
Data Object Distribution for Experimental Science Pipelines
Justin M. Wozniak,1 Ray Osborn,2 and Jacob Ruff3

1 Data Science and Learning Division (ANL), 2 Materials Science Division (ANL),
3 Cornell High Energy Synchrotron Source

Topic: Fine-grained, wide area data management and access for experimental science.
In order to perform both data reduction and more advanced analysis, such as machine learning (ML), on
data collected at major facilities such as the Advanced Photon Source, it is largely the responsibility of the
visiting scientists to navigate the patchwork of computational resources available at facilities themselves
or to transfer large volumes of data to their own institutions. If an experiment involves multiple
collaborators who each contribute to different modes of data analysis, the experimental team may have to
transfer TBs of data to multiple locations. For example, a team in
Argonne’s Materials Science Division regularly collects several
TB/day at Sector 6 of the APS. This entire volume is currently
streamed to an APS data cluster for initial data reduction, then
transferred to MSD for spectral analysis and, in parallel, copied
to Cornell for ML via Gaussian mixture modeling (GMM) for
unsupervised Bragg peak clustering, then to ALCF Theta to fit
parameters. The raw data are archived by the APS for 1-2 years,
but the intermediate results from each stage of analysis are
distributed over multiple machines in multiple locations, as
shown in Figure 1. Furthermore, the rate-limiting step for each
stage of analysis is the data transfer (1 day of transfer for 15
minutes of analysis!). The Management and Storage of
Scientific Data community could have a big impact on
improving the data movement costs of this workload by enabling
and optimizing remote data operations for a range of data
creation and access patterns.

This white paper sketches an alternative paradigm that could profoundly impact how facilities
handle large-scale experimental data in the future. In our approach, users are presented with a unified
view accessible to all collaborators, which is populated on-demand with experimental data and/or
theoretical simulations from multiple sources, and synchronized with distributed remote locations (cloud,
exascale computing facilities) as needed. From the user perspective, this will have three advantages: (1)
accelerated analysis and learning pipelines due to reduced data transfer overheads; (2) improved
integration of data analysis and advanced modeling (digital twins), and (3) increased productivity due to
less management overhead and development overhead. To this end, we need to design and develop a
portable, adaptable infrastructure that exposes high-level data manipulation primitives to filter, query and
assimilate simulation/experiment/ collaborator data into unified views at fine granularities, while
optimizing interactions with the remote data sources through a combination of local caching and data
planning strategies.

The choices a scientist makes in performing this post -pipeline analysis are usually specific to the
particular scientific question being addressed by the experiment, and therefore impossible to encapsulate
in a predefined pipeline. We envision that pipeline construction by exposing Python network-accessible
object interfaces. The community is already moving toward Python for sequential processing and basic

data manipulation, while performance -critical sections are expected to be written in C, C++, or Fortran,
and exported to Python. Such libraries are likely to be usable in other settings, such as high- performance
computers. The ongoing development of high resolution, high frame rate detectors and the x-ray and
neutron scattering science capabilities they offer has created a data management and I/O challenge. Large
experimental datasets must be rapidly stored and managed for near-real time analysis. The construction of
analysis pipelines partially automates the analysis process, transferring data to storage and among
multiple analysis software packages, but approaches are often too rigid for dynamic studies by human or
learning agents.

It is as important therefore that we have a plan for ensuring that the results of any pipeline are
accessible in a convenient and reasonably standardized form as it is to develop tools for constructing the
automated pipelines in the first place. It is no longer sufficient
to deposit the data in an archive, if the user is then required to
download it in order to perform any follow up operations.
Current methods of data management at large-scale facilities
have not adapted to the needs of facility users as data volumes
have grown and the speed of data collection accelerated.
Facilities typically provide medium-term stores to archive the
data, but these are only accessible as file repositories through
SFTP or Globus.

We have to develop an I/O abstraction and architecture
that allows fine -grained access to the data without requiring
significant data transfers. Thus we propose several key I/O
abstraction challenges: 1) Detector ingest, filtering and upload
(IFUP), via Pythonic filter plug-ins wrapped around advanced
buffering and staging with multiple back-ends; 2) Fine-grained
local caching that maintains the illusion of a fully available
local view, but efficiently populates it on-demand and maintains its coherence in the background; 3)
Orchestration of remote data sources, which automatically selects the best remote source to interact
with (based on proximity, availability of data, permissions) and keeps the remote data sources
synchronized; 4) High level indexing and query support to extract, group and present the data to
analytics and learning tasks using familiar plug-and-play abstractions, from multiple data services.

Our approach is to develop a toolkit of learning and analysis-ready Python libraries that can be
integrated into workflows by users from a broad range of disciplines, depicted in Figure 2. We envision a
pluggable framework in which user Python fragments can be wrapped around existing IFUP technologies
(e.g., Globus) but with a range of callback points controllable via Python tools. Fine-grain local caching
will be addressed at lower levels, investigating how to efficiently buffer and issue fine-grain put/get
operations in bulk to hide the latency of accessing remote data sources without compromising coherence.
To this end, we envision approaches based on snapshot isolation that can take advantage of related efforts.
Enhanced data analysis and learning will be enabled through extensions to a remote object toolkit which
provides a familiar numerical interface, and optimizable aggregated data pipelines for deep learning
frameworks. For example, in the GMM case, a container library entry for Bragg peak identification
would be run at data ingest time, and the learning agent would walk the resulting peak index over remote
object interfaces to quickly and efficiently produce usable results which are also stored for use by others.

