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High-performance computing (HPC) applications have traditionally relied
on parallel file systems and file transfer services to manage data movement
and storage. Alternative approaches have been proposed that use direct
communications between application components, trading persistence and
fault tolerance for speed. Event-driven architectures, as popularized in enterprise
contexts, present a compelling middle ground, avoiding the performance cost
and API constraints of parallel file systems while retaining persistence and
offering impedance matching between application components. However,
adapting streaming frameworks to HPC workloads requires addressing
challenges unique to HPC systems. This paper investigates the potential
for a streaming framework designed for HPC infrastructures and use cases.
We introduce Mofka, a persistent event-streaming framework designed
specifically for HPC environments. Mofka combines the capabilities of a
traditional streaming service with optimizations tailored to the HPC context,
such as support for massively multicore nodes, efficient scaling for large
producer-consumer workflows, RDMA-enabled high-performance network
communications, specialized network fabrics with multiple links per node, and
efficient handling of large scientific data payloads. Built using the Mochi suite
of HPC data service components, Mofka provides a lightweight, modular, and
high-performance solution for persistent streaming in HPC systems. We present
the architecture of Mofka and evaluate its performance against Kafka and
Redpanda using benchmarks on diverse platforms, including Argonne’s Polaris
and Oak Ridge’s Frontier supercomputers, showing up to 8× improvement
in throughput in some scenarios. We then demonstrate its utility in several
real-world applications: a tomographic reconstruction pipeline, a workflow
for the discovery of metal-organic frameworks for carbon capture, and the
instrumentation of Dask workflows for provenance tracking and performance
analysis.
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1 Introduction

High-performance computing (HPC) applications and
workflows are becoming increasingly complex as they integrate
multimodal data streams from computations, simulations, and/or
instruments. Their executions require the persistence of data and
computing state in the presence of dynamic events such as arrival
of new measurements and outputs of computing modules. HPC
applications have traditionally used a parallel file system (PFS)
such as Luster (Donovan et al., 2003) and GPFS (Schmuck and
Haskin, 2002) to store and manage large amounts of scientific data.
This approach simplifies use, as it provides a similar file system
interface to those used on personal computers. The PFS also makes
data portable across machines and easy to transfer using common
file system tools. APIs and libraries such as MPI-IO (Corbett
et al., 1996), HDF5 (Folk et al., 2011), ADIOS (Godoy et al.,
2020), and pNetCDF (Li et al., 2003) provide scalable methods for
reading and writing files at scale. However, the PFS approach has
limitations that researchers have sought to overcome for several
decades. The POSIX consistency model forces the use of locking or
synchronization mechanisms, hindering performance (Wang et al.,
2021). The need to serialize data into a flat file format introduces
overheads, and the infamous computation-and-I/O gap causes a
performance bottleneck at scale (Lockwood et al., 2017).

To overcome these limitations, HPC I/O research has moved
in two directions in parallel, beyond simply trying to make file I/O
more efficient. On the one hand, I/O that requires persistence, such
as checkpointing, motivated the development of services such as
FTI (Bautista-Gomez et al., 2011) and VeloC (Nicolae et al., 2021,
2019), which exploit the available storage hierarchy (RAM, local
SSD, burst buffers, and parallel file systems) and non-blocking I/O
and do not represent data as files. On the other hand, I/O meant for
scientific discovery, carrying data that still requires postprocessing,
led to in situ analysis approaches (Childs et al., 2020), which couple
analysis and visualization software with HPC applications in a way
that bypasses the file system altogether.

Meanwhile, new classes of I/O traffic have emerged.
Scientific workflows are becoming more complex and more
heterogeneous, requiring more elaborate strategies to manage data
movement. Tools for provenance capture (Souza et al., 2023),
telemetry (Adamson et al., 2023), and anomaly detection (Kelly
et al., 2020) produce background I/O traffic from many sources.
The coupling of supercomputing resources with scientific
instruments such as light sources, telescope arrays, and
gravitational wave detectors introduces new challenges for
data management (Bicer et al., 2020). Machine learning and,
in particular, federated learning require interactions across
facilities (Ryu et al., 2022). Infrastructures such as Globus (Chard
et al., 2016, 2023; Zheng et al., 2024) still make it possible to use
the file model, but these new access patterns highlight the fact that
neither parallel file systems nor current data services, let alone
tight-coupling approaches such as in situ processing, are a good fit
in all cases for HPC data management.

Complex HPC workflows used to run many scientific
applications generate enormous quantities of data that can be
abstracted as streams of “events” of various types, from small
telemetry events to large scientific datasets. State-of-the-art

distributed event-streaming services such as Kafka (Wang
et al., 2015) and Redpanda1 show how event-driven models can
improve scalability by decoupling producers and consumers at
scale in internet service environments. Achieving comparable
impacts in scientific computing. however, requires more than
simply deploying such services on HPC systems (Chantzialexiou
et al., 2018). For example, scientific workloads have unique
characteristics including large event sizes, specialized data
formats, and diverse producer-consumer applications, while HPC
systems offer high-performance network technologies (e.g., HPE
Slingshot, Cornelis Omni-Path), communication methods [e.g.,
RDMA (Javed et al., 2017; Taranov et al., 2022; Lu et al., 2016)],
and heterogeneous storage devices that can significantly improve
streaming performance.

In this paper we explore the potential for an event-driven
data management architecture designed specifically for HPC. We
propose Mofka, a prototype of such a streaming framework,
developed using the Mochi suite of components for HPC data
services (Ross et al., 2020). Mofka natively leverages HPC
networks and technologies such as RDMA, as well as efficient
use of multithreading, to offer higher throughput than state-of-
the-art systems such as Kafka and Redpanda. Experiments on
Argonne’s Polaris and Improv supercomputers and Oak Ridge’s
Frontier exascale supercomputer show up to 8× improvement in
throughput in some scenarios.

The second contribution of this paper is the presentation of
three use cases where an event-driven approach, supported by
Mofka, has been leveraged in HPC applications. These use cases are
3D tomography reconstruction (TekApp), the discovery of novel
metal–organic frameworks (MOFs) with AI-driven molecular
simulations (MOFA), and the performance characterization and
provenance of HPC workflows (Flowcept).

The rest of this paper is organized as follows. Section 2 presents
motivation for using persistent streaming systems in an HPC
context by drawing a parallel with their use in businesses. Section 3
introduces Mofka. Section 4 evaluates Mofka on multiple machines
and compares its performance with that of Kafka and Redpanda.
Section 5 presents three real-world use cases for HPC event
streaming, showcasing the broader utility of the Mofka framework.
Section 6 compares Mofka with related works. Section 7 presents a
summary and a brief look at future work.

2 Motivation: event-driven
architectures

The event-driven architecture is presented as a solution to
these problems. A distributed, persistent, resilient event-streaming
system is set up as the single source of truth and as the means for
departments/applications to communicate, with each having a set
of topics it produces information to or consumes from. A schema
is still required for applications to understand each other, but these
schemas are managed by a schema registry, making it easy for
changes to be picked up automatically. A fault in an application no

1 Redpanda-Data. Redpanda. Available online at: https://www.redpanda.

com/.
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longer affects other applications, because the faulty application will
simply restart and pick up where it left off in the stream of events it
subscribed to.

Much as exploratory data analysis (EDA) solves data
management challenges in large businesses, we argue that it could
also overcome most of the challenges posed by existing HPC data
management approaches such as parallel file systems, data services,
and in situ processing. HPC applications are natural producers and
consumers of immutable data. They do not need file consistency
semantics, and they do not need file formats (in situ analysis is an
evidence of that fact). EDA brings back persistence, resilience, and
impedance matching, which are missing from the in situ approach.
It naturally reconciles offline and inline processing and has the
potential for being the backbone of complex workflows. EDA is
also well suited to the needs of emerging HPC workflows, including
provenance capture, anomaly detection, communications with
scientific instruments, and cross-facility interactions.

Event-streaming software such as Kafka (Wang et al., 2015)
and Redpanda (see footnote 1) provide an EDA solution for
businesses. Cloud providers such as AWS and Confluent provide
cloud-managed Kafka deployments. Azure Event Hubs accept
the Kafka protocol. However, these software products have been
developed for cloud environments (whether public or private).
They do not make use of features specific to HPC systems such
as massively multicore nodes, high-performance networks, remote
direct memory access (RDMA), and multiple NICs; and they do not
cater to application spanning hundreds of thousands of processes.
In the following, we introduce Mofka, an event-streaming service
specifically designed for HPC use cases.

Event stores are often described as a database turned inside
out2 (Stopford, 2018). The question this paper aims to answer is, in
a sense, What does a parallel file system turned inside out look
like?

3 The Mofka event-streaming
framework

While heavily inspired by the likes of Apache Kafka, Mofka
aims to better support HPC application by leveraging the hardware
available on high-end supercomputers. This section starts by listing
design goals, before diving into Mofka’s architecture, its API, and
its implementation.

3.1 Design goals

For Mofka to be suitable for an HPC context, we designed it
with the following goals in mind.

1. Efficient network usage. HPC machines rely on high-
performance networks such as Infiniband, Omni-Path, or
Slingshot. While the TCP stack is available on top of these
networks, it is not the best transport to maximize throughput
and minimize latency. Instead, an event-driven system for

2 Example: https://www.kurrent.io/blog/turning-the-database-inside-

out.

HPC should natively use the high-performance transport,
including RDMA capabilities, to transfer data directly from the
application’s memory to the target storage device with as few
data copies as possible and as little kernel and CPU involvement
as possible. Furthermore, we start to find compute nodes with
multiple NICs. Argonne’s Polaris features two NICs per node,
and Aurora features eight. Making efficient use of all the NICs is
also critical.

2. Efficient threading. Compute nodes on HPC machines feature
an increasingly larger number of cores. Hence, an event-driven
system may be used concurrently by a large number of threads
or processes. Such a large number of cores is also an opportunity
for the event-driven system to offload tasks such as serialization,
validation, and batching. An event-driven system for HPC
should make efficient use of this multicore environment.

3. Handling of large data. Event-driven systems in enterprises are
typically used for small, structured messages. In an HPC context,
users may want to attach large payloads (multiple megabytes to
multiple gigabytes) to each event. An event-driven system for
HPC should be able to handle a wider range of event sizes than
traditional event-driven systems can handle.

4. Support for scientific data. HPC applications usually produce
multidimensional arrays of numerical data. Consumers of such
data may be interested in only some sections of such arrays. An
event-driven system for HPC should allow consumers to specify
such interest before the event is transferred, in order to improve
transfer speeds.

5. High modularity. An event-driven system for HPC should
adapt to vastly different supercomputer hardware and
application workloads. This calls for a modular design where
everything from the network stack, to internal scheduling
policies, or to local storage usage can be changed and fine-tuned
for each individual use case.

These design goals led to the architecture and implementation
described hereafter.

3.2 Overview of Mofka’s architecture

Mofka builds on the Mochi suite of technologies for developing
HPC data services (Ross et al., 2020). The use of Mochi helps
address the five design goals listed above. Mochi provides a
collection of portable software components, together with a
methodology to compose them together into specialized HPC
services tailored to particular use cases. Such components include
efficient RPC/RDMA targeting vendor-specific HPC networks such
as Slingshot and Verbs; efficient threading using a mix of hardware-
and user-level threads (co-routines) to leverage massively multicore
nodes; and key/value storage and blob storage components, among
other components, that have been designed to handle large,
scientific data with a modular design.

Mochi has been used to develop numerous HPC data services,
including distributed file systems (Vef et al., 2018; Brim et al.,
2023; Tatebe et al., 2022), in situ analysis and visualization
services (Ramesh et al., 2022; Dorier et al., 2022), and object
stores (Hennecke, 2020). Mofka shares most of its components with
these existing services, assembling them in a manner suitable to the
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FIGURE 1

Overview of the Mofka architecture, including client libraries (producer and consumer). Mofka is an assemblage of Mochi components handling
distinct aspects of the service, from bootstrapping, to storing the metadata and data that compose events, to managing group membership and
global information.

task at hand and offering a streaming interface on top. This section
dives into Mofka’s architecture, including design decisions that we
made to ensure its suitability to HPC use cases.

Figure 1 shows the Mofka architecture. A key difference
between Mofka and other streaming services such as Kafka is that
Mofka divides events into two parts: a metadata part, which is
assumed to be small and structured, that is, interpretable by both
clients and servers (such as a JSON document), and a data part,
which can be much larger and would carry a scientific payload that
is opaque to the server.

This division matches typical HPC use cases where large
amounts of data may need to be transferred and persisted together
with some metadata describing it. For example, in a distributed
deep-learning application, the data part could contain an update
to apply to a particular layer of a deep neural network, in the form
of a list of tensors, while the metadata could contain information
on how this update was produced, for provenance tracing. In
a workflow coupling a light source with a supercomputer, the
data could be an X-ray diffraction image, and the metadata could
contain the settings used by the sensors and information about the
sample being scanned.

This division of metadata and data allows Mofka to use different
tools to transfer the two parts and independently optimize the
control and data path in order to minimize overhead. Metadata
parts are serialized into batches that are sent via RDMA to an
intermediate buffer in the server, before making their way to a “log
provider.” Data parts, on the other hand, are transferred by using
RDMA directly to and from user-provided memory and to and
from their final storage destination. Structuring it in such a way
helps avoid serialization overhead, reduce memory overhead, and
leverage direct RDMA transfers for the highest volume portion of
each event.

3.2.1 Producing events
Producer applications (on the left of Figure 1) interact with

the service via a topic handle. This handle contains a validator, a
partition selector, and a serializer: three user-provided objects that
work on an event’s metadata before it makes its way into a batch.

The validator checks that the metadata satisfies a particular format
expected for the topic (for instance, that it is valid JSON or that this
JSON satisfies a particular schema). The partition selector decides
which partition a particular event will be sent to. It can do so based
on the metadata content or based on any algorithm (e.g., random,
round-robin). The serializer takes the metadata and writes it into a
batch. As an example, the validator could check that the metadata
is a valid JSON object with a floating point “energy” attribute (e.g.,
{“energy”: 123.456}); the partition selector could decide
on the target partition based on this energy value, and the serializer
could simply write the 8-byte double value rather than the full JSON
string.

Once a batch is formed, it is sent to a partition manager, the
component in charge of a single partition in a server. This partition
manager redirects the batch of metadata to a log provider and the
RDMA handles for the data to a storage provider. It then creates the
association between each metadata and each data part and adds it
to the log provider.

Similar to the concept of schema registry in event-driven
systems, the validator, partition selector, and serializer are provided
when creating a topic and are stored in a master database in Mofka.
This ensures that all producer and consumer applications use the
same objects for a given topic.

3.2.2 Mofka servers
Mofka itself consists of a set of server processes running the

components shown in Figure 1. As we will show in Section 3.3, the
user has full control over where these components live, where each
partition is located, and how it is implemented.

One partition manager handles a single partition of a single
topic; hence, creating a topic and its partitions means instantiating
the necessary number of partition managers across multiple
processes.

Mofka partition managers keep track of which consumer is
subscribed to them and actively fetch batches of metadata from
the log provider to send to the consumer. However, it does not
proactively send them the data part of each event, as will be
explained next.
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3.2.3 Consuming events
Consumer applications (right part of the picture) also interact

with Mofka using a topic handle, by subscribing to a given set
of partitions from the topic. The topic’s serializer, retrieved from
the master database, allows deserializing the metadata part of the
received events.

Mofka consumers must be initialized with user-provided data
selector and data broker objects. A Mofka partition manager only
sends the metadata part of events, in batches. Upon receiving
and deserializing them, the consumer invokes its data selector
to decide which part of the data (all, none, or any arbitrary
subset) it is interested in. This is another place where the division
of events into a metadata part and a data part allows transfer
optimizations, since the consumer application can decide to
transfer only a subset of the data part. This also means that
multiple consumers could consume from the same topic but with
a focus on different parts of the data. As an example, in a weather
application where events contain a 3D “chunk” of atmosphere, a
consumer may be selecting a 2D slice at ground level to display
a color map, while another consumer could pull the full data for
volume rendering.

Data selection could also be based on the metadata of
an event. For instance, a producer could add statistics about
the data in each event’s metadata, such as the minimum,
maximum, and average temperature values in the region
represented by the event. The consumer could then decide
to select only the data for which the average exceeds a
certain threshold.

After the data selector has described which part of the data
should be pulled, the data broker is executed. Its role is to tell
the Mofka client library where to transfer the data. This gives
consumer application control over where the data should ultimately
be placed, thereby enabling efficient direct RDMA transfer with no
intermediate buffering.

3.3 Mofka interface

Mofka provides a C++ interface and Python bindings,
in addition to a command-line interface for creating and
managing topics. Listing 1 shows the creation of a “collisions”
topic and the addition of a partition to it. The created
topic will use a validator, partition selector, and serializer
implemented in C++ and compiled into dynamic libraries.
These objects are also individually configured for the particular
use case.

Listing 2 shows an example of producer in Python. Of
note is the control over the number of background threads
to use to carry out the validation, partition selection, and
serialization, as well as the batch size for event metadata.
The producer’s push function is non-blocking, returning a
future that can be awaited. Alternatively, the producer can be
flushed periodically.

Listing 3 shows an example of consumer in C++, including
a data selector and a data broker. Just like the producer’s
push function, the consumer’s pull function is non-blocking.
Its returned future can be awaited, returning an event with a
metadata and a data field.

mofkactl topic create collisions --groupfile mofka
.json \
--validator energy_validator:
libenergy_validator.so --validator.energy_max
100 \
--partition-selector energy_selector:
libenergy_selector.so --partition-selector.
energy_max 100 \
--serializer energy_serializer:
libenergy_serializer.so --serializer.
energy_max 100 \

mofkactl partition add collisions --groupfile
mofka.json --rank 0 \
--type default --metadata
my_metadata_provider@local \
--data my_data_provider@local

Listing 1. Topic and partition creation using the Mofka CLI.

from mochi.mofka.client import MofkaDriver, \
ThreadPool

# First, a MofkaDriver should be created
driver = MofkaDriver(group_file="mofka.flock")
# An existing topic can be opened
topic = driver.openTopic("my_topic")
# A producer is created for the topic,
# configured with a ThreadPool and a batch size
producer = topic.producer(

name="app1"
thread_pool=ThreadPool(4),
batch_size=128)

for i in range(0, 100):
# The metadata can be a string or a dictionary
metadata = {"x": i*42, "y": [1, 2, 3]}
# The data must satisfying the buffer protocol
# (bytearray, memoryview, numpy, etc.)
data = np.random.randint(100, size=(3, 5))
# push is non-blocking and returns a Future
future = producer.push(

metadata=metadata,
data=data)

# the future can be waited on...
event_id = future.wait()
# ... or the producer can be flushed
producer.flush()

Listing 2. Example of Mofka Python producer.

#include <mofka/MofkaDriver.hpp>
using namespace mofka;

MofkaDriver driver{"mofka.flock"};
auto topic = driver.openTopic("my_topic");
// the selector selects a part of the data
auto selector = [](const Metatadata& md,

const Descriptor& dd) {
// only interested in a subset of the data
return dd.makeSubView(2, dd.size());

};
// the broker decides where to place it
auto broker = [](const Metatadata& md,

const DataDescriptor& dd) {
return Data{

new int[dd.size()/sizeof(int)],
dd.size()};

};
// the consumer is created
auto consumer = topic.consumer(

"app2", selector, broker, ThreadPool{4});
// we can now pull events
auto future = consumer.pull();
auto event = future.wait();
// event.id(), event.metadata() and event.data()
// can be used to access the event’s content

Listing 3. Example of Mofka C++ consumer.
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We also implemented a “Kafka adapter” for Mofka. That is, the
Mofka API can be used to interact with a deployment of Kafka,
Redpanda, or any similar system satisfying the Kafka protocol. It
does so by using librdkafka,3 a widely used C implementation of the
Kafka protocol, and by adding Argobots-based threading on top of
it to provide some of the features from the Mofka client library that
are missing from librdkafka. Hence, HPC applications that use the
Mofka API can also be tested on top of Kafka or Redpanda. We use
this feature in particular for benchmarking against these systems
in Section 4.

3.4 Implementation and modularity

As stated earlier, Mofka is built using the Mochi suite of
technologies, which advertises a composable approach to the design
of HPC data services, with reusable components at the center of
such design.

Figure 1 shows that Mofka servers are made of multiple
components, only one of which is in fact exclusive to Mofka:
the partition manager. The event log consists of a Yokan
component,4 which provides key/value and document collection
storage. The storage provider is a Warabi component,5 which
provides blob storage functionality. Group membership is managed
by Flock,6 the master database is another Yokan component,
and bootstrapping and configuration are handled by Bedrock.7

Other components such as Poesie8 and REMI9 will eventually be
added to the mix to provide in-server script execution and file
migration, respectively.

Mofka also relies on Plumber,10 a Mochi component for
topology-aware network selection. We spawn multiple Mofka
server processes on each node; and, should the node provide more
than one NIC, Plumber will automatically assign processes to their
closest NIC, ensuring maximum use of the network resources
available.

This component-based design has multiple advantages (Ross
et al., 2020). First, all the components listed above are used
in other HPC data services, within and outside our group,
constantly benefiting from bug fixes, extensions, and performance
optimizations as a result. Second, compartmentalization of
functionality enables rapid innovation without perturbing
the overall design. For example, an innovative design
for an event log using a specialized hardware could be
implemented as a backend for Yokan and immediately be
tested in Mofka, without any changes to Mofka’s design or to
other components.

3 https://github.com/confluentinc/librdkafka

4 https://github.com/mochi-hpc/mochi-yokan

5 https://github.com/mochi-hpc/mochi-warabi

6 https://github.com/mochi-hpc/mochi-flock

7 https://github.com/mochi-hpc/mochi-bedrock

8 https://github.com/mochi-hpc/mochi-poesie

9 https://github.com/mochi-hpc/mochi-remi

10 https://github.com/mochi-hpc/mochi-plumber

3.5 A parallel file system turned inside out

Distributed streaming frameworks such as Apache Kafka
are often described as “a database turned inside out” because
they invert the conventional architecture of data-centric systems.
Traditional databases prioritize storage and subsequent querying of
data, typically treating the change log as an internal implementation
detail. In contrast, Kafka exposes the append-only commit log
as a first-class abstraction, positioning it as the central system
of record. Data is ingested as an immutable, ordered sequence
of events, which can be consumed, processed, and replayed by
multiple downstream systems. This design enables decoupled, real-
time data processing pipelines and supports scalable, event-driven
architectures that are fundamentally more transparent and flexible
than traditional database systems.

In this sense, Mofka be viewed as a “parallel file system
turned inside out.” Traditional parallel file systems require users
to reason carefully about data layout within files to achieve
acceptable performance, often entangling application logic with
low-level storage considerations. Mofka inverts this paradigm by
replacing file-based I/O with persistent, ordered streams of events,
allowing users to focus on the semantics of data production and
consumption rather than its physical organization on disk. By
decoupling data movement from file management, Mofka enables
applications to exchange data efficiently and asynchronously across
distributed nodes, without sacrificing durability or throughput.
This abstraction simplifies the development of real-time, event-
driven workflows in HPC systems, aligning with the need for
low-latency communication and scalable I/O in modern scientific
applications.

4 Evaluation

We begin our empirical evaluation using carefully controlled
synthetic benchmarks to compare Mofka with two existing
persistent messaging systems, Kafka and Redpanda, on Argonne’s
Improv and Polaris, described hereafter. Redpanda is an alternative
to Kafka relying on the same protocol.

For this study we focus on scientific use cases (see Section 5)
that use batch-scheduled ephemeral resources. We thus disable
replication and focus on the upper-bound performance offered by
each system. We will introduce replication and consensus and study
these in greater detail in future work.

4.1 Platforms

We ran our benchmark on two production HPC systems at
Argonne National Laboratory, described below. In this section we
also describe Oak Ridge National Laboratory’s Frontier, which we
use in a later section.

Improv11 is a 2.51 PFlop/s machine with 825 nodes. Each node
is equipped with two AMD EPYC 7713 64C 2 GHz processors (128
cores per node), 256 GB DDR4 memory, and a 960 GB NVMe SSD.
The nodes are interconnected via InfiniBand HDR200.

11 https://www.lcrc.anl.gov/systems/improv
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Polaris12 is a 34 PFlop/s machine with 560 nodes
interconnected by a 200 Gbps HPE Slingshot 11 network in
a Dragonfly topology with adaptive routing. Each node features
an AMD EPYC “Milan” processor (32 cores per node), two
Slingshot endpoints, and two 1.6 TB NVMe SSD each offering
up to 3300 MB/s sequential write performance and 3,300 MB/s
sequential read performance, and arranged in a RAID-1.

Frontier13 will be used in Section 5 but is introduced here
for completeness. It is a 1.6 exaflop/s machine with 9,402 nodes
connected with 4x HPE Slingshot 200 Gbps NICs providing a node-
injection bandwidth of 800 Gbps. Each compute node has two
1.92 TB NVMe SSDs, although we will deploy Mofka in memory
in experiences on this platform.

4.2 Benchmark design

Properly benchmarking messaging systems is difficult.
Although the Open Messaging Benchmark14 is, to the best
of our knowledge, the only open-source benchmark available
to evaluate the performance of messaging systems, this
benchmark is no longer maintained and is not adapted
to the deployment of many producers and consumers as
MPI jobs on a supercomputer. Hence, we had to design our
own benchmark.

Our benchmark is written in C++ for two reasons. The first is to
avoid any language binding overheads; the second is to streamline
integration with librdkafka.

We are interested in aggregate throughput from a large number
of producers or consumers. Hence our benchmark consists of
an MPI application that starts N client processes on multiple
cores of multiple nodes. This setup is representative of how
HPC applications would use Mofka or any event-driven system.
In producer mode, each process produces a desired number of
messages of a specified size to a designated partition. We rely on
a fixed assignment of producer to partition to avoid variations in
performance caused by unbalanced load. While cloud-computing
applications are more elastic, HPC workloads generally execute in
fixed-size job, where the number of clients is known in advance.

In all our experiments we produce and consume 10 million
events per partition. The messages are produced in batches of
1,000 messages for Mofka, and we let librkafka manage its own
batching (librdkafka producers batch messages automatically and
send the batches from a background thread). A flush operation
is invoked every 10,000 events. One million events are produced
as a warmup before we start measuring performance. In consumer
mode, each process consumes messages from a specific partition,
again with a fixed assignment to avoid the overhead of rebalancing
operations. We consume events in batches of 1,000 events. We
therefore consume in batches of 1,000 events both with Mofka and
with librdkafka.

12 https://www.alcf.anl.gov/polaris

13 https://www.olcf.ornl.gov/frontier/

14 https://openmessaging.cloud/docs/benchmarks/

4.3 Tuning considerations

Mofka, Kafka, and Redpanda are complex systems with
many tuning parameters that can dramatically affect performance.
Months of evaluating them and exchanging with the developers and
users of Kafka and Redpanda led us to what we believe is the best
performance we could achieve for each of these systems. For Kafka
for example, our investigations included varying the number of I/O
threads and network threads. Redpanda requires root permissions
to tune kernel parameters, which we cannot do on production HPC
systems. We therefore warn the reader that better performance may
be achievable from Redpanda if set up by a system administrator
with escalated privileges.

Lesson 1: Configuration parameters are highly sensitive.

Our experiments taught us that slight changes to configuration
parameters or to the client code can have a significant impact on
performance. We advise authors of any future studies on such
systems, as well as any users and practitioners, to spend enough
time investigating these aspects.

We use rd_kafka_producev to produce messages
and let librdkafka’s background thread handle batching,
as recommended by practitioners. However, we use
rd_kafka_consume_batch_queue to explicitly consume
messages in batches, since rd_kafka_consume does not do it
automatically.

Lesson 2: APIs can facilitate aggregation.

There is a significant performance benefit in allowing clients to
batch operations into larger units to improve protocol efficiency.
This behavior is enabled by using explicit interfaces rather than by
configuration tuning.

Profiling the benchmark using the HPCToolkit (Adhianto et al.,
2010) showed that the overhead of small memory allocations
and data copies when handling a large number of events can
drive down the performance for all messaging systems. Using
jemalloc15 or mimalloc16 instead of glibc’s implementation
of malloc dramatically improves performance. In all our tests we
use jemalloc as a preloaded library because it led to the best
performance gains. We also made sure that the benchmark does not
do unnecessary copies or allocations.For example, producing and
consuming 10 million events of 1 KB from a single client to a single
server with Mofka lead to an average of 605 MB/s of production
throughput and 1,250 MB/s of consumption throughput when
using jemalloc. Without jemalloc, this same setup leads
to a production throughput of 555 MB/s and a consumption
throughput of 514.60 MB/s. More than half the performance of
the consumer is due to simply using a better allocator. This kind
of performance improvement is also observed on top of Kafka and
Redpanda.

15 https://jemalloc.net/

16 https://microsoft.github.io/mimalloc/
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FIGURE 2

Production and consumption of 10 million events using a single server and a single client. Median result from 5 runs, with error bars representing the
minimum and maximum values. Note that for readability, the figures use different scales. (a) Producers on Improv. (b) Consumers on Improv. (c)
Producers on Polaris. (d) Consumers on Polaris.

Lesson 3: Memory allocations have a significant impact on
performance.

Event-driven applications will often manipulate a very large
number of small objects. Any strategy that avoids repeated
allocation/deallocations, be it built-in or provided by a custom
allocator, should be a first step to improve performance.

4.4 Single producer and consumer

We first run our benchmark on Polaris and Improv with one
server node and one client node. The purpose of this experiment
is to provide a baseline for production and consumption in
conditions where no parallelism is involved and no interference
can be expected. The client node is used to run a single producer,
followed by a single consumer, accessing a single partition. We vary
the size of events from 256 bytes to 4 kilobytes.

Figure 2 shows that Mofka outperforms Kafka and Redpanda
in almost all scenarios on Improv, underperforming only when
consuming messages of 256-bytes. The picture on Polaris
is different. Whereas Mofka shows more stable performance,
Redpanda performs better in the production of event 1 KB and
up, and Mofka starts outperforming Kafka and Redpanda in
consumption only for events 2 KB and up.

Note that the current version of the Slingshot software stack
on Polaris causes the thread running the network progress loop
to consume more CPU time than expected, which could be a
possible factor in the discrepancy between Improv and Polaris
under network-intensive workloads.17

These results also show the effect of using the Mofka API on
top of librdkafka rather than using librdkafka directly. By relying on
Argobots user-level threads, the Mofka API is often able to achieve
better performance on top of Kafka and Redpanda.

17 https://github.com/ofiwg/libfabric/pull/10681
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FIGURE 3

Production and consumption of 10 million events (of 1 KB each) per client using a single server node and a single client node and varying the number
of client processes in this node. Median result from 5 runs, with error bars representing the minimum and maximum values. (a) Producers on Improv.
(b) Consumers on Improv. (c) Producers on Polaris. (d) Consumers on Polaris.

Lesson 4: Careful multithreading is essential to performance
on many-core HPC systems.

Differences in performance between the Mofka API and the
direct use of librdkafka on top of Kafka or Redpanda highlight the
importance of experimenting with client-side threading to make
optimal use of available CPU resources.

4.5 Single server, multiple clients

With supercomputer networks providing extremely high
bisection bandwidth, we can expect the streaming data
between clients and servers to be an embarrassingly parallel
task. Multiplying the number of both clients and servers by
the same factor should increase throughput in proportion.

Hence, two questions arise: (1) To what extent can we
saturate a client node with concurrent processes, especially
given the massively multicore nature of modern HPC nodes?
and (2) To what extent can we saturate a single server by
making it service an increasing number of client nodes,
given the scale of today’s machines? This section answers
both questions.

We fix the event size to 1 KB and continue to produce and
consume 10 millions of them, but this time per client process,
varying the number of client nodes or the number of client
processes within a single node. We keep a single server node (Mofka
spawns multiple processes to take advantage of multiple NICs when
relevant, e.g., on Polaris).

Figure 3 shows the performance of producers and consumers
on top of Mofka, Kafka, and Redpanda, with one client
node, varying the number of processes per node. Because
both the Mofka and librdkafka client libraries rely on a
number of background threads, we limit the number of
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FIGURE 4

Production and consumption of 10 million events (of 1 KB each) per client using a single server node and varying numbers of client nodes (one
process per client node). Median result from five runs, with error bars representing the minimum and maximum values. (a) Producers on Improv. (b)
Consumers on Improv. (c) Producers on Polaris. (d) Consumers on Polaris.

processes so that we do not oversubscribe the cores on
each platform (core binding is set such that each process is
assigned exclusive access to a subset of cores). Oversubscribing
cores led to operations frequently timing out with Kafka
and Redpanda, causing experiments not to complete in their
allocated time.

This figure shows that Mofka generally outperforms both Kafka
and Redpanda on Improv, achieving up to 2× the throughput. On
Polaris, however, while Mofka is better for production, it is slower
for consumption.

On Polaris, the increase in throughput as we increase the
number of processes (for a given system) shows that neither
the network bandwidth nor the SSDs are the limiting factor in
this scenario. Better performance can be obtained by producing
concurrently to multiple partitions from the same client node.
On Improv, however, four client processes achieve the maximum
throughput, both in production and in consumption, after which
performance stagnates for Kafka and Redpanda and decreases for
Mofka. This indicates that either the network or the SSD becomes
limiting.

Lesson 5: Higher throughput can be achieved from a single
node through concurrent access.

Each of the messaging systems can handle multiple concurrent
producers/consumers per node, making them well suited to HPC
applications.

Consumption results on Polaris show that as the number of
client processes increases, the use of the Mofka API becomes
detrimental to performance compared with the direct use of
librdkafka. We therefore suspect that the use of an Argobots
thread, combined with librdkafka’s background POSIX threads and
more processes per node, causes interferences and generally poor
performance, going back to Lesson 4: threading could often matter
more than which system is used.

Next, we run our benchmark with one server serving a varying
number of client nodes, using one process per client node. Figure 4
is similar to Figure 3, suggesting that (1) performance is limited
by the server (either its network bandwidth or its storage), (2)
more concurrent clients (whether from multiple cores in a node
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or from multiple nodes) may be beneficial to performance, and
(3) performance plateaus on Improv past a certain number of
concurrent clients.

4.6 Multiple servers, single client node

Having shown the potential of concurrency on the application
side, we look at the server side in this experiment. We run our
benchmark on a single client node with either 8 or 16 processes,
against multiple server nodes.

Results are shown in Figure 5. On Improv, Mofka throughput
doubles as we double the number of server nodes, while that
of Kafka and Redpanda stagnates. These results suggest that, on
this machine, the use of TCP by Kafka and Redpanda is the
limiting factor, here at the application level. This conclusion is
also consistent with results from the previous experiments showing
Kafka and Redpanda throughput being generally capped at 1 GB/s
regardless of event size, number of client processes, or number of
client nodes.

Lesson 6: More servers increase performance...

Concurrency within a single client node can benefit from using
more servers, assuming the client network is not a bottleneck.

On Polaris we ran the same experiment with either 8 or
16 processes in a client node. In the latter case, because of
background threads created by the Mofka client library and/or by
librdkafka, the cores are oversubscribed. This dramatically changes
the results. Eight processes in a node is not enough to take
advantage of more servers for production and for consumption
when it comes to Kafka and Redpanda. With 16 processes, we see
more advantages to increasing the number of servers, especially
when producing with Mofka. Kafka’s and Redpanda’s performance
improves slightly when increasing the number of servers from 1 to
2 but then stagnates. This indicates a bottleneck at the application
level. In consumption, Mofka generally underperforms Kafka and
Redpanda and only benefits from using 2 servers instead of 1. Other
systems do not benefit from more servers.

Lesson 7: ... or not.

Many factors may hinder the benefit of adding more servers,
including network bottlenecks at the client level but also threading
strategies, oversubscription, and API use, ultimately making it
difficult to find a clear winner in the different systems.

4.7 Benchmarking conclusions

The conclusion from our benchmarking campaign (of which
the above is only a representative subset) is that relying on
HPC technologies such as RDMA and native high-performance
networks often leads to better performance than using systems
designed for a cloud environment. However, many factors also
impact performance before the network even starts to play its part.

Such factors include the number of processes in the application, the
API used, the threading technique, process and thread placement
(including oversubscription), and SSD speed.

A caveat not shown in the figures above is that the Kafka and
Redpanda systems frequently timed out and failed to complete
benchmarks as we increased concurrency. Considerable effort was
needed to identify configuration permutations that would avoid
this issue. This would make them difficult to use in an HPC
environment without careful engagement from an experienced
administrator. We believe that librdkafka was the common root
cause of many of these issues for both systems, but we found it
difficult to get community support for our particular problems.

Lesson 8: We should invest more in developing an HPC-ready
event-driven system.

Comparing Mofka with Kafka (or Redpanda) for event
streaming is like comparing Luster with NFS: the former is HPC-
ready, uses high-performance networks, and offers the right set
of features for file I/O in HPC applications. The latter is useful
in an HPC context; and while the modern NFSv4 has made
progress in handling parallel I/O, it will always rely on Ethernet
and have performance limitations for HPC applications. Kafka’s
development started in 2011 and Redpanda’s in 2019; each is
production software backed by a company and used by large
businesses. The fact that we were able, with limited resources and in
a short time, to develop a competing prototype for the HPC space
that outperforms them in many scenarios is an encouraging first
step that we think justifies more investments in this direction.

4.8 Data vs. metadata

In the above experiments we used only the metadata part of
events when using Mofka, since our comparison against Kafka and
Redpanda required small events.

Table 1 shows the results of experiments where each event
carries 1 KB of metadata and 10 MB of data. When using
the metadata path only, performance suffers from copying large
amounts of data into batches on the client side and intermediate
buffers on the server side. When the data part of events is used to
carry the 10 MB payload, Mofka can optimize transfer by using
RDMA to and from the client’s memory and to and from the
final storage destination, bypassing any intermediate buffer. The
performance improvement is most pronounced when using in-
memory storage, since the bandwidth is not limited by that of an
SSD.

Lesson 9: Separating metadata and data improves
performance.

Since HPC applications typically generate large events,
separating their payload into a metadata part and a data part
improves performance by avoiding costly copies on the data path.

While Mofka allows consumers to select subsets of data from
each event, improving performance by avoiding the transfer of data
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FIGURE 5

Production and consumption of 10 million events (of 1 KB each) per client process (8 or 16 processes on one node), varying the number of server
nodes. Median result from 5 runs, with error bars representing the minimum and maximum values. (a) Producers on Improv (16 procs). (b)
Consumers on Improv (16 procs). (c) Producers on Polaris (8 procs). (d) Consumers on Polaris (8 procs). (e) Producers on Polaris (16 procs). (f)
Consumers on Polaris (16 procs).
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TABLE 1 Performance of Mofka when producing/consuming events using either the metadata part only or separating their payload into a small (1 KB)
metadata part and a large (10 MB) data part.

SSD storage In-memory storage

Metadata only Metadata + Data Metadata only Metadata + Data

Production 794 MB/s 1,165 MB/s 955 MB/s 6,257 MB/s

Consumption 4,017 MB/s 7,763 MB/s 3,524 MB/s 8,529 MB/s

Performance of Mofka when producing/consuming events using either the metadata part only or separating their payload into a small (1 KB) metadata part and a large (10 MB) data part.

that is not needed, we do not evaluate this feature in the present
paper.

5 Application use cases

We now present three use cases in which event-driven design
benefits an HPC application or workflow.

5.1 Use case 1: TekApp

The reconstruction of 3D tomography datasets is a core
application in X-ray imaging that provides valuable information
about imaged samples and their morphologies. Here we work
with a streaming tomographic reconstruction mini-app,
“TekApp” (Bicer, 2024), derived from the Trace code (Bicer
et al., 2017a), that performs real-time reconstruction on streams
of tomographic data (Bicer et al., 2017b). This code provides
a sliding window data structure to store incoming projections
and a reconstruction process to update the object volume
using the data in the window. The reconstruction algorithm is
based on the Simultaneous Iterative Reconstruction Technique
(SIRT) algorithm (Batenburg et al., 2009). It can continuously
update reconstruction data as more data becomes available. The
reconstruction quality can be improved with multiple configuration
parameters (typically) at the cost of more computational demand
and/or memory footprint (Bicer et al., 2020). The code is CPU-
based and is optimized for shared- and distributed-memory
parallelism. While this application employs X-ray imaging data
generated at the Advanced Photon Source for tomographic
tasks, its structure is applicable to a wide class of tomography
applications, including scanning transmission electron microscopy
(Al-Najjar et al., 2022).

TekApp comprises four components: (1) data acquisition
(DAQ), (2) distribution (DIST), (3) reconstruction (SIRT), and (4)
denoising (DEN). DAQ simulates the data acquisition step in the
workflow; it reads the experimental data, X-ray projections, from
an HDF5 file and streams them to the distributor component.
DIST synchronizes with SIRT to retrieve the number of processes
participating in the reconstruction, partitions the experimental data
(sinograms), and distributes these to the participating SIRT task(s)
accordingly. SIRT performs the reconstruction and then streams
the reconstructed images to the DEN component. DEN reduces
noise and improves image quality, particularly beneficial during the
early stages of the reconstruction process (Liu et al., 2019, 2020).

The original TekApp mini-app was configured to use ZeroMQ
for streaming. This approach requires components to perform

a handshake at the start and synchronization throughout the
workflow execution to avoid data transmission errors, for example,
due to buffer overflows or intermittent component failures. This
makes the intercomponent and task communication inherently
synchronous and tightly coupled. With Mofka instrumentation,
however, the workflow becomes more flexible, eliminating
the need for components to coexist. They can operate at
different times without any data loss. Additionally, the loosely
coupled nature of the Mofka-instrumented version enables fault
tolerance—if one component fails, the rest of the workflow
remains unaffected.

Figure 6 shows how we adapted the TekApp workflow to
employ Mofka for streaming. We augment the four existing
components with Mofka server(s) (depicted at the bottom of
the figure), which serve as intermediate storage between event
producers and consumers, enabling asynchronous workflows
where components can operate independently at different times.
Currently, the system maintains synchronization between the
DIST and SIRT components. During runtime, the number of
reconstruction tasks is determined, and the DIST component is
configured accordingly. However, this runtime dependency can
be eliminated by using a shared configuration file or just by
passing the needed configuration as parameters to the components,
paving the way for a fully asynchronous pipeline. Mofka organizes
events into topics, with each topic corresponding to a pair of
communicating components in the workflow. For example, the
T_daq_dist topic manages events transmitted from the DAQ
component to the DIST component. Mofka clients are integrated
with the components, enabling them to push events to or pull
events from the Mofka servers. The two intermediate components,
DIST and SIRT, act as both data consumers and producers. Each
consumes data from its preceding component and generates new
data for subsequent components. More components can be plugged
into this architecture easily.

The tomographic reconstruction process, which takes the
2D (X-ray) projections as input, aims to generate a 3D
(volumetric) object that represents the imaged sample. DAQ
and Dist stream the 2D projections, and the 3D volumes
are created in the SIRT component and denoised in the
Den component.

5.1.1 TekApp experiments setup
We evaluated TekApp on the Polaris supercomputer. Table 2

shows the different settings for the four application components
and the Mofka server. DAQ, DIST, and DEN are single Python
process components, each deployed on one node. SIRT is a
C++ MPI code deployed on 1 to 32 nodes (2 to 64 processes).
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FIGURE 6

The four-stage TekApp mini-app—comprising DAQ, DIST, SIRT, and DEN components (top)—is connected to Mofka servers (bottom) to enable
high-performance, reliable data streaming. Each Mofka topic (T_P_C) represents a communication channel between a producer (P) and a consumer
(C). Reconstructed and denoised image examples are shown on the right.

TABLE 2 TekApp component configurations for DAQ, DIST, SIRT, and DEN. The [P] corresponds to data producers and [C] to data consumers.

Component Nodes Processes Partitions Data Metadata Total events

DAQ [P] 1 1 1 20 KB 30 B 1,500

DIST [C] 1 1 1 20 KB 30 B 1,500

DIST [P] 1 1 2–64 10 KB 148 B 3,000–96,000

SIRT [C] 1–32 2–64 2–64 10 KB 148 B 3,000–96,000

SIRT [P] 1–32 2–64 2–64 25 MB 290 B 188–6,016

DEN [C] 1 1 2–64 25 MB 290 B 188–6,016

Mofka server 1 2–64 9–129 4.64–47.8 GB 0.518–15.25 MB 7,867–103,516

The Mofka server is deployed on one node and uses 2 to
64 processes. DAQ pushes its data to a single partition in a
T_daq_dist topic. DIST pushes its events to a T_dist_sirt
topic with multiple partitions. The number of partitions is
set to the number of SIRT processes (2 to 64); each SIRT
process consumes from one partition and pushes new events to
its dedicated target partition in the T_sirt_den topic (also
set up with as many partitions as SIRT processes). The DEN
component consumes data from all the partitions from the
T_sirt_den topic.

Data and metadata sizes per event and the total number of
events are shown in the table for each component. The last line
(Mofka server) shows the total amount of data, metadata, and
events transferred in this use case.

We evaluate Mofka’s performance against the original ZeroMQ
implementation as a first step, and then we conduct an in-depth
analysis of Mofka’s performance across a range of configurable
parameters such as the batchsize, the number of partitions, and
event sizes.

5.1.2 Mofka vs. ZeroMQ evaluation
To ensure a fair comparison with the ZeroMQ implementation,

all components in the Mofka setup are executed concurrently.
However, this concurrency may lead to conservative performance
measurements for Mofka consumers, since the reported results can
include idle time spent waiting for a batch of events to be produced.
Table 3 presents a comparison of per-event overhead between
Mofka and ZeroMQ. Both systems follow the configuration in
Table 2, except that only two processes are used for SIRT[C] and
SIRT[P]. Since ZeroMQ does not support batch size tuning, we
compare it against Mofka using the best-performing batch sizes, as
shown in the “Best Config” columns. The mean values of Mofka’s
push and flush combined and ZeroMQ’s send are shown
for the producers; and Mofka’s wait and ZeroMQ’s receive
mean values are represented for the consumers. Mofka’s push
calls are blocking only if more than two complete batches have
not been sent yet. We have added a call to flush that forces
the producer to send all the buffered batches even if they are
incomplete, after sending the last event in each component. The call
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TABLE 3 TekApp producer/consumer per-event overhead: Mofka vs. ZeroMQ. The [P] corresponds to data producers and [C] to data consumers.
Overhead is measured in microseconds.

Operator Mofka (Memory) Mofka (Default) ZMQ

Best
Config

Min Med Max Best
Config

Min Med Max Min Med Max

DAQ [P] 64 2.73 3.77 1.2e6 64 3.32 3.71 4.6e6 40.1 46.7 260

DIST [C] 64 2.00 2.25 8.84 16 1.99 2.31 8.9e4 10.2 44.5 1.7e5

DIST [P] 64 3.57 7.06 1.1e6 16 3.65 7.24 1.5e7 103.4 232.6 1.2e6

SIRT [C] 1 0.02 0.10 5.2e4 1 0.02 0.11 3.5e5 7.31 384 6.5e5

SIRT [P] 64 7.39 8.24 2.6e5 32 7.15 7.97 2.3e6 3,373 4,062 4,108

DEN [C] 8 4.07 5.92 2.7e8 64 4.34 6.13 1.5e9 1,186 1,865 6,865

to wait on the consumer side is blocking only for the first event
in the batch, because the Mofka events are transferred in batches
rather than individually. ZeroMQ relies on direct point-to-point
communication and requires frequent synchronization throughout
the workflow to ensure reconstruction correctness. As a result,
Mofka consistently outperforms ZeroMQ, achieving at least a 12×
reduction in overhead across all components. The performance
gap becomes even more significant for large events. For example,
between the SIRT and DEN components, event sizes can reach 25
MB, causing ZeroMQ to incur over 1 ms of overhead per event. In
contrast, Mofka reduces this overhead to under 10μs on average,
delivering up to 500× better performance than ZeroMQ. Both
Mofka and ZeroMQ exhibit significant variability in overhead, with
maximum values often reaching up to six orders of magnitude
above the minimum. For Mofka, however, this variability is due
mainly to rare outliers (blocking push or flush), as the median
overhead remains consistently close to the minimum, indicating
more stable and predictable performance in typical cases.

Median-based performance metrics can be deceptively
optimistic in configurations where the operational workload
is heavily imbalanced. Consider, for example, the behavior of
SIRT producers using a batch size of 64. Each process issues
94 non-blocking push operations—each incurring very low
overhead—followed by a single blocking flush, which is
considerably more expensive. In such cases, the median overhead
is within the lightweight operations, effectively obscuring the
cost of the rare but critical flush. As a result, batch size 64
may appear favorable based on median metrics, while in reality
it introduces significant performance penalties that are hidden in
the aggregate, which is the transfer of 94 25 MB-event at once,
as we can see clearly in the max value. In the following sections
we present a detailed component-level analysis demonstrating
why this configuration is suboptimal and how a more nuanced
evaluation reveals these hidden inefficiencies.

5.1.3 Mofka DAQ evaluation
For the rest of the TekApp experiments we define the Mofka

overhead as the time spent on calls to push and flush in
the producers and to event.wait, event.metadata, and
event.data in the consumers.

DAQ generates 1,500 events of 20,548 B data and 30 B
metadata. In this experiment we have varied the batch size of the

producer from 1 to 64. By default, a Mofka producer maintains a
maximum of two batches per partition: one is sent to the server by
a background thread while the application fills up a second one. If
the application produces too fast, a call to push may block as the
second batch has filled up and the first batch has not completed its
transfer yet. Tuning the batch size is therefore important to ensure
best performance. A batch size that is too small would incur the
overhead of sending more RPCs. A batch size that is too large delays
the sending of events (and their processing by a consumer) and
requires more memory.

Figure 7 shows that the overhead of Mofka decreases when
increasing the batch size in DAQ; most of the overhead comes
from the few blocking push calls that ensure that the batches are
completely sent to Mofka. When the batch size is small, the number
of blocking calls is higher; for instance, when the batch size is 1,
we find a blocking call every 3 push calls. When we increase the
batch size, not only is the number of blocking calls less frequent,
but Mofka is more likely to complete the transfer of batches in the
background before the third batch’s event gets pushed.

5.1.4 Mofka DIST evaluation
The DIST component consumes the DAQ events and produces

new ones for SIRT. A total of 1,500 events are received, each with
20,548 B data and 30 B metadata. Figure 8a shows the Mofka
overhead while consuming events, again as a function of the batch
size; error bars represent min and max values across six runs. The
jump in overhead between a batch size of 4 and a batch size of 8
comes from a change in regime in the consumer. DIST consumes
at a fast rate. With small batch sizes, batches are sent fast enough
to be transferred in the background. The data selector and data
broker also have time to execute in the background and fetch the
required data before DIST needs to consume the event. Past 8
events per batch, however, DIST waits not only for the batches to
be transferred but also for the selector and broker to execute. These
costs become synchronous, causing the observed overhead.

DIST produces events with 10,240 KB data and 148 B metadata.
Figure 8b shows the Mofka overhead while varying the batch
size for different numbers of events and partitions; we keep
the event/partition ratio fixed. DIST always runs on a single
process; hence, this figure shows that the overhead is driven
by the performance of a single partition and that parallelization
across multiple partitions, even hosted by the same server node, is
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FIGURE 7

Mofka producer overhead in DAQ (median, min, and max from 6 runs), as a function of the batch size used by the producer. A total of 1,500 events
are produced, each with 20,548 B data and 30 B metadata.

FIGURE 8

Mofka overhead in DIST for event production (left) and consumption (right). (a) DIST consumer overhead. (b) DIST producer overhead.

FIGURE 9

Mofka overhead for the SIRT component of the TekApp application for event production (left) and consumption (right), for varying numbers of
partitions and batch sizes. (a) Mofka consumer overhead. (b) Mofka producer overhead.

effective. Note that Polaris nodes have 32 cores; and when we use
64 partitions (across 64 server processes hosted in a single node),
we notice 7% higher overhead, likely due to oversubscription in the
Mofka server.

5.1.5 Mofka SIRT evaluation
Figure 9a shows the Mofka consumer overhead while

consuming the events in SIRT; median, min/max error bar
values across all the processes are represented. The x-axis

Frontiers in High Performance Computing 16 frontiersin.org

https://doi.org/10.3389/fhpcp.2025.1638203
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Dorier et al. 10.3389/fhpcp.2025.1638203

FIGURE 10

DEN consumption overall and per-event overhead while varying the number of partitions. (a) DEN consumption overhead. (b) DEN per-event
overhead.

categories (E, C) represent the total number of events (E) and
the total number of consumers (C). The event per consumer
ratio is preserved. Every SIRT consumer pulls from a single
partition. This overhead is very small and does not seem to be
affected by the batch size. The reason is that the performance
of SIRT is mostly driven by that of its computation and its data
production, as shown hereafter. Hence, the consumer here has
ample time to pull events in the background, regardless of the
batch size.

Figure 9b shows the SIRT producer’s overhead; median,
min/max values across the processes are represented. The x-
axis categories (E, P) represent the total number of events
(E) and the total number of producers (P). The event per
producer ratio is preserved. For each configuration, we vary
the batch size from 1 to 64. Unlike the previous components,
increasing the batch size increases the Mofka overhead, and
this is visible in all configurations. This is mainly due to the
size of the data the SIRT producers are sending, which is
25 MB per event. Such a data size per event removes any
advantage of batching. Instead, batching delays sending the
data to the server, causing a larger overhead. Overall, when
the events are considerably large, as is the case for the SIRT
component, it is recommended to use smaller batch sizes to avoid
delaying transfers.

5.1.6 Mofka DEN evaluation
DEN consumes the data produced by the SIRT component.

It is a single Python process, pulling data from 4 to 64 partitions.
Figure 10a shows the overhead of pulling events from the
servers. The x-axis represents the tested configurations
(E, P), where E is the total number of events and P is
the number of partitions. The ratio of event/partition is
fixed. For each category, we vary the batch size from 1 to
64. Increasing the batch size does not significantly affect
performance. The overhead increases as the total number
of events increases. However, Figure 10b shows that the
overhead per event remains the same until we use 64
partitions, at which point oversubscription in the server starts to
affect performance.

5.1.7 Lessons learned from TekApp

Lesson 10: Batch size matters.

The batch size can have an important impact on throughput
when producing and consuming events, especially when producing
small events. However, a large batch size is not necessarily better,
since it may delay production and consumption, increase latency,
and prevent properly overlapping computation with data transfers.

Lesson 11: Don’t batch large events.

Mofka separates the metadata and data part of an event so more
efficient RDMA techniques can be used for the data part. When
this data part is large, there is little benefit to batching more events
together because the performance will be driven by the transfer of
the data part, rather than the number of RPCs issued.

Lesson 12: Python binding has an overhead.

Some of the components in TekApp are written in Python.
Not shown in our experiments above, but observed during our
experiments using HPCToolkit, is the fact that Python can incur
an important performance overhead. The conversion of a large
number of Python objects to C++ and vice versa can often have
more impact than the serialization of events or their transfer.
Furthermore, Python’s Global Interpreter Lock (GIL) makes it
difficult to enable concurrency, especially in Mofka consumers,
where Python-based data selectors and data brokers need to be
invoked.

Lesson 13: More partitions equals more parallelism.

Increasing the number of partitions, even to produce (or
consume) from a single process to a single server, allows for more
parallelism and better performance.
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MOFA implements an online learning loop that refines a generative AI model using feedback from concurrently running physics-based evaluations.
Validated linkers assemble MOFs, which are queued, screened for stability and gas capacity, and filtered to retain promising candidates. Resulting
structures and properties are stored in a database for model retraining. Arrow widths indicate progressive filtering.

5.2 Use case 2: MOFA

MOFA (Yan et al., 2025), shown in Figure 11, is an AI
driven discovery pipeline that explores the vast chemical design
space of metal-organic frameworks (MOFs) for superior CO2
capture materials. Designed to run on leadership HPC systems,
the workflow links a diffusion-based generative model with a
ladder of physics simulations in a closed online-learning loop that
continually refines the generator with fresh simulation feedback.

The loop comprises seven asynchronous task types—generate,
process, assemble, validate, optimize, estimate, and retrain—each
backed by a pool of CPU and/or GPU workers:

1. Generate linkers: Propose candidate organic linkers.
2. Process linkers: Add hydrogen atoms, enforce net-zero charge

and valid valence.
3. Assemble MOFs: Combine linkers with metal nodes, check

bonds and atomic distances.
4. Validate structure: Check geometry and bonds, test stability and

porosity.
5. Optimize cells: Perform DFT-level cell relaxation; compute

partial charges.
6. Estimate adsorption: Simulate CO2 absorption at 0.1 bar

pressure and 300 K.
7. Retrain: Fine-tune the diffusion model with newly screened

MOFs.

These heterogeneous tasks are orchestrated with
Colmena (Ward et al., 2021, 2025), a Python framework
designed for managing large simulation ensembles. Task execution
is handled by Parsl worker pools (Task Servers), while the
orchestration logic is centralized in a single Colmena Thinker
process. Within the Thinker, each task type is managed by a

lightweight agent thread that monitors available Task Server
resources, submits task requests, and processes task results.

Communication between agents and their associated Task
Servers occurs through Colmena Queues, implemented as Redis
lists. Each agent–Task Server pair shares a dedicated queue for
returning task results, while all agents share a common queue for
submitting new task requests, with task types distinguished within
the messages themselves.

Events flowing through Colmena queues are JSON objects of
varying sizes. Many control and metadata events are smaller than 1
MB—well within efficient network limits—while larger stages such
as MOF assembly can involve inputs of 10–40 MB and outputs of
1–2 MB. Intermediate tasks, such as linker processing and structure
validation, typically produce messages between 100 KB and 600 KB.

Task durations also vary widely across the workflow. Fast
tasks, such as linker generation, processing, and assembly, generally
complete within 20 seconds. Structure validation, which involves
preliminary molecular dynamics checks, averages around 4 min
per structure. More computationally intensive steps, such as cell
optimization and CO2 adsorption estimation, take significantly
longer—each requiring approximately 20–30 min to complete.
Retraining the generative model depends on the size of the updated
training set and typically takes between 30 and 300 seconds per
cycle.

5.2.1 How Mofka transforms MOFA
In the original MOFA implementation, all task coordination

and data exchange were handled through a single Redis instance co-
located with the Colmena Thinker process on the login node. This
Redis-backed queuing model introduced two critical limitations: it
created a single point of failure, where a crash or stall in Redis could
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FIGURE 12

Time to communicate between producer and consumer for various
operations in MOFA. task_launch represents the time to
communicate the task to launch, and result_comm represents the
time in takes to communicate candidate MOFs.

FIGURE 13

Times to perform various operations in MOFA using Mofka.

leave the workflow in an unrecoverable state, and it constrained
throughput when event rates are high, as all data and control traffic
were funneled through a single login node.

To address these challenges, we replaced Redis-based Colmena
queues with Mofka-backed queues, leveraging Mofka’s distributed,
persistent event-streaming architecture. As in the original setup,
each task type publishes results to a dedicated queue, now mapped
to a Mofka topic, while task requests are consolidated into a shared
request topic. Unlike Redis, however, Mofka topics are distributed
across a cluster of brokers, allowing the workflow to scale more
effectively and recover gracefully from failures.

5.2.2 MOFA experiments: generative task
communication

MOFA generative tasks produce candidate MOFs at a high
frequency, making it a good candidate for streaming frameworks

that can rapidly communicate events. For this experiment we
compare the rate at which we are able to create and communicate
the generative task to run (task_launch) and the time to
communicate the candidate MOFs from the Task Server back to
the Thinker (result_comm) across the default approach (using
a Redis queue) with a cloud-hosted Kafka solution (Octopus).
To perform these experiments, a producer and consumer were
initialized within the Thinker on a Polaris login node to produce
the next generative tasks and consume its result. For the execution
of the generative tasks, a consumer and producer were initialized
on a Polaris compute node to receive the task to be executed
and communicate results back to the Thinker. As the messages
communicated were quite small in size (<1 MB), the execution
was entirely latency bound. Timestamps were collected at each
communication step to obtain information on latency overheads.

Contrary to other experiments, where we measured producer
or consumer throughput, here we measure the latency between
production and consumption. We do so by adding a timestamp
when a message is produced, and we compare it with the current
time when it is consumed. Figure 12 shows that Mofka exhibits
a significant latency when communicating data, especially when
compared with the default Redis and Octopus. There are a
number of reasons for this latency. First, Mofka has not yet been
optimized for low latency, preferring large batches and persistence
first, as opposed to quickly getting a message to a consumer.
Second, MOFA relies on Parsl, which mixes Python multithreading
and multiprocessing. This forces the Mofka client to be set up
without a background progress thread. Consequently, the network
progress loop executes only when a Mofka API is being called,
reducing opportunities for Mofka to overlap computation and
communications. We are looking into solving this problem in the
future, first by leveraging newer versions of Python where the
GIL can be disabled, second by setting a side-process to handle
communication when threading isn’t an option.

Looking at the execution times for operations in Mofka
(Figure 13) shows that the individual operations times are
reasonable in Mofka, with the greatest overhead being in the wait
operation. Since the progress thread is disabled, communication
does not occur until wait is called, exacerbating wait durations.

5.2.3 Lessons learned from MOFA
Lesson 14: Synchronous execution leads to significant
bottlenecks.

While synchronous executions are not recommended, they
can sometimes not be avoided because of Python application
multithreading/multiprocessing. Although there is currently no
solution to address this limitation, solutions are being pursued.

5.3 Use case 3: Flowcept

Performance characterization and provenance of HPC
workflows can be challenging, especially when dealing with
hybrid and/or heterogeneous workloads. For example, large
language model (LLM) training is a growing HPC workflow
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that often utilizes distributed environments and stresses diverse
system components (e.g., GPU, CPU, network fabric, PFS).
With standard profiling tools, capturing the system performance
and data provenance of such multi-GPU, multinode workloads
remains challenging. Existing profiling tools often suffer from
high overhead; and if multiple tools are used, correlating the
performance of each individual component is difficult.

Flowcept (Souza et al., 2023) aims to address this challenge
by capturing profiling data from massively parallel workloads and
storing the results as a unified dataset. Flowcept currently provides
adapters for Dask, MLFlow, and PyTorch, enabling multilevel data
collection (e.g., task-level, epoch-level, layer-level, operation-level)
for ML workflows. These features enable Flowcept to generate
highly detailed profiling data from distributed HPC workloads
including GPU power and utilization, CPU utilization, per-core
CPU utilization, per-process CPU and memory utilization, disk
and memory usage, network usage, tensor inspection, and task-
level data. To reduce overhead during profiling, Flowcept streams
provenance and profiling data to message queue servers for later
processing. At runtime, the data is held in Flowcept buffers before
being passed to the message queue producer, which streams the
data to the server. Currently, Flowcept supports Redis and Kafka
as message queue backends, and we extended it to support Mofka.

5.3.1 Flowcept experiments
We test each message queue using a multinode, multi-GPU

LLM hyperparameter search workflow. During execution, Flowcept
collects profiling data, which we refer to as a profiling unit, and
bundles collections of profiling units into a batch of a user-defined
size. Each batch is then passed to the message queue as a single
message queue event, and the message queue flushes the event.
Thus, each event (or message) varies in size depending on internal
Flowcept settings that control what data to collect and the batch
size.

We run tests with 24 concurrent producers, each corresponding
to a single LLM hyperparameter configuration in a model-
parallelism optimization process. To analyze consumer behavior
independently from the producers, we launch a consumer after
the workflow completes. However, Flowcept does not currently
support a mechanism to allow Redis to store profiling data for later
consumption (i.e., if the consumer is not subscribed when the data
is published to a given topic, it is lost). Hence, we omit consumer
analysis from this use case.

5.3.2 Evaluation setup
To perform LLM hyperparameter tuning, we employ

multinode, multi-GPU Dask for model parallelism. We search
24 total hyperparameter configurations, with each Dask worker
mapped to an individual GPU and a single hyperparameter
configuration. Testing is carried out on the Polaris supercomputer
using 6 compute nodes with 4 GPUs each, which enables all
hyperparameter configurations to be evaluated concurrently.
Additionally, we place the message service in its own compute
node to isolate its effects and use one additional compute node for
the Dask client script, totaling 8 compute nodes. To explore each

TABLE 4 Workload details about each style of profiling with a batch size
of 10. Numbers are averaged across all MQs.

Profiling
setting

Mean
number of
messages

Mean data
transmitted

Median
message

size

Light-weight 54,452 334 MB 6 KB

Heavy-weight 162,636 26 GB 169 KB

message queue’s performance in different profiling scenarios, we
perform two styles of profiling:

1. Lightweight: this configuration produces small events that
impose less pressure on the message queue’s bandwidth but
require low latency. A non-exhaustive list of the metrics
collected is as follows:

• Number of dask workers.
• Task start and end time.
• Input data paths.
• Batch size.
• Workflow epochs.
• Number of hidden layers and their dimensions.
• Number of tokens.
• Dropout rate.

2. Heavyweight: this configuration produces larger events that
place more pressure on the message queue’s bandwidth and
decrease the importance of network latency. The following is
a non-exhaustive list of the metrics collected in addition to the
data collected with the lightweight configuration:

• CPU power, memory, and utilization.
• Per-core CPU power, memory, and utilization.
• GPU temperature, and utilization.
• Per-layer dropout rate, embedding dimensions, and

number of attention heads.
• I/O counters (e.g., read bytes, write bytes).
• Tensor dimensions and memory usage.

We employ the following batch sizes to test the MQs under
different levels of stress: 101, 102, 103, and 104. As the batch size
decreases, the message queue is forced to flush more frequently
and experiences more computational load. Given that we do not
observe any message queue interaction during workflow execution
when using a batch size of 105, we limit profiling to a batch size of
104 or less (this is the result of the batch size exceeding the number
of profiling units each worker produces, avoiding flushes until the
worker closes).

Table 4 shows more workload details about lightweight and
heavyweight profiling with a batch size of 10. As expected,
heavyweight profiling generates more messages and a larger total
amount of data and displays a higher median message size. These
trends hold as the batch size grows and provide two different
use cases to test the backend message queues. We record the
overall workflow time and the hyperparameter search duration,
which corresponds to the producer’s runtime. Each profiling run
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FIGURE 14

Flowcept workflow runtime by message queue with two different levels of profiling. The baseline corresponds to the runtime when there is no MQ
interaction during execution.

TABLE 5 Percent of total workload time that each message queue spent
flushing by batch size when performing lightweight and heavyweight
profiling.

Implementation Batch size

101 102 103 104

Mofka lightweight 0.35% 0.22% 0.26% 0.25%

Mofka heavyweight 1.33% 1.20% 0.95% 0.83%

Redis lightweight 18.58% 10.10% 9.39% 7.72%

Redis heavyweight 35.73% 36.96% 34.79% 27.84%

Kafka lightweight 26.09% 21.41% 19.39% 16.00%

Kafka heavyweight 9.86% 7.24% 6.79% 6.31%

and batch size are repeated 3 times to ensure that the results are
representative.

5.3.3 Results on Polaris
Across both profiling levels and all four batch sizes, Mofka

outperforms Redis and Kafka, generating less overhead and
achieving up to a 1.66× and 1.44× speedup over Redis and
Kafka, respectively (Figure 14). When performing lightweight
profiling, Redis generates less overhead than Kafka; however, when
performing heavyweight profiling, Kafka significantly outperforms
Redis. These results suggest that Kafka is better suited for larger
message sizes than Redis is but struggles with small streaming
workloads (and conversely, Redis is well suited for small message
sizes). Mofka outperforms in both contexts, taking advantage
of its HPC optimizations. In particular, it is able to utilize the
underlying CXI network protocol, while the other message queues
utilize TCP-based transfer protocols. The performance gap between
the two protocols is clearly highlighted by the amount of time
each message queue spent performing blocking communication
during execution; with a batch size of 1,000 while performing

heavyweight profiling, Mofka blocked the workflow to flush a
total of 7.30 seconds, while Kafka and Redis blocked for 36.19
and 265.81 seconds, respectively. During lightweight profiling,
Mofka spends less time blocking for communication than does
either of the other message queues; and, as highlighted previously,
Redis outperforms Kafka with smaller message sizes, spending less
time performing blocking communication (see Table 5 for a full
comparison). The time spent on blocking communication directly
correlates to performance; and since Mofka spent a significantly
reduced percentage of overall workflow time blocking regardless
of message size (see Table 5), Mofka reduces overhead in both
cases. In summary, Mofka outperforms existing Flowcept message
queue backends by fully utilizing the available HPC infrastructure,
enabling efficient profiling and provenance.

5.3.4 Results on Frontier
We repeated a subset of our experiments on OLCF’s Frontier.

We utilized the same experimental settings as described above;
however, each compute node has 8 GPUs rather than 4.
Hence, only 3 compute nodes are used to evaluate the 24
hyperparameter configurations. Additionally, we limit testing to
only the lightweight profiling workload. The results are shown
in Figure 15.

The total runtime of the application is similar, whether we use
Mofka or Redis as message broker. But contrary to Redis, Mofka
provides persistence, allowing analysis of events to happen after the
workflow is completed, rather than during its execution.

5.4 Summary of our experiments

Across the three use-cases and synthetic benchmark, Mofka
was compared against ZeroMQ, Kafka, Redpanda, and Redis. This
section briefly highlights the takeaways from these results.
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FIGURE 15

Flowcept workflow runtime by message queue on Frontier.

Mofka vs. ZeroMQ. Mofka was evaluated against ZeroMQ
with TekApp. ZeroMQ does not provide persistence, forcing all
components of the TekApp workflow to run at the same time. It
also relies on TCP instead of taking advantage of high-performance
networks. Our experiments comparing Mofka with ZeroMQ show
that the former can achieve up to 500× better performance, while
providing impedance matching and persistence.

Mofka vs. Kafka. Kafka was used in Section 4 with synthetic
benchmarks, as well as in Sections 5.2 and 5.3 with MOFA and
Flowcept respectively. In all our experiments, Kafka proved difficult
to configure for best performance on HPC systems, experiencing
frequent timeouts. Kafka is the inspiration for Mofka, but it
does not support HPC networks, relying on TCP instead. Our
synthetic benchmark showed that Mofka outperforms Kafka in
many scenarios, achieving an 8× better throughput in some of
them. In Flowcept, the use of Mofka incurred a lower overhead
on the workflow than that of Kafka, with Mofka’s overhead ranging
from 0.22% to 1.33% of workflow runtime, against 6.31% to 26.09%
for Kafka. In MOFA, Kafka (used in Octopus) outperformed Mofka.
The overhead of Mofka was found to be caused by the limitations
of Python when it comes to multithreading and multiprocessing,
which force all the calls to Mofka to be blocking. This is an aspect
we need to address in future versions of Mofka.

Mofka vs. Redpanda. Redpanda is a drop-in replacement for
Kafka, answering to the same protocol. We could not fully take
advantage of some of Redpanda’s configuration parameters because
they require privileges we do not have on HPC compute nodes. In
benchmarks, Mofka outperformed Redpanda in most cases, just as
it did Kafka.

Mofka vs. Redis. Redis was used in Flowcept and compared
against Kafka and Mofka. The overhead of Redis on the workflow
runtime ranged from 7.72% to 36.96%, significantly higher than
that of Mofka across all tested configurations. However, Redis was

also used in MOFA, where it outperformed both Mofka and Kafka
by a large margin. Redis is an in-memory cache; hence, while it
provides impedance matching and component decoupling, it does
not provide persistence. Along with providing a better Python
interface than Mofka, this lack of persistence may also explain its
performance in the context of MOFA.

These results highlight the potential for an event-driven system
tailored to HPC systems, such as Mofka.

6 Related work

Too many distributed event and data-streaming platforms exist
to be listed exhaustively in this section. Hence we focus on three
aspects. First, we put our work in perspective with other streaming
systems specifically designed for HPC (whether they focus on
computational streams or act as message brokers). Second, we
reference other data management services in the HPC space that
address producer/consumer dataflows. Third, we list three other
streaming systems designed outside of HPC that could be used, or
have been used, in an HPC context.

6.1 Streaming for HPC

SLoG (Matri et al., 2018) proposes streaming for HPC, with
Kafka and CORFU (Balakrishnan et al., 2013) as inspiration. SLoG
stores its logs directly in a parallel file system, unlike Mofka, which
stores them in local SSDs. SloG uses proxy nodes to increase
concurrency; in other words, rather than having all the nodes of an
application read from a partition, proxy nodes read from them and
redistribute the data across a larger set of nodes. To the best of our
knowledge, SLog relies on TCP for communications, rather than on
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native HPC network libraries. Its concept of proxy could easily be
adapted to Mofka, especially thanks to Mofka’s composable design.

Neon (Matri and Ross, 2021) was a first take on streaming for
HPC in the context of the Mochi framework. While not persistent
and not distributed, it provides a way for users to set up data
streams between HPC and edge applications, and it has proved
twice as fast as Apache Storm thanks to its use of HPC networks.

Chronolog (Kougkas et al., 2020) was proposed to handle
logs from very large HPC applications, emphasizing the need
to maintain time-based ordering of events, something that other
messaging systems (including Mofka) do not guarantee. Chronolog
relies on a distributed, multitiered key-value store to store events,
with the event’s timestamp used as the key. This design is radically
different from the append-only partition-based design of the likes
of Kafka and Mofka. While it can be suitable for some HPC use
cases such as provenance tracking, it would not be suitable for other
use cases attaching large amounts of data to events.

HStream (Cernuda et al., 2024) is another recent take on the
HPC streaming challenge, with a focus on computations in streams.
Its contributions include an adaptive parallelism controller that
dynamically adjusts computational resources to match the variable
I/O demands of scientific workloads and a hierarchical memory
manager that leverages local and remote storage to alleviate
memory pressure. HStream was implemented using Thallium, one
of the components of the Mochi framework, and was evaluated
against Neon.

Kafka is used in production at ORNL via STREAM (Adamson
et al., 2023), a platform designed to collect telemetry from multiple
of OLCF’s machines. With such telemetry consisting of small
events, and given that each machine has its own high-performance
network, using Kafka to leverage high-speed Ethernet LAN in the
facility makes sense and shows that systems designed for a cloud
environment can be relevant in an HPC facility.

Pilot-Streaming (Chantzialexiou et al., 2018) provides a unified
framework for deploying and managing streaming applications on
HPC infrastructure. By leveraging technologies such as Kafka for
message brokering, Spark Streaming and Dask for data processing,
and the Pilot-Abstraction for dynamic resource management, Pilot-
Streaming simplifies the integration of streaming workflows into
HPC environments. This framework exemplifies the necessity of
streaming in HPC, enabling timely data analysis and dynamic
experiment steering, which are essential for modern scientific
research.

6.2 Producer/consumer HPC services

As stated in Section 1, HPC applications are fundamentally
producers and consumers of data, rather than modifiers. Scientific
simulations produce periodic outputs that must be consumed
by analysis and visualization tools. Scientific instruments are
producers of sensor data that must be sent to post-processing tools
on supercomputers. HPC workflows comprise tasks that produce
and consume data. If a file needs to be modified, it is generally to
update a header or metadata related to its structure, not to touch its
scientific content. Hence, most HPC data services can be thought
of as addressing this producer/consumer pattern.

ADIOS (Godoy et al., 2020), initially developed as an I/O
library with modular backend plugins, provides the SST plugin for
streaming (Eisenhauer et al., 2024). SST is not a data service, in
the sense that it does not require extra servers running a specific
software. Rather, it turns the producing application into a data
service. Put operations queue application data locally, making it
remotely available to the consumer application’sGet operations via
RDMA. SST does not provide persistence. However, it illustrates the
need for efficient streaming in HPC applications.

Checkpointing systems are also frequently used together
with producer/consumer patterns. They facilitate a decoupled
interaction between producers and consumers by enabling the
capture and reuse of key data structures. Multilevel checkpointing
solutions such as VeloC (Nicolae et al., 2021, 2019) leverage both
node-local (GPU memory, host memory, NVMe) and remote
storage to cache and persist checkpoints asynchronously, which
reduces the I/O overheads significantly by masking them in the
background. These techniques can be combined with prefetching
to co-optimize checkpointing initiated by the producers with the
reuse patterns of the consumers, which can be especially effective if
the consumers express their intent (hints about what checkpoints
to read in what order) in advance (Maurya et al., 2023). The
convenience of working with decoupled checkpoint files also can
be leveraged at the system level by intercepting I/O calls and
transparently implementing them as direct links between producers
and consumers. This was demonstrated by LowFive (Peterka et al.,
2023) for the popular HDF5 (Folk et al., 2011) format, with notable
applications for AI workflows that need to continuously train
learning models (producers) that need to be used at the same time
for inferences (consumers) (Ye et al., 2024).

Services that may provide persistence include all the
implementations of the data staging concept, one of which is
DataSpaces (Docan et al., 2010). Such services rely on dedicated
nodes that act as a buffer between a producing application
(generally a simulation) and a consuming application (generally
an analysis code). They may only provide data production and
consumption capabilities or may enable in-service computation, as
in Colza (Dorier et al., 2022), which provides in situ visualization
capabilities. More generally, the entire field of in situ analysis and
visualization, a good overview of which is provided by Childs et al.
(2020), addresses the problem of coupling a data producer to a data
consumer while avoiding the overhead of a parallel file systems.
Many of the solutions in this space include staging with various
degrees of persistence, and this area of HPC would benefit from a
proper distributed event-driven service.

Aside from scientific data, metadata about the execution of
workflows, including provenance data (as in Flowcept) or anomaly
detection data, and performance monitoring data, can benefit
from a streaming service. Chimbuko (Kelly et al., 2020) is an
example of scalable performance trace analysis tool, focusing on
anomaly detection from performance data captured using TAU. Its
provenance database is built using Mochi and relies an append-only
document storage component reminiscent of persistent append-
only logs found in streaming services.

SciStream (Chung et al., 2022) was proposed to enable
streaming data from scientific instruments to supercomputers or
across supercomputers in a WAN. It uses Science DMZ gateway
nodes to cross networks. Since WAN requires Ethernet-based
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communications, it cannot take advantage of high-performance
networks inside a supercomputer. SciStream also provides data
persistence. In fact, its purpose is to avoid the traditional way of
sharing data via parallel file systems.

All these producer/consumer services for HPC heavily rely on
HPC technologies such as RDMA and high-performance networks,
justifying the use of these technologies when developing an event-
streaming service for HPC.

6.3 Other streaming services

Originally meant as a message queuing system, Apache
Pulsar (Sharma and Atyab, 2021) is an alternative to Kafka
that later added event-streaming capabilities. Contrary to the
monolithic design of Kafka, Pulsar decouples message queueing
from persistence, relying on Apache BookKeeper for the latter and
allowing multitiered storage. Pulsar is, however, no more adapted
to HPC than Kafka is. Confluent reports Kafka to be twice as fast
as Pulsar and to provide lower latency,18 although these results are
debatable and may depend on use cases (Andström, 2024).

KerA (Marcu et al., 2018) is similar to Kafka but proposes
a hierarchical partitioning of the data, splitting topics into a
static number of streamlet corresponding to semantic partitioning,
each split into a dynamic number of groups. KerA was built on
RAMCloud (Ousterhout et al., 2015), which supports InfiniBand,
and hence could be used in an HPC context. However, neither KerA
nor RAMCloud is currently maintained.

DataStates (Nicolae, 2020) is a data model in which users do
not interact with a data service directly to write datasets but rather
tag datasets with properties expressing hints, constraints, and
persistency semantics, which automatically adds snapshots (called
data states) into the lineage, a history recording the evolution of
all snapshots, using an optimal I/O plan. Later, these data states
can be discovered and revisited based on the lineage. In effect, they
can act as a stream between producers and consumers and can be
pruned as needed, while retaining persistency for important data.
This principle can be applied even for basic data structures, such as
ordered key-value stores (Nicolae, 2022).

7 Conclusion

Event-driven systems have been massively adopted in internet
businesses to provide a single source of truth while decoupling
applications. In HPC, such a model could be adopted just as well to
support workflows made of applications that produce and consume
data.

In this paper we investigated the potential for an event-driven
framework tailored to HPC systems by exemplifying three such
workflows. While exceptions exist (e.g., AI-training applications
requiring random accesses to a large number of sample data),
many HPC applications can be thought of as a producer/consumer
workflow. Traditional, bulk-synchronous scientific simulations
are periodic producers of checkpoints, for which postprocessing
tools are their consumers. With the emergence of more complex
workflows, a distributed, persistent, event-driven framework for

18 https://www.confluent.io/kafka-vs-pulsar/

HPC becomes increasingly relevant, enabling decoupling workflow
components and impedence matching between production and
consumption rates.

Our Mofka framework, based on the Mochi suite of
components for HPC data services, makes use of HPC
technologies such as high-speed networks with RDMA and
efficient multithreading to efficiently support HPC applications.
In this study we showed that (1) there is an advantage to relying
on such HPC-specific technology to design an event-driven system
for HPC, rather than relying on technologies from the cloud
computing and internet landscape, as motivated by performance
evaluation comparing Mofka with Kafka and Redpanda, and (2)
there is an actual need for such an event-driven system in HPC, as
exemplified by three workflows in which Mofka is now used.

As future work, we plan to make Mofka resilient by enabling
data replication as done in Kafka and Redpanda. We will do
so using a custom, RDMA-enabled implementation of the RAFT
protocol. We also plan to turn Mofka into a multiuser service
by enabling authentication and access control, using MUNGE,19

OpenSSL,20 and a methodology we recently released for developing
multiuser Mochi-based services.21

We also plan to explore bridging Mofka with other technologies
such as Octopus (Pan et al., 2024) to make it part of a larger,
scientific event fabric. In this context Mofka would form the HPC
part of such an event fabric spanning scientific instruments, HPC
facilities, edge devices, and cloud computing.
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