk operations can, in
certain cases, improve scalability of an implementation. Bulk
operations are versions of API operations that act on multiple
items as opposed to single ones. A bulk submit method would
take a list of jobs as arguments and submit them all in one
call to the underlying LRM under the assumption that the
alternative of making multiple calls to the LRM introduces a
large combined overhead. However, a simple time windowing
function can be used to aggregate individual job submissions

and transparently route the resulting list of jobs to a bulk LRM
submit call, if such a call is available. This would retain the
simplicity of the API while also allowing the implementation
to be efficient and is the favored choice. Certain caveats of this
approach should, however, be noted. Time-based clustering of
jobs is insufficient in determining jobs that are also related in
their various properties and may be unsuitable in creating job
arrays as supported by various LRMs. Such support may be
added to PSI/J in the future.

A similar problem to bulk submission is that of bulk job
status querying. Invoking qstat commands individually for
each job can result in poor scaling as the number of actively
managed jobs increase. The PSI/J specification [26] mandates
that implementations query the status of jobs in bulk in order
to avoid this issue.

Last but not least, the PSI/J specification is geared towards
allowing implementations to live in user space as well as
concurrently being installed as system libraries. This can push
the burden of supporting a PSI/J implementation deployment
away from system administrators and give users the flexibility
to address deployment problems as needed.

B. The Structure of the API

The PSI/J specification is organized into three basic layers,
depending on the level of functionality that it describes. The
local layer (see Figure 1) defines the API needed to interact
with job schedulers locally. That is, the location of the job
scheduler is implicit and assumed to be on the same machine
as the one on which the client application is running. The
remote layer (see Figure 2) defines additional API elements
needed to submit jobs to a remote scheduler, running on a
different machine than the one on which client code is running.
The nested layer (Layer 2) is meant to add API elements
needed to interact with pilot job implementations. At the time
of the writing of this paper, only the local layer of the the
PSI/J specification is available publicly and work is underway
in drafting the remote layer. Nonetheless, the bulk of the
specification rests with the local layer, with the other two
layers containing only incremental updates needed to describe
endpoints, credentials, and service configuration.

PSI/J Core

Slurm
LRM

PBS
LRM

LSF
LRM

Slurm
Executor

PBS
Executor

LSF
Executor · · ·

System
Software

User
Software

Fig. 1. Illustration of the local layer of PSI/J.

The PSI/J layers are related by an inclusive relationship,
in the sense that a nested layer implementation is expected
to also contain all the API elements of the remote and local
layers. However, one can also identify a functional relationship
between layers. For example, the remote layer functionality
can be implemented by adding remote invocation capabilities
(see Figure 2) to a local layer implementation, whereas a

5



PSI/J Service SSH
Service

PSI/J Core

Slurm
LRM

PBS
LRM

LSF
LRM

Slurm
Executor

PBS
Executor

LSF
Executor · · ·

PSI/J Core

Remote Invocation Executor SSH
Executor

· · ·

Remote

Local

Fig. 2. Intended usage scenario for the remote layer of PSI/J.

nested layer implementation requires a mechanism to submit
the pilot jobs to a HPC scheduler, which can be achieved with
either a local or remote layer. The remote layer is also suitable
for interfacing with libraries that natively implement remote
job execution, such as SSH.

In the remote layer, multiple remote schedulers on multiple
HPC schedulers are meant to be accessible concurrently,
from the same client process. Similarly, in the local layer,
it can be desirable to be able to submit simple test jobs that
can be run locally, using a forked process. To support this
scenario, PSI/J-Python adopts a multiple-dispatch mechanism,
in which bindings to underlying job execution mechanisms
can coexist and be used concurrently. Such bindings are
called “executors”. In this sense, it differs fundamentally from
most DRMAA implementations, which require that the client
executable be dynamically or statically linked in order to
switch to an alternate LRM.

C. Implementations

As previously stated, the implementations of PSI/J are
meant to be usable as user space components. This is intended
to overcome issues that stem from delays in updates of system
software on HPC clusters. Cluster systems software, especially
on HPC systems that are part of larger organizations, are
known to go trough lengthy processes of approvals for updates
on software packages that are deployed system-wide. This can
result in large delays between the reporting of an issue with
such software and the availability of a fix on a given HPC
cluster.

We provide a reference Python implementation of PSI/J.
The Python language was chosen due to its widespread use
among higher level tools within the scientific community.
However, in order to facilitate portability, most LRM specific
functionality is described as textual templates using a templat-
ing library with binding in a large number of languages. The
PSI/J specification and implementations can be logically split
into two main parts: the core classes, which are independent
of the underlying execution mechanism (e.g., LRM), and
the executors and launchers, which implement LRM and
cluster specific functionality. Executors are entities that know

how to communicate with specific LRMs, whereas launchers
describe the command used to launch multi-node jobs once
the job resources are allocated. The core classes are used to
build and manage jobs on an abstract level, independent of
the underlying executor. Once a job, with all the necessary
information, is built, one obtains an instance of an executor
and uses it to submit the job. We show a simple example of
this process for the Python binding of PSI/J in Figure 3.

job = Job(
spec=JobSpec(
executable=’/opt/cps/bin/NOARCH.x’,
arguments=[’-qmp-geom’, ’8’, ’4’, ’4’, ’4’,

’do_arg.vml’, ’evo_arg.vml’,
’eig_arg.vml’, ’0.00’, ’Overlap’],

stdout_path=cwd + ’/eig.out’,
stderr_path=cwd + ’/eig.err’,
resources=ResourceSpecV1(process_count=512),
launcher=’srun’

)
)
ex = JobExecutor.get_instance(’slurm’)
ex.submit(job)

Fig. 3. Simple example for submitting a job in PSI/J Python with boilerplate
removed.

The Python implementation of PSI/J uses a dynamic plugin
discovery mechanism which allows a PSI/J core to detect
executor and launcher implementations that are installed in
different places from the PSI/J core. This allows for various
scenarios, such as a stable system provided core using a user
customized executor implementation or a user installed core
using a system provided executor implementation (a scenario
somewhat similar to that of DRMAA). Executors for Slurm,
PBSPro, LSF, Cobalt, and Flux [28] are provided with the
current version of the reference implementation. A “local”
executor that runs jobs using a simple fork mechanism is
also provided. Launcher implementations are provided for all
LRM specific launchers (srun, aprun, jsrun, etc.) as well as for
generic launchers, such as mpirun. The dynamic plugin system
allows PSI/J Python to be extensible with new executors and
launchers without necessarily requiring that the additional
executors or launchers be part of the PSI/J Python code base.

We have opted for the executors provided by the reference
PSI/J Python implementation to use publicly available LRM
interfaces, which, in most cases, consist of well known com-
mands, such as qsub and qstat. This is a deliberate choice
that assumes that established public LRM interfaces are less
likely to change and lead to incompatibilities than proprietary
ones. This is in contrast to many DRMAA implementations
which use proprietary APIs to communicate with LRMs. The
choice made by the PSI/J Python reference implementation
does not, however, preclude one from writing executors using
proprietary APIs.

IV. DEPLOYMENT

One of the major problems that PSI/J is meant to address
is the difficulty involved in adequately testing JAAPIs on a

6



widespread set of HPC resources. We can assert that it is
virtually impossible for a single research team to gain and
maintain access to a sufficient number of resources in order
to cover a satisfactory range of configurations. Traditionally,
testing on resources that are not accessible to the JAAPI
developers tends to be done by their users in the process of
using the higher level system that employs the JAAPI. We
propose to improve on this scenario by allowing any user
with access to a HPC cluster (or any computing resource),
when authorized to do so, to set up daily runs of a PSI/J
implementation test suite and automatically report the results
to a centralized test results aggregation site. The aggregation
site can then be consulted by PSI/J developers who can react
to issues detected on various systems.

The Python implementation of PSI/J allows its test suite to
be configured to run daily on a given machine, typically using
the standard Cron tool, and upload detailed results of the tests
to a central location. By default, the system is set up to test
the main branch as well as branches belonging to GitHub pull
requests that are made by the core team. While not currently
implemented, we envision adding a tagging mechanism that
allows the test suite to also be run on external pull requests,
but only if tagged by a member of the core team. This
allows both continuous testing of the main branch of the
Python implementation of PSI/J, as well as that of relevant
proposed changes. A minimal uploads mode, which strips all
non numeric and non boolean information from the results but
retains the detailed information locally, is provided for use on
sensitive and/or classified systems. When errors are detected
on such a system and if desired, PSI/J developers have an
option of emailing the test maintainers to ask for detailed
information which can then be manually inspected and edited
for sensitive information by the test maintainers.

The results of the tests are presented through a dashboard,
which can display the data in multiple ways. One of the
display modes shows aggregate results for each site over
the past few days. Maintainers of PSI/J implementations can
quickly identify sites on which one or more tests are failing.
One can then select a particular site and inspect the actual
pytest output, and example of which is shown in Figure 4.
This effectively allows maintainers and developers of PSI/J
to run tests and get detailed results on resources that they
would not normally have access to. It also unburdens them
from setting up, maintaining, and prioritizing test sites while
allowing users to gain confidence that PSI/J implementations
function correctly on their sites.

V. EXAMPLES

In this section we describe the use of PSI/J by three
workflow programming frameworks, Parsl, RADICAL-Pilot,
and Swift/T, and one application framework, OSPREY.

A. Parsl

Parsl is a parallel programming library for Python that al-
lows users to write programs in Python that orchestrate parallel
execution of Python functions and other external application.

Fig. 4. Screenshot of the test results view of the PSI/J testing dashboard
showing a failed test and the Pytest report.

Parsl exposes a straightforward programming model in which
developers identify opportunities for concurrent execution by
adding decorators to Python functions, called Parsl apps. Any
call to a Parsl app creates a new task that executes concurrently
with the main program and any other task(s) that are currently
executing. Parsl returns a future for each task, allowing the
developer to compose dynamic workflows by passing futures
between apps. When the program is executed, Parsl manages
task dependencies, data transfers, and execution of tasks on
connected resources.

Parsl implements a flexible runtime model via which tasks
can be executed on different resources, from laptops to su-
percomputers. The runtime model builds on two extensible
abstractions: the provider, a JAAPI that manages the provi-
sioning and management of compute resources (e.g., from
batch schedulers or cloud providers); the executor (not to
be confused with PSI/J executors) manages the execution of
tasks on those resources. Parsl, like other workflow systems,
includes implementations for various providers (e.g., Slurm,
PBS, Cobalt, LSF). Parsl has been extended to leverage PSI/J
as a community-developed JAAPI. Integration was straightfor-
ward, as PSI/J implements a compatible model and required
making only minor adjustments to certain library calls.

B. RADICAL-Pilot

RADICAL-Pilot (RP) enables the execution of one or more
workloads comprised of heterogeneous tasks on one or more
HPC platforms. RP offers five unique features: (1) concur-
rent execution of tasks with five types of heterogeneity; (2)
concurrent execution of multiple workloads on a single pilot,
across multiple pilots and across multiple HPC platforms; (3)
support of all major DoE and NSF HPC platforms, offering

7



reliable scaling behavior of O(105) concurrent tasks on up
to O(6 ∗ 105) cores and O(3.6 ∗ 104) GPUs; (4) support for
seventeen methods to launch tasks; and (5) integration with
third party middleware like workflow and runtime systems.
The five types of task heterogeneity supported by RP are: (1)
type of task (executable, function or method); (2) parallelism
(scalar, MPI, OpenMP, or multiprocess/thread); (3) compute
support (CPU and GPU); (4) size (1 hardware thread to 8000
compute nodes); and duration (0 seconds to 48 hours).

As a pilot system, RP schedules tasks concurrently and
sequentially, depending on available resources, and defines
scheduling policies for executing tasks on all the acquired
resources. As such, RP requires scheduling a job on an HPC
machine via its batch system to acquire resources, which
makes supporting diverse platforms with the same code base
challenging. So far, RP has been using RADICAL-SAGA to
support all the major batch systems (see Table II) but, due
to limitations listed in §II, RP has integrated PSI/J to offer
the same interoperability but via leaner, more extensible, and
easier to integrate interfaces.

C. Swift/T

Swift/T is a dataflow language with automatic paralleliza-
tion capabilities [29], with a runtime based on MPI mes-
saging [30]. Swift/T is designed to run large numbers of
small tasks at the CPU core-level granularity at a scale of
O(105−106) processors for tasks that run for O(10) seconds,
although larger-granularity tasks, including tasks that are MPI
codes, are typical. Swift/T originally used a collection of
hand-coded shell scripts to launch itself on scheduler systems
including PBS, SLURM, LSF, Cobalt, and plain mpiexec
execution. Using PSI/J provided the opportunity to reduce
the maintenance burden of supporting the various schedulers
and their often customized installations on exotic large-scale
computing systems.

At run time, Swift/T needs to launch its runtime on a
certain MPI environment. The Swift/T runtime, Turbine, is
packaged as a Tcl library that links to MPI, ADLB [31],
and optional application libraries including Python, R, and
the JVM library [32], all at the C level. Running a
Swift/T program essentially consists of invoking a command
of the form mpiexec tclsh workflow.tic, where
workflow.tic is a Tcl program translated from the high-
level user workflow specification. The complexities involved
include setting the job specification and environment as re-
quested by the user with an appropriate request for hardware
resources and environment settings for all of the libraries.

A PSI/J module was implemented for Swift/T as done
for its other scheduler scripts. However, the PSI/J module is
much simpler than those for specific LRMs since all of the
complexity is pushed into the PSI/J layer. A small stub of
Python code gathers the settings as encoded by Turbine and
presents them to PSI/J, which constructs and launches the job.
Thus, simply by specifying PSI/J as the scheduler, Swift/T
users are able to benefit from the portability and feature set of
PSI/J without additional work from the Swift/T maintainers.

D. OSPREY: Open Science Platform for Robust Epidemic
Analysis

The COVID-19 pandemic has highlighted both the utility
and the difficulties associated with applying computational
epidemiology to decision-making in times of crisis and uncer-
tainty. The Open Science Platform for Robust Epidemic Anal-
ysis (OSPREY) [33] was developed while taking the lessons
learned from supporting public health stakeholders during the
pandemic. The platform seeks to create a readily deployable
capability for producing scenario analyses and forecasts of
epidemiological quantities of interest, such as cases, resource
needs, and disease outcomes [34], [35], utilizing distributed
HPC resources.

One characteristic of epidemic analyses is that their compu-
tational demand can vary dramatically over time. Furthermore,
computational availability can fluctuate due to demand and
resource priorities. Also, for epidemic analyses to be useful
as decision support tools, they need to provide actionable
insights quickly. To support these requirements, OSPREY uses
scalable worker pools, elastic sets of pilot jobs tuned to run
specific tasks within the epidemic analyses, such as agent-
based disease models or ML/AI computations. These worker
pools are dynamically provisioned based on computational
demand. The client code that triggers the analyses remotely,
e.g., from a researcher laptop, is able to actively monitor the
worker pools and terminate them as needed, both of which
are done through PSI/J’s ability to query and interact with
LRMs. The remote authentication and interaction is enabled
by Globus Compute [15]. The worker pool is submitted
for execution to a LRM using the Swift/T [5] framework,
which returns a job identifier. Using the PSI/J Python API, a
psij.Job object is created and attach to a native job using
an instance of a PSI/J JobExecutor. The Job object’s methods
and attributes can then be used to query the worker pool job’s
status or cancel it.

VI. PERFORMANCE

An important characteristic of abstraction libraries is the
amount of overhead that they introduce on top of the un-
derlying components that they abstract, since a sufficiently
large overhead may be a deterrent in adopting an abstraction
library. We present a number of measurements that are meant
to quantify the overhead introduced by PSI/J-Python.

We first consider the scaling of the time required to run
dummy jobs with the number of jobs using the local executor.
This measures overheads introduced by the executor itself as
well as the overhead of constructing Job objects and querying
their status. We run all jobs synchronously and sequentially
in loops. We run the experiments on a modern laptop (AMD
Ryzen 7 PRO 4750U) running Linux. Results collected for
PSI/J-Python, a number of other Python methods of invoking
an executable, as well as a Perl version of the same are shown
in Figure 5. The results show that the local PSI/J executor
introduces an overhead of about 10 milliseconds per job.

All PSI/J executors invoke applications indirectly, using a
launcher script, which is specific to the launching mechanism

8



desired by users (e.g., mpirun, srun) but also allows for more
complex usage scenarios, such as pre- and post-launch scripts.
We first collect results from all methods while uniformly in-
voking the application through a PSI/J-Python launcher script.
In order to ascertain the typical overhead of PSI/J-Python
launcher scripts, we compare timing results of the default
PSI/J-Python launcher script, with those of a minimal wrapper
script which simply runs the job as a subprocess, and, finally,
to those without the launcher script. The corresponding results
are shown in Figure 6. The results show an average overhead
of about 2 milliseconds per job attributable to the use of a
launcher script. There is no material difference between the
default PSI/J-Python launcher script and a minimal wrapper
script.

200 400 600 800 1000
Njobs

0.0

2.5

5.0

7.5

10.0

12.5

Ti
m
e 
(s
)

Perl - system()
Python- PSI/J
Python - Popen() + poll()
Python - Popen() + wait()

Fig. 5. Time required to run Njobs dummy jobs locally using various
methods. The “Popen() + poll()” method starts the job using the Popen()
call and then repeatedly calls “poll()” on the Popen object in a busy loop.

200 400 600 800 1000
Njobs

0

1

2

3

Ti
m

e 
(s

)

With PSI/J Launcher Script
With Minimal Wrapper Script
No Launcher Script

Fig. 6. Time required to run Njobs dummy jobs with and without a PSI/J-
Python launcher script.

Finally, we explore if PSI/J-Python imposes an observable
load on a queuing system. We do so by submitting and mon-
itoring a number of jobs while measuring the latency of the
queuing system by repeatedly timing a simple qstat command
that queries the status of a known job. We run experiments
on three supercomputers at ORNL: Crusher, Frontier, and
Summit. These supercomputers use Slurm and LSF schedulers.
The results, presented in Figure 7, show that, up to 100
jobs, PSI/J does not appear to affect queue performance in
a significant way. Nonetheless, a large variance in the time
taken to run the qstat command is observed.

The numbers shown here suggest that the overheads im-
posed by the PSI/J Python implementation add an insignificant
overhead to the typical jobs and LRMs that the PSI/J Python
implementation is expected to manage.

VII. DISCUSSION AND NEXT STEPS

We presented PSI/J, a minimal, composable, and extensible
JAAPI specification whose goal is to address many of the

20 40 60 80 100
Njobs

10−2

10−1

100

Ti
m
e 
(s
) ORNL Crusher

ORNL Frontier
ORNL Summit

Fig. 7. Dependence of the time taken to run a qstat command on the number
of jobs actively managed by PSI/J.

hardships associated with achieving a durable JAAPI solution.
A reference Python implementation which is meant to encour-
age community participation is also provided. Additionally, we
provide an important tool that allows testing of the reference
implementation in ways that would otherwise be significantly
challenging.

With most of the JAAPIs described in this paper, it is
apparent that the teams responsible for the JAAPIs that ended
up getting considerable traction with the community were
aware of most challenges and problems involved in designing,
implementing, and supporting their solutions successfully.
Globus GRAM came at a time when C was the favored
language and few modern networking or security libraries
or protocols existed. It did what it had to do in order to
provide a remote JAAPI solution. The SAGA specification
came at a time when the Grid appeared destined for long
term domination of the HPC world. It attempted to introduce
a standard that addressed the many needs that bridged reality
with what was necessary. This gives weight to the idea that
extrinsic factors are largely responsible for what the lack of a
cohesive JAAPI solution.

We aim to refine both the specification and reference
implementation to allow a transition to community-directed
support and development in order to mitigate against the likely
funding difficulties associated with JAAPIs. We believe that
this is a viable solution that is predicated on the assumption
that, if provided with a sufficiently well designed JAAPI
and a sufficiently well executed reference implementation, the
community will stand to gain from supporting a common
solution rather than many disparate ones.

ACKNOWLEDGEMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-826133), Argonne National Labo-
ratory under Contract DE-AC02-06CH11357, and Brookhaven
National Laboratory under Contract DESC0012704. This re-
search used resources of the OLCF at ORNL, which is

9



supported by the Office of Science of the U.S. DOE un-
der Contract No. DE-AC05-00OR22725. OSPREY work was
supported by the National Science Foundation under Grant
No. 2200234, the National Institutes of Health under grant
R01DA055502, and the DOE Office of Science through the
Bio-preparedness Research Virtual Environment (BRaVE) ini-
tiative. This manuscript has been authored in part by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with
the US Department of Energy (DOE). The publisher, by
accepting the article for publication, acknowledges that the
U.S. Government retains a non-exclusive, paid up, irrevoca-
ble, worldwide license to publish or reproduce the published
form of the manuscript, or allow others to do so, for U.S.
Government purposes. The DOE will provide public access to
these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] M. A. Salim, T. D. Uram et al., “Balsam: Automated scheduling
and execution of dynamic, data-intensive HPC workflows,” ArXiv, vol.
abs/1909.08704, 2019.

[2] F. Di Natale, H. Bhatia et al., “A massively parallel infrastructure
for adaptive multiscale simulations: Modeling RAS initiation pathway
for cancer,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019.

[3] Y. Babuji, A. Woodard et al., “Parsl: Pervasive parallel programming in
Python,” in 28th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC), 2019.

[4] A. Merzky, M. Turilli et al., “Design and performance characterization
of Radical-Pilot on leadership-class platforms,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 4, pp. 818–829, 2021.

[5] J. M. Wozniak, T. G. Armstrong et al., “Swift/T: Large-scale applica-
tion composition via distributed-memory dataflow processing,” in 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. IEEE, 2013, pp. 95–102.

[6] R. Ferreira da Silva, R. M. Badia et al., “Workflows Community Summit
2022: A Roadmap Revolution,” Oak Ridge National Laboratory, Tech.
Rep. ORNL/TM-2023/2885, Mar. 2023.

[7] The Exaworks Team, “PSI/J Python Reference Implementation,” https:
//purl.org/psij.io/psij-python.

[8] P. Troger, H. Rajic et al., “Standardization of an API for distributed
resource management systems,” in 7th IEEE International Symposium
on Cluster Computing and the Grid, 2007, pp. 619–626.

[9] K. Czajkowski, I. Foster et al., “A resource management architecture
for metacomputing systems,” in Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 62–82.

[10] M. Romberg, “The UNICORE grid infrastructure,” Scientific Program-
ming, vol. 10, no. 2, pp. 149–157, 2002.

[11] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: The condor experience: Research articles,” Concurrency and
Computation: Practice and Experience, vol. 17, no. 2–4, p. 323–356,
feb 2005.

[12] T. Goodale, S. Jha et al., “SAGA: A simple API for grid applications.
high-level application programming on the grid,” Computational Meth-
ods in Science and Technology, vol. 12, no. 1, pp. 7–20, 2006.

[13] I. Foster and C. Kesselman, “The Globus Toolkit,” in The Grid: Blueprint
for a New Computing Infrastructure. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, p. 259–278.

[14] K. Chard, S. Tuecke, and I. Foster, “Efficient and secure transfer,
synchronization, and sharing of big data,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 46–55, 2014.

[15] R. Chard, Y. Babuji et al., “funcX: A federated function serving fabric
for science,” in 29th International Symposium on High-Performance
Parallel and Distributed Computing. Stockholm Sweden: ACM, 6 2020,
pp. 65–76.

[16] H. Kaiser, A. Merzky et al., “The saga c++ reference implementation:
a milestone toward new high-level grid applications,” in Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, 2006, pp. 184–es.

[17] M. Russell, P. Dziubecki et al., “The vine toolkit: A java framework for
developing grid applications,” in Parallel Processing and Applied Math-
ematics: 7th International Conference, PPAM 2007, Gdansk, Poland,
September 9-12, 2007 Revised Selected Papers 7. Springer, 2008, pp.
331–340.

[18] A. Merzky, O. Weidner, and S. Jha, “Saga: A standardized access layer to
heterogeneous distributed computing infrastructure,” SoftwareX, vol. 1,
pp. 3–8, 2015.

[19] I. Foster, A. Grimshaw et al., “OGSA Basic Execution Service version
1.0,” 2007, oGF GFD-R.108.

[20] A. Anjomshoaa, F. Brisard et al., “Job Submission Description Language
(JSDL) specification, version 1.0,” 2005, open Grid Forum, GFD-56.

[21] G. Von Laszewski, I. Foster et al., “A Java commodity grid kit,”
Concurrency and Computation: practice and experience, vol. 13, no.
8-9, pp. 645–662, 2001.

[22] K. Arnin, “Abstracting the grid,” in 12th Euromicro Conference on
Parallel, Distributed and Network-Based Processing. IEEE, 2004, pp.
250–257.

[23] Y. Zhao, M. Hategan et al., “Swift: Fast, reliable, loosely coupled
parallel computation,” in IEEE Congress on Services. IEEE, 2007,
pp. 199–206.

[24] M. Hategan, J. Wozniak, and K. Maheshwari, “Coasters: Uniform
resource provisioning and access for clouds and grids,” in 4th IEEE
International Conference on Utility and Cloud Computing. IEEE, 2011,
pp. 114–121.

[25] The Open Science Grid Executive Board, “The open science grid,”
Journal of Physics: Conference Series, vol. 78, no. 1, p. 012057, jul
2007.

[26] The Exaworks Team, “A Portable Submission Interface for Jobs (PSI/J),”
https://purl.org/psij.io/spec.

[27] M. den Burger, C. Jacobs et al., “What is the price of simplicity? a
cross-platform evaluation of the saga api,” in Euro-Par 2010-Parallel
Processing: 16th International Euro-Par Conference, Ischia, Italy, Au-
gust 31-September 3, 2010, Proceedings, Part I 16. Springer, 2010,
pp. 392–404.

[28] D. H. Ahn, J. Garlick et al., “Flux: A next-generation resource man-
agement framework for large hpc centers,” in 2014 43rd International
Conference on Parallel Processing Workshops, 2014, pp. 9–17.

[29] T. G. Armstrong, J. M. Wozniak et al., “Compiler techniques for
massively scalable implicit task parallelism,” in Proc. SC, 2014.

[30] J. M. Wozniak, T. G. Armstrong et al., “Swift/T: Scalable data flow pro-
gramming for distributed-memory task-parallel applications,” in Proc.
CCGrid, 2013.

[31] E. L. Lusk, S. C. Pieper, and R. M. Butler, “More scalability, less
pain: A simple programming model and its implementation for extreme
computing,” SciDAC Review, vol. 17, 2010.

[32] J. M. Wozniak, T. G. Armstrong et al., “Interlanguage parallel scripting
for distributed-memory scientific computing,” in Proc. WORKS @ SC,
2015.

[33] N. Collier, J. M. Wozniak et al., “Developing distributed high-
performance computing capabilities of an open science platform for
robust epidemic analysis,” in 2023 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). Los Alamitos,
CA, USA: IEEE Computer Society, may 2023, pp. 868–877.

[34] J. Ozik, J. M. Wozniak et al., “A population data-driven workflow for
COVID-19 modeling and learning,” The International Journal of High
Performance Computing Applications, vol. 35, no. 5, pp. 483–499, 9
2021.

[35] A. L. Hotton, J. Ozik et al., “Impact of changes in protective behaviors
and out-of-household activities by age on COVID-19 transmission
and hospitalization in Chicago, Illinois,” Annals of Epidemiology, p.
S1047279722001053, 6 2022.

10

https://purl.org/psij.io/psij-python
https://purl.org/psij.io/psij-python
https://purl.org/psij.io/spec

	Introduction
	Background and Related Work
	Previous and current efforts
	The JAAPI condition
	Problem complexity
	Funding structure
	Research nature of JAAPIs
	Complexity of design
	Design inflexibility
	Implementation quality

	Discussion

	Design
	Design Goals
	The Structure of the API
	Implementations

	Deployment
	Examples
	Parsl
	RADICAL-Pilot
	Swift/T
	OSPREY: Open Science Platform for Robust Epidemic Analysis

	Performance
	Discussion and Next Steps
	References

