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Abstract
The Open Science Platform for Robust Epidemic Analysis (OS-
PREY) was introduced to address critical gaps in applying high-
performance computing (HPC) to epidemiologic modeling. While
the initial implementation focused on integrated, algorithm-driven
HPC workflows, this paper explores the second and third goals of
OSPREY: data ingestion, curation, and management, and the de-
velopment of a Shared Development Environment (SDE) for rapid
response and collaboration. We present two use cases to demon-
strate the implementation and impact of each of these goals. The
first use case highlights real-time data ingestion and curation for
epidemiologic modeling, while the second focuses on developing
efficient global sensitivity analyses for epidemic models. These ad-
vancements aim to enhance OSPREY’s capabilities for supporting
public health decision-making and reproducible science.

CCS Concepts
• Information systems→ Decision support systems; • Com-
puting methodologies→Modeling and simulation.
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1 Introduction
The COVID-19 pandemic revealed critical gaps in the ability of
researchers to leverage advanced computational systems for epi-
demic analysis. While epidemiological modeling has long been a
cornerstone in supporting public health decision-making, the un-
precedented scale and complexity of the pandemic underscored
the need for more robust, scalable, and collaborative approaches
to modeling and analysis. The Open Science Platform for Robust
Epidemic Analysis (OSPREY) [8] was introduced to address these
challenges by lowering barriers to high-performance computing
(HPC) resources, automating workflows, and enabling rapid re-
sponse capabilities.

An integral part of OSPREY design was the development of
central goals for enabling timely and robust public health decision
support:

(1) Integrated, algorithm-driven HPC workflows: OSPREY aims
to streamline access to HPC resources for developers of epi-
demiological models and model exploration algorithms [19].
It needs to integrate data, simulations, and algorithms while
allocating heterogeneous resources (CPU, GPU, and acceler-
ators) based on task needs.

(2) Data ingestion, curation, and management: OSPREY needs
to support continuous data assimilation by integrating real-
time data streams with models. It needs to ingest, curate,
store, and index data while managing models and outputs,
ensuring data quality and provenance.

(3) Shared Development Environment for rapid response and
collaboration: OSPREY needs to enable rapid, collaborative
development and efficient porting of modeling and model
exploration codes to HPC, offering a shared, automated, and
scalable framework for model exploration in a Shared De-
velopment Environment (SDE).

These goals were informed and refined by our team’s work in
supporting public health stakeholders during the COVID-19 pan-
demic [17, 20] and beyond [12, 16]. The initial implementation of
OSPREY focused on the first goal, prototyping integrated, algorithm-
driven multi-facility HPC workflow capabilities [8].

This paper explores the second and third goals of OSPREY: data
ingestion, curation, and management, and the development of a
SDE for rapid response and collaboration. These goals are motivated
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by two aspects of epidemiological modeling and public health deci-
sion support that could benefit from automation and time-sensitive
workflows, metadata and provenance management, and fast turn-
around prototyping on heterogeneous computing resources.

First, the dynamic nature of public health data, characterized
by heterogeneous, incomplete, and rapidly changing data streams,
poses significant challenges for epidemiologicalmodeling. Researchers
often struggle to integrate diverse data sources, quantify uncer-
tainty, and ensure data provenance, all while maintaining the com-
putational efficiency required for real-time decision support.

Second, during the COVID-19 pandemic the collaborative nature
of epidemic analysis became increasingly apparent as researchers
across disciplines worked together to refine models, validate results,
and share insights. Despite this collaboration, differences in HPC
environments, programming languages, workflow structures, and
data formats hindered the reproducibility and scalability of shared
modeling and collaboration.

Herewe focus on advancements in OSPREY’s capabilities in these
two areas. Specifically, we present two use cases that demonstrate
implementations of OSPREY’s second and third goals. The first use
case highlights automated, event-driven data ingestion, curation,
and analysis for local epidemic modeling, showcasing how OSPREY
facilitates the integration of diverse data streams to support rapid,
always-on analyses. This use case relies on the AERO event-driven
automation framework [16]. The second use case demonstrates the
flexibility of OSPREY to enable rapid integration of epidemiological
models and complex algorithms for analyses. This use case builds
on the latest capabilities of the EMEWS multi-language model ex-
ploration framework [7]. Both AERO and EMEWS were developed
and have evolved in response to use-inspired requirements gath-
ered through existing public health collaborations and stakeholder
workshops [10, 21, 22].

Through these use cases we show how OSPREY aims to enhance
the ability for epidemiological modeling to support public health
decision-making during crises and improve the reproducibility and
scalability of epidemic analyses. The advancements presented in
this paper represent a significant step toward realizing OSPREY’s
vision of an open science platform that empowers researchers to
respond to public health emergencies with speed, accuracy, and
collaboration.

The remainder of this paper is organized as follows. In §2, we
describe the data ingestion, curation, and management use case,
using aggregation of wastewater-based effective reproduction num-
ber 𝑅(𝑡) as the application. In §3, we describe a surrogate-based
approach to improve the sample efficiency of Global Sensitivity
Analysis (GSA) of a meta-population epidemiological model, includ-
ing the analysis of uncertainties arising from bothmodel parameters
and stochastic model processes. We conclude in §4 and identify
future directions.

2 Automation for Data Ingestion, Curation, and
Management Use Case

The first use case addresses the need for increased automation to
streamline model-based analysis support for public health decision
making. In order to facilitate the integrating of diverse data sources,
quantify their uncertainty, ensure data provenance, and make the

data directly usable by potentially complex epidemiological anal-
yses we present an open-source hybrid and asynchronous data
research automation platform called Automated Event-based Re-
search Orchestration (AERO). AERO is implemented as a distributed
platform, storing metadata centrally and integrating distributed
user-owned and -managed resources for data storage and work-
flow execution. We apply AERO to inferring epidemic trends via
noisy passive surveillance signals, namely wastewater data from
Chicago-area water reclamation plants.

2.1 Monitoring the effective reproduction
number, 𝑅(𝑡), via concentrations across
wastewater treatment plants

𝑅(𝑡) is a time-varying quantity that represents, on average, the
number of new cases caused by an already-infected individual
throughout the span of their illness. It is a useful epidemic quan-
tity for detecting trends in community disease transmission and
informing policy interventions, and it is closely monitored by pub-
lic health officials throughout an epidemic. 𝑅(𝑡) can be estimated
using a variety of methods and data sources [14]. However, the
mandates that ensured consistent access to updated COVID-19
surveillance datasets have ended, and many of the datasets that
had previously been used for inputs into the estimation of 𝑅(𝑡),
such as COVID-19 cases and hospitalizations, are no longer ac-
tively maintained. Nonetheless, COVID-19 and other respiratory
diseases remain a public health risk and monitoring 𝑅(𝑡) in the
absence of reporting mandates is essential. Passive surveillance
indicators, such as pathogen concentrations in wastewater, do not
require populations to opt-in and can always be monitored. How-
ever, the signal from such data streams is noisy and subject to
complicated dynamics, which increases the difficulty in obtaining
clear estimations of 𝑅(𝑡). Here we address this difficulty in two
ways. First, we leverage a compartmental model-based 𝑅(𝑡) estima-
tion framework [13] (Goldstein method). This method combines a
mechanistic epidemiological model and a separate statistical model
of the observed pathogen genome concentrations in wastewater.
𝑅(𝑡) is estimated as a posterior distribution using a semi-parametric
Bayesian sampling framework. This estimation procedure is signif-
icantly more computationally expensive than more standard 𝑅(𝑡)
estimation methods (e.g., [9]) and, therefore, can benefit from HPC
resources. Second, we pool estimates across multiple wastewater
sources and use a population-weighted ensemble average to im-
prove the 𝑅(𝑡) signal to noise. Automating this approach leverages
the event-based triggers and metadata management provided by
the AERO framework [16].

2.2 Combined WWworkflow implementation
In previous work, we adapted the Golstein method’s manual pro-
cess [13] into an automated workflow using the Illinois Wastewater
Surveillance System wastewater data [1] from the O’Brien wa-
ter reclamation plant [16]. Our current work incorporates three
additional wastewater sources: the Calumet, Stickney South, and
Stickney North water reclamation plants, and performs an addi-
tional aggregate analysis. The workflow consists of three steps:
1) a data ingestion and preprocessing step, 2) an execution step
where the 𝑅(𝑡) analysis model is run, and 3) an aggregate analysis
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step that aggregates the four water reclamation plant analyses. The
first two steps are run as four individual workflows for each of
the wastewater sources, and the final step when all of those four
individual 𝑅(𝑡) analyses have produced new data (see Figure 1).

The first step is implemented as an AERO ingestion flow using
the AREO Python API. AERO will poll the wastewater data source
at a user specifiable frequency, in this case daily. If there is a data
update, the new data is uploaded to a user-specifiable Globus col-
lection, where we used the Argonne Leadership Computing Facility
(ALCF) Eagle Globus endpoint. The data is also temporarily sent
to a user-specifiable Globus Compute [4] endpoint, in our case the
Argonne Laboratory Computing Resource Center (LCRC) Bebop
cluster, where the validation and transformation function is run
with the data as input. The transformed data file is then uploaded
to the Globus endpoint. Versioning metadata, such as a checksum,
a timestamp, and version number is stored in the AERO metadata
database both for the input and transformed data. Note that the data
itself never passes through the AERO server, only the metadata.

When registering an ingestion flow using the AERO API, a user
specifies the polling frequency, a URL from which to retrieve the
data, a function to run on the data, any other arguments to that
function, and a Globus Computer [4] endpoint where the function
will run. The AERO API wraps the function call with additional
code that 1) performs the data retrieval from the Globus endpoint,
staging that data as input; 2) calls the user-specified function, in this
case the data transformation function; 3) uploads any outputs of the
function to a specified Globus endpoint; and 4) updates the AERO
database with the relevant metadata for the input and output data.
The registration returns one or more UUIDs that uniquely identify
the output data. These UUIDs can then be used to specify that data
as input to an AERO analysis flow. When the data identified by that
UUID is updated, then any analysis flows that have registered that
UUID as input are triggered by AERO.

For the second step, the 𝑅(𝑡) analysis model is implemented as
an AERO analysis flow using the UUID of the wastewater data
transformation output as its input. Consequently, when a wastewa-
ter source is updated, triggering a validation and transformation, it
produces an updated output. This, in turn, triggers the analysis flow
that depends on the data source. Registering an analysis flow is
much like registering an ingestion flow, but rather than a URL, data
UUIDs are specified as inputs. If there are multiple input UUIDs,
the user can specify that the analysis function should be run when
either one or all of the inputs are updated.

Similar to the ingestion flow, a user-specified analysis function
is wrapped by AERO code so that the input data is downloaded and
any output is uploaded to a Globus endpoint, and the metadata is
entered and updated in the AERO database. In our use case, when
the 𝑅(𝑡) analysis flow is triggered, the updated data is downloaded
from the ALCF Eagle Globus endpoint to a temporary location on
LCRC Bebop. There, a Python code harness function, previously
registered with the analysis flow, executes a Julia code 𝑅(𝑡) estima-
tion and then executes R code to create the 𝑅(𝑡) plots and R data
objects from the tabular data produced by the estimation. AERO
then stores the model’s tabular data, binary R datatable objects, and
plots to the ALCF Eagle Globus endpoint.

As in the first step, the registration of the second step returns
UUIDs for the outputs of the 𝑅(𝑡) analysis, and these can be used

as inputs to additional flows. In the third step, an analysis flow
that performs aggregation over the four 𝑅(𝑡) analysis flow outputs
takes the UUIDs associated with the binary datatable objects pro-
duced in the second step as inputs. When all of these data sources
have been updated, a simple Python harness calls an R function
which performs the aggregation, producing an aggregate plot of
population-weighted 𝑅(𝑡) as output (see Figure 2). As in the pre-
vious steps, the AERO API wraps this Python harness function in
code that both retrieves the input from and stores the output to the
ALCF Eagle Globus endpoint.

All three of the flows use Globus Compute [4] to execute their
respective functions. As mentioned above, when registering the
flow, both the function and the endpoint on which to run it are
specified. The data transformation function and the aggregating
function executed in the first and third steps respectively were run
on a Globus Compute endpoint configured on a login node on the
Bebop cluster. The computation expense of the transformation and
aggregation steps are low, both tasks running in under a minute,
and so a shared login node can be used. The analysis function run
in the second step is computationally expensive and it is run using
a Globus Compute endpoint configured for a compute node using
the GlobusComputeEngine. When AERO triggers the analysis flow,
Globus Compute will queue a job on Bebop’s PBS scheduler to run
the function on one node.

The process described in this use case and depicted in Figure 1 is
fully automated, and the outputs are directly shareable with public
health stakeholders through standard Globus Collection permis-
sions. This removes unnecessary manual intervention and provides
data update-driven and timely model-based epidemiological analy-
ses for the assessment of epidemic trends to directly support public
health decision making. It also leverages the “bring your own stor-
age and compute” design of AERO, enabling the use of existing
storage and compute infrastructure access that research groups
already possess. The approach relies on the security and robustness
of Globus technologies such as Globus Auth [23], Flows [5], and
Timers [2].

3 Shared Development Environment Use Case
OSPREY’s third goal focuses on the need for a Shared Development
Environment (SDE). The SDE needs to enable rapid, collaborative
development and efficient porting of modeling and model explo-
ration (ME) codes to HPC. It needs to consider differences in HPC
environments, programming languages, and workflow structures
to support reproducibility and scalability of epidemiological analy-
ses. Some aspects of the SDE were covered in the previous section,
namely the portability of AERO workflows on HPC systems to
which the user already has access. In this use case we further ex-
pand on how we have been supporting the OSPREY SDE goal and
demonstrate a complex, multi-component workflow. More specifi-
cally, this workflow faced: 1) the need for a large-scale and efficient
implementation of a many-task Global Sensitivity Analysis (GSA)
described below; 2) rapid prototyping in R-based algorithms across
multiple variations; and 3) the integration of a previously devel-
oped epidemiological model. The use case thus illustrates three
implicit drivers of SDE capabilities: flexibility, collaboration, and
asynchronicity.
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Figure 1: Automated multi-source wastewater 𝑅(𝑡) estimation workflow. The data dependencies between the data ingestion, 𝑅(𝑡)
analysis, and 𝑅(𝑡) aggregation flows (i.e., collection of tasks) are depicted with dashed arrows. Meta-data queries and updates to
the AERO server are shown as solid arrows. Tasks within each flow are adorned with badges indicating operations that utilize
“bring your own storage and compute” resources, in our case the ALCF Eagle Globus endpoint for storage and the LCRC Bebop
Globus Compute endpoint for compute. Updates in the data from the Illinois Wastewater Surveillance System trigger the data
ingestion and subsequent analysis flows.

The flexibility requirement in this workflow is exemplified by the
need for integrating existing multi-language libraries and models
not only as workflow tasks, which is handled by most workflow
systems, but also to drive the logic of the workflow itself. For the
latter, existing solutions in this space either have limited capabilities
for defining complex and iterative workflow logic, or are focused
on single language environments, typically Python.

The collaboration requirement in this workflow is exemplified
by the use of disparate software systems that work together. These
include components in Python and R, as well as complex systems
such as Globus and system schedulers. The models and algorithms
were originally developed previously, although development con-
tinued as a part of this effort. The combination of independent
development with collaborative interaction is an aspect of software
engineering in general, but is especially emphasized in workflows.

The asynchronous requirement in this workflow is exemplified
by the need for ensuring high compute resource utilization through
complex interleaving of different sized sequential tasks. This is en-
abled by the decoupled design of the underlying workflow system.

3.1 Global Sensitivity Analysis of a Stochastic
Disease Model

3.1.1 MetaRVM. The SEIR (Susceptible Exposed Infectious Recov-
ered) model is a widely used compartmental framework in epidemi-
ology that captures the basic progression of infectious diseases.
It classifies individuals into four states: Susceptible (S), who can
contract the disease; Exposed (E), who have been infected but are
not yet infectious; Infectious (I), who can spread the disease; and
Recovered (R), who have gained immunity. Despite its simplic-
ity and utility, the basic SEIR model lacks the granularity needed

to represent complex disease dynamics such as varying symptom
severity, healthcare interactions, and population heterogeneity. The
MetaRVM [12] model extends the SEIR framework by introducing
additional compartments to capture more detailed disease progres-
sion and heterogeneous mixing across demographic subgroups. It
also accounts for vaccination, hospitalization, and fatalities (see
Figure 3 for the MetaRVM compartments). Typically, nearly all
individuals are classified as Susceptible (S) at the beginning of a
simulation, except for a usually small number of the initial infec-
tions. Vaccinated individuals enter the Vaccinated (V) compartment,
with immunity determined by the vaccine efficacy parameter (𝑣𝑒),
and face a reduced probability of infection. Vaccine-conferred im-
munity wanes at a rate of 1/𝑑𝑣 . Upon exposure, Susceptible and
Vaccinated individuals transition to the Exposed (E) state, remain-
ing there for an average of 𝑑𝑒 days before becoming infectious.
A proportion (𝑝𝑒𝑎) of exposed individuals become Asymptomatic
(Ia), while the remainder enter the Presymptomatic (Ip) state, last-
ing for 𝑑𝑎 and 𝑑𝑝 days, respectively. Asymptomatic individuals
recover directly, whereas Presymptomatic individuals progress to
the Symptomatic (Is) state. Symptomatic individuals either recover
(R) or require hospitalization (H), with transitions occurring at rates
of 1/𝑑𝑝 and 1/𝑑𝑠 , and the probability of direct recovery given by
𝑝𝑠𝑟 . Hospitalized individuals remain in the H compartment for an
average duration of 𝑑ℎ days, after which they either recover or die
(D), with the probability of death determined by 𝑝ℎ𝑑 . For diseases
where reinfection is possible, Recovered individuals may return to
the Susceptible (S) state after an average of 𝑑𝑟 days.

Before applying MetaRVM to real-world data, it is essential to
understand how uncertainty in model parameters influences the
model outputs. This is accomplished through Global Sensitivity
Analysis (GSA), a systematic approach for quantifying the relative
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Figure 2: Automatically generated estimates of 𝑅(𝑡) using the
Goldstein method [13] for four Chicago-area water reclama-
tion plants: O’Brien, Calumet, Stickney South, and Stickney
North. The bottom panel is the output of the population-
weighted ensemble 𝑅(𝑡) that is triggered when the four indi-
vidual 𝑅(𝑡) estimates are completed. The red band is the 95%
confidence interval.

importance of input parameters on the variability of key model
outputs. Unlike local sensitivity analysis, which examines small
perturbations around fixed values, GSA explores the full range of
plausible parameter values, accounting for inter-parameter inter-
actions and nonlinearities. Given the complex structure and high-
dimensional parameter space of MetaRVM, GSA helps identify the
most influential parameters, facilitates dimensional reduction to
aid in model calibration efforts, and can also inform data collec-
tion priorities. Sobol sensitivity analysis [18] is a variance-based
GSA method that decomposes the total variance of the model out-
put into contributions from individual input parameters and their
higher-order interactions. The Sobol indices provide a quantitative
measure of each parameter’s effect: the first-order index reflects the
main effect of a single parameter, while total-order indices capture
both main and interaction effects.

3.1.2 MUSIC-GSA. In this illustration, we adopt the active learn-
ing–based GSA algorithm introduced by Chauhan et. al. [6], which
uses a Gaussian process (GP) surrogate model [15] trained on a
limited number of simulations to efficiently estimate first order
Sobol sensitivity indices. Unlike conventional sampling strategies
that may require a large number of simulations to achieve accurate
variance decomposition, this method actively selects new input
locations to improve the surrogate model where it matters most for
estimating sensitivity indices.

Central to the method is the MUSIC (Minimize Uncertainty in
Sobol Index Convergence) acquisition function, which specifically
targets the reduction of uncertainty in the variance of the estimate
in main-effects. In particular, the EIGF–Expected Improvement in
Global Fit–acquisition function is used in this particular illustration.
This contrasts with more common acquisition functions like EI
(Expected Improvement) and UCB (upper confidence bound) [15],
which focus on minimizing prediction error in global surrogate pre-
diction. By refining the surrogate in a goal-directed manner, MUSIC
improves convergence rates in estimating main effects, and has the
potential to offer computational savings by reducing the number of
simulations needed compared to other approaches for GSA. In our
use case we apply the MUSIC active learning–based GSA frame-
work to the MetaRVM model and compare it to a polynomial chaos
expansion (PCE) approach for sample efficiency.

In stochastic simulation models, GSA is often performed on the
mean response, calculated across multiple replicates (i.e., stochas-
tic variations) for a given parameter setting. However, stochastic
processes can embody important information beyond just noise,
e.g., a particular distribution of initial infections in a population,
and can provide meaningful insights into a system’s behavior. As a
result, we seek to distinguish between two types of uncertainties:
aleatoric uncertainty, which arises from the stochastic processes
in the system, and epistemic uncertainty, which stems from in-
complete knowledge or assumptions about the model parameters.
Additionally, understanding how model parameters interact with
the model randomness can be informative. To address these uncer-
tainties, we conduct separate GSAs on individual replicates of the
simulation, with each replicate generated using a unique random
stream seed value.

The setup for the GSA experiment is as follows. Five of the
MetaRVM model parameters are treated as uncertain within their
specified ranges (listed in Table 1), while the remaining parameters
are fixed at nominal values. The quantity of interest for the GSA is
the total number of hospitalizations at the end of the simulation
period, which is set to 90 days. We perform the GSA independently
on 10 simulation replicates to assess the variability in parameter
influences across model stochasticity. The MUSIC algorithm, im-
plemented via the activeSens R package [11], is used to perform
the GSA. It relies on a GP surrogate model constructed using the
hetGP package [3]. For the acquisition strategy, we use the EIGF
criterion, with the D1 formulation as the D-function, following the
method described in Chauhan et al. [6].

3.2 Workflow implementation
The workflow is implemented using the EMEWS framework [7] and
is driven by an R-based model exploration (ME) code, leveraging
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Figure 3: The MetaRVMmodel [12] compartments, transitions between compartments, and associated parameters.

Table 1: MetaRVMmodel parameters and ranges for GSA

Parameter Description Range

𝑡𝑠 Transmission rate for susceptible (0.1, 0.9)
𝑡𝑣 Transmission rate for vaccinated (0.01, 0.5)
𝑝𝑒𝑎 Proportion of asymptomatic cases (0.4, 0.9)
𝑝𝑠ℎ Proportion of hospitalized (0.1, 0.4)
𝑝ℎ𝑑 Proportion of dead (0, 0.3)

the multi-language capabilities of EMEWS and the framework’s
ability to flexibly utilize the 3rd party ME libraries described above.
EMEWS is a HPCME framework, developed for large-scale analyses
(e.g., calibration, optimization) of computational models. EMEWS is
based on a decoupled architecture consisting of a task database, and
a task API, with both Python and R implementations, for distribut-
ing tasks on heterogeneous compute resources. EMEWS worker
pools running on those compute resources retrieve and evaluate
tasks submitted to the task database, e.g., the worker pools run
models where the tasks’ data are model input parameters.

The MUSIC workflow in this use case consists of 10 instances of
the MUSIC algorithm, one for each of the 10 replicate experiments,
although the workflow itself has separately been scaled to 100
replicate experiments as well. Each MUSIC algorithm begins by
producingmultiple parameter sets (i.e., an initial experiment design)
containing the five MetaRVM inputs (Table 1) for evaluation from a
latin hypercube sample (LHS). Subsequent iterations of eachMUSIC
algorithm produce a single parameter set for evaluation. These
parameter sets are submitted to an EMEWS database using the
EMEWS R task API. An EMEWS worker pool running on Improv,
an HPC cluster managed by Argonne National Laboratory’s LCRC,
consumes these parameter sets and runs the MetaRVM model with
the parameters as input. The results of the MetaRVM model, i.e.,

the number of hospitalizations, are submitted back to the EMEWS
database where the MUSIC algorithm retrieves them for evaluation
and analysis.

The difference between the initial number of evaluations and
those in subsequent iterations in each of the MUSIC instances in-
troduces difficulties in maintaining optimal use of computational
resources. For example, if our MUSIC instances were run sequen-
tially, the larger initial parameter evaluations may be able to fully
utilize available cores, but the subsequent evaluations of individ-
ual parameters would not. This would results in poor compute
utilization and longer runtimes to complete the full set of MUSIC
instances. Our solution was to interleave the 10 MUSIC instances
such that the compute resource is kept fully utilized. EMEWS’s
decoupled architecture that supports asynchronous evaluations
allows us to easily do this (see [7] for further details). Submitting
a task consists of inserting the task into a task database. Rather
than wait for the task to complete, the submission returns a Future,
which encapsulates the asynchronous execution of the task. This
Future can then be queried later for the result of the task evaluation.

In the MUSIC algorithm the initial and subsequent steps of the
algorithm have been implemented such that multiple instances of
the algorithm can be interleaved using these asynchronous Futures.
During each step, each algorithm performs a submission of tasks,
and gets the Futures for those task evaluations back in return.
Then, in turn, each algorithm checks for the completion of a single
Future, ceding control to the next instance after this check. When
all the Futures from an instance’s submission have completed, that
instance can continue to its next step. This continues from the initial
sample set through the subsequent iterations such that submission
and checking of results by each instance is interleaved with the
other instances, resulting in better utilization of the computational
resources than if a single instance was running to completion before
another could start.
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This interleaved workflow is wrapped by initialization and final-
ization code that demonstrates some additional EMEWS capabilities,
namely the ability to programmatically start a worker pool on a
compute node via an API call. The initialization code first sets up the
EMEWS task queue used for the task submissions, and then starts
an EMEWS worker pool. When this initialization code is run in
production on a compute node (as opposed to locally when testing),
the code starts a worker pool by submitting a job to the compute
resource scheduler (e.g., SLURM or PBS). The job then starts the
worker pool, running on a number of user-defined compute nodes.
Once all of the MUSIC algorithms have finished, the finalization
code closes the task queue, and stops the worker pool.

3.3 GSA Results
Figure 4 presents a comparative analysis of the MUSIC and PCE-
based GSA algorithms for estimating first-order Sobol sensitivity
indices across fiveMetaRVMparameters and fixing the random seed.
The goal of this experiment is to evaluate the relative performance
of the two approaches in approximating sensitivity indices and
to assess how quickly each method converges to stable estimates
as the sample size increases. The PCE-based method is included
to highlight the limitations of one-shot approaches, as PCE uses
a single experimental design to produce Sobol sensitivity indices,
and to investigate how much improved sample efficiency can be
expected from algorithms like MUSIC for GSA when considering
limited computational budgets. We chose a degree 3 PCE as it per-
formed the best among the PCE degrees we examined. In Figure 4
each facet corresponds to one parameter, with curves showing how
the estimated indices evolve as additional samples are added one
at a time. MUSIC demonstrates relatively quick (by 200 samples)
stabilization compared to PCE, indicating better sampling efficiency
across all the model parameters. While this sampling efficiency is
less important with less computationally expensive compartmental
epidemiological models, the potential for faster time-to-solution
would greatly benefit more expensive agent-based epidemiological
models [20]. To assess the impact of stochastic variability on sen-
sitivity estimates, we ran the GSA independently on 10 replicates
of the MetaRVM model. The results are summarized in Figure 5,
where each facet corresponds to one of the five model parameters,
and each line represents the evolution of the first-order Sobol index
over increasing sample size for a given replicate.

4 Conclusion
Through two use cases we have demonstrated how OSPREY is sup-
porting its original design goals of data ingestion, curation, and
management, and the development of a SDE for rapid response and
collaboration. The applications presented illustrate automation and
time-sensitive workflows, metadata and provenance management,
and flexible, fast turnaround prototyping on HPC resources. Future
work includes continued co-design with our public health partners
to further identify epidemiological analyses that can be directly
integrated via OSPREY-enabled automation into their business pro-
cesses, both between and during public health emergencies. The
flexibility of OSPREY will also enable the development of novel,
HPC-oriented model exploration algorithms to better utilize HPC
and large cloud computing resources to produce timely responses

to urgent questions. There is also a continued need to improve
the ability to share scientific workflows, including making work-
flow artifacts such as models and model exploration algorithms
more easily discoverable and shareable. This will help in creating a
general readiness in enabling research groups and stakeholders to
collaborate more effectively should the need arise.
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