
Toward Computational Experiment Management via
Multi-language Applications

Justin M. Wozniak,∗‡ Timothy G. Armstrong,† Daniel S. Katz,‡ Michael Wilde,∗‡ Ian T. Foster∗†‡
∗ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

† Dept. of Computer Science, University of Chicago, Chicago, IL, USA
‡ Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

I. INTRODUCTION

Within the computer sciences, different subdisciplines have
different requirements for software quality and assurance.
Additionally, there are different expectations for the ease of
development, programming time investment, and time to create
and deploy new features. Embedded/real-time computing, web
programming, and scientific computing have starkly different
software development practices and expectations. There ex-
ist applications critical to society with respect to assurance
and timeliness of development such as climate modeling,
energy production and distribution, and materials design. It
is desirable to move scientific computing towards the high
quality and reliability found in digital control systems while
increasing productivity with the high-level tools found in
less critical software development areas, such as the web.
These methodologies must be pervasive across scaling efforts,
debugging/logging tools, and data management cycles.

II. CASE STUDY: CRYSTAL STRUCTURE ANALYSIS

DISCUS [1] is a Fortran-based program for computing
diffuse scattering of a simulated crystal structure. DISCUS
allows a user to run simulated experiments on crystals and
produce outputs analogous to those of real experiments, for
example the images that would be produced from an X-ray
scattering experiment. A recent effort used DISCUS to fit input
parameters (crystal configurations) to experimental data. The
output of a simulated DISCUS experiment is compared against
results of a real experiment, and an evolutionary algorithm is
used [2] to iteratively improve the fit, as shown in Figure 1.

Two levels of parallelism have been identified in this
compute-intensive process. First, a DISCUS run can be par-
allelized at the thread level via OpenMP. Second, multiple
DISCUS runs can be called concurrently. Initial efforts by the
DISCUS team stalled when attempting to fit complex DISCUS
parameter data into an ad hoc master-worker parameter passing
scheme. This situation motivated us to apply Swift [3], since
it includes a load balancer in a scalable master-worker scheme
with multiple masters, along with flexible interlanguage data
handling. The DISCUS team built Python bindings for the
required features. These Python functions are easily callable
from Swift, which can be run with an embedded Python in-
terpreter. The evolutionary algorithm was easily implemented
as a Swift script, linked into a composite MPI program, and
packaged for very large scale machines.
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Figure 1. Multi-level parallelism in DISCUS for crystal structure modeling.

III. INTERLANGUAGE SOLUTIONS AND COMPLEXITIES

Our proposed approach, as motivated by the DISCUS
example, involves wrapping existing codes with bindings for
higher level languages, then building composite applications
that stitch together the functionality into a complete experi-
ment. Concurrency is achieved in multiple ways: lower-level
threading and messaging libraries are used for fine-grained
parallelism, while high-level ensemble control structures are
used for statistical methods such as Monte Carlo, parameter
searches, and uncertainty quantification.

This approach is based on previously developed tech-
niques [4], [5], [6], [7] but differs in important ways. First,
we emphasize the construction of concurrent programming
models. Second, we de-emphasize the use of interlanguage
data formats, but rely on simpler parameters, including scalar
numbers, byte arrays, and in some cases, string representations
of small but complex data structures- an approach highly
compatible with modern tools.

This approach offers multiple benefits, including rapid
development of concurrent functionaliry with good scaling,
ease of integration of components in different programming
languages, and high testability. For example, we aim to scale
DISCUS to approximately 100,000 cores, which is expected
to be achievable without code changes (some software integra-
tion is currently being performed). Components including the
original Fortran codebase, new Python bindings for it, and the



numerical library Numpy have been integrated with relative
ease through the use of f2py. This integration required
no changes to the DISCUS codebase, allowing unchanged
software quality as the highly parallel application is developed.

However, multiple challenges must be addressed. First, the
use of multiple languages may add to the learning curve
for science-based developers; the use of these technologies
must be strictly limited to required features. Second, some
applications may require complex data passing conventions
beyond Fortran-style array pointer passing; the use of an
advanced interface description language (or an existing
one) may be appropriate. Third, while we use high-level
languages only at the coarsest level and these perform well
on extreme-scale systems such as the IBM Blue Gene/Q
and Cray Blue Waters, users will need documentation of
performance characteristics and other best practices.

An increase in the use of high-level tools, however, creates
another problem: the prevention and detection of defects in
the high-level program. Traditional debuggers, designed for
operating on highly popular, line-oriented languages (Fortran,
C, C++) operate at too low a level to detect defects with the
use of the high-level tool. Tracing system calls or MPI calls is
also useless to the high-level tool user, because these calls are
generated internally by the tool implementation. Thus, the tool
builders must integrate effective, scalable, high-level logging
and debugging functionality.

IV. INTERLANGUAGE TOOLS FOR DATA MANAGEMENT

The overabundance of disk-resident data is well publicized
(Big Data). It is properly understood as a software productivity
issue, but existing industry-based solutions are not well-
suited to scientific data formats. Storage formats and filesys-
tem architectures differ greatly between location-oblivious
parallel file systems and location-aware analysis clusters [8],
as shown in Figure 2. Programming model support must be
developed to resolve these differences, including in situ steps.
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Figure 2. Transition of data locality scheme over workflow stages.

While MapReduce [9] offers many features for record-
oriented processing applications, its ease of use for scientific
developers is unproven. Consider the complexity of attaching
a Fortran routine to the Java-based Hadoop framework. Work
must be done to ease the process of plugging existing scien-
tific software into location-aware analysis frameworks.

While object storage systems [10] may be able to bridge
the gap between parallel file system storage and analysis
layouts, performance portability for the analysis codes must be
considered. Additionally, as systems present deeper, exposed
storage hierarchies [11], these new storage levels must be
brought into the application workflow.

V. RECENT SUCCESSES

Swift has had multiple recent successes related to this
research direction, including: 1) scalable, efficient support for
very large applications [3], including applications composed
of MPI libraries [12] and high-level tools [13]; 2) prototype
support for high-level logging and debugging [14]; and 3)
support for data-location-aware task dispatch for data analysis.

VI. FUTURE DIRECTIONS

Future work topics that complement those given in the
SWP4XS solicitation are:

1) Improve support for experiment management frame-
works in order to accelerate development of the research
campaign, not just the individual program invocation.

2) Identify and repurpose applicable programming existing
software tools developed in non-science domains.

3) Support rich logging and debugging for high-level tools.
4) Integrate programming languages (not just libraries) that

filter and reduce data sets at various levels before data
migration to tape or elsewhere off of the supercomputer.

5) Include programming framework support for transition
across filesystems and storage formats.
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