

SCALING DIFFUSE SCATTERING WORKFLOWS WITH HYBRID HPC WORKFLOWS

PRESENTER:

JUSTIN M. WOZNIAK - DATA SCIENCE & LEARNING

ADDITIONAL AUTHORS: RAY OSBORN, MATTHEW KROGSTAD, GUY JENNINGS, STEPHAN ROSENKRANZ – MATERIALS AND X-RAY SCIENCE

September 19, 2022

NOBUGS - Paul Scherrer Institute

OVERVIEW

Data collection

- Experimental setup
- Example datasets
- Data analysis and transformation
 - GUI overview
 - Crystal coordinate transformation

HPC workflow solution

- GUI-controlled workflows
- Distributed computing on Theta

DATA COLLECTION

MEASURING X-RAY DIFFUSE SCATTERING WITH CONTINUOUS ROTATION METHOD

DIFFUSE GALLERY

~50TB collected in April and May, 2018

Vanadium Oxide

(MoxVO2) short-range order

X-RAY SCATTERING GEOMETRY

Continuous rotation method

- The sample is continuously rotated at 1°s⁻¹
- Frames are collected at 10Hz
 - 3600 x 8MB frames
 - 30GB every 6 minutes
 - 3TB per day
 - > 10x after APS-U

R.T.T.			
	¥.		
-		100 - 100 -	9
V	¥ 🗸	C	r.] 4-4
	• (P	

Sample

Pilatus 2M CdTe Detector

Q-RANGE IN ROTATION METHOD IN SECTOR 6

- With the following parameters, we cover -15Å⁻¹<Q<15Å⁻¹
 - E_i ~ 87 keV
 - λ ~ 0.14 Å
 - Detector distance ~650 mm
 - Pilatus 2M CdTe: 1679x1475 pixels
 - Pixel size ~170 µm
- This Q-range includes thousands of Brillouin zones.
 - *e.g.*, for *a* ~ 10 Å, ~60,000 Bragg peaks

TRANSORMATION AND ANALYSIS

NEXPY: PYTHON TOOLBOX FOR NEXUS FILES

• • • •	NeXpy v0.10.8
NeXus Data	k a
E CePd3_10meV	
* E chopper	mullite 300K/entry/transform
* entry	
analysis	
▶ data	7.5 -
end data:NXdata	
instr data = int32(148x750)	6
Bloon pame = Neutron C	20 mills
b mon Osignal = 1	10
@units = counts	25-
Plane same - Bolar Angl	
sam grong_name = Polar Angi	e (oegrees)
C time_of_flight = [1900. 19	402. 1904
n @fong_name = Time-of-F	light (microseconds)
title = Mo82 PDO5 43.37p	8K 120meV F08240Hz T08128Hz
start_time	-2.5
title	
mullite_300K	
T entry	-5.0 -
► nxfind	- 101
v sample	75
lattice centring	-1.3
normo	
well cell encour	-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
drin_cen_group	9h
uniceit_a	
unitcell_alpha	signal x y z projections options
unitcell_b	4
unitcell_beta	ED 1 2000 1 Dian wide Discourt D
unitcell_c	
unitcell_gamma	
▶ transform	
► f1	Jupyter OtConsole 4.3.0
▶ f2	Python 3.6.1 Angconda custom (x86.64) (default, May 11 2017, 13:04:09)
▶ f3	Type 'copyright', 'credits' or 'license' for more information
► 14	Touthon 6 21 6 antered Interactive Duthon Tune '2' for help
b model	To fill design or the comparison and we the system. Type 7 Tor Help,
B 0=04u2o5 100K	The Lag - shappen servery and a semple start and the last
E INCALCO INCK	in L21: chopper, entry, sample, temperature.units="K"
	in [3]: print(cnopper.entry.sample.tree)
	sample:NXsample
	chemical_formula = 'MgBZ'
	distance = 0.0
A	@units = 'm'
	nome - 'Monnesium Dihoride'

Properties			Values									
Class	NXlinkfield	400 1 400 1 450 1										
Name	v											
Path	/entry/transform/v		450	451	452	453	454	455	456	457	458	459
File	s Data/Mullite/mullite_300K.nxs	400	46.0506	50.2773	48.9136	47.8385	46.3517	45.3854	45.4902	49.6699	49.2136	49.184
Target Path	/entry/data/v	401	45.5905	47.3543	49.832	47.7309	46.8616	44.3143	45.4551	45.1781	48.2626	49.4113
Target File	300K/transform.nxs			44 5400	40.0000	45.0074	47 5440	40.4000	45.004	40.0707	45 4054	40.000
Mode	r	402	44.3469	44.5123	43.8903	45.2971	47.5143	49.4869	45.301	43.9707	45.4951	40.000
Dtype	float32	403	46.1115	44.6631	42.2794	44.6632	46.9076	46.9018	47.9755	47.7784	43.5122	45.623
Shape	(801, 901, 901)	404	47.7995	48.4961	47.2611	44.483	42.9471	43.2156	47.7771	47.355	48.401	44.490
Maximum Shape	(801, 901, 901)	405	42 7162	45 1411	48.071	46 1604	44 2109	44 4100	42 8764	46 9304	47.0199	49 570
Compression	gzip		42.7103	40.1411	40.071	40.1004	44.2100	44.4108	42.0704	40.0384	47.0100	40.078
Chunk Size	(32, 32, 32)	406	42.4711	41.5907	43.1029	48.1021	47.2006	43.8715	44.0205	44.0092	43.4823	47.622
Fill Value	0.0	407	45.9625	44.7984	44.4262	43.6258	45.4965	46.4767	45.8871	43.2717	44.0924	43.125
		408	40.9825	39.8702	38.6647	37.9206	40.9902	45.9021	45.4594	47.2183	43.3589	44.43
		409	31,1527	30.2026	29,5753	32.632	33.3268	31.6122	35.0063	37,7646	41.0146	40.507

- 1. Tree View
- 2. Plot View
- 3. IPython Shell
- 4. Axis Panels
- 5. Status Bar
- 6. Tooltips

http://nexpy.github.io/nexpy/
\$ pip install nexpy
\$ conda install -c nexpy nexpy

Argonne 🕰

Example 1D Data

CCTW - CRYSTAL COORDINATE TRANSFORMATION WORKFLOW Written by Guy Jennings

- Performs transformations from detector coordinates to reciprocal space
- Full volume transformations using a strategy of dividing input and output datasets into smaller 'chunks'
 - typically 100x100x100 elements in size
 - chunks transformed in parallel on a multicore machine
 - chunks merged together in the final dataset.
- Operates on up to 50 GB data
- Core numerics in C++
- Considerably faster than prior code
- Previous programs were too slow to transform whole volumes
- CCTW operates in only 10-20 minutes for a Pilatus 2M detector

INITIAL WORKFLOW

- The parameters of the workflow are determined interactively after an automatic peak search.
- Refine detector geometry
- Determine orientation matrix
- Perform coordinate transformation Using CCTW
- Merge transforms from three positions
- Once the sample is oriented, the workflow is automated for other temperatures; the orientation matrix is refined automatically

HPC WORKFLOWS

HPC SYSTEMS AT ALCF

Theta and related systems

- Argonne Leadership Computing Facility
- Theta (this work)
 - Based on the Intel KNL 7230 no GPUs
 - 4,392 compute nodes
 - 64 cores per node x 4 threads per core
 - 208 GB RAM per node
 - Near 12 Petaflops

Aurora

- Based on 60,000 Ponte Vecchio GPUs
- Will exceed 2 Exaflops

SWIFT/T: ENABLING HIGH-PERFORMANCE SCRIPTED WORKFLOWS

10000000

1000000

100000

100 200

processes

Supports many task types for HPC

- Write site-independent scripts, translates to MPI
- Automatic task parallelization and data movement
- Invoke native code, script fragments in Python and R
- Rapidly subdivide large partitions for MPI jobs in multiple ways (MPI 3.0)

\$ spack install stc

Swift/T: Scalable data flow programming for distributed-memory task-parallel applications Proc. CCGrid 2013.

WORKFLOW MANAGER

SUPERCOMPUTING USE CASE

Managing near-real-time data collection and analysis

- Use case: As data streams onto shared storage, it is informally visualized for clarity, then automated data collection is started at various temperatures and other settings
- Data sets must be oriented, a semi-manual process
- Thus, a backlog of transformations (for CCTW) is queued up (tens to hundreds)
- Data is automatically synced from beamline storage to the ALCF via Globus
- Need to distribute work from the GUI-based workflow manager to the Theta compute nodes
- Need to integrate Python GUI with Swift/T workflow

CONNECTING TO ALCF THETA

Combine Python-based GUI with MPI-based Swift/T workflow

- The GUI workflow fills in a small SQLite database with the work to be done and inserts requisite command lines into a Python persist-queue
- This queue is stored in a generic filesystem and is portable to Theta, where it is accessible by both the login and compute nodes
- Entries in the queue are consumed by a Python snippet in the Swift/T workflow and distributed to free workers

CODE SNIPPETS

GUI workflow

CONCLUSION

- Illustrated end-to-end automated data transformation and analysis workflow with HPC capacity to handle realistic data backlogs
- Demonstrated integration of existing Python GUI and MPI-based workflow technologies
- Based on established codes tested over many data collection cycles

ACKNOWLEDGMENTS

- This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. This research was completed with resources provided by the Laboratory Computing Resource Center at Argonne National Laboratory.
- This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357.
- This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and used resources of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility at Argonne National Laboratory.

QUESTIONS?

WOZ, ROSBORN @ANL.GOV

